A Hybrid Deep Learning Model for Enhanced Structural Damage Detection: Integrating ResNet50, GoogLeNet, and Attention Mechanisms
Quick and accurate structural damage detection is essential for maintaining the safety and integrity of infrastructure, especially following natural disasters. Traditional methods of damage assessment, which rely on manual inspections, can be labor-intensive and subject to human error. This paper in...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 22; p. 7249 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
13.11.2024
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s24227249 |
Cover
Abstract | Quick and accurate structural damage detection is essential for maintaining the safety and integrity of infrastructure, especially following natural disasters. Traditional methods of damage assessment, which rely on manual inspections, can be labor-intensive and subject to human error. This paper introduces a hybrid deep learning model that combines the capabilities of ResNet50 and GoogLeNet, further enhanced by a convolutional block attention module (CBAM), proposed to improve both the accuracy and performance in detecting structural damage. For training purposes, a diverse dataset of images depicting both structural damage cases and undamaged cases was used. To further enhance the robustness, data augmentation techniques were also employed. In this research, precision, recall, F1-score, and accuracy were employed to evaluate the effectiveness of the introduced hybrid deep learning model. Our findings indicate that the hybrid deep neural network introduced in this study significantly outperformed standalone architectures such as ResNet50 and GoogLeNet, making it a highly effective solution for applications in disaster response and infrastructure maintenance. |
---|---|
AbstractList | Quick and accurate structural damage detection is essential for maintaining the safety and integrity of infrastructure, especially following natural disasters. Traditional methods of damage assessment, which rely on manual inspections, can be labor-intensive and subject to human error. This paper introduces a hybrid deep learning model that combines the capabilities of ResNet50 and GoogLeNet, further enhanced by a convolutional block attention module (CBAM), proposed to improve both the accuracy and performance in detecting structural damage. For training purposes, a diverse dataset of images depicting both structural damage cases and undamaged cases was used. To further enhance the robustness, data augmentation techniques were also employed. In this research, precision, recall, F1-score, and accuracy were employed to evaluate the effectiveness of the introduced hybrid deep learning model. Our findings indicate that the hybrid deep neural network introduced in this study significantly outperformed standalone architectures such as ResNet50 and GoogLeNet, making it a highly effective solution for applications in disaster response and infrastructure maintenance.Quick and accurate structural damage detection is essential for maintaining the safety and integrity of infrastructure, especially following natural disasters. Traditional methods of damage assessment, which rely on manual inspections, can be labor-intensive and subject to human error. This paper introduces a hybrid deep learning model that combines the capabilities of ResNet50 and GoogLeNet, further enhanced by a convolutional block attention module (CBAM), proposed to improve both the accuracy and performance in detecting structural damage. For training purposes, a diverse dataset of images depicting both structural damage cases and undamaged cases was used. To further enhance the robustness, data augmentation techniques were also employed. In this research, precision, recall, F1-score, and accuracy were employed to evaluate the effectiveness of the introduced hybrid deep learning model. Our findings indicate that the hybrid deep neural network introduced in this study significantly outperformed standalone architectures such as ResNet50 and GoogLeNet, making it a highly effective solution for applications in disaster response and infrastructure maintenance. Quick and accurate structural damage detection is essential for maintaining the safety and integrity of infrastructure, especially following natural disasters. Traditional methods of damage assessment, which rely on manual inspections, can be labor-intensive and subject to human error. This paper introduces a hybrid deep learning model that combines the capabilities of ResNet50 and GoogLeNet, further enhanced by a convolutional block attention module (CBAM), proposed to improve both the accuracy and performance in detecting structural damage. For training purposes, a diverse dataset of images depicting both structural damage cases and undamaged cases was used. To further enhance the robustness, data augmentation techniques were also employed. In this research, precision, recall, F1-score, and accuracy were employed to evaluate the effectiveness of the introduced hybrid deep learning model. Our findings indicate that the hybrid deep neural network introduced in this study significantly outperformed standalone architectures such as ResNet50 and GoogLeNet, making it a highly effective solution for applications in disaster response and infrastructure maintenance. |
Audience | Academic |
Author | Zhao, Wei Kang, Shuai Singh, Vikash Yadav, Swati Varun Baral, Anuj Kumar, Roshan Noori, Mohammad Tummala, Sudhakar |
AuthorAffiliation | 6 School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK 3 Department of Radiology, Huzhou Wuxing People’s Hospital, Huzhou Wuxing Maternity and Child Health Hospital, Huzhou 313000, China 7 School of Civil Engineering and Architecture, Henan University, Kaifeng 475004, China; kangshuai@henu.edu.cn 1 Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Udupi 576104, India; vikash.nepal@manipal.edu (V.S.); anuj.baral@learner.manipal.edu (A.B.); yadav.swati@manipal.edu (S.V.Y.) 5 Mechanical Engineering Department, California Polytechnic State University, San Luis Obispo, CA 93405, USA; mnoori@calpoly.edu 2 Department of Electronic and Information Technology, Miami College, Henan University, Kaifeng 475004, China; henuzhao@vip.henu.edu.cn 4 Department of Electronics and Communication Engineering, School of Engineering and Sciences, SRM University AP, Amaravati 522240, India |
AuthorAffiliation_xml | – name: 7 School of Civil Engineering and Architecture, Henan University, Kaifeng 475004, China; kangshuai@henu.edu.cn – name: 2 Department of Electronic and Information Technology, Miami College, Henan University, Kaifeng 475004, China; henuzhao@vip.henu.edu.cn – name: 4 Department of Electronics and Communication Engineering, School of Engineering and Sciences, SRM University AP, Amaravati 522240, India – name: 1 Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Udupi 576104, India; vikash.nepal@manipal.edu (V.S.); anuj.baral@learner.manipal.edu (A.B.); yadav.swati@manipal.edu (S.V.Y.) – name: 3 Department of Radiology, Huzhou Wuxing People’s Hospital, Huzhou Wuxing Maternity and Child Health Hospital, Huzhou 313000, China – name: 6 School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK – name: 5 Mechanical Engineering Department, California Polytechnic State University, San Luis Obispo, CA 93405, USA; mnoori@calpoly.edu |
Author_xml | – sequence: 1 givenname: Vikash orcidid: 0000-0001-9330-5572 surname: Singh fullname: Singh, Vikash – sequence: 2 givenname: Anuj orcidid: 0009-0005-2400-5521 surname: Baral fullname: Baral, Anuj – sequence: 3 givenname: Roshan surname: Kumar fullname: Kumar, Roshan – sequence: 4 givenname: Sudhakar orcidid: 0000-0001-5735-9418 surname: Tummala fullname: Tummala, Sudhakar – sequence: 5 givenname: Mohammad orcidid: 0000-0002-2793-5194 surname: Noori fullname: Noori, Mohammad – sequence: 6 givenname: Swati Varun surname: Yadav fullname: Yadav, Swati Varun – sequence: 7 givenname: Shuai surname: Kang fullname: Kang, Shuai – sequence: 8 givenname: Wei surname: Zhao fullname: Zhao, Wei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39599027$$D View this record in MEDLINE/PubMed |
BookMark | eNplkktv3CAURq0qVfNoF_0DFVI3rZRJMGAbd1ONkjQZadJKfawRhmuHyANTwJWy60_vnUwSJam8MODzHbj47hc7PngoirclPeK8pceJCcYaJtoXxV4pmJhJxujOo_FusZ_SNaWMcy5fFbu8rdqWsmav-DsnFzdddJacAqzJEnT0zg_kMlgYSR8iOfNX2huw5EeOk8lT1CM51Ss9AEYymOyC_0QWPsMQdd5kv0P6Crmih-Q8hGEJODkk2lsyzxn8hieXYNDq0iq9Ll72ekzw5u59UPz6cvbz5GK2_Ha-OJkvZ6aibZ6VNa8Fr4yh2ta1lLXEoe06zTZTRjvaiI7VzJqSikbaqik7Y3spWaulqHt-UCy2Xhv0tVpHt9LxRgXt1O1CiIPSMTszgmK0amXDqh5wT9E3EmhlakBzV_PKMnR93rrWU7cCa7AovJUn0qdfvLtSQ_ijyhLNoq7Q8OHOEMPvCVJWK5cMjKP2EKakeMm5qFrackTfP0OvwxQ93tUtxaWkXCJ1tKUGjRU43wfc2OBjYeUMtkvvcH0uSykaKmiNgXePa3g4_H1rIHC8BUwMKUXolXFZb_4emt2oSqo2zacemg8TH58l7qX_s_8AEGLWuA |
CitedBy_id | crossref_primary_10_3390_ai6030061 crossref_primary_10_3390_s25010101 crossref_primary_10_3390_s25051446 crossref_primary_10_3390_s25061642 |
Cites_doi | 10.1109/CVPR.2015.7298594 10.1109/CVPR.2016.308 10.1109/CVPR.2016.90 10.3390/app14135476 10.1109/5.726791 10.1007/978-3-030-01234-2_1 10.1088/1742-6596/1249/1/012004 10.1007/3-540-49430-8_3 10.1109/CVPR.2017.243 10.1155/2021/5843816 10.1007/s12205-019-0437-z |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s24227249 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_20598725fe3644f78e05c6ec10b635d2 PMC11598465 A818470406 39599027 10_3390_s24227249 |
Genre | Journal Article |
GeographicLocations | Mexico |
GeographicLocations_xml | – name: Mexico |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c509t-1636435cc0ad668868cc0dbba2d66820b074b262dc10478d571bcdf8829a846f3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:28 EDT 2025 Tue Sep 30 17:06:41 EDT 2025 Fri Sep 05 06:13:53 EDT 2025 Fri Jul 25 23:31:47 EDT 2025 Tue Jun 10 21:06:15 EDT 2025 Wed Feb 19 02:03:56 EST 2025 Wed Oct 01 04:28:58 EDT 2025 Thu Apr 24 23:11:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | damage detection deep learning CNN CBAM GoogLeNet ResNet-50 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-1636435cc0ad668868cc0dbba2d66820b074b262dc10478d571bcdf8829a846f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This paper is an extended version of our paper published in 4th International Conference on Sustainable Expert Systems (ICSES 2024), Kaski, Nepal, 15–17 October 2024. |
ORCID | 0000-0001-5735-9418 0009-0005-2400-5521 0000-0001-9330-5572 0000-0002-2793-5194 |
OpenAccessLink | https://doaj.org/article/20598725fe3644f78e05c6ec10b635d2 |
PMID | 39599027 |
PQID | 3133388038 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_20598725fe3644f78e05c6ec10b635d2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11598465 proquest_miscellaneous_3133459093 proquest_journals_3133388038 gale_infotracacademiconefile_A818470406 pubmed_primary_39599027 crossref_citationtrail_10_3390_s24227249 crossref_primary_10_3390_s24227249 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241113 |
PublicationDateYYYYMMDD | 2024-11-13 |
PublicationDate_xml | – month: 11 year: 2024 text: 20241113 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Lecun (ref_22) 1998; 86 Wan (ref_16) 2023; 2 ref_12 Rathinam (ref_19) 2020; 5 ref_31 ref_30 Mohamed (ref_18) 2021; 22 ref_17 Feng (ref_21) 2019; 23 Wilson (ref_15) 2021; 226 Cao (ref_10) 2021; 26 Yang (ref_6) 2020; 109 Powers (ref_34) 2011; 2 Civera (ref_32) 2019; 1249 Smith (ref_1) 2022; 15 Guo (ref_13) 2021; 22 Jiang (ref_3) 2020; 34 ref_24 Prechelt (ref_33) 1998; 1524 ref_23 Krizhevsky (ref_25) 2012; 25 Minaee (ref_2) 2022; 44 ref_20 Lee (ref_5) 2019; 145 Zhang (ref_8) 2021; 35 Kong (ref_14) 2020; 67 Wu (ref_4) 2020; 209 ref_29 ref_28 ref_27 ref_26 ref_9 Xiuying (ref_11) 2020; 113 ref_7 |
References_xml | – ident: ref_7 – ident: ref_28 doi: 10.1109/CVPR.2015.7298594 – volume: 35 start-page: 102112 year: 2021 ident: ref_8 article-title: Recent Advances in Image-Based Structural Damage Detection: A Review publication-title: J. Build. Eng. – ident: ref_9 – ident: ref_30 – ident: ref_29 doi: 10.1109/CVPR.2016.308 – volume: 226 start-page: 111322 year: 2021 ident: ref_15 article-title: Deep Learning for Structural Damage Detection: A Case Study Using VGG16 publication-title: Eng. Struct. – ident: ref_26 doi: 10.1109/CVPR.2016.90 – volume: 109 start-page: 102992 year: 2020 ident: ref_6 article-title: Deep Learning-Based Crack Detection in UAV Images for Infrastructure Inspection publication-title: Autom. Constr. – volume: 22 start-page: 4301 year: 2021 ident: ref_13 article-title: Pavement Crack Detection Using YOLOv5 publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 67 start-page: 4885 year: 2020 ident: ref_14 article-title: Vision-Based Metal Fatigue Crack Detection Using Video Feature Tracking publication-title: IEEE Trans. Ind. Electron. – ident: ref_17 doi: 10.3390/app14135476 – volume: 86 start-page: 2278 year: 1998 ident: ref_22 article-title: Gradient-Based Learning Applied to Document Recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: ref_31 doi: 10.1007/978-3-030-01234-2_1 – volume: 1249 start-page: 012004 year: 2019 ident: ref_32 article-title: Video Processing Techniques for the Contactless Investigation of Large Oscillations publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1249/1/012004 – ident: ref_23 – volume: 1524 start-page: 55 year: 1998 ident: ref_33 article-title: Early stopping-but when? publication-title: Neural Netw. Tricks Trade doi: 10.1007/3-540-49430-8_3 – volume: 22 start-page: 04020045 year: 2021 ident: ref_18 article-title: Disaster Resilience: Deep Learning Applications in Post-Earthquake Structural Assessment publication-title: Nat. Hazards Rev. – volume: 26 start-page: 04021001 year: 2021 ident: ref_10 article-title: Crack Detection in Gusset Plate Welded Joints of Steel Bridges Using Deep Learning publication-title: J. Bridge Eng. – volume: 5 start-page: 1 year: 2020 ident: ref_19 article-title: Deep Learning for Post-Disaster Structural Damage Detection: A Review publication-title: J. Build. Pathol. Rehabil. – volume: 25 start-page: 1097 year: 2012 ident: ref_25 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 113 start-page: 103136 year: 2020 ident: ref_11 article-title: Concrete Crack Detection Using ResNet101-Based Image Segmentation publication-title: Autom. Constr. – volume: 15 start-page: 230 year: 2022 ident: ref_1 article-title: Challenges in Post-Disaster Structural Damage Assessment publication-title: Int. J. Disaster Manag. – ident: ref_24 doi: 10.1109/CVPR.2017.243 – volume: 209 start-page: 110020 year: 2020 ident: ref_4 article-title: Automated Detection of Structural Damage in Buildings Using Convolutional Neural Networks publication-title: Eng. Struct. – volume: 44 start-page: 3523 year: 2022 ident: ref_2 article-title: Image Segmentation Using Deep Learning: A Survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: ref_27 – ident: ref_12 – volume: 145 start-page: 04019019 year: 2019 ident: ref_5 article-title: Crack Detection in Building Facades Using Convolutional Neural Networks publication-title: J. Struct. Eng. – volume: 2 start-page: 129 year: 2023 ident: ref_16 article-title: Advancing Bridge Structural Health Monitoring: Insights into Knowledge-Driven and Data-Driven Approaches publication-title: J. Data Sci. Intell. Syst. – ident: ref_20 doi: 10.1155/2021/5843816 – volume: 34 start-page: 04020026 year: 2020 ident: ref_3 article-title: Deep Learning Techniques for Automated Structural Damage Detection in Buildings publication-title: J. Comput. Civ. Eng. – volume: 23 start-page: 4493 year: 2019 ident: ref_21 article-title: Structural damage detection using deep convolutional neural network and transfer learning publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-019-0437-z – volume: 2 start-page: 37 year: 2011 ident: ref_34 article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation publication-title: J. Mach. Learn. Technol. |
SSID | ssj0023338 |
Score | 2.4794238 |
Snippet | Quick and accurate structural damage detection is essential for maintaining the safety and integrity of infrastructure, especially following natural disasters.... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 7249 |
SubjectTerms | Accuracy Algorithms Automation CBAM Classification CNN Cracks damage detection Datasets Deep Learning Disasters Drones GoogLeNet Humans Infrastructure Innovations Metal fatigue Neural networks Neural Networks, Computer ResNet-50 Unmanned aerial vehicles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPAoECnIrJDg0wnHiPLgttGVBtAegUm-WX2krtdlKCQdu_HS-SbJRViD1wi2Obcn2zHi-kT2fGXtt4WRCVSM2qbOMjhlFbL1zsQyFlVnIM2cowfn4JF-eZl_O1NnsqS-6EzbQAw8Lh-BcISyWqg4pXHddlEEolweXCAtf6fvdF25sHUyNoVaKyGvgEUoR1L9r4YhkIYkwc-Z9epL-v7fimS_avCc5czxHD9j9ETHyxTDSh-xOaB6xezMewcfs94Ivf1HqFT8I4YaPnKnnnB46u-KApfywueiP-vn3ni-WuDb4gbnGZoIuXX8dq3nPP4_cEdT3W2hPQqfEPv-0Wp1_DSjsc9N4vui64YokPw6UNnzZXrfb7PTo8MfHZTw-rRA7IIQuBgoDFFHOCePzvCzzEp_eWiOpKIUFsrAyl9719D1eFYl1vgYcrwwQS50-YVvNqgnPGK-zUCaiBhJyDp_OVpXxACIwbpEZKyL2dr3k2o284_T8xZVG_EHS0ZN0IrY3Nb0ZyDb-1egDyW1qQPzY_Q9ojR61Rt-mNRF7Q1LXZMUYjDNjMgKmRHxYegEckxXY4PKI7awVQ4_m3eo0IQUrRVpGbHeqhmHSaYtpwurn0CZTlajSiD0d9Ggac1opoABZRKzc0LCNSW3WNJcXPfk3EHwFCajn_2MZXrC7EiCNciuTdIdtQQXDS4Cszr7q7ekPWo4jmw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8W6gIIOQ4NCoWcfOgwtaaLcLoj0AlXqz_Mq2Uptsm3Dgxk9nJvGGXYG45WFLdubhb2LPNwCvDS4yvqwwNqmEoG3GJDbO2pj73HDhM2E1JTgfHWfzE_H5VJ6GH25tOFa58om9o3aNpX_keykGU0Rckhbvl1cxVY2i3dVQQuMm3Jpw1CTKFJ8djgEX9RjYhFIM7fdaXI54zok2c20N6qn6_3bIayvS5mnJteVndg_uBtzIpoOg78MNXz-AO2tsgg_h15TNf1ICFtv3fskCc-qCUbmzC4bglB3UZ_2GP_vWs8YS4wbb15foUrBL1x_Kqt-xT4FBgvp-9e2x72Syyw6bZvHF480u07Vj064bDkqyI0_Jw-ftZfsITmYH3z_O41BgIbaIE7oYsRgCEmltol2WFUVW4KUzRnO65YlBfGF4xp3tSXyczCfGugpBeakRt1TpY9iqm9pvA6uELyZJhXjIWry0piy1QziCJp4IbZII3q4-ubKBfZyKYFwojEJIOmqUTgSvxqbLgXLjX40-kNzGBsSS3T9orhcqGJ3iiB2LnMvK4zxFlRc-kTbzOBuDOMvxCN6Q1BXZMg7G6pCSgFMiViw1RTQjcnRzWQQ7K8VQwchb9UclI3g5vkbzpD0XXfvmx9BGyDIp0wieDHo0jjktJWIBnkdQbGjYxqQ239TnZz0FOOL4EiUgn_5_XM_gNkcQRrmTk3QHtlC5_HMEUZ150VvKb1pJHA4 priority: 102 providerName: ProQuest |
Title | A Hybrid Deep Learning Model for Enhanced Structural Damage Detection: Integrating ResNet50, GoogLeNet, and Attention Mechanisms |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39599027 https://www.proquest.com/docview/3133388038 https://www.proquest.com/docview/3133459093 https://pubmed.ncbi.nlm.nih.gov/PMC11598465 https://doaj.org/article/20598725fe3644f78e05c6ec10b635d2 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71cYED4o2hRAtCwKGGzXr9QkIopUkDIhEqRMrN8q7XaaXUThsj0Rs_nZm1Y8WiBy6WHa8dr2d25xvvzDcArxQaGRPn6JvkUtIyI3dVprUrTKiENIHUKSU4T6bBeCa_zv35DmzCmpsXuL7RtaN6UrOr5bvfl9efcMB_JI8TXfb3azQzIkQ_4vXq0qV6UrTu2hTX2IV9tFGC9H0i2_UF4Xm2xjWlebloInnNOdS9W8dSWUL_f6ftLbvVjancMlKju3CnQZdsUKvDPdgxxX24vcU5-AD-DNj4mtK02LExK9bwqy4YFUVbMoSwbFic2bAA9sNyyxIvBztOL3DiwUsqG7pVfGBfGp4JuvbUrKem8vkhOynLxTeDB4csLTI2qKo6nJJNDKUYn68v1g9hNhr-_Dx2mzIMrkY0UbmI2BC2-FrzNAuCKAoi3M2USgUdCq4QhSgRiExbqp_MD_tKZzlC9zhFdJN7j2CvKAvzBFguTdTnOaImrXFXqzhOMwQtOBFwmSruwNvNK090w1FOpTKWCfoqJJ2klY4DL9umq5qY46ZGRyS3tgFxadsfyqtF0gzNRCDCjELh5wb7KfMwMtzXgcHeKERjmXDgDUk9IR3Eh9Fpk7iAXSLurGSAmEeGOBkGDhxsFCPZaHLi9UnZIu5FDrxoT-MgppWZtDDlr7qN9GMeew48rvWofWYv9hExiNCBqKNhnU51zxTnZ5YoHNF-jBLwn_7HHz-DWwLxGqVZ9r0D2EMNM88Rb1WqB7vhPMRtNDrpwf7RcPr9tGe_XfTsoPoL_RstRQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiGcJFDAIBIdG9TrOCwmhhW3Zpbt7gFbaW7AdZ1upTRYShHrjF_EbmcljuysQt97ycCI7M575JvZ8A_BCo5OxcYaxSSYlLTNyV6fGuMKGWkgbSKMowXkyDYZH8tPMn23A7y4XhrZVdjaxNtRpYegf-a6HwRQRl3jRu8U3l6pG0epqV0KjUYsDe_4TQ7by7WiA8n0pxP7e4Yeh21YVcA06x8pFAIJe2DeGqzQIoiiI8DDVWgk6FVyjU9UiEKmpmWtSP-xpk2aIRGOFzjrz8L1X4Kr0uCSu_nB2EeBRDxv2Is-L-W6J7k-Egmg6V3xeXRrgbwew4gHXd2euuLv9W3Czxams3yjWbdiw-R24scJeeBd-9dnwnBK-2MDaBWuZWueMyqudMgTDbC8_rjcYsC81Sy0xfLCBOkMTho9U9Saw_A0btYwV9OxnW05t5fMd9rEo5mOLJztM5SnrV1WzMZNNLCUrn5Rn5T04upRPfx828yK3D4Bl0kY9niH-MgYPjY5jlSL8QZPCpdLcgdfdJ09My3ZORTdOE4x6SDrJUjoOPF82XTQUH_9q9J7ktmxArNz1heL7PGkneSIQq0ah8DOL45RZGFnum8DiaDTiulQ48IqknpDtwM4Y1aZA4JCIhSvpI3qSIZrVwIHtTjGS1qiUycUUcODZ8jaaA1rjUbktfjRtpB_z2HNgq9GjZZ-92EfsIUIHojUNWxvU-p385LimHMe4IUYJ-A__36-ncG14OBkn49H04BFcFwgAKW-z523DJiqafYwArtJP6lnD4OtlT9M_3ktX9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN4YCiwIBIdacdbrFxJCgTQktI0QpVJuy-56nVZq7YCNUG_8Ln4dM36kiUDcerPjdbTrmZ35xp75BuC5Ridjkwxjk0wI-szouTo1xuU20lzYUBhFBc7703B8KD7OgtkG_O5qYSitsrOJtaFOC0PvyHs-BlNEXOLHvaxNi_g0HL1dfHOpgxR9ae3aaTQqsmvPfmL4Vr6ZDFHWLzgf7Xx5P3bbDgOuQUdZuQhG0CMHxngqDcM4DmM8TLVWnE65p9HBah7y1NQsNmkQ9bVJM0SliULHnfn4v5fgcuQLn9LJotl5sEezbZiMfD_xeiW6Qh5xouxc8X91m4C_ncGKN1zP1FxxfaMbcL3FrGzQKNlN2LD5Lbi2wmR4G34N2PiMir_Y0NoFa1lb54xarZ0wBMZsJz-qkw3YQc1YS2wfbKhO0ZzhLVWdEJa_ZpOWvYLu_WzLqa0Cb5t9KIr5nsWTbabylA2qqknSZPuWCpePy9PyDhxeyKO_C5t5kdv7wDJh476XIRYzBg-NThKVIhRC8-IJpT0HXnWPXJqW-ZwacJxIjIBIOnIpHQeeLYcuGrqPfw16R3JbDiCG7vqH4vtcthtecsStccSDzOI6RRbF1gtMaHE1GjFeyh14SVKXZEdwMka15RC4JGLkkgNEUiJCExs6sNUphmwNTCnPt4MDT5eX0TTQ9x6V2-JHM0YEiZf4Dtxr9Gg5Zz8JEIfwyIF4TcPWFrV-JT8-qunHMYZIUALBg__P6wlcwQ0q9ybT3YdwlSMWpBLOvr8Fm6hn9hFiuUo_rjcNg68XvUv_APzUXDE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Deep+Learning+Model+for+Enhanced+Structural+Damage+Detection%3A+Integrating+ResNet50%2C+GoogLeNet%2C+and+Attention+Mechanisms&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Singh%2C+Vikash&rft.au=Baral%2C+Anuj&rft.au=Kumar%2C+Roshan&rft.au=Tummala%2C+Sudhakar&rft.date=2024-11-13&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=22&rft_id=info:doi/10.3390%2Fs24227249&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |