Structure of KAP1 tripartite motif identifies molecular interfaces required for retroelement silencing
Transcription of transposable elements is tightly regulated to prevent genome damage. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) and KRAB-associated protein 1 (KAP1/TRIM28) play a key role in regulating retrotransposons. KRAB-ZFPs recognize specific retrotransposon sequences and recruit...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 30; pp. 15042 - 15051 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
23.07.2019
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1901318116 |
Cover
Abstract | Transcription of transposable elements is tightly regulated to prevent genome damage. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) and KRAB-associated protein 1 (KAP1/TRIM28) play a key role in regulating retrotransposons. KRAB-ZFPs recognize specific retrotransposon sequences and recruit KAP1, inducing the assembly of an epigenetic silencing complex, with chromatin remodeling activities that repress transcription of the targeted retrotransposon and adjacent genes. Our biophysical and structural data show that the tripartite motif (TRIM) of KAP1 forms antiparallel dimers, which further assemble into tetramers and higher-order oligomers in a concentration-dependent manner. Structure-based mutations in the B-box 1 domain prevent higher-order oligomerization without significant loss of retrotransposon silencing activity, indicating that, in contrast to other TRIM-family proteins, self-assembly is not essential for KAP1 function. The crystal structure of the KAP1 TRIM dimer identifies the KRAB domain binding site in the coiled-coil domain near the dyad. Mutations at this site abolished KRAB binding and transcriptional silencing activity of KAP1. This work identifies the interaction interfaces in the KAP1 TRIM responsible for self-association and KRAB binding and establishes their role in retrotransposon silencing. |
---|---|
AbstractList | Transcription of transposable elements is tightly regulated to prevent genome damage. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) and KRAB-associated protein 1 (KAP1/TRIM28) play a key role in regulating retrotransposons. KRAB-ZFPs recognize specific retrotransposon sequences and recruit KAP1, inducing the assembly of an epigenetic silencing complex, with chromatin remodeling activities that repress transcription of the targeted retrotransposon and adjacent genes. Our biophysical and structural data show that the tripartite motif (TRIM) of KAP1 forms antiparallel dimers, which further assemble into tetramers and higher-order oligomers in a concentration-dependent manner. Structure-based mutations in the B-box 1 domain prevent higher-order oligomerization without significant loss of retrotransposon silencing activity, indicating that, in contrast to other TRIM-family proteins, self-assembly is not essential for KAP1 function. The crystal structure of the KAP1 TRIM dimer identifies the KRAB domain binding site in the coiled-coil domain near the dyad. Mutations at this site abolished KRAB binding and transcriptional silencing activity of KAP1. This work identifies the interaction interfaces in the KAP1 TRIM responsible for self-association and KRAB binding and establishes their role in retrotransposon silencing. Transcription of transposable elements is tightly regulated to prevent genome damage. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) and KRAB-associated protein 1 (KAP1/TRIM28) play a key role in regulating retrotransposons. KRAB-ZFPs recognize specific retrotransposon sequences and recruit KAP1, inducing the assembly of an epigenetic silencing complex, with chromatin remodeling activities that repress transcription of the targeted retrotransposon and adjacent genes. Our biophysical and structural data show that the tripartite motif (TRIM) of KAP1 forms antiparallel dimers, which further assemble into tetramers and higher-order oligomers in a concentration-dependent manner. Structure-based mutations in the B-box 1 domain prevent higher-order oligomerization without significant loss of retrotransposon silencing activity, indicating that, in contrast to other TRIM-family proteins, self-assembly is not essential for KAP1 function. The crystal structure of the KAP1 TRIM dimer identifies the KRAB domain binding site in the coiled-coil domain near the dyad. Mutations at this site abolished KRAB binding and transcriptional silencing activity of KAP1. This work identifies the interaction interfaces in the KAP1 TRIM responsible for self-association and KRAB binding and establishes their role in retrotransposon silencing.Transcription of transposable elements is tightly regulated to prevent genome damage. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) and KRAB-associated protein 1 (KAP1/TRIM28) play a key role in regulating retrotransposons. KRAB-ZFPs recognize specific retrotransposon sequences and recruit KAP1, inducing the assembly of an epigenetic silencing complex, with chromatin remodeling activities that repress transcription of the targeted retrotransposon and adjacent genes. Our biophysical and structural data show that the tripartite motif (TRIM) of KAP1 forms antiparallel dimers, which further assemble into tetramers and higher-order oligomers in a concentration-dependent manner. Structure-based mutations in the B-box 1 domain prevent higher-order oligomerization without significant loss of retrotransposon silencing activity, indicating that, in contrast to other TRIM-family proteins, self-assembly is not essential for KAP1 function. The crystal structure of the KAP1 TRIM dimer identifies the KRAB domain binding site in the coiled-coil domain near the dyad. Mutations at this site abolished KRAB binding and transcriptional silencing activity of KAP1. This work identifies the interaction interfaces in the KAP1 TRIM responsible for self-association and KRAB binding and establishes their role in retrotransposon silencing. Retroviruses can integrate their DNA into the host-cell genome. Inherited retroviral DNA and other transposable elements account for more than half of the human genome. Transposable elements must be tightly regulated to restrict their proliferation and prevent toxic gene expression. KAP1/TRIM28 is an essential regulator of transposable element transcription. We determined the crystal structure of the KAP1 TRIM. The structure identifies a protein–protein interaction site required for recruitment of KAP1 to transposable elements. An epigenetic gene silencing assay confirms the importance of this site for KAP1-dependent silencing. We also show that KAP1 self-assembles in solution, but this self-assembly is not required for silencing. Our work provides insights into KAP1-dependent silencing and tools for expanding our mechanistic understanding of this process. Transcription of transposable elements is tightly regulated to prevent genome damage. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) and KRAB-associated protein 1 (KAP1/TRIM28) play a key role in regulating retrotransposons. KRAB-ZFPs recognize specific retrotransposon sequences and recruit KAP1, inducing the assembly of an epigenetic silencing complex, with chromatin remodeling activities that repress transcription of the targeted retrotransposon and adjacent genes. Our biophysical and structural data show that the tripartite motif (TRIM) of KAP1 forms antiparallel dimers, which further assemble into tetramers and higher-order oligomers in a concentration-dependent manner. Structure-based mutations in the B-box 1 domain prevent higher-order oligomerization without significant loss of retrotransposon silencing activity, indicating that, in contrast to other TRIM-family proteins, self-assembly is not essential for KAP1 function. The crystal structure of the KAP1 TRIM dimer identifies the KRAB domain binding site in the coiled-coil domain near the dyad. Mutations at this site abolished KRAB binding and transcriptional silencing activity of KAP1. This work identifies the interaction interfaces in the KAP1 TRIM responsible for self-association and KRAB binding and establishes their role in retrotransposon silencing. |
Author | McLaughlin, Stephen H. Chong, Zheng-Shan Yu, Minmin Stoll, Guido A. Modis, Yorgo Oda, Shun-ichiro |
Author_xml | – sequence: 1 givenname: Guido A. surname: Stoll fullname: Stoll, Guido A. – sequence: 2 givenname: Shun-ichiro surname: Oda fullname: Oda, Shun-ichiro – sequence: 3 givenname: Zheng-Shan surname: Chong fullname: Chong, Zheng-Shan – sequence: 4 givenname: Minmin surname: Yu fullname: Yu, Minmin – sequence: 5 givenname: Stephen H. surname: McLaughlin fullname: McLaughlin, Stephen H. – sequence: 6 givenname: Yorgo surname: Modis fullname: Modis, Yorgo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31289231$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rFTEUxYNU7Gt17UoZcONm2nxPshFK8QsLCuo6ZDI3NY-Z5DXJCP735vHaqgVXITe_czg35wQdxRQBoecEnxE8sPNdtOWMaEwYUYTIR2hDsCa95BofoQ3GdOgVp_wYnZSyxRhrofATdMwIVZoyskH-a82rq2uGLvnu08UX0tUcdjbXUKFbUg2-CxPEdgYobTCDW2ebuxArZG9dG2a4WUOGqfMpt0vNCWZYmqYrYYboQrx-ih57Oxd4dnueou_v3n67_NBffX7_8fLiqncC69pTZadRTlYTLxwXWI5aKtEWUCP1IKyYuGZWCy8x1cJZzkbC2pjwoX2CmNgpenPw3a3jApNrIbKdzS6HxeZfJtlg_n2J4Ye5Tj-NlBIPA20Gr28NcrpZoVSzhOJgnm2EtBZDqRB84IMWDX31AN2mNce2XqOkkoPSmjfq5d-J7qPcVdAAcQBcTqVk8MaFamtI-4BhNgSbfdVmX7X5U3XTnT_Q3Vn_X_HioNiWmvI93rJyxahkvwGlN7a- |
CitedBy_id | crossref_primary_10_1016_j_biochi_2022_10_006 crossref_primary_10_1186_s12934_024_02540_9 crossref_primary_10_3389_fphar_2022_999380 crossref_primary_10_3390_molecules26206296 crossref_primary_10_1016_j_tim_2024_05_007 crossref_primary_10_1042_BST20200383 crossref_primary_10_3390_ijms242316702 crossref_primary_10_1007_s11033_025_10257_0 crossref_primary_10_1038_s41467_020_18863_1 crossref_primary_10_1002_cbic_202000787 crossref_primary_10_3390_ijms22042212 crossref_primary_10_1016_j_bbcan_2022_188731 crossref_primary_10_1093_nar_gkad247 crossref_primary_10_1098_rsos_191976 crossref_primary_10_3390_ijms21197245 crossref_primary_10_1083_jcb_202203102 crossref_primary_10_15252_embj_2022111179 crossref_primary_10_3390_cancers14071607 crossref_primary_10_1042_BCJ20220385 crossref_primary_10_1016_j_isci_2023_106604 crossref_primary_10_1038_s41589_023_01355_w crossref_primary_10_1093_narcan_zcaa007 crossref_primary_10_1002_bies_202400052 crossref_primary_10_1038_s41594_023_01111_7 crossref_primary_10_3390_cells10051235 crossref_primary_10_1016_j_stem_2022_06_001 crossref_primary_10_3390_ijms23095215 crossref_primary_10_1038_s41421_024_00735_3 crossref_primary_10_1093_nar_gkaa460 crossref_primary_10_3390_ph14060495 crossref_primary_10_1139_bcb_2023_0153 crossref_primary_10_1038_s41576_021_00385_1 crossref_primary_10_3390_ijms23126839 crossref_primary_10_1002_pro_4436 crossref_primary_10_1158_2159_8290_CD_23_0453 crossref_primary_10_1038_s41467_023_37198_1 crossref_primary_10_1073_pnas_1912074117 crossref_primary_10_3390_ijms23031072 crossref_primary_10_1016_j_jbc_2022_101861 crossref_primary_10_1016_j_tcb_2020_05_005 crossref_primary_10_1016_j_bpj_2023_10_026 crossref_primary_10_3390_ijms241411591 crossref_primary_10_3390_ijms24129830 crossref_primary_10_3390_v12091015 crossref_primary_10_1002_path_6206 crossref_primary_10_1038_s41467_023_40496_3 crossref_primary_10_1016_j_cellin_2024_100213 crossref_primary_10_3389_fcimb_2022_834636 crossref_primary_10_1016_j_tvr_2025_200317 crossref_primary_10_3390_v16010116 crossref_primary_10_1186_s12860_019_0243_y crossref_primary_10_1016_j_bpc_2022_106827 crossref_primary_10_26508_lsa_201900349 crossref_primary_10_1016_j_csbj_2023_04_022 crossref_primary_10_1038_s41598_024_81149_9 crossref_primary_10_1016_j_tig_2023_08_003 |
Cites_doi | 10.1038/nature21683 10.1038/nsmb.2621 10.1242/dev.132605 10.1073/pnas.1318962111 10.1038/nsmb.2379 10.1016/j.jmb.2007.03.047 10.1107/S0907444904019158 10.1038/sj.onc.1209335 10.1101/553511 10.1016/j.molcel.2010.08.029 10.1128/MCB.00487-06 10.1107/S0907444906029799 10.1107/S0907444909052925 10.1016/j.cell.2015.01.034 10.1038/nature03157 10.1126/science.8316857 10.4049/jimmunol.1101704 10.2210/pdb6qaj/pdb 10.1016/j.molcel.2007.11.012 10.1016/j.jmb.2019.05.002 10.1074/jbc.R111.252569 10.1126/science.aac7442 10.1038/nsmb.1416 10.1126/science.aad5497 10.1006/jmbi.1999.3402 10.1038/s41467-018-03498-0 10.1016/S0003-2697(03)00289-6 10.1101/gr.228171.117 10.1146/annurev-cellbio-100814-125514 10.1038/nature13760 10.1007/s10858-014-9869-4 10.1038/cr.2014.46 10.1038/nm.2129 10.1016/j.placenta.2012.05.005 10.4331/wjbc.v5.i3.308 10.1038/s41467-018-04214-8 10.1186/s13100-016-0070-z 10.1073/pnas.1402448111 10.1107/S0907444911001314 10.1016/j.celrep.2015.06.072 10.1016/j.molcel.2006.09.013 10.15252/embj.201593741 10.1107/S0907444911007773 10.1186/s13100-016-0065-9 |
ContentType | Journal Article |
Copyright | Copyright © 2019 the Author(s). Published by PNAS. Copyright National Academy of Sciences Jul 23, 2019 Copyright © 2019 the Author(s). Published by PNAS. 2019 |
Copyright_xml | – notice: Copyright © 2019 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Jul 23, 2019 – notice: Copyright © 2019 the Author(s). Published by PNAS. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1901318116 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 15051 |
ExternalDocumentID | PMC6660772 31289231 10_1073_pnas_1901318116 26848326 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_U105184326 – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 101908/Z/13/Z – fundername: Wellcome Trust grantid: 205833/Z/16/Z – fundername: Biotechnology and Biological Sciences Research Council – fundername: Medical Research Council grantid: MR/S021604/1 – fundername: Wellcome grantid: 101908/Z/13/Z – fundername: Wellcome grantid: 205833/Z/16/Z |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-28adb6da91f5c4506b96854248b2fe5a5d493a95f60295ca43b135a51471905d3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:50:46 EDT 2025 Fri Sep 05 09:43:53 EDT 2025 Sat Aug 23 12:33:59 EDT 2025 Sat May 31 02:12:50 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Tue Jul 01 03:40:06 EDT 2025 Thu May 29 14:19:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | epigenetic silencing endogenous retrovirus transposable element transcriptional repressor ubiquitin E3 ligase |
Language | English |
License | Copyright © 2019 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-28adb6da91f5c4506b96854248b2fe5a5d493a95f60295ca43b135a51471905d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Ming-Ming Zhou, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, and accepted by Editorial Board Member Axel T. Brunger June 17, 2019 (received for review January 25, 2019) Author contributions: G.A.S., Z.-S.C., and Y.M. designed research; G.A.S., S.-i.O., Z.-S.C., and Y.M. performed research; G.A.S., S.-i.O., Z.-S.C., M.Y., S.H.M., and Y.M. contributed new reagents/analytic tools; G.A.S., S.-i.O., Z.-S.C., M.Y., S.H.M., and Y.M. analyzed data; and G.A.S. and Y.M. wrote the paper. |
ORCID | 0000-0001-9135-6253 0000-0003-4442-7586 0000-0003-2531-9168 0000-0002-6084-0429 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6660772 |
PMID | 31289231 |
PQID | 2268678994 |
PQPubID | 42026 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6660772 proquest_miscellaneous_2255474795 proquest_journals_2268678994 pubmed_primary_31289231 crossref_citationtrail_10_1073_pnas_1901318116 crossref_primary_10_1073_pnas_1901318116 jstor_primary_26848326 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-23 |
PublicationDateYYYYMMDD | 2019-07-23 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Murshudov G. N. (e_1_3_4_41_2) 2011; 67 Peng H. (e_1_3_4_21_2) 2007; 370 Chuong E. B. (e_1_3_4_3_2) 2016; 351 Yudina Z. (e_1_3_4_30_2) 2015; 12 Li Y. (e_1_3_4_24_2) 2014; 24 Huang S. Y. (e_1_3_4_29_2) 2014; 60 Liang Q. (e_1_3_4_18_2) 2011; 187 Zeng L. (e_1_3_4_17_2) 2008; 15 Pineda C. T. (e_1_3_4_14_2) 2015; 160 Hung T. (e_1_3_4_8_2) 2015; 350 Koliopoulos M. G. (e_1_3_4_26_2) 2018; 9 e_1_3_4_45_2 Iyengar S. (e_1_3_4_15_2) 2011; 286 e_1_3_4_43_2 e_1_3_4_42_2 Ivanov A. V. (e_1_3_4_16_2) 2007; 28 Hancks D. C. (e_1_3_4_6_2) 2016; 7 Schuck P. (e_1_3_4_36_2) 2003; 320 Sanchez J. G. (e_1_3_4_25_2) 2014; 111 Friedli M. (e_1_3_4_1_2) 2015; 31 Koliopoulos M. G. (e_1_3_4_28_2) 2016; 35 Quimby B. B. (e_1_3_4_19_2) 2006; 25 Dou H. (e_1_3_4_31_2) 2012; 19 Vonrhein C. (e_1_3_4_38_2) 2011; 67 Peng H. (e_1_3_4_22_2) 2000; 295 Adams P. D. (e_1_3_4_39_2) 2010; 66 Doyle J. M. (e_1_3_4_13_2) 2010; 39 Dou H. (e_1_3_4_32_2) 2013; 20 Goodier J. L. (e_1_3_4_2_2) 2016; 7 Goldstone D. C. (e_1_3_4_23_2) 2014; 111 Aricescu A. R. (e_1_3_4_35_2) 2006; 62 Zhou L. (e_1_3_4_4_2) 2004; 432 Ecco G. (e_1_3_4_9_2) 2017; 144 Jacobs F. M. (e_1_3_4_11_2) 2014; 516 Sripathy S. P. (e_1_3_4_34_2) 2006; 26 Rayment I. (e_1_3_4_37_2) 1993; 261 Shen T. H. (e_1_3_4_20_2) 2006; 24 Cheng C. T. (e_1_3_4_12_2) 2014; 5 Lamprecht B. (e_1_3_4_7_2); 16 Robbez-Masson L. (e_1_3_4_33_2) 2018; 28 Emsley P. (e_1_3_4_40_2) 2004; 60 Imbeault M. (e_1_3_4_10_2) 2017; 543 Dupressoir A. (e_1_3_4_5_2) 2012; 33 Wang P. (e_1_3_4_27_2) 2018; 9 Sun Y. (e_1_3_4_44_2) 2019; 431 |
References_xml | – volume: 543 start-page: 550 year: 2017 ident: e_1_3_4_10_2 article-title: KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks publication-title: Nature doi: 10.1038/nature21683 – volume: 20 start-page: 982 year: 2013 ident: e_1_3_4_32_2 article-title: Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2621 – volume: 144 start-page: 2719 year: 2017 ident: e_1_3_4_9_2 article-title: KRAB zinc finger proteins publication-title: Development doi: 10.1242/dev.132605 – volume: 111 start-page: 2494 year: 2014 ident: e_1_3_4_25_2 article-title: The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1318962111 – volume: 19 start-page: 876 year: 2012 ident: e_1_3_4_31_2 article-title: BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2379 – volume: 370 start-page: 269 year: 2007 ident: e_1_3_4_21_2 article-title: The structurally disordered KRAB repression domain is incorporated into a protease resistant core upon binding to KAP-1-RBCC domain publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.03.047 – volume: 60 start-page: 2126 year: 2004 ident: e_1_3_4_40_2 article-title: Coot: Model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904019158 – volume: 25 start-page: 2999 year: 2006 ident: e_1_3_4_19_2 article-title: The promyelocytic leukemia protein stimulates SUMO conjugation in yeast publication-title: Oncogene doi: 10.1038/sj.onc.1209335 – ident: e_1_3_4_45_2 doi: 10.1101/553511 – volume: 39 start-page: 963 year: 2010 ident: e_1_3_4_13_2 article-title: MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.08.029 – volume: 26 start-page: 8623 year: 2006 ident: e_1_3_4_34_2 article-title: The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00487-06 – volume: 62 start-page: 1243 year: 2006 ident: e_1_3_4_35_2 article-title: A time- and cost-efficient system for high-level protein production in mammalian cells publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444906029799 – volume: 66 start-page: 213 year: 2010 ident: e_1_3_4_39_2 article-title: PHENIX: A comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909052925 – volume: 160 start-page: 715 year: 2015 ident: e_1_3_4_14_2 article-title: Degradation of AMPK by a cancer-specific ubiquitin ligase publication-title: Cell doi: 10.1016/j.cell.2015.01.034 – volume: 432 start-page: 995 year: 2004 ident: e_1_3_4_4_2 article-title: Transposition of hAT elements links transposable elements and V(D)J recombination publication-title: Nature doi: 10.1038/nature03157 – volume: 261 start-page: 50 year: 1993 ident: e_1_3_4_37_2 article-title: Three-dimensional structure of myosin subfragment-1: A molecular motor publication-title: Science doi: 10.1126/science.8316857 – volume: 187 start-page: 4754 year: 2011 ident: e_1_3_4_18_2 article-title: Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7 publication-title: J. Immunol. doi: 10.4049/jimmunol.1101704 – ident: e_1_3_4_42_2 doi: 10.2210/pdb6qaj/pdb – volume: 28 start-page: 823 year: 2007 ident: e_1_3_4_16_2 article-title: PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.11.012 – volume: 431 start-page: 2511 year: 2019 ident: e_1_3_4_44_2 article-title: A dissection of oligomerization by the TRIM28 tripartite motif and the interaction with members of the Krab-ZFP family publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2019.05.002 – volume: 286 start-page: 26267 year: 2011 ident: e_1_3_4_15_2 article-title: KAP1 protein: An enigmatic master regulator of the genome publication-title: J. Biol. Chem. doi: 10.1074/jbc.R111.252569 – volume: 350 start-page: 455 year: 2015 ident: e_1_3_4_8_2 article-title: The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression publication-title: Science doi: 10.1126/science.aac7442 – volume: 15 start-page: 626 year: 2008 ident: e_1_3_4_17_2 article-title: Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1416 – volume: 351 start-page: 1083 year: 2016 ident: e_1_3_4_3_2 article-title: Regulatory evolution of innate immunity through co-option of endogenous retroviruses publication-title: Science doi: 10.1126/science.aad5497 – volume: 295 start-page: 1139 year: 2000 ident: e_1_3_4_22_2 article-title: Reconstitution of the KRAB-KAP-1 repressor complex: A model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1999.3402 – volume: 9 start-page: 1277 year: 2018 ident: e_1_3_4_27_2 article-title: RING tetramerization is required for nuclear body biogenesis and PML sumoylation publication-title: Nat. Commun. doi: 10.1038/s41467-018-03498-0 – volume: 320 start-page: 104 year: 2003 ident: e_1_3_4_36_2 article-title: On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation publication-title: Anal. Biochem. doi: 10.1016/S0003-2697(03)00289-6 – volume: 28 start-page: 836 year: 2018 ident: e_1_3_4_33_2 article-title: The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes publication-title: Genome Res. doi: 10.1101/gr.228171.117 – volume: 31 start-page: 429 year: 2015 ident: e_1_3_4_1_2 article-title: The developmental control of transposable elements and the evolution of higher species publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100814-125514 – volume: 516 start-page: 242 year: 2014 ident: e_1_3_4_11_2 article-title: An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons publication-title: Nature doi: 10.1038/nature13760 – volume: 60 start-page: 275 year: 2014 ident: e_1_3_4_29_2 article-title: The B-box 1 dimer of human promyelocytic leukemia protein publication-title: J. Biomol. NMR doi: 10.1007/s10858-014-9869-4 – volume: 24 start-page: 762 year: 2014 ident: e_1_3_4_24_2 article-title: Structural insights into the TRIM family of ubiquitin E3 ligases publication-title: Cell Res. doi: 10.1038/cr.2014.46 – volume: 16 start-page: 571 ident: e_1_3_4_7_2 article-title: Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma publication-title: Nat. Med. doi: 10.1038/nm.2129 – volume: 33 start-page: 663 year: 2012 ident: e_1_3_4_5_2 article-title: From ancestral infectious retroviruses to bona fide cellular genes: Role of the captured syncytins in placentation publication-title: Placenta doi: 10.1016/j.placenta.2012.05.005 – volume: 5 start-page: 308 year: 2014 ident: e_1_3_4_12_2 article-title: KAPtain in charge of multiple missions: Emerging roles of KAP1 publication-title: World J. Biol. Chem. doi: 10.4331/wjbc.v5.i3.308 – volume: 9 start-page: 1820 year: 2018 ident: e_1_3_4_26_2 article-title: Molecular mechanism of influenza A NS1-mediated TRIM25 recognition and inhibition publication-title: Nat. Commun. doi: 10.1038/s41467-018-04214-8 – ident: e_1_3_4_43_2 – volume: 7 start-page: 16 year: 2016 ident: e_1_3_4_2_2 article-title: Restricting retrotransposons: A review publication-title: Mob. DNA doi: 10.1186/s13100-016-0070-z – volume: 111 start-page: 9609 year: 2014 ident: e_1_3_4_23_2 article-title: Structural studies of postentry restriction factors reveal antiparallel dimers that enable avid binding to the HIV-1 capsid lattice publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1402448111 – volume: 67 start-page: 355 year: 2011 ident: e_1_3_4_41_2 article-title: REFMAC5 for the refinement of macromolecular crystal structures publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444911001314 – volume: 12 start-page: 788 year: 2015 ident: e_1_3_4_30_2 article-title: RING dimerization links higher-order assembly of TRIM5α to synthesis of K63-linked polyubiquitin publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.06.072 – volume: 24 start-page: 331 year: 2006 ident: e_1_3_4_20_2 article-title: The mechanisms of PML-nuclear body formation publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.09.013 – volume: 35 start-page: 1204 year: 2016 ident: e_1_3_4_28_2 article-title: Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity publication-title: EMBO J. doi: 10.15252/embj.201593741 – volume: 67 start-page: 293 year: 2011 ident: e_1_3_4_38_2 article-title: Data processing and analysis with the autoPROC toolbox publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444911007773 – volume: 7 start-page: 9 year: 2016 ident: e_1_3_4_6_2 article-title: Roles for retrotransposon insertions in human disease publication-title: Mob. DNA doi: 10.1186/s13100-016-0065-9 |
SSID | ssj0009580 |
Score | 2.5288458 |
Snippet | Transcription of transposable elements is tightly regulated to prevent genome damage. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) and... Retroviruses can integrate their DNA into the host-cell genome. Inherited retroviral DNA and other transposable elements account for more than half of the... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15042 |
SubjectTerms | Amino Acid Sequence Binding Sites Biological Sciences Chromatin - chemistry Chromatin - metabolism Chromatin Assembly and Disassembly Chromatin remodeling Cloning, Molecular Coils Crystal structure Crystallography, X-Ray Damage prevention Dimers Epigenesis, Genetic Escherichia coli - genetics Escherichia coli - metabolism Gene Expression Gene Silencing Genetic Vectors - chemistry Genetic Vectors - metabolism Genomes Humans Interfaces Models, Molecular Molecular structure Mutation Oligomerization Oligomers PNAS Plus Protein Binding Protein Conformation, alpha-Helical Protein Conformation, beta-Strand Protein Interaction Domains and Motifs Protein Multimerization Proteins Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Repressor Proteins - chemistry Repressor Proteins - genetics Repressor Proteins - metabolism Retroelements Self-assembly Self-association Sequence Alignment Sequence Homology, Amino Acid Structure-function relationships Transcription, Genetic Tripartite Motif-Containing Protein 28 - chemistry Tripartite Motif-Containing Protein 28 - genetics Tripartite Motif-Containing Protein 28 - metabolism Zinc finger proteins |
Title | Structure of KAP1 tripartite motif identifies molecular interfaces required for retroelement silencing |
URI | https://www.jstor.org/stable/26848326 https://www.ncbi.nlm.nih.gov/pubmed/31289231 https://www.proquest.com/docview/2268678994 https://www.proquest.com/docview/2255474795 https://pubmed.ncbi.nlm.nih.gov/PMC6660772 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeOEFMWBQNpCReBiKUtrE-fBjhTYGjK5SW6nwEtmxvVaCZGrTF_4Af5vrjyTtKNLgJaoc161yT66P7XvPRegNF0wGOen7AcwePskF86lQiZ_HORd6VpAmXezLKL6YkU_zaN7p_NqKWtpUvJf_3JtX8j9WhTawq86S_QfLNoNCA3wG-8IVLAzXO9l4YsRf9REAUL7Pw_HAq8AH6I6V9HSUnfKWwoYDSV30xlXCNRoRK2WCsVZShwID69ThhitZrUppA8q99VLnI9Uzm-Ov42a-W9fRBaN6O3HYJqc4j7H2fG88aksdT6rSnnJ82CxF2W6jXglDYSeLTeF_zBfLVdlGHbiQ4W8LWVz7k0UL5q8bG_Zf_HDi4W7vwqRL-Ta92LlbYCt-TGzB0J7c01b7aJuQ6cDoTnKsywVGa_W5_pgMwHvpCsYFW_c07QHvVQ-zI7s9usrOZ5eX2fRsPr2H7gcJkLB626dRb06trIX7a7VGVBK-uzX8Dr2xEa771i63Q3C3OM30EXroFiN4aJF1iDqyeIwOa-PhU6dJ_vYJUg3UcKmwhhpuoYYN1HALNdxADbdQwzXUMEANb0MNN1B7imbnZ9P3F74r0eHnwDQreMOZ4LFgdKCinET9mNM4jUhAUh4oGbFIEBoyGqm4H9AoZyTkgxCaB8CJaD8S4RE6KMpCPkc45cmAB1Tzx4DIkDJ4poynSilBU8Z4F_XqJ5vlTr9el1H5npk4iiTMtCmy1hRddNp84cZKt_y965ExVdNPayDBXAc3TmrbZe7FX2ewYkmB41FKuuh1cxvcsj5rY4UsN7oP8HRYqtOoi55ZUzeDh8AJ9bqqi5IdEDQdtOT77p1iuTDS73Ec92E9_OIOv3uMHrSv3Ak6AJjIl0CgK_7KgPs3C0TK2Q |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+of+KAP1+tripartite+motif+identifies+molecular+interfaces+required+for+retroelement+silencing&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Stoll%2C+Guido+A&rft.au=Oda%2C+Shun-Ichiro&rft.au=Chong%2C+Zheng-Shan&rft.au=Yu%2C+Minmin&rft.date=2019-07-23&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=116&rft.issue=30&rft.spage=15042&rft_id=info:doi/10.1073%2Fpnas.1901318116&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |