BrainMap VBM: An environment for structural meta‐analysis
The BrainMap database is a community resource that curates peer‐reviewed, coordinate‐based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta‐data, BrainMap facilitates coordinate‐based meta‐analysis (CBMA) of the neuroimaging literature en masse o...
Saved in:
| Published in | Human brain mapping Vol. 39; no. 8; pp. 3308 - 3325 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
John Wiley & Sons, Inc
01.08.2018
John Wiley and Sons Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1065-9471 1097-0193 1097-0193 |
| DOI | 10.1002/hbm.24078 |
Cover
| Abstract | The BrainMap database is a community resource that curates peer‐reviewed, coordinate‐based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta‐data, BrainMap facilitates coordinate‐based meta‐analysis (CBMA) of the neuroimaging literature en masse or at the level of experimental paradigm, clinical disease, or anatomic location. Initially dedicated to the functional, task‐activation literature, BrainMap is now expanding to include voxel‐based morphometry (VBM) studies in a separate sector, titled: BrainMap VBM. VBM is a whole‐brain, voxel‐wise method that measures significant structural differences between or within groups which are reported as standardized, peak x–y–z coordinates. Here we describe BrainMap VBM, including the meta‐data structure, current data volume, and automated reverse inference functions (region‐to‐disease profile) of this new community resource. CBMA offers a robust methodology for retaining true‐positive and excluding false‐positive findings across studies in the VBM literature. As with BrainMap's functional database, BrainMap VBM may be synthesized en masse or at the level of clinical disease or anatomic location. As a use‐case scenario for BrainMap VBM, we illustrate a trans‐diagnostic data‐mining procedure wherein we explore the underlying network structure of 2,002 experiments representing over 53,000 subjects through independent components analysis (ICA). To reduce data‐redundancy effects inherent to any database, we demonstrate two data‐filtering approaches that proved helpful to ICA. Finally, we apply hierarchical clustering analysis (HCA) to measure network‐ and disease‐specificity. This procedure distinguished psychiatric from neurological diseases. We invite the neuroscientific community to further exploit BrainMap VBM with other modeling approaches. |
|---|---|
| AbstractList | The BrainMap database is a community resource that curates peer‐reviewed, coordinate‐based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta‐data, BrainMap facilitates coordinate‐based meta‐analysis (CBMA) of the neuroimaging literature
en masse
or at the level of experimental paradigm, clinical disease, or anatomic location. Initially dedicated to the functional, task‐activation literature, BrainMap is now expanding to include voxel‐based morphometry (VBM) studies in a separate sector, titled: BrainMap VBM. VBM is a whole‐brain, voxel‐wise method that measures significant structural differences between or within groups which are reported as standardized, peak
x
–
y
–
z
coordinates. Here we describe BrainMap VBM, including the meta‐data structure, current data volume, and automated reverse inference functions (region‐to‐disease profile) of this new community resource. CBMA offers a robust methodology for retaining true‐positive and excluding false‐positive findings across studies in the VBM literature. As with BrainMap's functional database, BrainMap VBM may be synthesized
en masse
or at the level of clinical disease or anatomic location. As a use‐case scenario for BrainMap VBM, we illustrate a trans‐diagnostic data‐mining procedure wherein we explore the underlying network structure of 2,002 experiments representing over 53,000 subjects through independent components analysis (ICA). To reduce data‐redundancy effects inherent to any database, we demonstrate two data‐filtering approaches that proved helpful to ICA. Finally, we apply hierarchical clustering analysis (HCA) to measure network‐ and disease‐specificity. This procedure distinguished psychiatric from neurological diseases. We invite the neuroscientific community to further exploit BrainMap VBM with other modeling approaches. The BrainMap database is a community resource that curates peer-reviewed, coordinate-based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta-data, BrainMap facilitates coordinate-based meta-analysis (CBMA) of the neuroimaging literature en masse or at the level of experimental paradigm, clinical disease, or anatomic location. Initially dedicated to the functional, task-activation literature, BrainMap is now expanding to include voxel-based morphometry (VBM) studies in a separate sector, titled: BrainMap VBM. VBM is a whole-brain, voxel-wise method that measures significant structural differences between or within groups which are reported as standardized, peak x-y-z coordinates. Here we describe BrainMap VBM, including the meta-data structure, current data volume, and automated reverse inference functions (region-to-disease profile) of this new community resource. CBMA offers a robust methodology for retaining true-positive and excluding false-positive findings across studies in the VBM literature. As with BrainMap's functional database, BrainMap VBM may be synthesized en masse or at the level of clinical disease or anatomic location. As a use-case scenario for BrainMap VBM, we illustrate a trans-diagnostic data-mining procedure wherein we explore the underlying network structure of 2,002 experiments representing over 53,000 subjects through independent components analysis (ICA). To reduce data-redundancy effects inherent to any database, we demonstrate two data-filtering approaches that proved helpful to ICA. Finally, we apply hierarchical clustering analysis (HCA) to measure network- and disease-specificity. This procedure distinguished psychiatric from neurological diseases. We invite the neuroscientific community to further exploit BrainMap VBM with other modeling approaches.The BrainMap database is a community resource that curates peer-reviewed, coordinate-based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta-data, BrainMap facilitates coordinate-based meta-analysis (CBMA) of the neuroimaging literature en masse or at the level of experimental paradigm, clinical disease, or anatomic location. Initially dedicated to the functional, task-activation literature, BrainMap is now expanding to include voxel-based morphometry (VBM) studies in a separate sector, titled: BrainMap VBM. VBM is a whole-brain, voxel-wise method that measures significant structural differences between or within groups which are reported as standardized, peak x-y-z coordinates. Here we describe BrainMap VBM, including the meta-data structure, current data volume, and automated reverse inference functions (region-to-disease profile) of this new community resource. CBMA offers a robust methodology for retaining true-positive and excluding false-positive findings across studies in the VBM literature. As with BrainMap's functional database, BrainMap VBM may be synthesized en masse or at the level of clinical disease or anatomic location. As a use-case scenario for BrainMap VBM, we illustrate a trans-diagnostic data-mining procedure wherein we explore the underlying network structure of 2,002 experiments representing over 53,000 subjects through independent components analysis (ICA). To reduce data-redundancy effects inherent to any database, we demonstrate two data-filtering approaches that proved helpful to ICA. Finally, we apply hierarchical clustering analysis (HCA) to measure network- and disease-specificity. This procedure distinguished psychiatric from neurological diseases. We invite the neuroscientific community to further exploit BrainMap VBM with other modeling approaches. The BrainMap database is a community resource that curates peer‐reviewed, coordinate‐based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta‐data, BrainMap facilitates coordinate‐based meta‐analysis (CBMA) of the neuroimaging literature en masse or at the level of experimental paradigm, clinical disease, or anatomic location. Initially dedicated to the functional, task‐activation literature, BrainMap is now expanding to include voxel‐based morphometry (VBM) studies in a separate sector, titled: BrainMap VBM. VBM is a whole‐brain, voxel‐wise method that measures significant structural differences between or within groups which are reported as standardized, peak x–y–z coordinates. Here we describe BrainMap VBM, including the meta‐data structure, current data volume, and automated reverse inference functions (region‐to‐disease profile) of this new community resource. CBMA offers a robust methodology for retaining true‐positive and excluding false‐positive findings across studies in the VBM literature. As with BrainMap's functional database, BrainMap VBM may be synthesized en masse or at the level of clinical disease or anatomic location. As a use‐case scenario for BrainMap VBM, we illustrate a trans‐diagnostic data‐mining procedure wherein we explore the underlying network structure of 2,002 experiments representing over 53,000 subjects through independent components analysis (ICA). To reduce data‐redundancy effects inherent to any database, we demonstrate two data‐filtering approaches that proved helpful to ICA. Finally, we apply hierarchical clustering analysis (HCA) to measure network‐ and disease‐specificity. This procedure distinguished psychiatric from neurological diseases. We invite the neuroscientific community to further exploit BrainMap VBM with other modeling approaches. |
| Author | Eickhoff, Simon B. Fox, Peter T. Vanasse, Thomas J. Lancaster, Jack L. Fox, P. Mickle Barron, Daniel S. Robertson, Michaela |
| AuthorAffiliation | 3 South Texas Veterans Health Care System San Antonio Texas 6 Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7) Research Centre Jülich Jülich Germany 2 Department of Radiology University of Texas Health Science Center at San Antonio San Antonio Texas 1 Research Imaging Institute, University of Texas Health Science Center at San Antonio San Antonio Texas 7 Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf Düsseldorf Germany 5 Department of Psychiatry Yale University School of Medicine New Haven Connecticut 4 Shenzhen Institute of Neuroscience, Shenzhen University Shenzhen China People's Republic of China |
| AuthorAffiliation_xml | – name: 4 Shenzhen Institute of Neuroscience, Shenzhen University Shenzhen China People's Republic of China – name: 6 Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7) Research Centre Jülich Jülich Germany – name: 1 Research Imaging Institute, University of Texas Health Science Center at San Antonio San Antonio Texas – name: 2 Department of Radiology University of Texas Health Science Center at San Antonio San Antonio Texas – name: 5 Department of Psychiatry Yale University School of Medicine New Haven Connecticut – name: 3 South Texas Veterans Health Care System San Antonio Texas – name: 7 Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf Düsseldorf Germany |
| Author_xml | – sequence: 1 givenname: Thomas J. orcidid: 0000-0003-4672-0049 surname: Vanasse fullname: Vanasse, Thomas J. email: vanasse@livemail.uthscsa.edu organization: University of Texas Health Science Center at San Antonio – sequence: 2 givenname: P. Mickle orcidid: 0000-0002-4997-0003 surname: Fox fullname: Fox, P. Mickle organization: Research Imaging Institute, University of Texas Health Science Center at San Antonio – sequence: 3 givenname: Daniel S. orcidid: 0000-0002-0686-6337 surname: Barron fullname: Barron, Daniel S. organization: Yale University School of Medicine – sequence: 4 givenname: Michaela orcidid: 0000-0002-6812-6991 surname: Robertson fullname: Robertson, Michaela organization: Research Imaging Institute, University of Texas Health Science Center at San Antonio – sequence: 5 givenname: Simon B. orcidid: 0000-0001-6363-2759 surname: Eickhoff fullname: Eickhoff, Simon B. organization: Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf – sequence: 6 givenname: Jack L. surname: Lancaster fullname: Lancaster, Jack L. organization: University of Texas Health Science Center at San Antonio – sequence: 7 givenname: Peter T. orcidid: 0000-0002-0465-2028 surname: Fox fullname: Fox, Peter T. email: fox@uthscsa.edu organization: Shenzhen Institute of Neuroscience, Shenzhen University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29717540$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kdFKHDEYhYMoVbe96AuUgd5UYTR_JpNMWii4olVw6U3rbcjMZGokk6zJjLJ3PoLP6JOYda20gl4lkO8czjnZRuvOO43QR8B7gDHZv6j7PUIxr9bQFmDBcwyiWF_eWZkLymETbcd4iTFAieEd2iSCAy8p3kLfpkEZN1Pz7Hw6-5oduEy7axO867Ubss6HLA5hbIYxKJv1elD3t3fKKbuIJr5HG52yUX94Oifo9_HRr8OT_Oznj9PDg7O8KbGoclpqAW1b1ZzQgneibRUhtAOAmjDRcUwxFqIl0ApMaVVUomqANaQE1tW1qosJ2l35jm6uFjfKWjkPpldhIQHL5QIyLSAfF0jw9xU8H-tet02qkaI_C7wy8v8XZy7kH38tWcVYyUUy-PJkEPzVqOMgexMbba1y2o9RElwUBRcUSEI_v0Av_RjSOkuKCUpLluAJ-vRvoucofz8hATsroAk-xqC7N-vtv2AbM6jB-GUZY99S3BirF69by5PpbKV4AG3itNo |
| CitedBy_id | crossref_primary_10_1007_s12021_023_09626_6 crossref_primary_10_1007_s00429_021_02318_4 crossref_primary_10_2147_PRBM_S453035 crossref_primary_10_1007_s00429_024_02867_4 crossref_primary_10_1146_annurev_orgpsych_012420_090657 crossref_primary_10_1002_hbm_25105 crossref_primary_10_1016_j_neuroimage_2020_117220 crossref_primary_10_1038_s42003_021_01832_9 crossref_primary_10_1002_hbm_24617 crossref_primary_10_1007_s00429_022_02473_2 crossref_primary_10_1038_s41380_024_02780_6 crossref_primary_10_1093_scan_nsz072 crossref_primary_10_1002_jrsm_1448 crossref_primary_10_1016_j_dib_2018_10_142 crossref_primary_10_1007_s12021_022_09614_2 crossref_primary_10_1016_j_neubiorev_2023_105393 crossref_primary_10_3233_WEB_220089 crossref_primary_10_1016_j_neuroimage_2022_119438 crossref_primary_10_1038_s41562_021_01082_z crossref_primary_10_1016_j_neuroimage_2023_119929 crossref_primary_10_1186_s13229_020_00389_4 crossref_primary_10_1016_j_pscychresns_2018_09_009 crossref_primary_10_1016_j_jvoice_2022_02_008 crossref_primary_10_1186_s12888_022_03796_4 crossref_primary_10_1002_hbm_25452 crossref_primary_10_1002_hbm_25011 crossref_primary_10_1016_j_clineuro_2021_106918 crossref_primary_10_1080_01616412_2021_1902702 crossref_primary_10_1093_cercor_bhaa371 crossref_primary_10_1002_brb3_2065 crossref_primary_10_1371_journal_pone_0248909 crossref_primary_10_1038_s41598_024_69647_2 crossref_primary_10_1111_cns_14867 crossref_primary_10_1002_hbm_25093 crossref_primary_10_1016_j_neuroimage_2018_09_036 crossref_primary_10_1016_j_crad_2024_106780 crossref_primary_10_7554_eLife_43464 crossref_primary_10_3390_brainsci12050638 crossref_primary_10_3389_fnins_2022_1035308 crossref_primary_10_1002_hbm_24911 crossref_primary_10_1002_hbm_25803 crossref_primary_10_1016_j_neuroimage_2020_117481 crossref_primary_10_1371_journal_pone_0276140 crossref_primary_10_1002_hbm_26177 crossref_primary_10_1016_j_neuroimage_2023_120383 crossref_primary_10_3389_fnins_2022_984647 crossref_primary_10_1007_s11682_022_00754_2 crossref_primary_10_1176_appi_ajp_2019_19050560 crossref_primary_10_1016_j_schres_2019_12_023 crossref_primary_10_1371_journal_pone_0228092 crossref_primary_10_1016_j_crad_2019_07_005 crossref_primary_10_1016_j_nicl_2021_102583 crossref_primary_10_1093_brain_awy252 crossref_primary_10_1016_j_jns_2021_117322 crossref_primary_10_1016_j_neubiorev_2022_104659 crossref_primary_10_1016_j_neubiorev_2021_01_010 |
| Cites_doi | 10.1016/j.biopsych.2008.03.031 10.1002/hbm.22384 10.1523/JNEUROSCI.3539-11.2011 10.3389/fninf.2015.00008 10.1016/j.jpsychires.2016.10.001 10.1016/j.neuron.2012.03.004 10.1098/rstb.2005.1634 10.1371/journal.pone.0115913 10.1016/j.neuroimage.2010.08.049 10.3389/fnins.2013.00237 10.1146/annurev-neuro-062012-170320 10.1016/j.nicl.2016.08.002 10.18637/jss.v061.i06 10.1002/hbm.22933 10.1001/jamapsychiatry.2014.2206 10.1038/nrn3901 10.3389/fnhum.2017.00345 10.1038/nrn3465 10.1371/journal.pmed.1000100 10.1073/pnas.0905267106 10.1002/hbm.21186 10.1186/1471-2377-12-28 10.1016/j.neuroimage.2015.07.060 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 10.1002/hbm.23014 10.1186/2045-5380-2-6 10.1002/hbm.20141 10.1126/science.1470907 10.1007/s00429-014-0772-2 10.1038/nmeth.1635 10.1016/j.neuroimage.2004.07.051 10.1002/sim.4780140206 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 10.1002/hbm.22781 10.1006/nimg.2002.1131 10.1176/appi.ajp.2010.09091379 10.3389/neuro.09.010.2010 10.1016/j.schres.2008.12.011 10.1002/hbm.20540 10.1073/pnas.1220826110 10.1016/B978-0-12-397025-1.00350-X 10.1016/j.neubiorev.2017.11.012 10.1016/j.nicl.2012.11.004 10.3389/fnhum.2013.00098 10.3389/fninf.2012.00023 10.1016/j.neurobiolaging.2010.06.022 10.1038/nrn789 10.1038/nrn.2016.167 10.1016/j.neuroimage.2008.10.055 10.1016/j.nicl.2018.01.002 10.1111/acel.12271 10.1002/hbm.22138 10.1016/j.neuron.2009.03.024 10.1006/nimg.2000.0582 10.1177/0271678X17729111 10.1073/pnas.1602413113 10.1162/jocn_a_00077 10.1006/nimg.2002.1153 10.1093/brain/awu132 10.1001/archgenpsychiatry.2010.31 10.1016/j.neuroimage.2016.04.072 10.1002/hbm.20854 10.3389/fninf.2012.00010 10.1126/science.7973682 10.1109/TMI.2003.822821 10.1016/j.neuroimage.2012.12.045 10.1016/0165-1684(94)90029-9 10.1016/S0959-4388(98)80138-4 10.1073/pnas.1003109107 10.1016/0377-0427(87)90125-7 10.1016/j.neubiorev.2015.02.008 10.1016/j.neubiorev.2009.10.005 10.1016/j.nicl.2016.10.009 10.1111/1467-9868.00293 10.1016/j.neuroimage.2008.10.061 |
| ContentType | Journal Article |
| Copyright | 2018 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/hbm.24078 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Technology Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| DocumentTitleAlternate | VANASSE et al |
| EISSN | 1097-0193 |
| EndPage | 3325 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:6866579 PMC6866579 29717540 10_1002_hbm_24078 HBM24078 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Congressionally Directed Medical Research Program funderid: W81XWH0820112; W81XWH1410316 – fundername: Department of Defense funderid: W81XWH1320065 – fundername: National Institutes of Health funderid: MH74457; RR024387; MH084812; NS062254; AA019691; EB015314 – fundername: NIBIB NIH HHS grantid: R01 EB015314 – fundername: NIMH NIH HHS grantid: T32 MH019961 – fundername: NIAAA NIH HHS grantid: R01 AA019691 – fundername: NIMH NIH HHS grantid: R01 MH074457 – fundername: NIMH NIH HHS grantid: R56 MH074457 – fundername: NIMH NIH HHS grantid: R01 MH084812 – fundername: NINDS NIH HHS grantid: F31 NS083160 – fundername: NINDS NIH HHS grantid: R21 NS062254 – fundername: CSRD VA grantid: I01 CX001137 – fundername: ; grantid: W81XWH0820112; W81XWH1410316 – fundername: ; grantid: MH74457; RR024387; MH084812; NS062254; AA019691; EB015314 – fundername: ; grantid: W81XWH1320065 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAMMB AAYXX AEFGJ AFPKN AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION PHGZM PHGZT PUEGO CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5098-45e91dd8b72437f9dda224f111b269f7040099d21d904483898c16c2516fbbab3 |
| IEDL.DBID | UNPAY |
| ISSN | 1065-9471 1097-0193 |
| IngestDate | Sun Oct 26 04:01:10 EDT 2025 Tue Sep 30 16:41:22 EDT 2025 Sun Sep 28 12:09:05 EDT 2025 Tue Oct 07 06:09:39 EDT 2025 Thu Apr 03 07:09:43 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Wed Oct 01 01:55:36 EDT 2025 Wed Jan 22 17:12:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | pattern analysis structural covariance data-mining atrophy structural magnetic resonance imaging independent components analysis voxel-based morphometry networks transdiagnostic |
| Language | English |
| License | 2018 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5098-45e91dd8b72437f9dda224f111b269f7040099d21d904483898c16c2516fbbab3 |
| Notes | Funding information National Institutes of Health, Grant/Award Numbers: MH74457, RR024387, MH084812, NS062254, AA019691, EB015314; Congressionally Directed Medical Research Program, Grant/Award Numbers: W81XWH0820112, W81XWH1410316; Department of Defense, Grant/Award Number: W81XWH1320065 ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Funding information National Institutes of Health, Grant/Award Numbers: MH74457, RR024387, MH084812, NS062254, AA019691, EB015314; Congressionally Directed Medical Research Program, Grant/Award Numbers: W81XWH0820112, W81XWH1410316; Department of Defense, Grant/Award Number: W81XWH1320065 |
| ORCID | 0000-0002-0686-6337 0000-0002-4997-0003 0000-0002-6812-6991 0000-0001-6363-2759 0000-0002-0465-2028 0000-0003-4672-0049 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6866579 |
| PMID | 29717540 |
| PQID | 2069445603 |
| PQPubID | 996345 |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_1002_hbm_24078 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6866579 proquest_miscellaneous_2033379412 proquest_journals_2069445603 pubmed_primary_29717540 crossref_primary_10_1002_hbm_24078 crossref_citationtrail_10_1002_hbm_24078 wiley_primary_10_1002_hbm_24078_HBM24078 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | August 2018 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Antonio – name: Hoboken |
| PublicationTitle | Human brain mapping |
| PublicationTitleAlternate | Hum Brain Mapp |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
| References | 2017; 84 2002; 16 2009; 45 2002; 17 2015; 36 2013; 2 2010; 107 2015; 72 2004; 23 2015; 220 2013; 70 2011; 54 2013; 7 2016; 39 2014; 61 2012; 12 2016; 37 2014; 137 2005; 25 2010; 67 1994; 266 2013; 14 2000; 10 2000; 11 2016; 113 1994; 36 2014; 13 2011; 23 2013; 110 2008; 64 2014; 9 2018; 38 2010; 34 2010; 31 2015; 16 2009; 62 2010 1995; 14 2015; 52 2010; 167 2016; 124 2011; 31 2002; 3 2015; 9 2012; 33 2010; 85 2011; 8 2001; 63 2016; 12 2012; 73 2018; 18 2012; 2 1987; 20 2009; 30 2005; 360 2013; 34 2017; 11 1992; 258 2014; 37 2017 2014; 35 2016 2015 2009; 6 2017; 18 2016; 137 2012; 6 2009; 108 1998; 6 1998; 8 2009; 106 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_79_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Ahmed R. M. (e_1_2_9_2_1) 2016; 39 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 Cohen‐Cory S. (e_1_2_9_14_1) 2010; 85 Nichols T. E. (e_1_2_9_51_1) 2016 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 Váša F. (e_1_2_9_73_1) 2017 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_3_1 Bethlehem R. A. I. (e_1_2_9_10_1) 2017 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
| References_xml | – volume: 110 start-page: 11583 issue: 28 year: 2013 end-page: 11588 article-title: Cognitive relevance of the community structure of the human brain functional coactivation network publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 18 start-page: 115 issue: 2 year: 2017 end-page: 126 article-title: Scanning the horizon: Towards transparent and reproducible neuroimaging research publication-title: Nature Reviews. Neuroscience – volume: 12 start-page: 806 year: 2016 end-page: 814 article-title: Early grey matter changes in structural covariance networks in Huntington's disease publication-title: NeuroImage: Clinical – volume: 13 start-page: 1068 issue: 6 year: 2014 end-page: 1074 article-title: Associations between age and gray matter volume in anatomical brain networks in middle‐aged to older adults publication-title: Aging Cell – volume: 84 start-page: 151 year: 2017 end-page: 161 article-title: Ten simple rules for neuroimaging meta‐analysis publication-title: Neuroscience and Biobehavioral Reviews – volume: 67 start-page: 397 issue: 4 year: 2010 end-page: 405 article-title: The role of the fusiform‐amygdala system in the pathophysiology of autism publication-title: Archives of General Psychiatry – volume: 23 start-page: 137 issue: 2 year: 2004 end-page: 152 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Transactions on Medical Imaging – volume: 16 start-page: 765 issue: 3 Pt 1 year: 2002 end-page: 780 article-title: Meta‐analysis of the functional neuroanatomy of single‐word reading: Method and validation publication-title: NeuroImage – volume: 37 start-page: 67 issue: 1 year: 2016 end-page: 80 article-title: Large‐scale brain network abnormalities in Huntington's disease revealed by structural covariance publication-title: Human Brain Mapping – volume: 64 start-page: 774 issue: 9 year: 2008 end-page: 781 article-title: Meta‐analysis of gray matter anomalies in schizophrenia: Application of anatomic likelihood estimation and network analysis publication-title: Biological Psychiatry – volume: 7 year: 2013 article-title: ICA model order selection of task co‐activation networks publication-title: Frontiers in Neuroscience – volume: 38 start-page: 360 issue: 2 year: 2018 end-page: 372 article-title: Gray matter structural networks are associated with cardiovascular risk factors in healthy older adults publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 360 start-page: 1001 issue: 1457 year: 2005 end-page: 1013 article-title: Investigations into resting‐state connectivity using independent component analysis publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 124 start-page: 1245 issue: Pt B year: 2016 end-page: 1253 article-title: ANIMA: A data‐sharing initiative for neuroimaging meta‐analyses publication-title: NeuroImage – volume: 14 start-page: 137 issue: 2 year: 1995 end-page: 149 article-title: Meta‐analysis: Weighing the evidence publication-title: Statistics in Medicine – volume: 14 start-page: 322 issue: 5 year: 2013 end-page: 336 article-title: Imaging structural co‐variance between human brain regions publication-title: Nature Reviews. Neuroscience – volume: 33 start-page: 899 issue: 5 year: 2012 end-page: 913 article-title: Changing topological patterns in normal aging using large‐scale structural networks publication-title: Neurobiology of Aging – volume: 61 start-page: 1 issue: 6 year: 2014 end-page: 36 article-title: NbClust: An R Package for determining the relevant number of clusters in a data set publication-title: Journal of Statistical Software – volume: 2 start-page: 6 issue: 2 year: 2012 article-title: Meta‐analytic methods for neuroimaging data explained publication-title: Biology of Mood & Anxiety Disorders – volume: 25 start-page: 185 issue: 1 year: 2005 end-page: 198 article-title: Brainmap taxonomy of experimental design: Description and evaluation publication-title: Human Brain Mapping – volume: 167 start-page: 748 issue: 7 year: 2010 end-page: 751 article-title: Research Domain Criteria (RDoC): Toward a new classification framework for research on mental disorders publication-title: American Journal of Psychiatry – volume: 34 start-page: 3247 issue: 12 year: 2013 end-page: 3266 article-title: An investigation of the structural, connectional, and functional subspecialization in the human amygdala publication-title: Human Brain Mapping – volume: 36 start-page: 287 issue: 3 year: 1994 end-page: 314 article-title: Independent component analysis, A new concept? publication-title: Signal Processing – volume: 137 start-page: 70 year: 2016 end-page: 85 article-title: Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation publication-title: NeuroImage – volume: 12 start-page: 1045 year: 2016 end-page: 1047 article-title: Minimum statistical standards for submissions to Neuroimage: Clinical publication-title: NeuroImage: Clinical – volume: 137 start-page: 2382 issue: Pt 8 year: 2014 end-page: 2395 article-title: The hubs of the human connectome are generally implicated in the anatomy of brain disorders publication-title: Brain – volume: 52 start-page: 49 year: 2015 end-page: 55 article-title: False positive rates in voxel‐based morphometry studies of the human brain: Should we be worried? publication-title: Neuroscience and Biobehavioral Reviews – start-page: 675 year: 2015 end-page: 683 – volume: 45 start-page: S210 issue: 1 Suppl year: 2009 end-page: S221 article-title: Evaluating the consistency and specificity of neuroimaging data using meta‐analysis publication-title: NeuroImage – volume: 23 start-page: S208 year: 2004 end-page: S219 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage – volume: 10 start-page: 120 issue: 3 year: 2000 end-page: 131 article-title: Automated Talairach Atlas labels for functional brain mapping publication-title: Human Brain Mapping – volume: 18 start-page: 115 year: 2018 article-title: The hippocampal network model: A transdiagnostic metaconnectomic approach publication-title: NeuroImage: Clinical – volume: 20 start-page: 53 year: 1987 end-page: 65 article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis publication-title: Journal of Computational and Applied Mathematics – volume: 11 start-page: 7900 year: 2017 article-title: Commentary: Cluster failure: Why fMRI inferences for spatial extent have inflated false‐positive rates publication-title: Frontiers in Human Neuroscience – volume: 6 start-page: 10 year: 2012 article-title: Correspondence between structure and function in the human brain at rest publication-title: Frontiers in Neuroinformatics – volume: 113 start-page: 7900 issue: 28 year: 2016 end-page: 7905 article-title: Cluster failure: Why fMRI inferences for spatial extent have inflated false‐positive rates publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 23 start-page: 4022 issue: 12 year: 2011 end-page: 4037 article-title: Behavioral interpretations of intrinsic connectivity networks publication-title: . J Cogn Neurosci – volume: 33 start-page: 1 issue: 1 year: 2012 end-page: 13 article-title: Minimizing within‐experiment and within‐group effects in activation likelihood estimation meta‐analyses publication-title: Human Brain Mapping – volume: 220 start-page: 2059 issue: 4 year: 2015 end-page: 2071 article-title: Abnormalities in structural covariance of cortical gyrification in schizophrenia publication-title: Brain Structure & Function – volume: 17 start-page: 1027 issue: 2 year: 2002 end-page: 1030 article-title: Distributional assumptions in voxel‐based morphometry publication-title: NeuroImage – volume: 9 start-page: 8 year: 2015 article-title: NeuroVault.org: A web‐based repository for collecting and sharing unthresholded statistical maps of the human brain publication-title: Frontiers in Neuroinformatics – start-page: 054262 year: 2016 article-title: Best practices in data analysis and sharing in neuroimaging using MRI publication-title: bioRxiv – volume: 6 start-page: e1000100 issue: 7 year: 2009 article-title: The PRISMA statement for reporting systematic reviews and meta‐analyses of studies that evaluate health care interventions: Explanation and elaboration publication-title: PLoS Medicine – volume: 108 start-page: 104 issue: 1–3 year: 2009 end-page: 113 article-title: Mapping grey matter reductions in schizophrenia: An anatomical likelihood estimation analysis of voxel‐based morphometry studies publication-title: Schizophrenia Research – volume: 54 start-page: 992 issue: 2 year: 2011 end-page: 1000 article-title: False positives in neuroimaging genetics using voxel‐based morphometry data publication-title: NeuroImage – volume: 106 start-page: 13040 issue: 31 year: 2009 end-page: 13045 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 12 issue: 1 year: 2012 article-title: Altered small‐world properties of gray matter networks in breast cancer publication-title: BMC Neurology – volume: 63 start-page: 411 issue: 2 year: 2001 end-page: 423 article-title: Estimating the number of clusters in a data set via the gap statistic publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 30 start-page: 711 issue: 3 year: 2009 end-page: 724 article-title: Source‐based morphometry: The use of independent component analysis to identify gray matter differences with application to schizophrenia publication-title: Human Brain Mapping – volume: 36 start-page: 4771 issue: 12 year: 2015 end-page: 4792 article-title: Connectivity‐based parcellation: Critique and implications publication-title: Human Brain Mapping – volume: 258 start-page: 1872 issue: 5090 year: 1992 end-page: 1873 article-title: Databasing the brain publication-title: Science (New York, N.Y.) – volume: 72 start-page: 305 issue: 4 year: 2015 end-page: 315 article-title: Identification of a common neurobiological substrate for mental illness publication-title: JAMA Psychiatry – volume: 36 start-page: 2417 issue: 7 year: 2015 end-page: 2431 article-title: Human pulvinar functional organization and connectivity publication-title: Human Brain Mapping – volume: 3 start-page: 319 issue: 4 year: 2002 end-page: 321 article-title: Mapping context and content: The BrainMap model publication-title: Nature Reviews. Neuroscience – volume: 34 start-page: 721 issue: 5 year: 2010 end-page: 733 article-title: Motor control and aging: Links to age‐related brain structural, functional, and biochemical effects publication-title: Neuroscience and Biobehavioral Reviews – volume: 2 start-page: 25 year: 2013 end-page: 32 article-title: Thalamic medial dorsal nucleus atrophy in medial temporal lobe epilepsy: A VBM meta‐analysis publication-title: NeuroImage: Clinical – volume: 31 start-page: 173 issue: 2 year: 2010 end-page: 184 article-title: Metaanalytic connectivity modeling: Delineating the functional connectivity of the human amygdala publication-title: Human Brain Mapping – volume: 107 start-page: 18191 issue: 42 year: 2010 end-page: 18196 article-title: Network‐level structural covariance in the developing brain publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 73 start-page: 1216 issue: 6 year: 2012 end-page: 1227 article-title: Predicting regional neurodegeneration from the healthy brain functional connectome publication-title: Neuron – volume: 39 start-page: 3308 issue: 11 year: 2016 end-page: 3325 article-title: Neuronal network disintegration: Common pathways linking neurodegenerative diseases publication-title: Journal of Neurology, Neurosurgery & Psychiatry – volume: 84 start-page: 237 year: 2017 end-page: 242 article-title: Abnormalities in the structural covariance of emotion regulation networks in major depressive disorder publication-title: Journal of Psychiatric Research – volume: 31 start-page: 15775 issue: 44 year: 2011 end-page: 15786 article-title: Rich‐club organization of the human connectome publication-title: Journal of Neuroscience – volume: 85 year: 2010 article-title: Brain‐derived neurotrophic factor and the development of structural neuronal connectivity. Ed. Moses V Chao, Nancy Y Ip publication-title: Developmental Neurobiology – volume: 11 start-page: 805 issue: 6 year: 2000 end-page: 821 article-title: Voxel‐based morphometry—The methods publication-title: NeuroImage – volume: 16 start-page: 159 issue: 3 year: 2015 end-page: 172 article-title: The connectomics of brain disorders publication-title: Nature Reviews. Neuroscience – volume: 70 start-page: 175 year: 2013 end-page: 188 article-title: When the single matters more than the group: Very high false positive rates in single case Voxel Based Morphometry publication-title: NeuroImage – start-page: 126920 year: 2017 article-title: Adolescent tuning of association cortex in human structural brain networks publication-title: bioRxiv – volume: 8 start-page: 178 issue: 2 year: 1998 end-page: 187 article-title: Beyond the single study: Function/location metanalysis in cognitive neuroimaging publication-title: Current Opinion in Neurobiology – start-page: 1 year: 2017 end-page: 10 article-title: Structural covariance networks in children with autism or ADHD publication-title: Cerebral Cortex – year: 2010 article-title: Age‐related changes in processing speed: Unique contributions of cerebellar and prefrontal cortex publication-title: Frontiers in Human Neuroscience – volume: 45 start-page: S173 issue: 1 Suppl year: 2009 end-page: S186 article-title: Bayesian analysis of neuroimaging data in FSL publication-title: NeuroImage – volume: 9 start-page: e115913 issue: 12 year: 2014 article-title: Differences in human cortical gene expression match the temporal properties of large‐scale functional networks. Ed. Alexander G Obukhov publication-title: PLoS One – volume: 6 start-page: 160 issue: 3 year: 1998 end-page: 188 article-title: Analysis of fMRI data by blind separation into independent spatial components publication-title: Human Brain Mapping – volume: 35 start-page: 3052 issue: 7 year: 2014 end-page: 3065 article-title: Evidence of reporting biases in voxel‐based morphometry (VBM) studies of psychiatric and neurological disorders publication-title: Human Brain Mapping – volume: 37 start-page: 409 year: 2014 end-page: 434 article-title: Meta‐analysis in human neuroimaging: Computational modeling of large‐scale databases publication-title: Annual Review of Neuroscience – volume: 266 start-page: 994 issue: 5187 year: 1994 end-page: 996 article-title: Neuroscience on the net publication-title: Science (New York, N.Y.) – volume: 6 start-page: 23 year: 2012 article-title: Automated regional behavioral analysis for human brain images publication-title: Frontiers in Neuroinformatics – volume: 62 start-page: 42 issue: 1 year: 2009 end-page: 52 article-title: Neurodegenerative diseases target large‐scale human brain networks publication-title: Neuron – volume: 7 year: 2013 article-title: Age‐related changes in brain structural covariance networks publication-title: Frontiers in Human Neuroscience – volume: 8 start-page: 665 issue: 8 year: 2011 end-page: 670 article-title: Large‐scale automated synthesis of human functional neuroimaging data publication-title: Nature Methods – ident: e_1_2_9_33_1 doi: 10.1016/j.biopsych.2008.03.031 – ident: e_1_2_9_31_1 doi: 10.1002/hbm.22384 – start-page: 054262 year: 2016 ident: e_1_2_9_51_1 article-title: Best practices in data analysis and sharing in neuroimaging using MRI publication-title: bioRxiv – ident: e_1_2_9_72_1 doi: 10.1523/JNEUROSCI.3539-11.2011 – ident: e_1_2_9_35_1 doi: 10.3389/fninf.2015.00008 – ident: e_1_2_9_76_1 doi: 10.1016/j.jpsychires.2016.10.001 – ident: e_1_2_9_79_1 doi: 10.1016/j.neuron.2012.03.004 – ident: e_1_2_9_8_1 doi: 10.1098/rstb.2005.1634 – ident: e_1_2_9_13_1 doi: 10.1371/journal.pone.0115913 – ident: e_1_2_9_66_1 doi: 10.1016/j.neuroimage.2010.08.049 – ident: e_1_2_9_55_1 doi: 10.3389/fnins.2013.00237 – ident: e_1_2_9_29_1 doi: 10.1146/annurev-neuro-062012-170320 – ident: e_1_2_9_58_1 doi: 10.1016/j.nicl.2016.08.002 – ident: e_1_2_9_12_1 doi: 10.18637/jss.v061.i06 – ident: e_1_2_9_22_1 doi: 10.1002/hbm.22933 – ident: e_1_2_9_34_1 doi: 10.1001/jamapsychiatry.2014.2206 – ident: e_1_2_9_25_1 doi: 10.1038/nrn3901 – ident: e_1_2_9_49_1 doi: 10.3389/fnhum.2017.00345 – ident: e_1_2_9_3_1 doi: 10.1038/nrn3465 – ident: e_1_2_9_46_1 doi: 10.1371/journal.pmed.1000100 – ident: e_1_2_9_67_1 doi: 10.1073/pnas.0905267106 – volume: 85 year: 2010 ident: e_1_2_9_14_1 article-title: Brain‐derived neurotrophic factor and the development of structural neuronal connectivity. Ed. Moses V Chao, Nancy Y Ip publication-title: Developmental Neurobiology – ident: e_1_2_9_71_1 doi: 10.1002/hbm.21186 – ident: e_1_2_9_37_1 doi: 10.1186/1471-2377-12-28 – ident: e_1_2_9_56_1 doi: 10.1016/j.neuroimage.2015.07.060 – ident: e_1_2_9_44_1 doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 – ident: e_1_2_9_48_1 doi: 10.1002/hbm.23014 – ident: e_1_2_9_54_1 doi: 10.1186/2045-5380-2-6 – ident: e_1_2_9_26_1 doi: 10.1002/hbm.20141 – ident: e_1_2_9_32_1 doi: 10.1126/science.1470907 – ident: e_1_2_9_52_1 doi: 10.1007/s00429-014-0772-2 – ident: e_1_2_9_78_1 doi: 10.1038/nmeth.1635 – ident: e_1_2_9_68_1 doi: 10.1016/j.neuroimage.2004.07.051 – ident: e_1_2_9_39_1 doi: 10.1002/sim.4780140206 – ident: e_1_2_9_47_1 doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 – ident: e_1_2_9_5_1 doi: 10.1002/hbm.22781 – ident: e_1_2_9_70_1 doi: 10.1006/nimg.2002.1131 – ident: e_1_2_9_38_1 doi: 10.1176/appi.ajp.2010.09091379 – ident: e_1_2_9_20_1 doi: 10.3389/neuro.09.010.2010 – ident: e_1_2_9_24_1 doi: 10.1016/j.schres.2008.12.011 – ident: e_1_2_9_77_1 doi: 10.1002/hbm.20540 – ident: e_1_2_9_18_1 doi: 10.1073/pnas.1220826110 – ident: e_1_2_9_6_1 doi: 10.1016/B978-0-12-397025-1.00350-X – ident: e_1_2_9_50_1 doi: 10.1016/j.neubiorev.2017.11.012 – ident: e_1_2_9_7_1 doi: 10.1016/j.nicl.2012.11.004 – ident: e_1_2_9_45_1 doi: 10.3389/fnhum.2013.00098 – ident: e_1_2_9_43_1 doi: 10.3389/fninf.2012.00023 – ident: e_1_2_9_80_1 doi: 10.1016/j.neurobiolaging.2010.06.022 – ident: e_1_2_9_28_1 doi: 10.1038/nrn789 – ident: e_1_2_9_53_1 doi: 10.1038/nrn.2016.167 – ident: e_1_2_9_75_1 doi: 10.1016/j.neuroimage.2008.10.055 – ident: e_1_2_9_41_1 doi: 10.1016/j.nicl.2018.01.002 – ident: e_1_2_9_36_1 doi: 10.1111/acel.12271 – ident: e_1_2_9_11_1 doi: 10.1002/hbm.22138 – ident: e_1_2_9_63_1 doi: 10.1016/j.neuron.2009.03.024 – ident: e_1_2_9_4_1 doi: 10.1006/nimg.2000.0582 – ident: e_1_2_9_40_1 doi: 10.1177/0271678X17729111 – ident: e_1_2_9_23_1 doi: 10.1073/pnas.1602413113 – ident: e_1_2_9_42_1 doi: 10.1162/jocn_a_00077 – ident: e_1_2_9_60_1 doi: 10.1006/nimg.2002.1153 – ident: e_1_2_9_17_1 doi: 10.1093/brain/awu132 – ident: e_1_2_9_19_1 doi: 10.1001/archgenpsychiatry.2010.31 – ident: e_1_2_9_21_1 doi: 10.1016/j.neuroimage.2016.04.072 – ident: e_1_2_9_57_1 doi: 10.1002/hbm.20854 – ident: e_1_2_9_64_1 doi: 10.3389/fninf.2012.00010 – ident: e_1_2_9_27_1 doi: 10.1126/science.7973682 – ident: e_1_2_9_9_1 doi: 10.1109/TMI.2003.822821 – ident: e_1_2_9_61_1 doi: 10.1016/j.neuroimage.2012.12.045 – ident: e_1_2_9_15_1 doi: 10.1016/0165-1684(94)90029-9 – ident: e_1_2_9_30_1 doi: 10.1016/S0959-4388(98)80138-4 – ident: e_1_2_9_81_1 doi: 10.1073/pnas.1003109107 – ident: e_1_2_9_59_1 doi: 10.1016/0377-0427(87)90125-7 – ident: e_1_2_9_62_1 doi: 10.1016/j.neubiorev.2015.02.008 – ident: e_1_2_9_65_1 doi: 10.1016/j.neubiorev.2009.10.005 – volume: 39 start-page: 3308 issue: 11 year: 2016 ident: e_1_2_9_2_1 article-title: Neuronal network disintegration: Common pathways linking neurodegenerative diseases publication-title: Journal of Neurology, Neurosurgery & Psychiatry – start-page: 1 year: 2017 ident: e_1_2_9_10_1 article-title: Structural covariance networks in children with autism or ADHD publication-title: Cerebral Cortex – ident: e_1_2_9_16_1 doi: 10.1016/j.nicl.2016.10.009 – start-page: 126920 year: 2017 ident: e_1_2_9_73_1 article-title: Adolescent tuning of association cortex in human structural brain networks publication-title: bioRxiv – ident: e_1_2_9_69_1 doi: 10.1111/1467-9868.00293 – ident: e_1_2_9_74_1 doi: 10.1016/j.neuroimage.2008.10.061 |
| SSID | ssj0011501 |
| Score | 2.504744 |
| Snippet | The BrainMap database is a community resource that curates peer‐reviewed, coordinate‐based human neuroimaging literature. By pairing the results of... The BrainMap database is a community resource that curates peer-reviewed, coordinate-based human neuroimaging literature. By pairing the results of... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3308 |
| SubjectTerms | atrophy Brain Brain - diagnostic imaging Brain Mapping Cluster analysis Clustering Communities Data Mining Data processing Data structures Databases, Factual Diagnostic systems Disease Filtration Humans Image processing independent components analysis Medical imaging Mental Disorders - diagnostic imaging Meta-analysis Meta-Analysis as Topic Morphometry Nervous System Diseases - diagnostic imaging networks Neuroimaging Neurological diseases Neurology pattern analysis Redundancy Software structural covariance structural magnetic resonance imaging transdiagnostic voxel‐based morphometry |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMdHVQ-FC30BTWmReQj1km1i57Gmp11EtUIKB0RRD0iRJ7ZVxG66UneFyomPwGfkkzB2HrAUEOIWKRPlNTP-T-L5GeBpanLOTapDGVkTJqnIQ8xsHKKJuNQ2UrFndxavs8lZ8uo8PV-Dk64XpuFD9B_cXGT4fO0CXOHV8Q9o6AXOBq4ccY2-sch8OfWmR0c5oeOLLRpiQ0kZuKMKRfy4P3J1LLohMG_Ok7y1rOfq-pOaTle1rB-MTjfhfXcbzRyUj4PlAgfV518Ij_95n1twpxWpbNR41TasmXoHdkc1Feiza_aM-Wmj_nv8DmwU7d_5XTgZu_UmCjVn78bFczaq2U9tdIzUMWtotY70wWZmob59-apaKMpdODt9-fbFJGwXZwir1DFIk9TIWOsh5g5paKXWitSApdSJPJM2d8lBSs1jLSMqAUkXDas4q0hOZRZRobgH6_VlbfaAoUCtBCaIKBLXOWtp2DRiaDMT6whNAEfdayqrllzuFtCYlg1zmZf0jEr_jAJ43JvOG1zH74wOunddthF7VXLXAUxqMhIBPOp3U6y5HyiqNpdLZyOEoAQW8wDuN67Rn4VLKoxJ_gaQrzhNb-A43qt76g8XnuedOeZgLgN40rvX3y7-yHvLny3KybjwG_v_bvoAbpMSHDYzGw9gnbzBHJLaWuBDH1bfAYQGJVk priority: 102 providerName: Wiley-Blackwell |
| Title | BrainMap VBM: An environment for structural meta‐analysis |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24078 https://www.ncbi.nlm.nih.gov/pubmed/29717540 https://www.proquest.com/docview/2069445603 https://www.proquest.com/docview/2033379412 https://pubmed.ncbi.nlm.nih.gov/PMC6866579 https://www.ncbi.nlm.nih.gov/pmc/articles/6866579 |
| UnpaywallVersion | acceptedVersion |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: RPM dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: OVEED dateStart: 19930101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0193 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwEB2VrQS8cGm5BEplLkJ9STaxczM87SKqFVIqVLGoPEV27KgVG3cldoXKE5_AN_IljJ2LWAoI3iJ5lItm7DkTnzkGeJbojFKdKJ-HtfbjhGW-TOvIlzqkXNWhiJx2Z3GUzubxm5PkZAuivhfGkfYreRaYRROYs1PHrVw21bjniY1Tq9CW8SuwnSYIv0ewPT96O_ngdjXTxOddkRValVFEJ72aUEjHp7IJbAGTb-agS8DyMj_y2tosxcVnsVhsYliXhA5vwnH_-i335GOwXsmg-vKLsuN_fd8tuNFBUjJph27DljY7sDsxWI43F-Q5cSRR9_d9B64W3V78Lryc2tMlCrEk76fFCzIx5KemOYJYmLTatFbXgzR6Jb5__SY6CZQ7MD98_e7VzO-OYvCrxCqOxonmkVK5zKyAYc2VEpj7a1woJU15ndmlgHNFI8VDLPgQBeVVlFYIntJaSiHZXRiZc6PvA5FMKsFkLKVkse2TrTFJapbXqY5UKLUHB71zyqrTKbfHZSzKVmGZlujH0vnRgyeD6bIV5_id0V7v4bKbn59Kavt9ETuGzIPHwzDOLLtdIow-X1sbxhguVxH14F4bEMNTKMcyGMGuB9lGqAwGVrV7cwSd7dS7O_968HQIqr-9_IELtz9blLNp4S4e_NMNH8J1hHx5S2HcgxEGgn6EsGol97GgOKb73XT6AXHMIb4 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JbtRAEIZLIUgkF5aExRCgWYRy8cTu9tbAZQYRDRDngBKUC7K63W0lYsYZiRmhcOIReEaehKr2AkMAIW6WXJa3quq_evka4HFsU85tbHwZVNaPYpH6OqlCX9uAS1MFKnTsznw_GR9Gr4_ioxV43q2FafgQfYcbRYbL1xTg1CG984MaeqynA6pHsgtwMUqwTiFJ9LaHR5HUceUWNrK-xBzccYUCvtNfutwanZOY52dKri3qmTr7pCaTZTXrmqPdK_C-e5FmFsqHwWKuB-XnXxiP__umV-Fyq1PZsHGsa7Bi6w3YHNZYo0_P2BPmZo66LvkNuJS3A_Sb8GxEW07kasbejfKnbFizn1bSMRTIrAHWEuyDTe1cffvyVbVclOtwuPvy4MXYb_dn8MuYMKRRbGVoTKZTohpW0hiFgqDC7Kl5IquU8oOUhodGBlgFojTKyjApUVElldZKixuwWp_W9hYwLbRRQkdaaxHR4tkKW04rsiqxoQm09WC7-09F2cLLaQ-NSdFgl3mB36hw38iDh73prCF2_M5oq_vZRRu0HwtOi4BRUAbCgwf9aQw3GkNRtT1dkI0QAnNYyD242fhGfxcusTZGBexBuuQ1vQGhvJfP1CfHDumdEHYwlR486v3rbw-_7dzlzxbFeJS7g9v_bnof1sYH-V6x92r_zR1YR2GYNRMdt2AVPcPeRfE11_dcjH0HzrEpeg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMdHpUilFwot0NAC5iHUS7aJnZeByy5ltTxSIdSiXlBkx7aK2E1XYleonPgI_Yz9JIydBywFhLhFykR5zYz_k4x_BngU65RSHSufB0b7UcxSXyYm9KUOKFcmEKFjd-b7yegwenUUHy3Bs3YuTM2H6D642chw-doGuJ4qs_uDGnosJz1bj2SX4HIU88w29O296-BRVuq4cgsHWZ9jDm65QgHd7Q5dHI0uSMyLnZJX5tVUnH4R4_GimnXD0XANPrQ3UnehfOrNZ7JXfv2F8fi_d3oNrjY6lfRrx7oOS7pah41-hTX65JQ8Jq5z1H2SX4eVvPlBvwFPB3bJiVxMyftB_oT0K_LTTDqCApnUwFoL-yATPRPn385Ew0W5AYfDFwfPR36zPoNfxhZDGsWah0plMrVUQ8OVEigIDGZPSRNuUpsfOFc0VDzAKhClUVaGSYmKKjFSCsluwnJ1UulNIJJJJZiMpJQsspNnDY6cmmUm0aEKpPZgp31PRdnAy-0aGuOixi7TAp9R4Z6RBw8602lN7Pid0Xb7sosmaD8X1E4CRkEZMA_ud7sx3Ow_FFHpk7m1YYxhDgupB7dq3-jOQjnWxqiAPUgXvKYzsCjvxT3Vx2OH9E4sdjDlHjzs_OtvF7_j3OXPFsVokLuN2_9ueg9W3u4Nizcv919vwSrqwqzuc9yGZXQMfQe110zedSH2HUA5KP4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwEB2VrQS8cGmBBgoyF6G-JJvYuRmedhHVCikVQiwqT5Ed22rFJl2pu0LliU_gG_kSxs5FLAUEb5E8ykUz9pyJzxwDPEt0RqlOlM9Do_04YZkvUxP5UoeUKxOKyGl3FkfpbB6_OU6OtyDqe2Ecab-Sp0GzqIPm9MRxK5d1Ne55YuPUKrRl_ApspwnC7xFsz4_eTj66Xc008XlXZIVWZRTRSa8mFNLxiawDW8DkmznoErC8zI-8tm6W4uKzWCw2MaxLQoc34V3_-i335FOwXsmg-vKLsuN_fd8tuNFBUjJph27Dlm52YHfSYDleX5DnxJFE3d_3HbhadHvxu_Byak-XKMSSfJgWL8ikIT81zRHEwqTVprW6HqTWK_H96zfRSaDcgfnh6_evZn53FINfJVZxNE40j5TKZWYFDA1XSmDuN7hQSppyk9mlgHNFI8VDLPgQBeVVlFYInlIjpZDsLoyas0bvAZFMKsFkLKVkse2TNZgkNctNqiMVSu3BQe-csup0yu1xGYuyVVimJfqxdH704MlgumzFOX5ntN97uOzm53lJbb8vYseQefB4GMaZZbdLRKPP1taGMYbLVUQ9uNcGxPAUyrEMRrDrQbYRKoOBVe3eHEFnO_Xuzr8ePB2C6m8vf-DC7c8W5WxauIv7_3TDB3AdIV_eUhj3YYSBoB8irFrJR91E-gGtNSDV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BrainMap+VBM%3A+An+environment+for+structural+meta%E2%80%90analysis&rft.jtitle=Human+brain+mapping&rft.au=Vanasse%2C+Thomas+J.&rft.au=Fox%2C+P.+Mickle&rft.au=Barron%2C+Daniel+S.&rft.au=Robertson%2C+Michaela&rft.date=2018-08-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=39&rft.issue=8&rft.spage=3308&rft.epage=3325&rft_id=info:doi/10.1002%2Fhbm.24078&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_24078 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |