Structure of KAP1 tripartite motif identifies molecular interfaces required for retroelement silencing

Transcription of transposable elements is tightly regulated to prevent genome damage. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) and KRAB-associated protein 1 (KAP1/TRIM28) play a key role in regulating retrotransposons. KRAB-ZFPs recognize specific retrotransposon sequences and recruit...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 30; pp. 15042 - 15051
Main Authors Stoll, Guido A., Oda, Shun-ichiro, Chong, Zheng-Shan, Yu, Minmin, McLaughlin, Stephen H., Modis, Yorgo
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 23.07.2019
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1901318116

Cover

Abstract Transcription of transposable elements is tightly regulated to prevent genome damage. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) and KRAB-associated protein 1 (KAP1/TRIM28) play a key role in regulating retrotransposons. KRAB-ZFPs recognize specific retrotransposon sequences and recruit KAP1, inducing the assembly of an epigenetic silencing complex, with chromatin remodeling activities that repress transcription of the targeted retrotransposon and adjacent genes. Our biophysical and structural data show that the tripartite motif (TRIM) of KAP1 forms antiparallel dimers, which further assemble into tetramers and higher-order oligomers in a concentration-dependent manner. Structure-based mutations in the B-box 1 domain prevent higher-order oligomerization without significant loss of retrotransposon silencing activity, indicating that, in contrast to other TRIM-family proteins, self-assembly is not essential for KAP1 function. The crystal structure of the KAP1 TRIM dimer identifies the KRAB domain binding site in the coiled-coil domain near the dyad. Mutations at this site abolished KRAB binding and transcriptional silencing activity of KAP1. This work identifies the interaction interfaces in the KAP1 TRIM responsible for self-association and KRAB binding and establishes their role in retrotransposon silencing.
AbstractList Transcription of transposable elements is tightly regulated to prevent genome damage. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) and KRAB-associated protein 1 (KAP1/TRIM28) play a key role in regulating retrotransposons. KRAB-ZFPs recognize specific retrotransposon sequences and recruit KAP1, inducing the assembly of an epigenetic silencing complex, with chromatin remodeling activities that repress transcription of the targeted retrotransposon and adjacent genes. Our biophysical and structural data show that the tripartite motif (TRIM) of KAP1 forms antiparallel dimers, which further assemble into tetramers and higher-order oligomers in a concentration-dependent manner. Structure-based mutations in the B-box 1 domain prevent higher-order oligomerization without significant loss of retrotransposon silencing activity, indicating that, in contrast to other TRIM-family proteins, self-assembly is not essential for KAP1 function. The crystal structure of the KAP1 TRIM dimer identifies the KRAB domain binding site in the coiled-coil domain near the dyad. Mutations at this site abolished KRAB binding and transcriptional silencing activity of KAP1. This work identifies the interaction interfaces in the KAP1 TRIM responsible for self-association and KRAB binding and establishes their role in retrotransposon silencing.
Transcription of transposable elements is tightly regulated to prevent genome damage. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) and KRAB-associated protein 1 (KAP1/TRIM28) play a key role in regulating retrotransposons. KRAB-ZFPs recognize specific retrotransposon sequences and recruit KAP1, inducing the assembly of an epigenetic silencing complex, with chromatin remodeling activities that repress transcription of the targeted retrotransposon and adjacent genes. Our biophysical and structural data show that the tripartite motif (TRIM) of KAP1 forms antiparallel dimers, which further assemble into tetramers and higher-order oligomers in a concentration-dependent manner. Structure-based mutations in the B-box 1 domain prevent higher-order oligomerization without significant loss of retrotransposon silencing activity, indicating that, in contrast to other TRIM-family proteins, self-assembly is not essential for KAP1 function. The crystal structure of the KAP1 TRIM dimer identifies the KRAB domain binding site in the coiled-coil domain near the dyad. Mutations at this site abolished KRAB binding and transcriptional silencing activity of KAP1. This work identifies the interaction interfaces in the KAP1 TRIM responsible for self-association and KRAB binding and establishes their role in retrotransposon silencing.Transcription of transposable elements is tightly regulated to prevent genome damage. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) and KRAB-associated protein 1 (KAP1/TRIM28) play a key role in regulating retrotransposons. KRAB-ZFPs recognize specific retrotransposon sequences and recruit KAP1, inducing the assembly of an epigenetic silencing complex, with chromatin remodeling activities that repress transcription of the targeted retrotransposon and adjacent genes. Our biophysical and structural data show that the tripartite motif (TRIM) of KAP1 forms antiparallel dimers, which further assemble into tetramers and higher-order oligomers in a concentration-dependent manner. Structure-based mutations in the B-box 1 domain prevent higher-order oligomerization without significant loss of retrotransposon silencing activity, indicating that, in contrast to other TRIM-family proteins, self-assembly is not essential for KAP1 function. The crystal structure of the KAP1 TRIM dimer identifies the KRAB domain binding site in the coiled-coil domain near the dyad. Mutations at this site abolished KRAB binding and transcriptional silencing activity of KAP1. This work identifies the interaction interfaces in the KAP1 TRIM responsible for self-association and KRAB binding and establishes their role in retrotransposon silencing.
Retroviruses can integrate their DNA into the host-cell genome. Inherited retroviral DNA and other transposable elements account for more than half of the human genome. Transposable elements must be tightly regulated to restrict their proliferation and prevent toxic gene expression. KAP1/TRIM28 is an essential regulator of transposable element transcription. We determined the crystal structure of the KAP1 TRIM. The structure identifies a protein–protein interaction site required for recruitment of KAP1 to transposable elements. An epigenetic gene silencing assay confirms the importance of this site for KAP1-dependent silencing. We also show that KAP1 self-assembles in solution, but this self-assembly is not required for silencing. Our work provides insights into KAP1-dependent silencing and tools for expanding our mechanistic understanding of this process. Transcription of transposable elements is tightly regulated to prevent genome damage. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) and KRAB-associated protein 1 (KAP1/TRIM28) play a key role in regulating retrotransposons. KRAB-ZFPs recognize specific retrotransposon sequences and recruit KAP1, inducing the assembly of an epigenetic silencing complex, with chromatin remodeling activities that repress transcription of the targeted retrotransposon and adjacent genes. Our biophysical and structural data show that the tripartite motif (TRIM) of KAP1 forms antiparallel dimers, which further assemble into tetramers and higher-order oligomers in a concentration-dependent manner. Structure-based mutations in the B-box 1 domain prevent higher-order oligomerization without significant loss of retrotransposon silencing activity, indicating that, in contrast to other TRIM-family proteins, self-assembly is not essential for KAP1 function. The crystal structure of the KAP1 TRIM dimer identifies the KRAB domain binding site in the coiled-coil domain near the dyad. Mutations at this site abolished KRAB binding and transcriptional silencing activity of KAP1. This work identifies the interaction interfaces in the KAP1 TRIM responsible for self-association and KRAB binding and establishes their role in retrotransposon silencing.
Author McLaughlin, Stephen H.
Chong, Zheng-Shan
Yu, Minmin
Stoll, Guido A.
Modis, Yorgo
Oda, Shun-ichiro
Author_xml – sequence: 1
  givenname: Guido A.
  surname: Stoll
  fullname: Stoll, Guido A.
– sequence: 2
  givenname: Shun-ichiro
  surname: Oda
  fullname: Oda, Shun-ichiro
– sequence: 3
  givenname: Zheng-Shan
  surname: Chong
  fullname: Chong, Zheng-Shan
– sequence: 4
  givenname: Minmin
  surname: Yu
  fullname: Yu, Minmin
– sequence: 5
  givenname: Stephen H.
  surname: McLaughlin
  fullname: McLaughlin, Stephen H.
– sequence: 6
  givenname: Yorgo
  surname: Modis
  fullname: Modis, Yorgo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31289231$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rFTEUxYNU7Gt17UoZcONm2nxPshFK8QsLCuo6ZDI3NY-Z5DXJCP735vHaqgVXITe_czg35wQdxRQBoecEnxE8sPNdtOWMaEwYUYTIR2hDsCa95BofoQ3GdOgVp_wYnZSyxRhrofATdMwIVZoyskH-a82rq2uGLvnu08UX0tUcdjbXUKFbUg2-CxPEdgYobTCDW2ebuxArZG9dG2a4WUOGqfMpt0vNCWZYmqYrYYboQrx-ih57Oxd4dnueou_v3n67_NBffX7_8fLiqncC69pTZadRTlYTLxwXWI5aKtEWUCP1IKyYuGZWCy8x1cJZzkbC2pjwoX2CmNgpenPw3a3jApNrIbKdzS6HxeZfJtlg_n2J4Ye5Tj-NlBIPA20Gr28NcrpZoVSzhOJgnm2EtBZDqRB84IMWDX31AN2mNce2XqOkkoPSmjfq5d-J7qPcVdAAcQBcTqVk8MaFamtI-4BhNgSbfdVmX7X5U3XTnT_Q3Vn_X_HioNiWmvI93rJyxahkvwGlN7a-
CitedBy_id crossref_primary_10_1016_j_biochi_2022_10_006
crossref_primary_10_1186_s12934_024_02540_9
crossref_primary_10_3389_fphar_2022_999380
crossref_primary_10_3390_molecules26206296
crossref_primary_10_1016_j_tim_2024_05_007
crossref_primary_10_1042_BST20200383
crossref_primary_10_3390_ijms242316702
crossref_primary_10_1007_s11033_025_10257_0
crossref_primary_10_1038_s41467_020_18863_1
crossref_primary_10_1002_cbic_202000787
crossref_primary_10_3390_ijms22042212
crossref_primary_10_1016_j_bbcan_2022_188731
crossref_primary_10_1093_nar_gkad247
crossref_primary_10_1098_rsos_191976
crossref_primary_10_3390_ijms21197245
crossref_primary_10_1083_jcb_202203102
crossref_primary_10_15252_embj_2022111179
crossref_primary_10_3390_cancers14071607
crossref_primary_10_1042_BCJ20220385
crossref_primary_10_1016_j_isci_2023_106604
crossref_primary_10_1038_s41589_023_01355_w
crossref_primary_10_1093_narcan_zcaa007
crossref_primary_10_1002_bies_202400052
crossref_primary_10_1038_s41594_023_01111_7
crossref_primary_10_3390_cells10051235
crossref_primary_10_1016_j_stem_2022_06_001
crossref_primary_10_3390_ijms23095215
crossref_primary_10_1038_s41421_024_00735_3
crossref_primary_10_1093_nar_gkaa460
crossref_primary_10_3390_ph14060495
crossref_primary_10_1139_bcb_2023_0153
crossref_primary_10_1038_s41576_021_00385_1
crossref_primary_10_3390_ijms23126839
crossref_primary_10_1002_pro_4436
crossref_primary_10_1158_2159_8290_CD_23_0453
crossref_primary_10_1038_s41467_023_37198_1
crossref_primary_10_1073_pnas_1912074117
crossref_primary_10_3390_ijms23031072
crossref_primary_10_1016_j_jbc_2022_101861
crossref_primary_10_1016_j_tcb_2020_05_005
crossref_primary_10_1016_j_bpj_2023_10_026
crossref_primary_10_3390_ijms241411591
crossref_primary_10_3390_ijms24129830
crossref_primary_10_3390_v12091015
crossref_primary_10_1002_path_6206
crossref_primary_10_1038_s41467_023_40496_3
crossref_primary_10_1016_j_cellin_2024_100213
crossref_primary_10_3389_fcimb_2022_834636
crossref_primary_10_1016_j_tvr_2025_200317
crossref_primary_10_3390_v16010116
crossref_primary_10_1186_s12860_019_0243_y
crossref_primary_10_1016_j_bpc_2022_106827
crossref_primary_10_26508_lsa_201900349
crossref_primary_10_1016_j_csbj_2023_04_022
crossref_primary_10_1038_s41598_024_81149_9
crossref_primary_10_1016_j_tig_2023_08_003
Cites_doi 10.1038/nature21683
10.1038/nsmb.2621
10.1242/dev.132605
10.1073/pnas.1318962111
10.1038/nsmb.2379
10.1016/j.jmb.2007.03.047
10.1107/S0907444904019158
10.1038/sj.onc.1209335
10.1101/553511
10.1016/j.molcel.2010.08.029
10.1128/MCB.00487-06
10.1107/S0907444906029799
10.1107/S0907444909052925
10.1016/j.cell.2015.01.034
10.1038/nature03157
10.1126/science.8316857
10.4049/jimmunol.1101704
10.2210/pdb6qaj/pdb
10.1016/j.molcel.2007.11.012
10.1016/j.jmb.2019.05.002
10.1074/jbc.R111.252569
10.1126/science.aac7442
10.1038/nsmb.1416
10.1126/science.aad5497
10.1006/jmbi.1999.3402
10.1038/s41467-018-03498-0
10.1016/S0003-2697(03)00289-6
10.1101/gr.228171.117
10.1146/annurev-cellbio-100814-125514
10.1038/nature13760
10.1007/s10858-014-9869-4
10.1038/cr.2014.46
10.1038/nm.2129
10.1016/j.placenta.2012.05.005
10.4331/wjbc.v5.i3.308
10.1038/s41467-018-04214-8
10.1186/s13100-016-0070-z
10.1073/pnas.1402448111
10.1107/S0907444911001314
10.1016/j.celrep.2015.06.072
10.1016/j.molcel.2006.09.013
10.15252/embj.201593741
10.1107/S0907444911007773
10.1186/s13100-016-0065-9
ContentType Journal Article
Copyright Copyright © 2019 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Jul 23, 2019
Copyright © 2019 the Author(s). Published by PNAS. 2019
Copyright_xml – notice: Copyright © 2019 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Jul 23, 2019
– notice: Copyright © 2019 the Author(s). Published by PNAS. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1901318116
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
Virology and AIDS Abstracts
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 15051
ExternalDocumentID PMC6660772
31289231
10_1073_pnas_1901318116
26848326
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_U105184326
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 101908/Z/13/Z
– fundername: Wellcome Trust
  grantid: 205833/Z/16/Z
– fundername: Biotechnology and Biological Sciences Research Council
– fundername: Medical Research Council
  grantid: MR/S021604/1
– fundername: Wellcome
  grantid: 101908/Z/13/Z
– fundername: Wellcome
  grantid: 205833/Z/16/Z
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-28adb6da91f5c4506b96854248b2fe5a5d493a95f60295ca43b135a51471905d3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:50:46 EDT 2025
Fri Sep 05 09:43:53 EDT 2025
Sat Aug 23 12:33:59 EDT 2025
Sat May 31 02:12:50 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Tue Jul 01 03:40:06 EDT 2025
Thu May 29 14:19:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords epigenetic silencing
endogenous retrovirus
transposable element
transcriptional repressor
ubiquitin E3 ligase
Language English
License Copyright © 2019 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-28adb6da91f5c4506b96854248b2fe5a5d493a95f60295ca43b135a51471905d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Ming-Ming Zhou, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, and accepted by Editorial Board Member Axel T. Brunger June 17, 2019 (received for review January 25, 2019)
Author contributions: G.A.S., Z.-S.C., and Y.M. designed research; G.A.S., S.-i.O., Z.-S.C., and Y.M. performed research; G.A.S., S.-i.O., Z.-S.C., M.Y., S.H.M., and Y.M. contributed new reagents/analytic tools; G.A.S., S.-i.O., Z.-S.C., M.Y., S.H.M., and Y.M. analyzed data; and G.A.S. and Y.M. wrote the paper.
ORCID 0000-0001-9135-6253
0000-0003-4442-7586
0000-0003-2531-9168
0000-0002-6084-0429
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6660772
PMID 31289231
PQID 2268678994
PQPubID 42026
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6660772
proquest_miscellaneous_2255474795
proquest_journals_2268678994
pubmed_primary_31289231
crossref_citationtrail_10_1073_pnas_1901318116
crossref_primary_10_1073_pnas_1901318116
jstor_primary_26848326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-23
PublicationDateYYYYMMDD 2019-07-23
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Murshudov G. N. (e_1_3_4_41_2) 2011; 67
Peng H. (e_1_3_4_21_2) 2007; 370
Chuong E. B. (e_1_3_4_3_2) 2016; 351
Yudina Z. (e_1_3_4_30_2) 2015; 12
Li Y. (e_1_3_4_24_2) 2014; 24
Huang S. Y. (e_1_3_4_29_2) 2014; 60
Liang Q. (e_1_3_4_18_2) 2011; 187
Zeng L. (e_1_3_4_17_2) 2008; 15
Pineda C. T. (e_1_3_4_14_2) 2015; 160
Hung T. (e_1_3_4_8_2) 2015; 350
Koliopoulos M. G. (e_1_3_4_26_2) 2018; 9
e_1_3_4_45_2
Iyengar S. (e_1_3_4_15_2) 2011; 286
e_1_3_4_43_2
e_1_3_4_42_2
Ivanov A. V. (e_1_3_4_16_2) 2007; 28
Hancks D. C. (e_1_3_4_6_2) 2016; 7
Schuck P. (e_1_3_4_36_2) 2003; 320
Sanchez J. G. (e_1_3_4_25_2) 2014; 111
Friedli M. (e_1_3_4_1_2) 2015; 31
Koliopoulos M. G. (e_1_3_4_28_2) 2016; 35
Quimby B. B. (e_1_3_4_19_2) 2006; 25
Dou H. (e_1_3_4_31_2) 2012; 19
Vonrhein C. (e_1_3_4_38_2) 2011; 67
Peng H. (e_1_3_4_22_2) 2000; 295
Adams P. D. (e_1_3_4_39_2) 2010; 66
Doyle J. M. (e_1_3_4_13_2) 2010; 39
Dou H. (e_1_3_4_32_2) 2013; 20
Goodier J. L. (e_1_3_4_2_2) 2016; 7
Goldstone D. C. (e_1_3_4_23_2) 2014; 111
Aricescu A. R. (e_1_3_4_35_2) 2006; 62
Zhou L. (e_1_3_4_4_2) 2004; 432
Ecco G. (e_1_3_4_9_2) 2017; 144
Jacobs F. M. (e_1_3_4_11_2) 2014; 516
Sripathy S. P. (e_1_3_4_34_2) 2006; 26
Rayment I. (e_1_3_4_37_2) 1993; 261
Shen T. H. (e_1_3_4_20_2) 2006; 24
Cheng C. T. (e_1_3_4_12_2) 2014; 5
Lamprecht B. (e_1_3_4_7_2); 16
Robbez-Masson L. (e_1_3_4_33_2) 2018; 28
Emsley P. (e_1_3_4_40_2) 2004; 60
Imbeault M. (e_1_3_4_10_2) 2017; 543
Dupressoir A. (e_1_3_4_5_2) 2012; 33
Wang P. (e_1_3_4_27_2) 2018; 9
Sun Y. (e_1_3_4_44_2) 2019; 431
References_xml – volume: 543
  start-page: 550
  year: 2017
  ident: e_1_3_4_10_2
  article-title: KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks
  publication-title: Nature
  doi: 10.1038/nature21683
– volume: 20
  start-page: 982
  year: 2013
  ident: e_1_3_4_32_2
  article-title: Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2621
– volume: 144
  start-page: 2719
  year: 2017
  ident: e_1_3_4_9_2
  article-title: KRAB zinc finger proteins
  publication-title: Development
  doi: 10.1242/dev.132605
– volume: 111
  start-page: 2494
  year: 2014
  ident: e_1_3_4_25_2
  article-title: The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1318962111
– volume: 19
  start-page: 876
  year: 2012
  ident: e_1_3_4_31_2
  article-title: BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2379
– volume: 370
  start-page: 269
  year: 2007
  ident: e_1_3_4_21_2
  article-title: The structurally disordered KRAB repression domain is incorporated into a protease resistant core upon binding to KAP-1-RBCC domain
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.03.047
– volume: 60
  start-page: 2126
  year: 2004
  ident: e_1_3_4_40_2
  article-title: Coot: Model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444904019158
– volume: 25
  start-page: 2999
  year: 2006
  ident: e_1_3_4_19_2
  article-title: The promyelocytic leukemia protein stimulates SUMO conjugation in yeast
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209335
– ident: e_1_3_4_45_2
  doi: 10.1101/553511
– volume: 39
  start-page: 963
  year: 2010
  ident: e_1_3_4_13_2
  article-title: MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.08.029
– volume: 26
  start-page: 8623
  year: 2006
  ident: e_1_3_4_34_2
  article-title: The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00487-06
– volume: 62
  start-page: 1243
  year: 2006
  ident: e_1_3_4_35_2
  article-title: A time- and cost-efficient system for high-level protein production in mammalian cells
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444906029799
– volume: 66
  start-page: 213
  year: 2010
  ident: e_1_3_4_39_2
  article-title: PHENIX: A comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909052925
– volume: 160
  start-page: 715
  year: 2015
  ident: e_1_3_4_14_2
  article-title: Degradation of AMPK by a cancer-specific ubiquitin ligase
  publication-title: Cell
  doi: 10.1016/j.cell.2015.01.034
– volume: 432
  start-page: 995
  year: 2004
  ident: e_1_3_4_4_2
  article-title: Transposition of hAT elements links transposable elements and V(D)J recombination
  publication-title: Nature
  doi: 10.1038/nature03157
– volume: 261
  start-page: 50
  year: 1993
  ident: e_1_3_4_37_2
  article-title: Three-dimensional structure of myosin subfragment-1: A molecular motor
  publication-title: Science
  doi: 10.1126/science.8316857
– volume: 187
  start-page: 4754
  year: 2011
  ident: e_1_3_4_18_2
  article-title: Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1101704
– ident: e_1_3_4_42_2
  doi: 10.2210/pdb6qaj/pdb
– volume: 28
  start-page: 823
  year: 2007
  ident: e_1_3_4_16_2
  article-title: PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.11.012
– volume: 431
  start-page: 2511
  year: 2019
  ident: e_1_3_4_44_2
  article-title: A dissection of oligomerization by the TRIM28 tripartite motif and the interaction with members of the Krab-ZFP family
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2019.05.002
– volume: 286
  start-page: 26267
  year: 2011
  ident: e_1_3_4_15_2
  article-title: KAP1 protein: An enigmatic master regulator of the genome
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R111.252569
– volume: 350
  start-page: 455
  year: 2015
  ident: e_1_3_4_8_2
  article-title: The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression
  publication-title: Science
  doi: 10.1126/science.aac7442
– volume: 15
  start-page: 626
  year: 2008
  ident: e_1_3_4_17_2
  article-title: Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1416
– volume: 351
  start-page: 1083
  year: 2016
  ident: e_1_3_4_3_2
  article-title: Regulatory evolution of innate immunity through co-option of endogenous retroviruses
  publication-title: Science
  doi: 10.1126/science.aad5497
– volume: 295
  start-page: 1139
  year: 2000
  ident: e_1_3_4_22_2
  article-title: Reconstitution of the KRAB-KAP-1 repressor complex: A model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.3402
– volume: 9
  start-page: 1277
  year: 2018
  ident: e_1_3_4_27_2
  article-title: RING tetramerization is required for nuclear body biogenesis and PML sumoylation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03498-0
– volume: 320
  start-page: 104
  year: 2003
  ident: e_1_3_4_36_2
  article-title: On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation
  publication-title: Anal. Biochem.
  doi: 10.1016/S0003-2697(03)00289-6
– volume: 28
  start-page: 836
  year: 2018
  ident: e_1_3_4_33_2
  article-title: The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes
  publication-title: Genome Res.
  doi: 10.1101/gr.228171.117
– volume: 31
  start-page: 429
  year: 2015
  ident: e_1_3_4_1_2
  article-title: The developmental control of transposable elements and the evolution of higher species
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100814-125514
– volume: 516
  start-page: 242
  year: 2014
  ident: e_1_3_4_11_2
  article-title: An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons
  publication-title: Nature
  doi: 10.1038/nature13760
– volume: 60
  start-page: 275
  year: 2014
  ident: e_1_3_4_29_2
  article-title: The B-box 1 dimer of human promyelocytic leukemia protein
  publication-title: J. Biomol. NMR
  doi: 10.1007/s10858-014-9869-4
– volume: 24
  start-page: 762
  year: 2014
  ident: e_1_3_4_24_2
  article-title: Structural insights into the TRIM family of ubiquitin E3 ligases
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.46
– volume: 16
  start-page: 571
  ident: e_1_3_4_7_2
  article-title: Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma
  publication-title: Nat. Med.
  doi: 10.1038/nm.2129
– volume: 33
  start-page: 663
  year: 2012
  ident: e_1_3_4_5_2
  article-title: From ancestral infectious retroviruses to bona fide cellular genes: Role of the captured syncytins in placentation
  publication-title: Placenta
  doi: 10.1016/j.placenta.2012.05.005
– volume: 5
  start-page: 308
  year: 2014
  ident: e_1_3_4_12_2
  article-title: KAPtain in charge of multiple missions: Emerging roles of KAP1
  publication-title: World J. Biol. Chem.
  doi: 10.4331/wjbc.v5.i3.308
– volume: 9
  start-page: 1820
  year: 2018
  ident: e_1_3_4_26_2
  article-title: Molecular mechanism of influenza A NS1-mediated TRIM25 recognition and inhibition
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04214-8
– ident: e_1_3_4_43_2
– volume: 7
  start-page: 16
  year: 2016
  ident: e_1_3_4_2_2
  article-title: Restricting retrotransposons: A review
  publication-title: Mob. DNA
  doi: 10.1186/s13100-016-0070-z
– volume: 111
  start-page: 9609
  year: 2014
  ident: e_1_3_4_23_2
  article-title: Structural studies of postentry restriction factors reveal antiparallel dimers that enable avid binding to the HIV-1 capsid lattice
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1402448111
– volume: 67
  start-page: 355
  year: 2011
  ident: e_1_3_4_41_2
  article-title: REFMAC5 for the refinement of macromolecular crystal structures
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444911001314
– volume: 12
  start-page: 788
  year: 2015
  ident: e_1_3_4_30_2
  article-title: RING dimerization links higher-order assembly of TRIM5α to synthesis of K63-linked polyubiquitin
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.06.072
– volume: 24
  start-page: 331
  year: 2006
  ident: e_1_3_4_20_2
  article-title: The mechanisms of PML-nuclear body formation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.09.013
– volume: 35
  start-page: 1204
  year: 2016
  ident: e_1_3_4_28_2
  article-title: Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity
  publication-title: EMBO J.
  doi: 10.15252/embj.201593741
– volume: 67
  start-page: 293
  year: 2011
  ident: e_1_3_4_38_2
  article-title: Data processing and analysis with the autoPROC toolbox
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444911007773
– volume: 7
  start-page: 9
  year: 2016
  ident: e_1_3_4_6_2
  article-title: Roles for retrotransposon insertions in human disease
  publication-title: Mob. DNA
  doi: 10.1186/s13100-016-0065-9
SSID ssj0009580
Score 2.5288458
Snippet Transcription of transposable elements is tightly regulated to prevent genome damage. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) and...
Retroviruses can integrate their DNA into the host-cell genome. Inherited retroviral DNA and other transposable elements account for more than half of the...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15042
SubjectTerms Amino Acid Sequence
Binding Sites
Biological Sciences
Chromatin - chemistry
Chromatin - metabolism
Chromatin Assembly and Disassembly
Chromatin remodeling
Cloning, Molecular
Coils
Crystal structure
Crystallography, X-Ray
Damage prevention
Dimers
Epigenesis, Genetic
Escherichia coli - genetics
Escherichia coli - metabolism
Gene Expression
Gene Silencing
Genetic Vectors - chemistry
Genetic Vectors - metabolism
Genomes
Humans
Interfaces
Models, Molecular
Molecular structure
Mutation
Oligomerization
Oligomers
PNAS Plus
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Interaction Domains and Motifs
Protein Multimerization
Proteins
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Repressor Proteins - chemistry
Repressor Proteins - genetics
Repressor Proteins - metabolism
Retroelements
Self-assembly
Self-association
Sequence Alignment
Sequence Homology, Amino Acid
Structure-function relationships
Transcription, Genetic
Tripartite Motif-Containing Protein 28 - chemistry
Tripartite Motif-Containing Protein 28 - genetics
Tripartite Motif-Containing Protein 28 - metabolism
Zinc finger proteins
Title Structure of KAP1 tripartite motif identifies molecular interfaces required for retroelement silencing
URI https://www.jstor.org/stable/26848326
https://www.ncbi.nlm.nih.gov/pubmed/31289231
https://www.proquest.com/docview/2268678994
https://www.proquest.com/docview/2255474795
https://pubmed.ncbi.nlm.nih.gov/PMC6660772
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeOEFMWBQNpCReBiKUtrE-fBjhTYGjK5SW6nwEtmxvVaCZGrTF_4Af5vrjyTtKNLgJaoc161yT66P7XvPRegNF0wGOen7AcwePskF86lQiZ_HORd6VpAmXezLKL6YkU_zaN7p_NqKWtpUvJf_3JtX8j9WhTawq86S_QfLNoNCA3wG-8IVLAzXO9l4YsRf9REAUL7Pw_HAq8AH6I6V9HSUnfKWwoYDSV30xlXCNRoRK2WCsVZShwID69ThhitZrUppA8q99VLnI9Uzm-Ov42a-W9fRBaN6O3HYJqc4j7H2fG88aksdT6rSnnJ82CxF2W6jXglDYSeLTeF_zBfLVdlGHbiQ4W8LWVz7k0UL5q8bG_Zf_HDi4W7vwqRL-Ta92LlbYCt-TGzB0J7c01b7aJuQ6cDoTnKsywVGa_W5_pgMwHvpCsYFW_c07QHvVQ-zI7s9usrOZ5eX2fRsPr2H7gcJkLB626dRb06trIX7a7VGVBK-uzX8Dr2xEa771i63Q3C3OM30EXroFiN4aJF1iDqyeIwOa-PhU6dJ_vYJUg3UcKmwhhpuoYYN1HALNdxADbdQwzXUMEANb0MNN1B7imbnZ9P3F74r0eHnwDQreMOZ4LFgdKCinET9mNM4jUhAUh4oGbFIEBoyGqm4H9AoZyTkgxCaB8CJaD8S4RE6KMpCPkc45cmAB1Tzx4DIkDJ4poynSilBU8Z4F_XqJ5vlTr9el1H5npk4iiTMtCmy1hRddNp84cZKt_y965ExVdNPayDBXAc3TmrbZe7FX2ewYkmB41FKuuh1cxvcsj5rY4UsN7oP8HRYqtOoi55ZUzeDh8AJ9bqqi5IdEDQdtOT77p1iuTDS73Ec92E9_OIOv3uMHrSv3Ak6AJjIl0CgK_7KgPs3C0TK2Q
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+of+KAP1+tripartite+motif+identifies+molecular+interfaces+required+for+retroelement+silencing&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Stoll%2C+Guido+A&rft.au=Oda%2C+Shun-Ichiro&rft.au=Chong%2C+Zheng-Shan&rft.au=Yu%2C+Minmin&rft.date=2019-07-23&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=116&rft.issue=30&rft.spage=15042&rft_id=info:doi/10.1073%2Fpnas.1901318116&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon