A Hybrid Deep Learning Model for Enhanced Structural Damage Detection: Integrating ResNet50, GoogLeNet, and Attention Mechanisms

Quick and accurate structural damage detection is essential for maintaining the safety and integrity of infrastructure, especially following natural disasters. Traditional methods of damage assessment, which rely on manual inspections, can be labor-intensive and subject to human error. This paper in...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 22; p. 7249
Main Authors Singh, Vikash, Baral, Anuj, Kumar, Roshan, Tummala, Sudhakar, Noori, Mohammad, Yadav, Swati Varun, Kang, Shuai, Zhao, Wei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.11.2024
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s24227249

Cover

Abstract Quick and accurate structural damage detection is essential for maintaining the safety and integrity of infrastructure, especially following natural disasters. Traditional methods of damage assessment, which rely on manual inspections, can be labor-intensive and subject to human error. This paper introduces a hybrid deep learning model that combines the capabilities of ResNet50 and GoogLeNet, further enhanced by a convolutional block attention module (CBAM), proposed to improve both the accuracy and performance in detecting structural damage. For training purposes, a diverse dataset of images depicting both structural damage cases and undamaged cases was used. To further enhance the robustness, data augmentation techniques were also employed. In this research, precision, recall, F1-score, and accuracy were employed to evaluate the effectiveness of the introduced hybrid deep learning model. Our findings indicate that the hybrid deep neural network introduced in this study significantly outperformed standalone architectures such as ResNet50 and GoogLeNet, making it a highly effective solution for applications in disaster response and infrastructure maintenance.
AbstractList Quick and accurate structural damage detection is essential for maintaining the safety and integrity of infrastructure, especially following natural disasters. Traditional methods of damage assessment, which rely on manual inspections, can be labor-intensive and subject to human error. This paper introduces a hybrid deep learning model that combines the capabilities of ResNet50 and GoogLeNet, further enhanced by a convolutional block attention module (CBAM), proposed to improve both the accuracy and performance in detecting structural damage. For training purposes, a diverse dataset of images depicting both structural damage cases and undamaged cases was used. To further enhance the robustness, data augmentation techniques were also employed. In this research, precision, recall, F1-score, and accuracy were employed to evaluate the effectiveness of the introduced hybrid deep learning model. Our findings indicate that the hybrid deep neural network introduced in this study significantly outperformed standalone architectures such as ResNet50 and GoogLeNet, making it a highly effective solution for applications in disaster response and infrastructure maintenance.Quick and accurate structural damage detection is essential for maintaining the safety and integrity of infrastructure, especially following natural disasters. Traditional methods of damage assessment, which rely on manual inspections, can be labor-intensive and subject to human error. This paper introduces a hybrid deep learning model that combines the capabilities of ResNet50 and GoogLeNet, further enhanced by a convolutional block attention module (CBAM), proposed to improve both the accuracy and performance in detecting structural damage. For training purposes, a diverse dataset of images depicting both structural damage cases and undamaged cases was used. To further enhance the robustness, data augmentation techniques were also employed. In this research, precision, recall, F1-score, and accuracy were employed to evaluate the effectiveness of the introduced hybrid deep learning model. Our findings indicate that the hybrid deep neural network introduced in this study significantly outperformed standalone architectures such as ResNet50 and GoogLeNet, making it a highly effective solution for applications in disaster response and infrastructure maintenance.
Quick and accurate structural damage detection is essential for maintaining the safety and integrity of infrastructure, especially following natural disasters. Traditional methods of damage assessment, which rely on manual inspections, can be labor-intensive and subject to human error. This paper introduces a hybrid deep learning model that combines the capabilities of ResNet50 and GoogLeNet, further enhanced by a convolutional block attention module (CBAM), proposed to improve both the accuracy and performance in detecting structural damage. For training purposes, a diverse dataset of images depicting both structural damage cases and undamaged cases was used. To further enhance the robustness, data augmentation techniques were also employed. In this research, precision, recall, F1-score, and accuracy were employed to evaluate the effectiveness of the introduced hybrid deep learning model. Our findings indicate that the hybrid deep neural network introduced in this study significantly outperformed standalone architectures such as ResNet50 and GoogLeNet, making it a highly effective solution for applications in disaster response and infrastructure maintenance.
Audience Academic
Author Zhao, Wei
Kang, Shuai
Singh, Vikash
Yadav, Swati Varun
Baral, Anuj
Kumar, Roshan
Noori, Mohammad
Tummala, Sudhakar
AuthorAffiliation 6 School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
3 Department of Radiology, Huzhou Wuxing People’s Hospital, Huzhou Wuxing Maternity and Child Health Hospital, Huzhou 313000, China
7 School of Civil Engineering and Architecture, Henan University, Kaifeng 475004, China; kangshuai@henu.edu.cn
1 Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Udupi 576104, India; vikash.nepal@manipal.edu (V.S.); anuj.baral@learner.manipal.edu (A.B.); yadav.swati@manipal.edu (S.V.Y.)
5 Mechanical Engineering Department, California Polytechnic State University, San Luis Obispo, CA 93405, USA; mnoori@calpoly.edu
2 Department of Electronic and Information Technology, Miami College, Henan University, Kaifeng 475004, China; henuzhao@vip.henu.edu.cn
4 Department of Electronics and Communication Engineering, School of Engineering and Sciences, SRM University AP, Amaravati 522240, India
AuthorAffiliation_xml – name: 7 School of Civil Engineering and Architecture, Henan University, Kaifeng 475004, China; kangshuai@henu.edu.cn
– name: 2 Department of Electronic and Information Technology, Miami College, Henan University, Kaifeng 475004, China; henuzhao@vip.henu.edu.cn
– name: 4 Department of Electronics and Communication Engineering, School of Engineering and Sciences, SRM University AP, Amaravati 522240, India
– name: 1 Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Udupi 576104, India; vikash.nepal@manipal.edu (V.S.); anuj.baral@learner.manipal.edu (A.B.); yadav.swati@manipal.edu (S.V.Y.)
– name: 3 Department of Radiology, Huzhou Wuxing People’s Hospital, Huzhou Wuxing Maternity and Child Health Hospital, Huzhou 313000, China
– name: 6 School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
– name: 5 Mechanical Engineering Department, California Polytechnic State University, San Luis Obispo, CA 93405, USA; mnoori@calpoly.edu
Author_xml – sequence: 1
  givenname: Vikash
  orcidid: 0000-0001-9330-5572
  surname: Singh
  fullname: Singh, Vikash
– sequence: 2
  givenname: Anuj
  orcidid: 0009-0005-2400-5521
  surname: Baral
  fullname: Baral, Anuj
– sequence: 3
  givenname: Roshan
  surname: Kumar
  fullname: Kumar, Roshan
– sequence: 4
  givenname: Sudhakar
  orcidid: 0000-0001-5735-9418
  surname: Tummala
  fullname: Tummala, Sudhakar
– sequence: 5
  givenname: Mohammad
  orcidid: 0000-0002-2793-5194
  surname: Noori
  fullname: Noori, Mohammad
– sequence: 6
  givenname: Swati Varun
  surname: Yadav
  fullname: Yadav, Swati Varun
– sequence: 7
  givenname: Shuai
  surname: Kang
  fullname: Kang, Shuai
– sequence: 8
  givenname: Wei
  surname: Zhao
  fullname: Zhao, Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39599027$$D View this record in MEDLINE/PubMed
BookMark eNplkktv3CAURq0qVfNoF_0DFVI3rZRJMGAbd1ONkjQZadJKfawRhmuHyANTwJWy60_vnUwSJam8MODzHbj47hc7PngoirclPeK8pceJCcYaJtoXxV4pmJhJxujOo_FusZ_SNaWMcy5fFbu8rdqWsmav-DsnFzdddJacAqzJEnT0zg_kMlgYSR8iOfNX2huw5EeOk8lT1CM51Ss9AEYymOyC_0QWPsMQdd5kv0P6Crmih-Q8hGEJODkk2lsyzxn8hieXYNDq0iq9Ll72ekzw5u59UPz6cvbz5GK2_Ha-OJkvZ6aibZ6VNa8Fr4yh2ta1lLXEoe06zTZTRjvaiI7VzJqSikbaqik7Y3spWaulqHt-UCy2Xhv0tVpHt9LxRgXt1O1CiIPSMTszgmK0amXDqh5wT9E3EmhlakBzV_PKMnR93rrWU7cCa7AovJUn0qdfvLtSQ_ijyhLNoq7Q8OHOEMPvCVJWK5cMjKP2EKakeMm5qFrackTfP0OvwxQ93tUtxaWkXCJ1tKUGjRU43wfc2OBjYeUMtkvvcH0uSykaKmiNgXePa3g4_H1rIHC8BUwMKUXolXFZb_4emt2oSqo2zacemg8TH58l7qX_s_8AEGLWuA
CitedBy_id crossref_primary_10_3390_ai6030061
crossref_primary_10_3390_s25010101
crossref_primary_10_3390_s25051446
crossref_primary_10_3390_s25061642
Cites_doi 10.1109/CVPR.2015.7298594
10.1109/CVPR.2016.308
10.1109/CVPR.2016.90
10.3390/app14135476
10.1109/5.726791
10.1007/978-3-030-01234-2_1
10.1088/1742-6596/1249/1/012004
10.1007/3-540-49430-8_3
10.1109/CVPR.2017.243
10.1155/2021/5843816
10.1007/s12205-019-0437-z
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24227249
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_20598725fe3644f78e05c6ec10b635d2
PMC11598465
A818470406
39599027
10_3390_s24227249
Genre Journal Article
GeographicLocations Mexico
GeographicLocations_xml – name: Mexico
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c509t-1636435cc0ad668868cc0dbba2d66820b074b262dc10478d571bcdf8829a846f3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:28 EDT 2025
Tue Sep 30 17:06:41 EDT 2025
Fri Sep 05 06:13:53 EDT 2025
Fri Jul 25 23:31:47 EDT 2025
Tue Jun 10 21:06:15 EDT 2025
Wed Feb 19 02:03:56 EST 2025
Wed Oct 01 04:28:58 EDT 2025
Thu Apr 24 23:11:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords damage detection
deep learning
CNN
CBAM
GoogLeNet
ResNet-50
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-1636435cc0ad668868cc0dbba2d66820b074b262dc10478d571bcdf8829a846f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This paper is an extended version of our paper published in 4th International Conference on Sustainable Expert Systems (ICSES 2024), Kaski, Nepal, 15–17 October 2024.
ORCID 0000-0001-5735-9418
0009-0005-2400-5521
0000-0001-9330-5572
0000-0002-2793-5194
OpenAccessLink https://doaj.org/article/20598725fe3644f78e05c6ec10b635d2
PMID 39599027
PQID 3133388038
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_20598725fe3644f78e05c6ec10b635d2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11598465
proquest_miscellaneous_3133459093
proquest_journals_3133388038
gale_infotracacademiconefile_A818470406
pubmed_primary_39599027
crossref_citationtrail_10_3390_s24227249
crossref_primary_10_3390_s24227249
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241113
PublicationDateYYYYMMDD 2024-11-13
PublicationDate_xml – month: 11
  year: 2024
  text: 20241113
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lecun (ref_22) 1998; 86
Wan (ref_16) 2023; 2
ref_12
Rathinam (ref_19) 2020; 5
ref_31
ref_30
Mohamed (ref_18) 2021; 22
ref_17
Feng (ref_21) 2019; 23
Wilson (ref_15) 2021; 226
Cao (ref_10) 2021; 26
Yang (ref_6) 2020; 109
Powers (ref_34) 2011; 2
Civera (ref_32) 2019; 1249
Smith (ref_1) 2022; 15
Guo (ref_13) 2021; 22
Jiang (ref_3) 2020; 34
ref_24
Prechelt (ref_33) 1998; 1524
ref_23
Krizhevsky (ref_25) 2012; 25
Minaee (ref_2) 2022; 44
ref_20
Lee (ref_5) 2019; 145
Zhang (ref_8) 2021; 35
Kong (ref_14) 2020; 67
Wu (ref_4) 2020; 209
ref_29
ref_28
ref_27
ref_26
ref_9
Xiuying (ref_11) 2020; 113
ref_7
References_xml – ident: ref_7
– ident: ref_28
  doi: 10.1109/CVPR.2015.7298594
– volume: 35
  start-page: 102112
  year: 2021
  ident: ref_8
  article-title: Recent Advances in Image-Based Structural Damage Detection: A Review
  publication-title: J. Build. Eng.
– ident: ref_9
– ident: ref_30
– ident: ref_29
  doi: 10.1109/CVPR.2016.308
– volume: 226
  start-page: 111322
  year: 2021
  ident: ref_15
  article-title: Deep Learning for Structural Damage Detection: A Case Study Using VGG16
  publication-title: Eng. Struct.
– ident: ref_26
  doi: 10.1109/CVPR.2016.90
– volume: 109
  start-page: 102992
  year: 2020
  ident: ref_6
  article-title: Deep Learning-Based Crack Detection in UAV Images for Infrastructure Inspection
  publication-title: Autom. Constr.
– volume: 22
  start-page: 4301
  year: 2021
  ident: ref_13
  article-title: Pavement Crack Detection Using YOLOv5
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 67
  start-page: 4885
  year: 2020
  ident: ref_14
  article-title: Vision-Based Metal Fatigue Crack Detection Using Video Feature Tracking
  publication-title: IEEE Trans. Ind. Electron.
– ident: ref_17
  doi: 10.3390/app14135476
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_22
  article-title: Gradient-Based Learning Applied to Document Recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: ref_31
  doi: 10.1007/978-3-030-01234-2_1
– volume: 1249
  start-page: 012004
  year: 2019
  ident: ref_32
  article-title: Video Processing Techniques for the Contactless Investigation of Large Oscillations
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1249/1/012004
– ident: ref_23
– volume: 1524
  start-page: 55
  year: 1998
  ident: ref_33
  article-title: Early stopping-but when?
  publication-title: Neural Netw. Tricks Trade
  doi: 10.1007/3-540-49430-8_3
– volume: 22
  start-page: 04020045
  year: 2021
  ident: ref_18
  article-title: Disaster Resilience: Deep Learning Applications in Post-Earthquake Structural Assessment
  publication-title: Nat. Hazards Rev.
– volume: 26
  start-page: 04021001
  year: 2021
  ident: ref_10
  article-title: Crack Detection in Gusset Plate Welded Joints of Steel Bridges Using Deep Learning
  publication-title: J. Bridge Eng.
– volume: 5
  start-page: 1
  year: 2020
  ident: ref_19
  article-title: Deep Learning for Post-Disaster Structural Damage Detection: A Review
  publication-title: J. Build. Pathol. Rehabil.
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref_25
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 113
  start-page: 103136
  year: 2020
  ident: ref_11
  article-title: Concrete Crack Detection Using ResNet101-Based Image Segmentation
  publication-title: Autom. Constr.
– volume: 15
  start-page: 230
  year: 2022
  ident: ref_1
  article-title: Challenges in Post-Disaster Structural Damage Assessment
  publication-title: Int. J. Disaster Manag.
– ident: ref_24
  doi: 10.1109/CVPR.2017.243
– volume: 209
  start-page: 110020
  year: 2020
  ident: ref_4
  article-title: Automated Detection of Structural Damage in Buildings Using Convolutional Neural Networks
  publication-title: Eng. Struct.
– volume: 44
  start-page: 3523
  year: 2022
  ident: ref_2
  article-title: Image Segmentation Using Deep Learning: A Survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: ref_27
– ident: ref_12
– volume: 145
  start-page: 04019019
  year: 2019
  ident: ref_5
  article-title: Crack Detection in Building Facades Using Convolutional Neural Networks
  publication-title: J. Struct. Eng.
– volume: 2
  start-page: 129
  year: 2023
  ident: ref_16
  article-title: Advancing Bridge Structural Health Monitoring: Insights into Knowledge-Driven and Data-Driven Approaches
  publication-title: J. Data Sci. Intell. Syst.
– ident: ref_20
  doi: 10.1155/2021/5843816
– volume: 34
  start-page: 04020026
  year: 2020
  ident: ref_3
  article-title: Deep Learning Techniques for Automated Structural Damage Detection in Buildings
  publication-title: J. Comput. Civ. Eng.
– volume: 23
  start-page: 4493
  year: 2019
  ident: ref_21
  article-title: Structural damage detection using deep convolutional neural network and transfer learning
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-019-0437-z
– volume: 2
  start-page: 37
  year: 2011
  ident: ref_34
  article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation
  publication-title: J. Mach. Learn. Technol.
SSID ssj0023338
Score 2.4794238
Snippet Quick and accurate structural damage detection is essential for maintaining the safety and integrity of infrastructure, especially following natural disasters....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 7249
SubjectTerms Accuracy
Algorithms
Automation
CBAM
Classification
CNN
Cracks
damage detection
Datasets
Deep Learning
Disasters
Drones
GoogLeNet
Humans
Infrastructure
Innovations
Metal fatigue
Neural networks
Neural Networks, Computer
ResNet-50
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPAoECnIrJDg0wnHiPLgttGVBtAegUm-WX2krtdlKCQdu_HS-SbJRViD1wi2Obcn2zHi-kT2fGXtt4WRCVSM2qbOMjhlFbL1zsQyFlVnIM2cowfn4JF-eZl_O1NnsqS-6EzbQAw8Lh-BcISyWqg4pXHddlEEolweXCAtf6fvdF25sHUyNoVaKyGvgEUoR1L9r4YhkIYkwc-Z9epL-v7fimS_avCc5czxHD9j9ETHyxTDSh-xOaB6xezMewcfs94Ivf1HqFT8I4YaPnKnnnB46u-KApfywueiP-vn3ni-WuDb4gbnGZoIuXX8dq3nPP4_cEdT3W2hPQqfEPv-0Wp1_DSjsc9N4vui64YokPw6UNnzZXrfb7PTo8MfHZTw-rRA7IIQuBgoDFFHOCePzvCzzEp_eWiOpKIUFsrAyl9719D1eFYl1vgYcrwwQS50-YVvNqgnPGK-zUCaiBhJyDp_OVpXxACIwbpEZKyL2dr3k2o284_T8xZVG_EHS0ZN0IrY3Nb0ZyDb-1egDyW1qQPzY_Q9ojR61Rt-mNRF7Q1LXZMUYjDNjMgKmRHxYegEckxXY4PKI7awVQ4_m3eo0IQUrRVpGbHeqhmHSaYtpwurn0CZTlajSiD0d9Ggac1opoABZRKzc0LCNSW3WNJcXPfk3EHwFCajn_2MZXrC7EiCNciuTdIdtQQXDS4Cszr7q7ekPWo4jmw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8W6gIIOQ4NCoWcfOgwtaaLcLoj0AlXqz_Mq2Uptsm3Dgxk9nJvGGXYG45WFLdubhb2LPNwCvDS4yvqwwNqmEoG3GJDbO2pj73HDhM2E1JTgfHWfzE_H5VJ6GH25tOFa58om9o3aNpX_keykGU0Rckhbvl1cxVY2i3dVQQuMm3Jpw1CTKFJ8djgEX9RjYhFIM7fdaXI54zok2c20N6qn6_3bIayvS5mnJteVndg_uBtzIpoOg78MNXz-AO2tsgg_h15TNf1ICFtv3fskCc-qCUbmzC4bglB3UZ_2GP_vWs8YS4wbb15foUrBL1x_Kqt-xT4FBgvp-9e2x72Syyw6bZvHF480u07Vj064bDkqyI0_Jw-ftZfsITmYH3z_O41BgIbaIE7oYsRgCEmltol2WFUVW4KUzRnO65YlBfGF4xp3tSXyczCfGugpBeakRt1TpY9iqm9pvA6uELyZJhXjIWry0piy1QziCJp4IbZII3q4-ubKBfZyKYFwojEJIOmqUTgSvxqbLgXLjX40-kNzGBsSS3T9orhcqGJ3iiB2LnMvK4zxFlRc-kTbzOBuDOMvxCN6Q1BXZMg7G6pCSgFMiViw1RTQjcnRzWQQ7K8VQwchb9UclI3g5vkbzpD0XXfvmx9BGyDIp0wieDHo0jjktJWIBnkdQbGjYxqQ239TnZz0FOOL4EiUgn_5_XM_gNkcQRrmTk3QHtlC5_HMEUZ150VvKb1pJHA4
  priority: 102
  providerName: ProQuest
Title A Hybrid Deep Learning Model for Enhanced Structural Damage Detection: Integrating ResNet50, GoogLeNet, and Attention Mechanisms
URI https://www.ncbi.nlm.nih.gov/pubmed/39599027
https://www.proquest.com/docview/3133388038
https://www.proquest.com/docview/3133459093
https://pubmed.ncbi.nlm.nih.gov/PMC11598465
https://doaj.org/article/20598725fe3644f78e05c6ec10b635d2
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71cYED4o2hRAtCwKGGzXr9QkIopUkDIhEqRMrN8q7XaaXUThsj0Rs_nZm1Y8WiBy6WHa8dr2d25xvvzDcArxQaGRPn6JvkUtIyI3dVprUrTKiENIHUKSU4T6bBeCa_zv35DmzCmpsXuL7RtaN6UrOr5bvfl9efcMB_JI8TXfb3azQzIkQ_4vXq0qV6UrTu2hTX2IV9tFGC9H0i2_UF4Xm2xjWlebloInnNOdS9W8dSWUL_f6ftLbvVjancMlKju3CnQZdsUKvDPdgxxX24vcU5-AD-DNj4mtK02LExK9bwqy4YFUVbMoSwbFic2bAA9sNyyxIvBztOL3DiwUsqG7pVfGBfGp4JuvbUrKem8vkhOynLxTeDB4csLTI2qKo6nJJNDKUYn68v1g9hNhr-_Dx2mzIMrkY0UbmI2BC2-FrzNAuCKAoi3M2USgUdCq4QhSgRiExbqp_MD_tKZzlC9zhFdJN7j2CvKAvzBFguTdTnOaImrXFXqzhOMwQtOBFwmSruwNvNK090w1FOpTKWCfoqJJ2klY4DL9umq5qY46ZGRyS3tgFxadsfyqtF0gzNRCDCjELh5wb7KfMwMtzXgcHeKERjmXDgDUk9IR3Eh9Fpk7iAXSLurGSAmEeGOBkGDhxsFCPZaHLi9UnZIu5FDrxoT-MgppWZtDDlr7qN9GMeew48rvWofWYv9hExiNCBqKNhnU51zxTnZ5YoHNF-jBLwn_7HHz-DWwLxGqVZ9r0D2EMNM88Rb1WqB7vhPMRtNDrpwf7RcPr9tGe_XfTsoPoL_RstRQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiGcJFDAIBIdG9TrOCwmhhW3Zpbt7gFbaW7AdZ1upTRYShHrjF_EbmcljuysQt97ycCI7M575JvZ8A_BCo5OxcYaxSSYlLTNyV6fGuMKGWkgbSKMowXkyDYZH8tPMn23A7y4XhrZVdjaxNtRpYegf-a6HwRQRl3jRu8U3l6pG0epqV0KjUYsDe_4TQ7by7WiA8n0pxP7e4Yeh21YVcA06x8pFAIJe2DeGqzQIoiiI8DDVWgk6FVyjU9UiEKmpmWtSP-xpk2aIRGOFzjrz8L1X4Kr0uCSu_nB2EeBRDxv2Is-L-W6J7k-Egmg6V3xeXRrgbwew4gHXd2euuLv9W3Czxams3yjWbdiw-R24scJeeBd-9dnwnBK-2MDaBWuZWueMyqudMgTDbC8_rjcYsC81Sy0xfLCBOkMTho9U9Saw_A0btYwV9OxnW05t5fMd9rEo5mOLJztM5SnrV1WzMZNNLCUrn5Rn5T04upRPfx828yK3D4Bl0kY9niH-MgYPjY5jlSL8QZPCpdLcgdfdJ09My3ZORTdOE4x6SDrJUjoOPF82XTQUH_9q9J7ktmxArNz1heL7PGkneSIQq0ah8DOL45RZGFnum8DiaDTiulQ48IqknpDtwM4Y1aZA4JCIhSvpI3qSIZrVwIHtTjGS1qiUycUUcODZ8jaaA1rjUbktfjRtpB_z2HNgq9GjZZ-92EfsIUIHojUNWxvU-p385LimHMe4IUYJ-A__36-ncG14OBkn49H04BFcFwgAKW-z523DJiqafYwArtJP6lnD4OtlT9M_3ktX9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN4YCiwIBIdacdbrFxJCgTQktI0QpVJuy-56nVZq7YCNUG_8Ln4dM36kiUDcerPjdbTrmZ35xp75BuC5Ridjkwxjk0wI-szouTo1xuU20lzYUBhFBc7703B8KD7OgtkG_O5qYSitsrOJtaFOC0PvyHs-BlNEXOLHvaxNi_g0HL1dfHOpgxR9ae3aaTQqsmvPfmL4Vr6ZDFHWLzgf7Xx5P3bbDgOuQUdZuQhG0CMHxngqDcM4DmM8TLVWnE65p9HBah7y1NQsNmkQ9bVJM0SliULHnfn4v5fgcuQLn9LJotl5sEezbZiMfD_xeiW6Qh5xouxc8X91m4C_ncGKN1zP1FxxfaMbcL3FrGzQKNlN2LD5Lbi2wmR4G34N2PiMir_Y0NoFa1lb54xarZ0wBMZsJz-qkw3YQc1YS2wfbKhO0ZzhLVWdEJa_ZpOWvYLu_WzLqa0Cb5t9KIr5nsWTbabylA2qqknSZPuWCpePy9PyDhxeyKO_C5t5kdv7wDJh476XIRYzBg-NThKVIhRC8-IJpT0HXnWPXJqW-ZwacJxIjIBIOnIpHQeeLYcuGrqPfw16R3JbDiCG7vqH4vtcthtecsStccSDzOI6RRbF1gtMaHE1GjFeyh14SVKXZEdwMka15RC4JGLkkgNEUiJCExs6sNUphmwNTCnPt4MDT5eX0TTQ9x6V2-JHM0YEiZf4Dtxr9Gg5Zz8JEIfwyIF4TcPWFrV-JT8-qunHMYZIUALBg__P6wlcwQ0q9ybT3YdwlSMWpBLOvr8Fm6hn9hFiuUo_rjcNg68XvUv_APzUXDE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Deep+Learning+Model+for+Enhanced+Structural+Damage+Detection%3A+Integrating+ResNet50%2C+GoogLeNet%2C+and+Attention+Mechanisms&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Singh%2C+Vikash&rft.au=Baral%2C+Anuj&rft.au=Kumar%2C+Roshan&rft.au=Tummala%2C+Sudhakar&rft.date=2024-11-13&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=22&rft_id=info:doi/10.3390%2Fs24227249&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon