Bayesian exponential random graph modeling of whole-brain structural networks across lifespan
Descriptive neural network analyses have provided important insights into the organization of structural and functional networks in the human brain. However, these analyses have limitations for inter-subject or between-group comparisons in which network sizes and edge densities may differ, such as i...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 135; pp. 79 - 91 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.07.2016
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2016.04.066 |
Cover
Abstract | Descriptive neural network analyses have provided important insights into the organization of structural and functional networks in the human brain. However, these analyses have limitations for inter-subject or between-group comparisons in which network sizes and edge densities may differ, such as in studies on neurodevelopment or brain diseases. Furthermore, descriptive neural network analyses lack an appropriate generic null model and a unifying framework. These issues may be solved with an alternative framework based on a Bayesian generative modeling approach, i.e. Bayesian exponential random graph modeling (ERGM), which explains an observed network by the joint contribution of local network structures or features (for which we chose neurobiologically meaningful constructs such as connectedness, local clustering or global efficiency). We aimed to identify how these local network structures (or features) are evolving across the life-span, and how sensitive these features are to random and targeted lesions. To that aim we applied Bayesian exponential random graph modeling on structural networks derived from whole-brain diffusion tensor imaging-based tractography of 382 healthy adult subjects (age range: 20.2–86.2years), with and without lesion simulations. Networks were successfully generated from four local network structures that resulted in excellent goodness-of-fit, i.e. measures of connectedness, local clustering, global efficiency and intrahemispheric connectivity. We found that local structures (i.e. connectedness, local clustering and global efficiency), which give rise to the global network topology, were stable even after lesion simulations across the lifespan, in contrast to overall descriptive network changes – e.g. lower network density and higher clustering – during aging, and despite clear effects of hub damage on network topologies. Our study demonstrates the potential of Bayesian generative modeling to characterize the underlying network structures that drive the brain's global network topology at different developmental stages and/or under pathological conditions.
•Bayesian ERGM can characterize brain networks based on a few local structures.•Local structures that shape the global network topology are stable across lifespan.•Local network structures are robust to simulated random and hub node damage. |
---|---|
AbstractList | Descriptive neural network analyses have provided important insights into the organization of structural and functional networks in the human brain. However, these analyses have limitations for inter-subject or between-group comparisons in which network sizes and edge densities may differ, such as in studies on neurodevelopment or brain diseases. Furthermore, descriptive neural network analyses lack an appropriate generic null model and a unifying framework. These issues may be solved with an alternative framework based on a Bayesian generative modeling approach, i.e. Bayesian exponential random graph modeling (ERGM), which explains an observed network by the joint contribution of local network structures or features (for which we chose neurobiologically meaningful constructs such as connectedness, local clustering or global efficiency). We aimed to identify how these local network structures (or features) are evolving across the life-span, and how sensitive these features are to random and targeted lesions. To that aim we applied Bayesian exponential random graph modeling on structural networks derived from whole-brain diffusion tensor imaging-based tractography of 382 healthy adult subjects (age range: 20.2-86.2years), with and without lesion simulations. Networks were successfully generated from four local network structures that resulted in excellent goodness-of-fit, i.e. measures of connectedness, local clustering, global efficiency and intrahemispheric connectivity. We found that local structures (i.e. connectedness, local clustering and global efficiency), which give rise to the global network topology, were stable even after lesion simulations across the lifespan, in contrast to overall descriptive network changes - e.g. lower network density and higher clustering - during aging, and despite clear effects of hub damage on network topologies. Our study demonstrates the potential of Bayesian generative modeling to characterize the underlying network structures that drive the brain's global network topology at different developmental stages and/or under pathological conditions. Descriptive neural network analyses have provided important insights into the organization of structural and functional networks in the human brain. However, these analyses have limitations for inter-subject or between-group comparisons in which network sizes and edge densities may differ, such as in studies on neurodevelopment or brain diseases. Furthermore, descriptive neural network analyses lack an appropriate generic null model and a unifying framework. These issues may be solved with an alternative framework based on a Bayesian generative modeling approach, i.e. Bayesian exponential random graph modeling (ERGM), which explains an observed network by the joint contribution of local network structures or features (for which we chose neurobiologically meaningful constructs such as connectedness, local clustering or global efficiency). We aimed to identify how these local network structures (or features) are evolving across the life-span, and how sensitive these features are to random and targeted lesions. To that aim we applied Bayesian exponential random graph modeling on structural networks derived from whole-brain diffusion tensor imaging-based tractography of 382 healthy adult subjects (age range: 20.2–86.2years), with and without lesion simulations. Networks were successfully generated from four local network structures that resulted in excellent goodness-of-fit, i.e. measures of connectedness, local clustering, global efficiency and intrahemispheric connectivity. We found that local structures (i.e. connectedness, local clustering and global efficiency), which give rise to the global network topology, were stable even after lesion simulations across the lifespan, in contrast to overall descriptive network changes – e.g. lower network density and higher clustering – during aging, and despite clear effects of hub damage on network topologies. Our study demonstrates the potential of Bayesian generative modeling to characterize the underlying network structures that drive the brain's global network topology at different developmental stages and/or under pathological conditions. •Bayesian ERGM can characterize brain networks based on a few local structures.•Local structures that shape the global network topology are stable across lifespan.•Local network structures are robust to simulated random and hub node damage. |
Author | Stam, Cornelis J. Sinke, Michel R.T. Caimo, Alberto Dijkhuizen, Rick M. Otte, Willem M. |
Author_xml | – sequence: 1 givenname: Michel R.T. surname: Sinke fullname: Sinke, Michel R.T. email: m.r.t.sinke@umcutrecht.nl organization: Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands – sequence: 2 givenname: Rick M. surname: Dijkhuizen fullname: Dijkhuizen, Rick M. organization: Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands – sequence: 3 givenname: Alberto surname: Caimo fullname: Caimo, Alberto organization: School of Mathematical Sciences, Dublin Institute of Technology, Dublin, Ireland – sequence: 4 givenname: Cornelis J. surname: Stam fullname: Stam, Cornelis J. organization: Department of Clinical Neurophysiology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands – sequence: 5 givenname: Willem M. surname: Otte fullname: Otte, Willem M. organization: Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27132542$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkktv3CAURlGVqnm0f6FC6qYbu2BsbDZVm6iPSJGyaZcVwvh6wgSDC7jT-fdlMmkqzWq6AqFzP-49cI5OnHeAEKakpITyd-vSwRK8mdQKyiqflKQuCefP0BkloilE01Ynu33Dio5ScYrOY1wTQgStuxfotGopq5q6OkM_LtUWolEOw-85X-KSURYH5QY_4VVQ8x2e_ADWuBX2I97ceQtFH5RxOKaw6LSEzDtIGx_uI1Y6-BixNSPEWbmX6PmobIRXj-sF-v7507err8XN7Zfrq483hW6ISAUFVrcwjH3PGahakY4xzsam0ow0I6e6Z4pyaIE1rdC5RvG6H8e-Yf1AdN-xCyT2uYub1XajrJVzyHbCVlIid8rkWv5TJnfKJKllVpZr3-5r5-B_LhCTnEzUYK1y4JcoaSs6IXhb7dA3B-jaL8HlySTtCOGCkJZk6vUjtfQTDE-d_JWegfd74EFWgFFqk1Qy3qUs1h7TcncQ8B_TXu5LIT_HLwNBRm3AaRhMAJ3k4M0xIR8OQnT-IEYrew_b4yL-AJEq31M |
CitedBy_id | crossref_primary_10_1177_0271678X17713901 crossref_primary_10_1214_19_STS743 crossref_primary_10_1162_netn_a_00103 crossref_primary_10_1214_21_BA1298 crossref_primary_10_1016_j_media_2024_103309 crossref_primary_10_1016_j_neuroimage_2020_116974 crossref_primary_10_1109_JPROC_2018_2825200 crossref_primary_10_1088_1361_6633_ace6bc crossref_primary_10_1098_rsif_2016_0940 crossref_primary_10_1002_smll_201703683 crossref_primary_10_1016_j_heares_2018_12_006 crossref_primary_10_1002_sim_10162 crossref_primary_10_1016_j_neuroimage_2020_117480 crossref_primary_10_1371_journal_pone_0273039 crossref_primary_10_1016_j_annals_2017_12_007 crossref_primary_10_1016_j_resourpol_2023_103815 crossref_primary_10_1007_s11222_024_10446_0 crossref_primary_10_1103_RevModPhys_94_031002 crossref_primary_10_1162_netn_a_00397 crossref_primary_10_7717_peerj_cs_269 crossref_primary_10_1007_s41109_021_00434_y crossref_primary_10_3390_sym14030505 crossref_primary_10_1002_sim_8568 crossref_primary_10_1161_STROKEAHA_116_014394 crossref_primary_10_1089_brain_2022_0007 crossref_primary_10_1109_TMI_2018_2831261 crossref_primary_10_3233_RNN_160690 |
Cites_doi | 10.1198/106186006X133069 10.1073/pnas.1315529111 10.1002/hbm.21232 10.3389/fncom.2014.00126 10.1016/j.neuroimage.2015.09.041 10.1093/cercor/bhr339 10.1016/j.socnet.2006.08.002 10.1214/13-SS103 10.1371/journal.pone.0030136 10.1080/01621459.1990.10475327 10.1089/brain.2015.0361 10.1016/j.neuroimage.2012.06.052 10.1371/journal.pcbi.0020095 10.1093/cercor/bhp280 10.1016/j.neuroimage.2015.01.011 10.1016/j.socnet.2010.09.004 10.1371/journal.pone.0013701 10.1371/journal.pbio.0020369 10.1371/journal.pone.0020039 10.1016/j.neuroimage.2012.09.004 10.1016/j.neuroimage.2012.01.071 10.1371/journal.pcbi.0030017 10.1089/brain.2011.0056 10.1016/j.neuroimage.2015.03.021 10.1002/sim.6757 10.1016/j.cub.2012.07.024 10.1016/j.neuroimage.2008.09.062 10.1016/j.socnet.2006.08.003 10.1111/j.1467-9531.2006.00176.x 10.1523/JNEUROSCI.2308-09.2009 10.1038/nrn3801 10.1038/nrn2575 10.18637/jss.v061.i02 10.1016/j.neuroimage.2011.12.052 10.3758/PBR.16.2.225 10.1038/nrn3039 10.1103/PhysRevE.85.016117 10.1089/brain.2011.0055 10.1371/journal.pone.0000597 10.1007/BF02294547 10.1073/pnas.0811168106 10.1371/journal.pcbi.1000408 10.1016/j.ijpsycho.2014.04.001 10.1371/journal.pcbi.1003491 10.1371/journal.pcbi.1002582 10.1016/j.neuroimage.2013.04.087 10.1007/978-3-319-18503-3_2 10.1093/brain/awu132 10.1016/j.neuroimage.2009.10.003 10.1038/nrn1809 10.1038/nrn3214 10.1073/pnas.1009073107 10.1007/s11222-014-9516-7 10.1016/j.neurobiolaging.2010.06.022 10.1073/pnas.1111738109 10.1016/j.dcn.2013.11.004 10.18637/jss.v024.i04 10.1016/j.neuron.2007.10.038 10.1371/journal.pbio.0060159 10.1093/cercor/bht333 10.1016/j.neuroimage.2014.07.067 10.1080/01621459.1986.10478342 10.1016/j.neuroimage.2006.01.021 10.1111/j.1460-9568.2007.05574.x |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright Elsevier Limited Jul 15, 2016 |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright Elsevier Limited Jul 15, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 ADTOC UNPAY |
DOI | 10.1016/j.neuroimage.2016.04.066 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 91 |
ExternalDocumentID | 10.1016/j.neuroimage.2016.04.066 4105295791 27132542 10_1016_j_neuroimage_2016_04_066 S1053811916301069 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACLOT ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGQPQ AIGII AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT ~HD 0SF ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 ADTOC UNPAY |
ID | FETCH-LOGICAL-c509t-1e347edfbb63ea4a083363f52c305f61cb3a16e7e3579cc50a64bffb53bd0cb83 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Oct 01 15:49:38 EDT 2025 Sun Sep 28 07:39:14 EDT 2025 Wed Aug 13 07:01:26 EDT 2025 Wed Feb 19 02:40:33 EST 2025 Wed Oct 01 03:43:01 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Fri Feb 23 02:25:06 EST 2024 Tue Aug 26 20:08:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bayesian statistics Tractography Generative network analysis P model Aging Connectome Diffusion tensor imaging |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-1e347edfbb63ea4a083363f52c305f61cb3a16e7e3579cc50a64bffb53bd0cb83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S1053811916301069 |
PMID | 27132542 |
PQID | 1800690070 |
PQPubID | 2031077 |
PageCount | 13 |
ParticipantIDs | unpaywall_primary_10_1016_j_neuroimage_2016_04_066 proquest_miscellaneous_1798996726 proquest_journals_1800690070 pubmed_primary_27132542 crossref_citationtrail_10_1016_j_neuroimage_2016_04_066 crossref_primary_10_1016_j_neuroimage_2016_04_066 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2016_04_066 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2016_04_066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-15 |
PublicationDateYYYYMMDD | 2016-07-15 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Bullmore, Sporns (bb0040) 2012; 13 Raftery (bb0245) 1995 Janssen, Hinne, Heskes, van Gerven (bb0165) 2014; 8 Montembeault, Joubert, Doyon, Carrier, Gagnon, Monchi, Lungu, Belleville, Brambati (bb0210) 2012; 63 Murray, Ghahramani, MacKay (bb0220) 2006 Meghanathan (bb0195) 2015; 348 Robins, Pattison, Kalish, Lusher (bb0250) 2007; 29 van Wijk, Stam, Daffertshofer (bb0340) 2010; 5 Desmarais, Cranmer (bb0095) 2012; 7 Hunter, Handcock (bb0155) 2006; 15 Telesford, Simpson, Burdette, Hayasaka, Laurienti (bb0335) 2011; 1 de Haan, Mott, van Straaten, Scheltens, Stam (bb0080) 2012; 8 Wu, Taki, Sato, Kinomura, Goto, Okada, Kawashima, He, Evans, Fukuda (bb0365) 2012; 33 Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (bb0090) 2006; 31 Hinne, Heskes, van Gerven (bb0145) 2012 Lim, Han, Uhlhaas, Kaiser (bb0190) 2015; 25 Andrews-Hanna, Snyder, Vincent, Lustig, Head, Raichle, Buckner (bb0015) 2007; 56 Dennis, Jahanshad, McMahon, de Zubicaray, Martin, Hickie, Toga, Wright, Thompson (bb0085) 2013; 64 Simpson, Laurienti (bb0275) 2015; 113 Pattison, Wasserman (bb0240) 1996; 61 Otte, van Diessen, Paul, Ramaswamy, Subramanyam Rallabandi, Stam, Roy (bb0235) 2015; 109 Betzel, Byrge, He, Goñi, Zuo, Sporns (bb0020) 2014; 102 Hagmann, Cammoun, Gigandet, Meuli, Honey, Van Wedeen, Sporns (bb0130) 2008; 6 Meier, Desphande, Vergun, Nair, Song, Biswal, Meyerand, Birn, Prabhakaran (bb0200) 2012; 60 Collier, Kordower (bb0070) 2012; 12 Fienberg, Rinaldo, Zhou (bb0100) 2008; 446–484 Robins, Snijders, Wang, Handcock, Pattison (bb0255) 2007; 29 Gong, Rosa-Neto, Carbonell, Chen, He, Evans (bb0115) 2009; 29 Stam (bb0320) 2014; 15 Simpson, Moussa, Laurienti (bb0290) 2012; 60 Nathan Spreng, Schacter (bb0225) 2012; 22 Achard, Bullmore (bb0005) 2007; 3 Hagmann, Sporns, Madan, Cammoun, Pienaar, Wedeen, Meuli, Thiran, Grant (bb0135) 2010; 107 Sporns (bb0310) 2010 Snijders, Pattison, Robins, Handcock (bb0305) 2006; 36 Strauss, Ikeda (bb0330) 1990; 85 Simpson, DuBois Bowman, Laurienti (bb0295) 2014; 7 Vertes, Alexander-Bloch, Gogtay, Giedd, Rapoport, Bullmore (bb0345) 2012; 109 Bullmore, Sporns (bb0035) 2009; 10 Fornito, Zalesky, Breakspear (bb0105) 2013; 80 Hunter, Handcock, Butts, Morris (bb0160) 2009; 24 Stam, Tewarie, Van Dellen, van Straaten, Hillebrand, Van Mieghem (bb0325) 2014; 92 Hagmann, Kurant, Gigandet, Thiran, Wedeen, Meuli, Thiran (bb0125) 2007; 2 Kaiser, Hilgetag (bb0170) 2006; 2 Cao, Wang, Dai, Cao, Jiang, Fan, Song, Xia, Shu, Dong, Milham, Castellanos, Zuo, He (bb0065) 2014; 7 Simpson, Hayasaka, Laurienti (bb0285) 2011; 6 Bounova, De Weck (bb0030) 2012; 85 Klimm, Bassett, Carlson, Mucha (bb0180) 2014; 10 Meunier, Achard, Morcom, Bullmore (bb0205) 2009; 44 Zhu, Wen, He, Xia, Anstey, Sachdev (bb0370) 2012; 33 Caimo, Friel (bb0050) 2011; 33 Caimo, Friel (bb0055) 2014; 61 Wang, Su, Shen, Hu (bb0355) 2012; 7 Betzel, Avena-Koenigsberger, Goñi, He, de Reus, Griffa, Vértes, Mišic, Thiran, Hagmann, van den Heuvel, Zuo, Bullmore, Sporns (bb0025) 2015; 124 Alstott, Breakspear, Hagmann, Cammoun, Sporns (bb0010) 2009; 5 Crossley, Mechelli, Scott, Carletti, Fox, Mcguire, Bullmore (bb0075) 2014; 137 Morris, Handcock, Hunter (bb0215) 2008; 24 Kaiser, Martin, Andras, Young (bb0175) 2007; 25 Goni, van den Heuvel, Avena-Koenigsberger, Velez de Mendizabal, Betzel, Griffa, Hagmann, Corominas-Murtra, Thiran, Sporns (bb0120) 2014; 111 Simpson, Laurienti (bb0280) 2016; 6 Wang, Benner, Sorensen, Wedeen (bb0350) 2007; 15 Niccoli, Partridge (bb0230) 2012; 22 Burke, Barnes (bb0045) 2006; 7 Frank, Strauss (bb0110) 1986; 81 Handcock (bb0140) 2003; 76 Honey, Honey, Sporns, Sporns, Cammoun, Cammoun, Gigandet, Gigandet, Thiran, Thiran, Meuli, Meuli, Hagmann, Hagmann (bb0150) 2009; 106 La Rosa, Brooks, Deych, Shands, Prior, Larson-Prior, Shannon (bb0185) 2016; 35 Sporns, Kötter (bb0315) 2004; 2 Westlye, Walhovd, Dale, Bjørnerud, Due-Tønnessen, Engvig, Grydeland, Tamnes, Østby, Fjell (bb0360) 2010; 20 Caimo, Mira (bb9000) 2014; 25 Rubinov, Sporns (bb0265) 2010; 52 Smit, De Geus, Boersma, Boomsma, Stam (bb0300) 2016 Rouder, Speckman, Sun, Morey, Iverson (bb0260) 2009; 16 Salat (bb0270) 2011; 1 Wang (10.1016/j.neuroimage.2016.04.066_bb0355) 2012; 7 Cao (10.1016/j.neuroimage.2016.04.066_bb0065) 2014; 7 Andrews-Hanna (10.1016/j.neuroimage.2016.04.066_bb0015) 2007; 56 Meghanathan (10.1016/j.neuroimage.2016.04.066_bb0195) 2015; 348 Strauss (10.1016/j.neuroimage.2016.04.066_bb0330) 1990; 85 de Haan (10.1016/j.neuroimage.2016.04.066_bb0080) 2012; 8 Hagmann (10.1016/j.neuroimage.2016.04.066_bb0125) 2007; 2 Simpson (10.1016/j.neuroimage.2016.04.066_bb0275) 2015; 113 van Wijk (10.1016/j.neuroimage.2016.04.066_bb0340) 2010; 5 Rubinov (10.1016/j.neuroimage.2016.04.066_bb0265) 2010; 52 Gong (10.1016/j.neuroimage.2016.04.066_bb0115) 2009; 29 Sporns (10.1016/j.neuroimage.2016.04.066_bb0315) 2004; 2 Rouder (10.1016/j.neuroimage.2016.04.066_bb0260) 2009; 16 Westlye (10.1016/j.neuroimage.2016.04.066_bb0360) 2010; 20 Betzel (10.1016/j.neuroimage.2016.04.066_bb0025) 2015; 124 Wu (10.1016/j.neuroimage.2016.04.066_bb0365) 2012; 33 Fornito (10.1016/j.neuroimage.2016.04.066_bb0105) 2013; 80 Fienberg (10.1016/j.neuroimage.2016.04.066_bb0100) 2008; 446–484 Janssen (10.1016/j.neuroimage.2016.04.066_bb0165) 2014; 8 Murray (10.1016/j.neuroimage.2016.04.066_bb0220) 2006 Goni (10.1016/j.neuroimage.2016.04.066_bb0120) 2014; 111 Raftery (10.1016/j.neuroimage.2016.04.066_bb0245) 1995 Montembeault (10.1016/j.neuroimage.2016.04.066_bb0210) 2012; 63 Simpson (10.1016/j.neuroimage.2016.04.066_bb0290) 2012; 60 Wang (10.1016/j.neuroimage.2016.04.066_bb0350) 2007; 15 Telesford (10.1016/j.neuroimage.2016.04.066_bb0335) 2011; 1 Caimo (10.1016/j.neuroimage.2016.04.066_bb9000) 2014; 25 Dennis (10.1016/j.neuroimage.2016.04.066_bb0085) 2013; 64 Simpson (10.1016/j.neuroimage.2016.04.066_bb0295) 2014; 7 Stam (10.1016/j.neuroimage.2016.04.066_bb0325) 2014; 92 Nathan Spreng (10.1016/j.neuroimage.2016.04.066_bb0225) 2012; 22 Sporns (10.1016/j.neuroimage.2016.04.066_bb0310) 2010 Meier (10.1016/j.neuroimage.2016.04.066_bb0200) 2012; 60 Hunter (10.1016/j.neuroimage.2016.04.066_bb0160) 2009; 24 Robins (10.1016/j.neuroimage.2016.04.066_bb0250) 2007; 29 Bullmore (10.1016/j.neuroimage.2016.04.066_bb0040) 2012; 13 Simpson (10.1016/j.neuroimage.2016.04.066_bb0280) 2016; 6 Alstott (10.1016/j.neuroimage.2016.04.066_bb0010) 2009; 5 Burke (10.1016/j.neuroimage.2016.04.066_bb0045) 2006; 7 Frank (10.1016/j.neuroimage.2016.04.066_bb0110) 1986; 81 Bounova (10.1016/j.neuroimage.2016.04.066_bb0030) 2012; 85 Otte (10.1016/j.neuroimage.2016.04.066_bb0235) 2015; 109 Caimo (10.1016/j.neuroimage.2016.04.066_bb0050) 2011; 33 Caimo (10.1016/j.neuroimage.2016.04.066_bb0055) 2014; 61 Desmarais (10.1016/j.neuroimage.2016.04.066_bb0095) 2012; 7 Handcock (10.1016/j.neuroimage.2016.04.066_bb0140) 2003; 76 Salat (10.1016/j.neuroimage.2016.04.066_bb0270) 2011; 1 Lim (10.1016/j.neuroimage.2016.04.066_bb0190) 2015; 25 Kaiser (10.1016/j.neuroimage.2016.04.066_bb0175) 2007; 25 Hunter (10.1016/j.neuroimage.2016.04.066_bb0155) 2006; 15 Crossley (10.1016/j.neuroimage.2016.04.066_bb0075) 2014; 137 Vertes (10.1016/j.neuroimage.2016.04.066_bb0345) 2012; 109 Snijders (10.1016/j.neuroimage.2016.04.066_bb0305) 2006; 36 Honey (10.1016/j.neuroimage.2016.04.066_bb0150) 2009; 106 Meunier (10.1016/j.neuroimage.2016.04.066_bb0205) 2009; 44 Simpson (10.1016/j.neuroimage.2016.04.066_bb0285) 2011; 6 Hagmann (10.1016/j.neuroimage.2016.04.066_bb0135) 2010; 107 Pattison (10.1016/j.neuroimage.2016.04.066_bb0240) 1996; 61 Achard (10.1016/j.neuroimage.2016.04.066_bb0005) 2007; 3 Morris (10.1016/j.neuroimage.2016.04.066_bb0215) 2008; 24 Kaiser (10.1016/j.neuroimage.2016.04.066_bb0170) 2006; 2 La Rosa (10.1016/j.neuroimage.2016.04.066_bb0185) 2016; 35 Smit (10.1016/j.neuroimage.2016.04.066_bb0300) 2016 Zhu (10.1016/j.neuroimage.2016.04.066_bb0370) 2012; 33 Robins (10.1016/j.neuroimage.2016.04.066_bb0255) 2007; 29 Stam (10.1016/j.neuroimage.2016.04.066_bb0320) 2014; 15 Collier (10.1016/j.neuroimage.2016.04.066_bb0070) 2012; 12 Desikan (10.1016/j.neuroimage.2016.04.066_bb0090) 2006; 31 Hagmann (10.1016/j.neuroimage.2016.04.066_bb0130) 2008; 6 Klimm (10.1016/j.neuroimage.2016.04.066_bb0180) 2014; 10 Hinne (10.1016/j.neuroimage.2016.04.066_bb0145) 2012 Betzel (10.1016/j.neuroimage.2016.04.066_bb0020) 2014; 102 Bullmore (10.1016/j.neuroimage.2016.04.066_bb0035) 2009; 10 Niccoli (10.1016/j.neuroimage.2016.04.066_bb0230) 2012; 22 |
References_xml | – volume: 36 start-page: 99 year: 2006 end-page: 153 ident: bb0305 article-title: New specifications for exponential random graph models publication-title: Sociol. Methodol. – volume: 60 start-page: 601 year: 2012 end-page: 613 ident: bb0200 article-title: Support vector machine classification and characterization of age-related reorganization of functional brain networks publication-title: NeuroImage – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: bb0090 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: NeuroImage – volume: 33 start-page: 899 year: 2012 end-page: 913 ident: bb0370 article-title: Changing topological patterns in normal aging using large-scale structural networks publication-title: Neurobiol. Aging – volume: 109 start-page: 171 year: 2015 end-page: 189 ident: bb0235 article-title: Aging alterations in whole-brain networks during adulthood mapped with the minimum spanning tree indices: the interplay of density, connectivity cost and life-time trajectory publication-title: NeuroImage – volume: 13 start-page: 336 year: 2012 end-page: 349 ident: bb0040 article-title: The economy of brain network organization publication-title: Nat. Rev. Neurosci. – volume: 29 start-page: 173 year: 2007 end-page: 191 ident: bb0250 article-title: An introduction to exponential random graph (p*) models for social networks publication-title: Soc. Networks – year: 2010 ident: bb0310 article-title: Networks of the brain – volume: 113 start-page: 310 year: 2015 end-page: 319 ident: bb0275 article-title: A two-part mixed-effects modeling framework for analyzing whole- brain network data publication-title: NeuroImage – volume: 7 year: 2012 ident: bb0095 article-title: Statistical inference for valued-edge networks: the generalized exponential random graph model publication-title: PLoS One – volume: 63 start-page: 754 year: 2012 end-page: 759 ident: bb0210 article-title: The impact of aging on gray matter structural covariance networks publication-title: NeuroImage – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: bb0265 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: NeuroImage – volume: 24 start-page: 1 year: 2009 end-page: 29 ident: bb0160 article-title: ERGM: a package to fit, simulate and diagnose exponential-family models for networks publication-title: J. Stat. Softw. – year: 1995 ident: bb0245 article-title: Bayesian model selection in social research publication-title: Sociol. Methodol. – volume: 2 year: 2004 ident: bb0315 article-title: Motifs in brain networks publication-title: PLoS Biol. – volume: 33 start-page: 41 year: 2011 end-page: 55 ident: bb0050 article-title: Bayesian inference for exponential random graph models publication-title: Soc. Networks – year: 2006 ident: bb0220 article-title: MCMC for doubly-intractable distributions – volume: 61 start-page: 401 year: 1996 end-page: 425 ident: bb0240 article-title: Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and P* publication-title: Psychometrika1 – volume: 29 start-page: 192 year: 2007 end-page: 215 ident: bb0255 article-title: Recent developments in exponential random graph (p*) models for social networks publication-title: Soc. Networks – volume: 24 year: 2008 ident: bb0215 article-title: Specification of exponential-family random graph models publication-title: J. Stat. Softw. – volume: 81 start-page: 832 year: 1986 end-page: 842 ident: bb0110 article-title: Markov graphs publication-title: J. Am. Stat. Assoc. – volume: 22 start-page: 2610 year: 2012 end-page: 2621 ident: bb0225 article-title: Default network modulation and large-scale network interactivity in healthy young and old adults publication-title: Cereb. Cortex – volume: 5 year: 2009 ident: bb0010 article-title: Modeling the impact of lesions in the human brain publication-title: PLoS Comput. Biol. – volume: 8 start-page: 126 year: 2014 ident: bb0165 article-title: Quantifying uncertainty in brain network measures using Bayesian connectomics publication-title: Front. Comput. Neurosci. – volume: 76 start-page: 33 year: 2003 end-page: 50 ident: bb0140 article-title: Assessing degeneracy in statistical models of social networks publication-title: J. Am. Stat. Assoc. – volume: 2 year: 2006 ident: bb0170 article-title: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems publication-title: PLoS Comput. Biol. – volume: 111 start-page: 833 year: 2014 end-page: 838 ident: bb0120 article-title: Resting-brain functional connectivity predicted by analytic measures of network communication publication-title: Proc. Natl. Acad. Sci. – volume: 20 start-page: 2055 year: 2010 end-page: 2068 ident: bb0360 article-title: Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry publication-title: Cereb. Cortex – volume: 7 year: 2012 ident: bb0355 article-title: Decoding lifespan changes of the human brain using resting-state functional connectivity MRI publication-title: PLoS One – volume: 15 start-page: 3720 year: 2007 ident: bb0350 article-title: Diffusion toolkit publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 446–484 year: 2008 ident: bb0100 article-title: On the geometry of discrete exponential families with application to exponential random graph models publication-title: Electron. J. Stat. – volume: 5 year: 2010 ident: bb0340 article-title: Comparing brain networks of different size and connectivity density using graph theory publication-title: PLoS One – volume: 16 start-page: 225 year: 2009 end-page: 237 ident: bb0260 article-title: Bayesian t tests for accepting and rejecting the null hypothesis publication-title: Psychon. Bull. Rev. – volume: 8 year: 2012 ident: bb0080 article-title: Activity dependent degeneration explains hub vulnerability in Alzheimer's disease publication-title: PLoS Comput. Biol. – volume: 107 start-page: 19067 year: 2010 end-page: 19072 ident: bb0135 article-title: White matter maturation reshapes structural connectivity in the late developing human brain publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 348 start-page: 11 year: 2015 end-page: 20 ident: bb0195 publication-title: Intelligent Systems in Cybernetics and Automation Theory – volume: 22 start-page: R741 year: 2012 end-page: R752 ident: bb0230 article-title: Ageing as a risk factor for disease publication-title: Curr. Biol. – volume: 6 year: 2011 ident: bb0285 article-title: Exponential random graph modeling for complex brain networks publication-title: PLoS One – volume: 2 year: 2007 ident: bb0125 article-title: Mapping human whole-brain structural networks with diffusion MRI publication-title: PLoS One – volume: 25 start-page: 3185 year: 2007 end-page: 3192 ident: bb0175 article-title: Simulation of robustness against lesions of cortical networks publication-title: Eur. J. Neurosci. – volume: 33 start-page: 552 year: 2012 end-page: 568 ident: bb0365 article-title: Age-related changes in topological organization of structural brain networks in healthy individuals publication-title: Hum. Brain Mapp. – volume: 1 start-page: 295 year: 2011 end-page: 308 ident: bb0335 article-title: The brain as a complex system: using network science as a tool for understanding the brain publication-title: Brain Connect. – volume: 10 start-page: 186 year: 2009 end-page: 198 ident: bb0035 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. – volume: 61 start-page: 1 year: 2014 end-page: 25 ident: bb0055 article-title: Bergm: Bayesian exponential random graphs in R publication-title: J. Stat. Softw. – volume: 29 start-page: 15684 year: 2009 end-page: 15693 ident: bb0115 article-title: Age- and gender-related differences in the cortical anatomical network publication-title: J. Neurosci. – volume: 35 start-page: 566 year: 2016 end-page: 580 ident: bb0185 article-title: Gibbs distribution for statistical analysis of graphical data with a sample application to fcMRI brain images publication-title: Stat. Med. – year: 2016 ident: bb0300 article-title: Life-span development of brain network integration assessed with phase lag index connectivity and minimum spanning tree graphs – volume: 64 start-page: 671 year: 2013 end-page: 684 ident: bb0085 article-title: Development of brain structural connectivity between ages 12 and 30: a 4-tesla diffusion imaging study in 439 adolescents and adults publication-title: NeuroImage – volume: 44 start-page: 715 year: 2009 end-page: 723 ident: bb0205 article-title: Age-related changes in modular organization of human brain functional networks publication-title: NeuroImage – volume: 85 start-page: 16117 year: 2012 ident: bb0030 article-title: Overview of metrics and their correlation patterns for multiple-metric topology analysis on heterogeneous graph ensembles publication-title: Phys. Rev. E – volume: 56 start-page: 924 year: 2007 end-page: 935 ident: bb0015 article-title: Disruption of large-scale brain systems in advanced aging publication-title: Neuron – volume: 137 start-page: 2382 year: 2014 end-page: 2395 ident: bb0075 article-title: The hubs of the human connectome are generally implicated in the anatomy of brain disorders publication-title: Brain – volume: 92 start-page: 129 year: 2014 end-page: 138 ident: bb0325 article-title: The trees and the forest: characterization of complex brain networks with minimum spanning trees publication-title: Int. J. Psychophysiol. – volume: 109 start-page: 5868 year: 2012 end-page: 5873 ident: bb0345 article-title: Simple models of human brain functional networks publication-title: Proc. Natl. Acad. Sci. – volume: 6 start-page: 1479 year: 2008 end-page: 1493 ident: bb0130 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. – volume: 80 start-page: 426 year: 2013 end-page: 444 ident: bb0105 article-title: Graph analysis of the human connectome: promise, progress, and pitfalls publication-title: NeuroImage – volume: 25 start-page: 113 year: 2014 end-page: 125 ident: bb9000 article-title: Efficient computational strategies for doubly intractable problems with applications to Bayesian social networks publication-title: Stat. Comput. – volume: 12 start-page: 359 year: 2012 end-page: 366 ident: bb0070 article-title: Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates publication-title: Nat. Rev. Neurosci. – volume: 102 start-page: 345 year: 2014 end-page: 357 ident: bb0020 article-title: Changes in structural and functional connectivity among resting-state networks across the human lifespan publication-title: NeuroImage – volume: 1 start-page: 279 year: 2011 end-page: 293 ident: bb0270 article-title: The declining infrastructure of the aging brain publication-title: Brain Connect. – volume: 60 start-page: 1117 year: 2012 end-page: 1126 ident: bb0290 article-title: An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks publication-title: NeuroImage – volume: 124 start-page: 1054 year: 2015 end-page: 1064 ident: bb0025 article-title: Generative models of the human connectome publication-title: NeuroImage – volume: 10 year: 2014 ident: bb0180 article-title: Resolving structural variability in network models and the brain publication-title: PLoS Comput. Biol. – volume: 25 start-page: 1477 year: 2015 end-page: 1489 ident: bb0190 article-title: Preferential detachment during human brain development: age- and sex-specific structural connectivity in diffusion tensor imaging (DTI) data publication-title: Cereb. Cortex – volume: 3 start-page: 0174 year: 2007 end-page: 0183 ident: bb0005 article-title: Efficiency and cost of economical brain functional networks publication-title: PLoS Comput. Biol. – volume: 15 start-page: 683 year: 2014 end-page: 695 ident: bb0320 article-title: Modern network science of neurological disorders publication-title: Nat. Rev. Neurosci. – volume: 7 start-page: 1 year: 2014 end-page: 36 ident: bb0295 publication-title: NIH Public Access. Stat Surv. – volume: 85 start-page: 204 year: 1990 end-page: 212 ident: bb0330 article-title: Pseudolikelihood estimation for social networks publication-title: J. Am. Stat. Assoc. – year: 2012 ident: bb0145 article-title: Bayesian inference of whole-brain networks 1–10 – volume: 6 start-page: 95 year: 2016 end-page: 98 ident: bb0280 article-title: Disentangling brain graphs: a note on the conflation of network and connectivity analyses publication-title: Brain Connect. – volume: 106 start-page: 2035 year: 2009 end-page: 2040 ident: bb0150 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 7 start-page: 76 year: 2014 end-page: 93 ident: bb0065 article-title: Topological organization of the human brain functional connectome across the lifespan publication-title: Dev. Cogn. Neurosci. – volume: 7 start-page: 30 year: 2006 end-page: 40 ident: bb0045 article-title: Neural plasticity in the ageing brain publication-title: Nat. Rev. Neurosci. – volume: 15 start-page: 565 year: 2006 end-page: 583 ident: bb0155 article-title: Inference in curved exponential family models for networks publication-title: J. Comput. Graph. Stat. – volume: 15 start-page: 565 year: 2006 ident: 10.1016/j.neuroimage.2016.04.066_bb0155 article-title: Inference in curved exponential family models for networks publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186006X133069 – volume: 111 start-page: 833 year: 2014 ident: 10.1016/j.neuroimage.2016.04.066_bb0120 article-title: Resting-brain functional connectivity predicted by analytic measures of network communication publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1315529111 – volume: 33 start-page: 552 year: 2012 ident: 10.1016/j.neuroimage.2016.04.066_bb0365 article-title: Age-related changes in topological organization of structural brain networks in healthy individuals publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21232 – volume: 8 start-page: 126 year: 2014 ident: 10.1016/j.neuroimage.2016.04.066_bb0165 article-title: Quantifying uncertainty in brain network measures using Bayesian connectomics publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2014.00126 – volume: 7 year: 2012 ident: 10.1016/j.neuroimage.2016.04.066_bb0355 article-title: Decoding lifespan changes of the human brain using resting-state functional connectivity MRI publication-title: PLoS One – volume: 124 start-page: 1054 year: 2015 ident: 10.1016/j.neuroimage.2016.04.066_bb0025 article-title: Generative models of the human connectome publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.09.041 – volume: 22 start-page: 2610 year: 2012 ident: 10.1016/j.neuroimage.2016.04.066_bb0225 article-title: Default network modulation and large-scale network interactivity in healthy young and old adults publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr339 – volume: 29 start-page: 173 year: 2007 ident: 10.1016/j.neuroimage.2016.04.066_bb0250 article-title: An introduction to exponential random graph (p*) models for social networks publication-title: Soc. Networks doi: 10.1016/j.socnet.2006.08.002 – volume: 7 start-page: 1 year: 2014 ident: 10.1016/j.neuroimage.2016.04.066_bb0295 publication-title: NIH Public Access. Stat Surv. doi: 10.1214/13-SS103 – volume: 7 year: 2012 ident: 10.1016/j.neuroimage.2016.04.066_bb0095 article-title: Statistical inference for valued-edge networks: the generalized exponential random graph model publication-title: PLoS One doi: 10.1371/journal.pone.0030136 – volume: 85 start-page: 204 year: 1990 ident: 10.1016/j.neuroimage.2016.04.066_bb0330 article-title: Pseudolikelihood estimation for social networks publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1990.10475327 – volume: 6 start-page: 95 year: 2016 ident: 10.1016/j.neuroimage.2016.04.066_bb0280 article-title: Disentangling brain graphs: a note on the conflation of network and connectivity analyses publication-title: Brain Connect. doi: 10.1089/brain.2015.0361 – volume: 63 start-page: 754 year: 2012 ident: 10.1016/j.neuroimage.2016.04.066_bb0210 article-title: The impact of aging on gray matter structural covariance networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.06.052 – volume: 2 year: 2006 ident: 10.1016/j.neuroimage.2016.04.066_bb0170 article-title: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0020095 – volume: 20 start-page: 2055 year: 2010 ident: 10.1016/j.neuroimage.2016.04.066_bb0360 article-title: Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry publication-title: Cereb. Cortex doi: 10.1093/cercor/bhp280 – volume: 109 start-page: 171 year: 2015 ident: 10.1016/j.neuroimage.2016.04.066_bb0235 article-title: Aging alterations in whole-brain networks during adulthood mapped with the minimum spanning tree indices: the interplay of density, connectivity cost and life-time trajectory publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.01.011 – volume: 33 start-page: 41 year: 2011 ident: 10.1016/j.neuroimage.2016.04.066_bb0050 article-title: Bayesian inference for exponential random graph models publication-title: Soc. Networks doi: 10.1016/j.socnet.2010.09.004 – volume: 5 year: 2010 ident: 10.1016/j.neuroimage.2016.04.066_bb0340 article-title: Comparing brain networks of different size and connectivity density using graph theory publication-title: PLoS One doi: 10.1371/journal.pone.0013701 – volume: 2 year: 2004 ident: 10.1016/j.neuroimage.2016.04.066_bb0315 article-title: Motifs in brain networks publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0020369 – volume: 6 year: 2011 ident: 10.1016/j.neuroimage.2016.04.066_bb0285 article-title: Exponential random graph modeling for complex brain networks publication-title: PLoS One doi: 10.1371/journal.pone.0020039 – volume: 64 start-page: 671 year: 2013 ident: 10.1016/j.neuroimage.2016.04.066_bb0085 article-title: Development of brain structural connectivity between ages 12 and 30: a 4-tesla diffusion imaging study in 439 adolescents and adults publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.09.004 – year: 2010 ident: 10.1016/j.neuroimage.2016.04.066_bb0310 – volume: 60 start-page: 1117 year: 2012 ident: 10.1016/j.neuroimage.2016.04.066_bb0290 article-title: An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.071 – volume: 3 start-page: 0174 year: 2007 ident: 10.1016/j.neuroimage.2016.04.066_bb0005 article-title: Efficiency and cost of economical brain functional networks publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0030017 – volume: 446–484 year: 2008 ident: 10.1016/j.neuroimage.2016.04.066_bb0100 article-title: On the geometry of discrete exponential families with application to exponential random graph models publication-title: Electron. J. Stat. – volume: 1 start-page: 279 year: 2011 ident: 10.1016/j.neuroimage.2016.04.066_bb0270 article-title: The declining infrastructure of the aging brain publication-title: Brain Connect. doi: 10.1089/brain.2011.0056 – volume: 113 start-page: 310 year: 2015 ident: 10.1016/j.neuroimage.2016.04.066_bb0275 article-title: A two-part mixed-effects modeling framework for analyzing whole- brain network data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.03.021 – volume: 35 start-page: 566 year: 2016 ident: 10.1016/j.neuroimage.2016.04.066_bb0185 article-title: Gibbs distribution for statistical analysis of graphical data with a sample application to fcMRI brain images publication-title: Stat. Med. doi: 10.1002/sim.6757 – year: 2016 ident: 10.1016/j.neuroimage.2016.04.066_bb0300 – volume: 22 start-page: R741 year: 2012 ident: 10.1016/j.neuroimage.2016.04.066_bb0230 article-title: Ageing as a risk factor for disease publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.07.024 – volume: 44 start-page: 715 year: 2009 ident: 10.1016/j.neuroimage.2016.04.066_bb0205 article-title: Age-related changes in modular organization of human brain functional networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.09.062 – volume: 29 start-page: 192 year: 2007 ident: 10.1016/j.neuroimage.2016.04.066_bb0255 article-title: Recent developments in exponential random graph (p*) models for social networks publication-title: Soc. Networks doi: 10.1016/j.socnet.2006.08.003 – volume: 36 start-page: 99 year: 2006 ident: 10.1016/j.neuroimage.2016.04.066_bb0305 article-title: New specifications for exponential random graph models publication-title: Sociol. Methodol. doi: 10.1111/j.1467-9531.2006.00176.x – volume: 29 start-page: 15684 year: 2009 ident: 10.1016/j.neuroimage.2016.04.066_bb0115 article-title: Age- and gender-related differences in the cortical anatomical network publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2308-09.2009 – volume: 15 start-page: 683 year: 2014 ident: 10.1016/j.neuroimage.2016.04.066_bb0320 article-title: Modern network science of neurological disorders publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3801 – volume: 10 start-page: 186 year: 2009 ident: 10.1016/j.neuroimage.2016.04.066_bb0035 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2575 – volume: 61 start-page: 1 issue: 2 year: 2014 ident: 10.1016/j.neuroimage.2016.04.066_bb0055 article-title: Bergm: Bayesian exponential random graphs in R publication-title: J. Stat. Softw. doi: 10.18637/jss.v061.i02 – volume: 60 start-page: 601 year: 2012 ident: 10.1016/j.neuroimage.2016.04.066_bb0200 article-title: Support vector machine classification and characterization of age-related reorganization of functional brain networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.12.052 – year: 1995 ident: 10.1016/j.neuroimage.2016.04.066_bb0245 article-title: Bayesian model selection in social research publication-title: Sociol. Methodol. – volume: 16 start-page: 225 year: 2009 ident: 10.1016/j.neuroimage.2016.04.066_bb0260 article-title: Bayesian t tests for accepting and rejecting the null hypothesis publication-title: Psychon. Bull. Rev. doi: 10.3758/PBR.16.2.225 – volume: 12 start-page: 359 year: 2012 ident: 10.1016/j.neuroimage.2016.04.066_bb0070 article-title: Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3039 – volume: 85 start-page: 16117 year: 2012 ident: 10.1016/j.neuroimage.2016.04.066_bb0030 article-title: Overview of metrics and their correlation patterns for multiple-metric topology analysis on heterogeneous graph ensembles publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.016117 – volume: 1 start-page: 295 year: 2011 ident: 10.1016/j.neuroimage.2016.04.066_bb0335 article-title: The brain as a complex system: using network science as a tool for understanding the brain publication-title: Brain Connect. doi: 10.1089/brain.2011.0055 – volume: 2 year: 2007 ident: 10.1016/j.neuroimage.2016.04.066_bb0125 article-title: Mapping human whole-brain structural networks with diffusion MRI publication-title: PLoS One doi: 10.1371/journal.pone.0000597 – volume: 61 start-page: 401 year: 1996 ident: 10.1016/j.neuroimage.2016.04.066_bb0240 article-title: Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and P* publication-title: Psychometrika1 doi: 10.1007/BF02294547 – volume: 106 start-page: 2035 year: 2009 ident: 10.1016/j.neuroimage.2016.04.066_bb0150 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0811168106 – volume: 5 year: 2009 ident: 10.1016/j.neuroimage.2016.04.066_bb0010 article-title: Modeling the impact of lesions in the human brain publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000408 – volume: 92 start-page: 129 year: 2014 ident: 10.1016/j.neuroimage.2016.04.066_bb0325 article-title: The trees and the forest: characterization of complex brain networks with minimum spanning trees publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2014.04.001 – volume: 10 year: 2014 ident: 10.1016/j.neuroimage.2016.04.066_bb0180 article-title: Resolving structural variability in network models and the brain publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003491 – volume: 8 year: 2012 ident: 10.1016/j.neuroimage.2016.04.066_bb0080 article-title: Activity dependent degeneration explains hub vulnerability in Alzheimer's disease publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002582 – volume: 80 start-page: 426 year: 2013 ident: 10.1016/j.neuroimage.2016.04.066_bb0105 article-title: Graph analysis of the human connectome: promise, progress, and pitfalls publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.087 – volume: 348 start-page: 11 year: 2015 ident: 10.1016/j.neuroimage.2016.04.066_bb0195 publication-title: Intelligent Systems in Cybernetics and Automation Theory doi: 10.1007/978-3-319-18503-3_2 – volume: 15 start-page: 3720 year: 2007 ident: 10.1016/j.neuroimage.2016.04.066_bb0350 article-title: Diffusion toolkit: a software package for diffusion imaging data processing and tractography publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 137 start-page: 2382 year: 2014 ident: 10.1016/j.neuroimage.2016.04.066_bb0075 article-title: The hubs of the human connectome are generally implicated in the anatomy of brain disorders publication-title: Brain doi: 10.1093/brain/awu132 – volume: 52 start-page: 1059 year: 2010 ident: 10.1016/j.neuroimage.2016.04.066_bb0265 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 7 start-page: 30 year: 2006 ident: 10.1016/j.neuroimage.2016.04.066_bb0045 article-title: Neural plasticity in the ageing brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1809 – volume: 13 start-page: 336 year: 2012 ident: 10.1016/j.neuroimage.2016.04.066_bb0040 article-title: The economy of brain network organization publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3214 – volume: 107 start-page: 19067 year: 2010 ident: 10.1016/j.neuroimage.2016.04.066_bb0135 article-title: White matter maturation reshapes structural connectivity in the late developing human brain publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1009073107 – volume: 25 start-page: 113 year: 2014 ident: 10.1016/j.neuroimage.2016.04.066_bb9000 article-title: Efficient computational strategies for doubly intractable problems with applications to Bayesian social networks publication-title: Stat. Comput. doi: 10.1007/s11222-014-9516-7 – year: 2012 ident: 10.1016/j.neuroimage.2016.04.066_bb0145 – volume: 33 start-page: 899 year: 2012 ident: 10.1016/j.neuroimage.2016.04.066_bb0370 article-title: Changing topological patterns in normal aging using large-scale structural networks publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.06.022 – volume: 109 start-page: 5868 year: 2012 ident: 10.1016/j.neuroimage.2016.04.066_bb0345 article-title: Simple models of human brain functional networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1111738109 – volume: 7 start-page: 76 year: 2014 ident: 10.1016/j.neuroimage.2016.04.066_bb0065 article-title: Topological organization of the human brain functional connectome across the lifespan publication-title: Dev. Cogn. Neurosci. doi: 10.1016/j.dcn.2013.11.004 – volume: 24 year: 2008 ident: 10.1016/j.neuroimage.2016.04.066_bb0215 article-title: Specification of exponential-family random graph models publication-title: J. Stat. Softw. doi: 10.18637/jss.v024.i04 – volume: 56 start-page: 924 year: 2007 ident: 10.1016/j.neuroimage.2016.04.066_bb0015 article-title: Disruption of large-scale brain systems in advanced aging publication-title: Neuron doi: 10.1016/j.neuron.2007.10.038 – volume: 6 start-page: 1479 year: 2008 ident: 10.1016/j.neuroimage.2016.04.066_bb0130 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060159 – volume: 25 start-page: 1477 year: 2015 ident: 10.1016/j.neuroimage.2016.04.066_bb0190 article-title: Preferential detachment during human brain development: age- and sex-specific structural connectivity in diffusion tensor imaging (DTI) data publication-title: Cereb. Cortex doi: 10.1093/cercor/bht333 – volume: 102 start-page: 345 year: 2014 ident: 10.1016/j.neuroimage.2016.04.066_bb0020 article-title: Changes in structural and functional connectivity among resting-state networks across the human lifespan publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.067 – volume: 81 start-page: 832 year: 1986 ident: 10.1016/j.neuroimage.2016.04.066_bb0110 article-title: Markov graphs publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1986.10478342 – volume: 31 start-page: 968 year: 2006 ident: 10.1016/j.neuroimage.2016.04.066_bb0090 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.021 – year: 2006 ident: 10.1016/j.neuroimage.2016.04.066_bb0220 – volume: 24 start-page: 1 year: 2009 ident: 10.1016/j.neuroimage.2016.04.066_bb0160 article-title: ERGM: a package to fit, simulate and diagnose exponential-family models for networks publication-title: J. Stat. Softw. – volume: 25 start-page: 3185 year: 2007 ident: 10.1016/j.neuroimage.2016.04.066_bb0175 article-title: Simulation of robustness against lesions of cortical networks publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2007.05574.x – volume: 76 start-page: 33 year: 2003 ident: 10.1016/j.neuroimage.2016.04.066_bb0140 article-title: Assessing degeneracy in statistical models of social networks publication-title: J. Am. Stat. Assoc. |
SSID | ssj0009148 |
Score | 2.394397 |
Snippet | Descriptive neural network analyses have provided important insights into the organization of structural and functional networks in the human brain. However,... |
SourceID | unpaywall proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 79 |
SubjectTerms | Adult Adults Age Aged Aged, 80 and over Aging Bayes Theorem Bayesian statistics Brain - anatomy & histology Brain - physiology Connectome Connectome - methods Diffusion Magnetic Resonance Imaging Diffusion Tensor Imaging Efficiency Generative network analysis Growth models Humans Image Processing, Computer-Assisted Middle Aged Models, Neurological Neural networks Neural Pathways - anatomy & histology Neural Pathways - physiology Older people P model Signal Processing, Computer-Assisted Studies Tractography Young Adult |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSxwxFH-IB1sPxdbWrtqSQq_jmsnXDp5UKlKwl1bwIiGZSWDL7uyCivXSv933MpnR0h4WepyZPEhe3lcm7_0ewGfXOO6ElEUwdM1YqaZwsRFFqKV36ACDTGj7F9_0-aX8eqWu1uC0r4WhtMps-zubnqx1fjPO3Bwvp9Pxd4wM0N3geUMLOthQER-hf6FMH_x-SvOouOzK4ZQoaHTO5ulyvBJm5HSOmktJXjqBnia8xH-6qL9D0E14cdcu3cO9m82euaWzLXiV40l23E35NayF9g1sXOQb8224PnEPgQolWfi1XLSUG4TD0UE1izlLaNUsNcNBD8YWkd1Tu9zCU98I1kHLEiwHa7tk8Rvm0pTZbBoDmqL2LVyefflxel7klgpFjZHBbcGDkCY00XstgpMOAzChRVRljXofNa-9cFwHE4QyVY00Tksfo1fCN4e1n4h3sN7iZN8DUyHQ9puodJQyVn5SU1GsUF7zhpd6BKbnoq0z3ji1vZjZPrHsp33ivyX-20Npkf8j4APlssPcWIGm6jfK9jWlaAUtOoYVaI8G2j9kb0Xq_V4ubNb_G8snCQIa7ekIPg2fUXPpOsa1YXGHY0yFh11tiFU7nTwNyy0NF3h0L0dQDgK2Mi92_2s9e_CSnuj_NVf7sI6yFj5g4HXrPybNegS_ni93 priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVOJxKG8ILchIXLep16-sOLUVVYXUCgkilQOy7F1bSkk3kZqolF_PjPcBBQ4R3HY3Hmntmf1mnBl_A_DGVY47IWUWDKUZC1VlLlYiC6X0Dh1gkIlt_-RUH0_k-zN1tgGH3VkYKqtssb_B9ITW7ZNRu5qjxXQ6-oiRAbob3G9oQRub4hZsasoyDWBzcvph_3PKcyqR0Zh0TV0JlenqeZoqr8QaOb3Ab5fKvHSiPU2MiX91Un8GoffgzqpeuOsrN5v94piO7kPVTampR_m6u1r63fL7b2yP_znnB7DVBq5svxn3EDZC_Qhun7Sp-cfw5cBdBzqRycK3xbymIiQcjp6wml-wRIvNUtcddJVsHtkV9eXNPDWoYA2HLfF_sLqpSr9kLq0Mm01jQMyrn8Dk6N2nw-Os7d2QlRiCLDMehDShit5rEZx0GOkJLaLKSwSYqHnpheM6mCCUKUqUcVr6GL0Svtor_Vg8hUGNL_scmAqB7MxEpaOUsfDjkk7fCuU1r3iuh2A6ZdmyJTan_hoz21WwndufarakZrsnLap5CLyXXDTkHmvIFJ092O7wKsKtRQ-0huzbXvaGwteU3unMz7ZAc2n5OHFNI3AP4XX_M0IE5X1cHeYrHGMK3FVrQ0v1rDHbfrq54SJXMh9C3tvx2mvx4l-EtuEu3dH_41ztwABNLLzEwG7pX7Uf7g_glE_H priority: 102 providerName: Unpaywall |
Title | Bayesian exponential random graph modeling of whole-brain structural networks across lifespan |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811916301069 https://dx.doi.org/10.1016/j.neuroimage.2016.04.066 https://www.ncbi.nlm.nih.gov/pubmed/27132542 https://www.proquest.com/docview/1800690070 https://www.proquest.com/docview/1798996726 https://www.sciencedirect.com/science/article/pii/S1053811916301069 |
UnpaywallVersion | publishedVersion |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250802 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250802 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA-2BbUP4lf1tB4RfF1tNl-3-CDX0nJ-9DiKB-eDhGQ3gcp198q11L74tzuTzd4JitxTHnYGspP5SjL5DSFvbGWZ5UJkXuM1YyGrzIaKZ74UzkIA9CKi7Z-O1WgqPs3kLB24LVNZZecTo6OumhLPyN-xQQTVBQ39sLjMsGsU3q6mFhpbZIdBqoJarWd6DbrLRPsUTvJsAASpkqet74p4kecXYLVY4KUi4GnESvxnePo7_dwl967rhb29sfP5HyHp5CF5kHJJOmwX_xG54-vH5O5pui1_Qr4f2luPjySp_7loaqwLAnIITlVzQSNSNY2NcCB60SbQG2yVmznsGUFbWFmE5KB1Wyi-pDZOmc7Pgwc3VD8l05Pjr0ejLLVTyErICq4y5rnQvgrOKe6tsJB8ccWDzEuw-aBY6bhlymvPpS5K4LFKuBCc5K46KN2A75HtGib7nFDpPS69DlIFIULhBiU-iOXSKVaxXPWI7qRoyoQ1ji0v5qYrKvth1vI3KH9zIAzIv0fYinPR4m1swFN0C2W696TgAQ0EhQ143694U87R5hIbcu93emGS7S_NWlN75PXqM1gtXsXY2jfXQKML2OgqjaJ61urT6ndzzThs2_MeyVcKtrEsXvx_Ri_JfSTGw2km98k2KJN_BVnVleuTrbe_WD8aUJ_sDI_Ovkxw_Ph5NIbx8Hg8OYNxOp4Mv_0Go7craQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlE4IF6FQAEjwXFFvH5lhRDiVaW06amVckHG3rWlonQ3KK1C_hS_kZl9BQmEcul5PSvv-PPMeD3zDcBLVzjuhJRJMHTNmKkicbEQScild-gAg6zZ9ifHenwqv0zVdAt-dbUwlFbZ2cTaUBdVTv_IX_NRTaqLCH03_5FQ1yi6Xe1aaDSwOAyrJR7ZFm8PPuH6vkrT_c8nH8dJ21UgydE5XiQ8CGlCEb3XIjjpMAYRWkSV5gj9qHnuheM6mCCUyXKUcVr6GL0SvhjmfiTwvdfguhRDSVz9ZmrWJL9cNqV3SiQjzrM2c6jJJ6v5Kc_O0UpQQpmuCVZrbsZ_usO_w91bsHNZzt1q6WazP1zg_h243cau7H0DtruwFcp7cGPS3s7fh68f3CpQUSYLP-dVSXlIOBydYVGds5oZm9WNd9BbsiqyJbXmTTz1qGANjS1RgLCySUxfMFdPmc3OYkCzVz6A0ytR9C5slzjZR8BUCAQ1E5WOUsbMj3IqwBXKa17wVA_AdFq0ecttTi02ZrZLYvtu1_q3pH87lBb1PwDeS84bfo8NZLJuoWxXv4oW16IT2kD2TS_bxjhN7LKh9F6HC9vamoVd74wBvOgfo5Wgqx9XhuoSx5gMD9bakKoeNnjqPzc1XKRKpgNIe4BtrIvH_5_Rc9gZn0yO7NHB8eETuEmC9GOcqz3YRmCFpxjRXfhn9TZi8O2q9-1v-BVh_A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC5ihKgH8e1q1Bb0OCQ9_dpBRNS4JMYEDwb2Im33TDdENrMrm7DuX_PXWdXzWEGRveQ8U0NPdb1m-quvAF64ynEnpMyCoWPGQlWZi5XIQim9wwQYZGLbPzrW-yfy41iNN-BX1wtDsMouJqZAXU1L-ke-w4eJVBctdCe2sIjPe6M3sx8ZTZCik9ZunEZjIodhucDPt_nrgz3c65d5Pvrw5f1-1k4YyEpMlOcZD0KaUEXvtQhOOqxHhBZR5SW6QdS89MJxHUwQyhQlyjgtfYxeCV_tln4o8LlX4KoRUhCczIzNivCXy6YNT4lsyHnRoogabFniqjw9w4hB4DKdyFYTT-M_U-Pfpe8NuHZRz9xy4SaTP9Lh6BbcbOtY9rYxvNuwEeo7sHXUntTfha_v3DJQgyYLP2fTmjBJeDsmxmp6xhJLNktDeDBzsmlkCxrTm3maV8EaSluiA2F1A1KfM5eWzCanMWAIrO_ByaUo-j5s1rjYh8BUCGR2JiodpYyFH5bUjCuU17ziuR6A6bRoy5bnnMZtTGwHaPtuV_q3pH-7Ky3qfwC8l5w1XB9ryBTdRtmulxWjr8WEtIbsq162rXeaOmZN6e3OLmwbd-Z25SUDeN5fxohBx0CuDtMLvMcU-JGtDanqQWNP_evmhotcyXwAeW9ga-vi0f9X9Ay20GPtp4Pjw8dwneToHzlX27CJdhWeYHF37p8mL2Lw7bLd9jdbY2Y3 |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVOJxKG8ILchIXLep16-sOLUVVYXUCgkilQOy7F1bSkk3kZqolF_PjPcBBQ4R3HY3Hmntmf1mnBl_A_DGVY47IWUWDKUZC1VlLlYiC6X0Dh1gkIlt_-RUH0_k-zN1tgGH3VkYKqtssb_B9ITW7ZNRu5qjxXQ6-oiRAbob3G9oQRub4hZsasoyDWBzcvph_3PKcyqR0Zh0TV0JlenqeZoqr8QaOb3Ab5fKvHSiPU2MiX91Un8GoffgzqpeuOsrN5v94piO7kPVTampR_m6u1r63fL7b2yP_znnB7DVBq5svxn3EDZC_Qhun7Sp-cfw5cBdBzqRycK3xbymIiQcjp6wml-wRIvNUtcddJVsHtkV9eXNPDWoYA2HLfF_sLqpSr9kLq0Mm01jQMyrn8Dk6N2nw-Os7d2QlRiCLDMehDShit5rEZx0GOkJLaLKSwSYqHnpheM6mCCUKUqUcVr6GL0Svtor_Vg8hUGNL_scmAqB7MxEpaOUsfDjkk7fCuU1r3iuh2A6ZdmyJTan_hoz21WwndufarakZrsnLap5CLyXXDTkHmvIFJ092O7wKsKtRQ-0huzbXvaGwteU3unMz7ZAc2n5OHFNI3AP4XX_M0IE5X1cHeYrHGMK3FVrQ0v1rDHbfrq54SJXMh9C3tvx2mvx4l-EtuEu3dH_41ztwABNLLzEwG7pX7Uf7g_glE_H |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+exponential+random+graph+modeling+of+whole-brain+structural+networks+across+lifespan&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Sinke%2C+Michel+R+T&rft.au=Dijkhuizen%2C+Rick+M&rft.au=Caimo%2C+Alberto&rft.au=Stam%2C+Cornelis+J&rft.date=2016-07-15&rft.eissn=1095-9572&rft.volume=135&rft.spage=79&rft_id=info:doi/10.1016%2Fj.neuroimage.2016.04.066&rft_id=info%3Apmid%2F27132542&rft.externalDocID=27132542 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |