BrainMap VBM: An environment for structural meta‐analysis

The BrainMap database is a community resource that curates peer‐reviewed, coordinate‐based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta‐data, BrainMap facilitates coordinate‐based meta‐analysis (CBMA) of the neuroimaging literature en masse o...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 39; no. 8; pp. 3308 - 3325
Main Authors Vanasse, Thomas J., Fox, P. Mickle, Barron, Daniel S., Robertson, Michaela, Eickhoff, Simon B., Lancaster, Jack L., Fox, Peter T.
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.08.2018
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.24078

Cover

Abstract The BrainMap database is a community resource that curates peer‐reviewed, coordinate‐based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta‐data, BrainMap facilitates coordinate‐based meta‐analysis (CBMA) of the neuroimaging literature en masse or at the level of experimental paradigm, clinical disease, or anatomic location. Initially dedicated to the functional, task‐activation literature, BrainMap is now expanding to include voxel‐based morphometry (VBM) studies in a separate sector, titled: BrainMap VBM. VBM is a whole‐brain, voxel‐wise method that measures significant structural differences between or within groups which are reported as standardized, peak x–y–z coordinates. Here we describe BrainMap VBM, including the meta‐data structure, current data volume, and automated reverse inference functions (region‐to‐disease profile) of this new community resource. CBMA offers a robust methodology for retaining true‐positive and excluding false‐positive findings across studies in the VBM literature. As with BrainMap's functional database, BrainMap VBM may be synthesized en masse or at the level of clinical disease or anatomic location. As a use‐case scenario for BrainMap VBM, we illustrate a trans‐diagnostic data‐mining procedure wherein we explore the underlying network structure of 2,002 experiments representing over 53,000 subjects through independent components analysis (ICA). To reduce data‐redundancy effects inherent to any database, we demonstrate two data‐filtering approaches that proved helpful to ICA. Finally, we apply hierarchical clustering analysis (HCA) to measure network‐ and disease‐specificity. This procedure distinguished psychiatric from neurological diseases. We invite the neuroscientific community to further exploit BrainMap VBM with other modeling approaches.
AbstractList The BrainMap database is a community resource that curates peer‐reviewed, coordinate‐based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta‐data, BrainMap facilitates coordinate‐based meta‐analysis (CBMA) of the neuroimaging literature en masse or at the level of experimental paradigm, clinical disease, or anatomic location. Initially dedicated to the functional, task‐activation literature, BrainMap is now expanding to include voxel‐based morphometry (VBM) studies in a separate sector, titled: BrainMap VBM. VBM is a whole‐brain, voxel‐wise method that measures significant structural differences between or within groups which are reported as standardized, peak x – y – z coordinates. Here we describe BrainMap VBM, including the meta‐data structure, current data volume, and automated reverse inference functions (region‐to‐disease profile) of this new community resource. CBMA offers a robust methodology for retaining true‐positive and excluding false‐positive findings across studies in the VBM literature. As with BrainMap's functional database, BrainMap VBM may be synthesized en masse or at the level of clinical disease or anatomic location. As a use‐case scenario for BrainMap VBM, we illustrate a trans‐diagnostic data‐mining procedure wherein we explore the underlying network structure of 2,002 experiments representing over 53,000 subjects through independent components analysis (ICA). To reduce data‐redundancy effects inherent to any database, we demonstrate two data‐filtering approaches that proved helpful to ICA. Finally, we apply hierarchical clustering analysis (HCA) to measure network‐ and disease‐specificity. This procedure distinguished psychiatric from neurological diseases. We invite the neuroscientific community to further exploit BrainMap VBM with other modeling approaches.
The BrainMap database is a community resource that curates peer-reviewed, coordinate-based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta-data, BrainMap facilitates coordinate-based meta-analysis (CBMA) of the neuroimaging literature en masse or at the level of experimental paradigm, clinical disease, or anatomic location. Initially dedicated to the functional, task-activation literature, BrainMap is now expanding to include voxel-based morphometry (VBM) studies in a separate sector, titled: BrainMap VBM. VBM is a whole-brain, voxel-wise method that measures significant structural differences between or within groups which are reported as standardized, peak x-y-z coordinates. Here we describe BrainMap VBM, including the meta-data structure, current data volume, and automated reverse inference functions (region-to-disease profile) of this new community resource. CBMA offers a robust methodology for retaining true-positive and excluding false-positive findings across studies in the VBM literature. As with BrainMap's functional database, BrainMap VBM may be synthesized en masse or at the level of clinical disease or anatomic location. As a use-case scenario for BrainMap VBM, we illustrate a trans-diagnostic data-mining procedure wherein we explore the underlying network structure of 2,002 experiments representing over 53,000 subjects through independent components analysis (ICA). To reduce data-redundancy effects inherent to any database, we demonstrate two data-filtering approaches that proved helpful to ICA. Finally, we apply hierarchical clustering analysis (HCA) to measure network- and disease-specificity. This procedure distinguished psychiatric from neurological diseases. We invite the neuroscientific community to further exploit BrainMap VBM with other modeling approaches.The BrainMap database is a community resource that curates peer-reviewed, coordinate-based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta-data, BrainMap facilitates coordinate-based meta-analysis (CBMA) of the neuroimaging literature en masse or at the level of experimental paradigm, clinical disease, or anatomic location. Initially dedicated to the functional, task-activation literature, BrainMap is now expanding to include voxel-based morphometry (VBM) studies in a separate sector, titled: BrainMap VBM. VBM is a whole-brain, voxel-wise method that measures significant structural differences between or within groups which are reported as standardized, peak x-y-z coordinates. Here we describe BrainMap VBM, including the meta-data structure, current data volume, and automated reverse inference functions (region-to-disease profile) of this new community resource. CBMA offers a robust methodology for retaining true-positive and excluding false-positive findings across studies in the VBM literature. As with BrainMap's functional database, BrainMap VBM may be synthesized en masse or at the level of clinical disease or anatomic location. As a use-case scenario for BrainMap VBM, we illustrate a trans-diagnostic data-mining procedure wherein we explore the underlying network structure of 2,002 experiments representing over 53,000 subjects through independent components analysis (ICA). To reduce data-redundancy effects inherent to any database, we demonstrate two data-filtering approaches that proved helpful to ICA. Finally, we apply hierarchical clustering analysis (HCA) to measure network- and disease-specificity. This procedure distinguished psychiatric from neurological diseases. We invite the neuroscientific community to further exploit BrainMap VBM with other modeling approaches.
The BrainMap database is a community resource that curates peer‐reviewed, coordinate‐based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta‐data, BrainMap facilitates coordinate‐based meta‐analysis (CBMA) of the neuroimaging literature en masse or at the level of experimental paradigm, clinical disease, or anatomic location. Initially dedicated to the functional, task‐activation literature, BrainMap is now expanding to include voxel‐based morphometry (VBM) studies in a separate sector, titled: BrainMap VBM. VBM is a whole‐brain, voxel‐wise method that measures significant structural differences between or within groups which are reported as standardized, peak x–y–z coordinates. Here we describe BrainMap VBM, including the meta‐data structure, current data volume, and automated reverse inference functions (region‐to‐disease profile) of this new community resource. CBMA offers a robust methodology for retaining true‐positive and excluding false‐positive findings across studies in the VBM literature. As with BrainMap's functional database, BrainMap VBM may be synthesized en masse or at the level of clinical disease or anatomic location. As a use‐case scenario for BrainMap VBM, we illustrate a trans‐diagnostic data‐mining procedure wherein we explore the underlying network structure of 2,002 experiments representing over 53,000 subjects through independent components analysis (ICA). To reduce data‐redundancy effects inherent to any database, we demonstrate two data‐filtering approaches that proved helpful to ICA. Finally, we apply hierarchical clustering analysis (HCA) to measure network‐ and disease‐specificity. This procedure distinguished psychiatric from neurological diseases. We invite the neuroscientific community to further exploit BrainMap VBM with other modeling approaches.
Author Eickhoff, Simon B.
Fox, Peter T.
Vanasse, Thomas J.
Lancaster, Jack L.
Fox, P. Mickle
Barron, Daniel S.
Robertson, Michaela
AuthorAffiliation 3 South Texas Veterans Health Care System San Antonio Texas
6 Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7) Research Centre Jülich Jülich Germany
2 Department of Radiology University of Texas Health Science Center at San Antonio San Antonio Texas
1 Research Imaging Institute, University of Texas Health Science Center at San Antonio San Antonio Texas
7 Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf Düsseldorf Germany
5 Department of Psychiatry Yale University School of Medicine New Haven Connecticut
4 Shenzhen Institute of Neuroscience, Shenzhen University Shenzhen China People's Republic of China
AuthorAffiliation_xml – name: 4 Shenzhen Institute of Neuroscience, Shenzhen University Shenzhen China People's Republic of China
– name: 6 Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7) Research Centre Jülich Jülich Germany
– name: 1 Research Imaging Institute, University of Texas Health Science Center at San Antonio San Antonio Texas
– name: 2 Department of Radiology University of Texas Health Science Center at San Antonio San Antonio Texas
– name: 5 Department of Psychiatry Yale University School of Medicine New Haven Connecticut
– name: 3 South Texas Veterans Health Care System San Antonio Texas
– name: 7 Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf Düsseldorf Germany
Author_xml – sequence: 1
  givenname: Thomas J.
  orcidid: 0000-0003-4672-0049
  surname: Vanasse
  fullname: Vanasse, Thomas J.
  email: vanasse@livemail.uthscsa.edu
  organization: University of Texas Health Science Center at San Antonio
– sequence: 2
  givenname: P. Mickle
  orcidid: 0000-0002-4997-0003
  surname: Fox
  fullname: Fox, P. Mickle
  organization: Research Imaging Institute, University of Texas Health Science Center at San Antonio
– sequence: 3
  givenname: Daniel S.
  orcidid: 0000-0002-0686-6337
  surname: Barron
  fullname: Barron, Daniel S.
  organization: Yale University School of Medicine
– sequence: 4
  givenname: Michaela
  orcidid: 0000-0002-6812-6991
  surname: Robertson
  fullname: Robertson, Michaela
  organization: Research Imaging Institute, University of Texas Health Science Center at San Antonio
– sequence: 5
  givenname: Simon B.
  orcidid: 0000-0001-6363-2759
  surname: Eickhoff
  fullname: Eickhoff, Simon B.
  organization: Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf
– sequence: 6
  givenname: Jack L.
  surname: Lancaster
  fullname: Lancaster, Jack L.
  organization: University of Texas Health Science Center at San Antonio
– sequence: 7
  givenname: Peter T.
  orcidid: 0000-0002-0465-2028
  surname: Fox
  fullname: Fox, Peter T.
  email: fox@uthscsa.edu
  organization: Shenzhen Institute of Neuroscience, Shenzhen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29717540$$D View this record in MEDLINE/PubMed
BookMark eNp9kdFKHDEYhYMoVbe96AuUgd5UYTR_JpNMWii4olVw6U3rbcjMZGokk6zJjLJ3PoLP6JOYda20gl4lkO8czjnZRuvOO43QR8B7gDHZv6j7PUIxr9bQFmDBcwyiWF_eWZkLymETbcd4iTFAieEd2iSCAy8p3kLfpkEZN1Pz7Hw6-5oduEy7axO867Ubss6HLA5hbIYxKJv1elD3t3fKKbuIJr5HG52yUX94Oifo9_HRr8OT_Oznj9PDg7O8KbGoclpqAW1b1ZzQgneibRUhtAOAmjDRcUwxFqIl0ApMaVVUomqANaQE1tW1qosJ2l35jm6uFjfKWjkPpldhIQHL5QIyLSAfF0jw9xU8H-tet02qkaI_C7wy8v8XZy7kH38tWcVYyUUy-PJkEPzVqOMgexMbba1y2o9RElwUBRcUSEI_v0Av_RjSOkuKCUpLluAJ-vRvoucofz8hATsroAk-xqC7N-vtv2AbM6jB-GUZY99S3BirF69by5PpbKV4AG3itNo
CitedBy_id crossref_primary_10_1007_s12021_023_09626_6
crossref_primary_10_1007_s00429_021_02318_4
crossref_primary_10_2147_PRBM_S453035
crossref_primary_10_1007_s00429_024_02867_4
crossref_primary_10_1146_annurev_orgpsych_012420_090657
crossref_primary_10_1002_hbm_25105
crossref_primary_10_1016_j_neuroimage_2020_117220
crossref_primary_10_1038_s42003_021_01832_9
crossref_primary_10_1002_hbm_24617
crossref_primary_10_1007_s00429_022_02473_2
crossref_primary_10_1038_s41380_024_02780_6
crossref_primary_10_1093_scan_nsz072
crossref_primary_10_1002_jrsm_1448
crossref_primary_10_1016_j_dib_2018_10_142
crossref_primary_10_1007_s12021_022_09614_2
crossref_primary_10_1016_j_neubiorev_2023_105393
crossref_primary_10_3233_WEB_220089
crossref_primary_10_1016_j_neuroimage_2022_119438
crossref_primary_10_1038_s41562_021_01082_z
crossref_primary_10_1016_j_neuroimage_2023_119929
crossref_primary_10_1186_s13229_020_00389_4
crossref_primary_10_1016_j_pscychresns_2018_09_009
crossref_primary_10_1016_j_jvoice_2022_02_008
crossref_primary_10_1186_s12888_022_03796_4
crossref_primary_10_1002_hbm_25452
crossref_primary_10_1002_hbm_25011
crossref_primary_10_1016_j_clineuro_2021_106918
crossref_primary_10_1080_01616412_2021_1902702
crossref_primary_10_1093_cercor_bhaa371
crossref_primary_10_1002_brb3_2065
crossref_primary_10_1371_journal_pone_0248909
crossref_primary_10_1038_s41598_024_69647_2
crossref_primary_10_1111_cns_14867
crossref_primary_10_1002_hbm_25093
crossref_primary_10_1016_j_neuroimage_2018_09_036
crossref_primary_10_1016_j_crad_2024_106780
crossref_primary_10_7554_eLife_43464
crossref_primary_10_3390_brainsci12050638
crossref_primary_10_3389_fnins_2022_1035308
crossref_primary_10_1002_hbm_24911
crossref_primary_10_1002_hbm_25803
crossref_primary_10_1016_j_neuroimage_2020_117481
crossref_primary_10_1371_journal_pone_0276140
crossref_primary_10_1002_hbm_26177
crossref_primary_10_1016_j_neuroimage_2023_120383
crossref_primary_10_3389_fnins_2022_984647
crossref_primary_10_1007_s11682_022_00754_2
crossref_primary_10_1176_appi_ajp_2019_19050560
crossref_primary_10_1016_j_schres_2019_12_023
crossref_primary_10_1371_journal_pone_0228092
crossref_primary_10_1016_j_crad_2019_07_005
crossref_primary_10_1016_j_nicl_2021_102583
crossref_primary_10_1093_brain_awy252
crossref_primary_10_1016_j_jns_2021_117322
crossref_primary_10_1016_j_neubiorev_2022_104659
crossref_primary_10_1016_j_neubiorev_2021_01_010
Cites_doi 10.1016/j.biopsych.2008.03.031
10.1002/hbm.22384
10.1523/JNEUROSCI.3539-11.2011
10.3389/fninf.2015.00008
10.1016/j.jpsychires.2016.10.001
10.1016/j.neuron.2012.03.004
10.1098/rstb.2005.1634
10.1371/journal.pone.0115913
10.1016/j.neuroimage.2010.08.049
10.3389/fnins.2013.00237
10.1146/annurev-neuro-062012-170320
10.1016/j.nicl.2016.08.002
10.18637/jss.v061.i06
10.1002/hbm.22933
10.1001/jamapsychiatry.2014.2206
10.1038/nrn3901
10.3389/fnhum.2017.00345
10.1038/nrn3465
10.1371/journal.pmed.1000100
10.1073/pnas.0905267106
10.1002/hbm.21186
10.1186/1471-2377-12-28
10.1016/j.neuroimage.2015.07.060
10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
10.1002/hbm.23014
10.1186/2045-5380-2-6
10.1002/hbm.20141
10.1126/science.1470907
10.1007/s00429-014-0772-2
10.1038/nmeth.1635
10.1016/j.neuroimage.2004.07.051
10.1002/sim.4780140206
10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
10.1002/hbm.22781
10.1006/nimg.2002.1131
10.1176/appi.ajp.2010.09091379
10.3389/neuro.09.010.2010
10.1016/j.schres.2008.12.011
10.1002/hbm.20540
10.1073/pnas.1220826110
10.1016/B978-0-12-397025-1.00350-X
10.1016/j.neubiorev.2017.11.012
10.1016/j.nicl.2012.11.004
10.3389/fnhum.2013.00098
10.3389/fninf.2012.00023
10.1016/j.neurobiolaging.2010.06.022
10.1038/nrn789
10.1038/nrn.2016.167
10.1016/j.neuroimage.2008.10.055
10.1016/j.nicl.2018.01.002
10.1111/acel.12271
10.1002/hbm.22138
10.1016/j.neuron.2009.03.024
10.1006/nimg.2000.0582
10.1177/0271678X17729111
10.1073/pnas.1602413113
10.1162/jocn_a_00077
10.1006/nimg.2002.1153
10.1093/brain/awu132
10.1001/archgenpsychiatry.2010.31
10.1016/j.neuroimage.2016.04.072
10.1002/hbm.20854
10.3389/fninf.2012.00010
10.1126/science.7973682
10.1109/TMI.2003.822821
10.1016/j.neuroimage.2012.12.045
10.1016/0165-1684(94)90029-9
10.1016/S0959-4388(98)80138-4
10.1073/pnas.1003109107
10.1016/0377-0427(87)90125-7
10.1016/j.neubiorev.2015.02.008
10.1016/j.neubiorev.2009.10.005
10.1016/j.nicl.2016.10.009
10.1111/1467-9868.00293
10.1016/j.neuroimage.2008.10.061
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/hbm.24078
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Technology Research Database
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate VANASSE et al
EISSN 1097-0193
EndPage 3325
ExternalDocumentID oai:pubmedcentral.nih.gov:6866579
PMC6866579
29717540
10_1002_hbm_24078
HBM24078
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Congressionally Directed Medical Research Program
  funderid: W81XWH0820112; W81XWH1410316
– fundername: Department of Defense
  funderid: W81XWH1320065
– fundername: National Institutes of Health
  funderid: MH74457; RR024387; MH084812; NS062254; AA019691; EB015314
– fundername: NIBIB NIH HHS
  grantid: R01 EB015314
– fundername: NIMH NIH HHS
  grantid: T32 MH019961
– fundername: NIAAA NIH HHS
  grantid: R01 AA019691
– fundername: NIMH NIH HHS
  grantid: R01 MH074457
– fundername: NIMH NIH HHS
  grantid: R56 MH074457
– fundername: NIMH NIH HHS
  grantid: R01 MH084812
– fundername: NINDS NIH HHS
  grantid: F31 NS083160
– fundername: NINDS NIH HHS
  grantid: R21 NS062254
– fundername: CSRD VA
  grantid: I01 CX001137
– fundername: ;
  grantid: W81XWH0820112; W81XWH1410316
– fundername: ;
  grantid: MH74457; RR024387; MH084812; NS062254; AA019691; EB015314
– fundername: ;
  grantid: W81XWH1320065
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAMMB
AAYXX
AEFGJ
AFPKN
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
PHGZM
PHGZT
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5098-45e91dd8b72437f9dda224f111b269f7040099d21d904483898c16c2516fbbab3
IEDL.DBID UNPAY
ISSN 1065-9471
1097-0193
IngestDate Sun Oct 26 04:01:10 EDT 2025
Tue Sep 30 16:41:22 EDT 2025
Sun Sep 28 12:09:05 EDT 2025
Tue Oct 07 06:09:39 EDT 2025
Thu Apr 03 07:09:43 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Wed Oct 01 01:55:36 EDT 2025
Wed Jan 22 17:12:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords pattern analysis
structural covariance
data-mining
atrophy
structural magnetic resonance imaging
independent components analysis
voxel-based morphometry
networks
transdiagnostic
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5098-45e91dd8b72437f9dda224f111b269f7040099d21d904483898c16c2516fbbab3
Notes Funding information
National Institutes of Health, Grant/Award Numbers: MH74457, RR024387, MH084812, NS062254, AA019691, EB015314; Congressionally Directed Medical Research Program, Grant/Award Numbers: W81XWH0820112, W81XWH1410316; Department of Defense, Grant/Award Number: W81XWH1320065
ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Funding information National Institutes of Health, Grant/Award Numbers: MH74457, RR024387, MH084812, NS062254, AA019691, EB015314; Congressionally Directed Medical Research Program, Grant/Award Numbers: W81XWH0820112, W81XWH1410316; Department of Defense, Grant/Award Number: W81XWH1320065
ORCID 0000-0002-0686-6337
0000-0002-4997-0003
0000-0002-6812-6991
0000-0001-6363-2759
0000-0002-0465-2028
0000-0003-4672-0049
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6866579
PMID 29717540
PQID 2069445603
PQPubID 996345
PageCount 18
ParticipantIDs unpaywall_primary_10_1002_hbm_24078
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6866579
proquest_miscellaneous_2033379412
proquest_journals_2069445603
pubmed_primary_29717540
crossref_primary_10_1002_hbm_24078
crossref_citationtrail_10_1002_hbm_24078
wiley_primary_10_1002_hbm_24078_HBM24078
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2018
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2017; 84
2002; 16
2009; 45
2002; 17
2015; 36
2013; 2
2010; 107
2015; 72
2004; 23
2015; 220
2013; 70
2011; 54
2013; 7
2016; 39
2014; 61
2012; 12
2016; 37
2014; 137
2005; 25
2010; 67
1994; 266
2013; 14
2000; 10
2000; 11
2016; 113
1994; 36
2014; 13
2011; 23
2013; 110
2008; 64
2014; 9
2018; 38
2010; 34
2010; 31
2015; 16
2009; 62
2010
1995; 14
2015; 52
2010; 167
2016; 124
2011; 31
2002; 3
2015; 9
2012; 33
2010; 85
2011; 8
2001; 63
2016; 12
2012; 73
2018; 18
2012; 2
1987; 20
2009; 30
2005; 360
2013; 34
2017; 11
1992; 258
2014; 37
2017
2014; 35
2016
2015
2009; 6
2017; 18
2016; 137
2012; 6
2009; 108
1998; 6
1998; 8
2009; 106
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_79_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Ahmed R. M. (e_1_2_9_2_1) 2016; 39
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
Cohen‐Cory S. (e_1_2_9_14_1) 2010; 85
Nichols T. E. (e_1_2_9_51_1) 2016
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
Váša F. (e_1_2_9_73_1) 2017
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_3_1
Bethlehem R. A. I. (e_1_2_9_10_1) 2017
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 110
  start-page: 11583
  issue: 28
  year: 2013
  end-page: 11588
  article-title: Cognitive relevance of the community structure of the human brain functional coactivation network
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 18
  start-page: 115
  issue: 2
  year: 2017
  end-page: 126
  article-title: Scanning the horizon: Towards transparent and reproducible neuroimaging research
  publication-title: Nature Reviews. Neuroscience
– volume: 12
  start-page: 806
  year: 2016
  end-page: 814
  article-title: Early grey matter changes in structural covariance networks in Huntington's disease
  publication-title: NeuroImage: Clinical
– volume: 13
  start-page: 1068
  issue: 6
  year: 2014
  end-page: 1074
  article-title: Associations between age and gray matter volume in anatomical brain networks in middle‐aged to older adults
  publication-title: Aging Cell
– volume: 84
  start-page: 151
  year: 2017
  end-page: 161
  article-title: Ten simple rules for neuroimaging meta‐analysis
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 67
  start-page: 397
  issue: 4
  year: 2010
  end-page: 405
  article-title: The role of the fusiform‐amygdala system in the pathophysiology of autism
  publication-title: Archives of General Psychiatry
– volume: 23
  start-page: 137
  issue: 2
  year: 2004
  end-page: 152
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Transactions on Medical Imaging
– volume: 16
  start-page: 765
  issue: 3 Pt 1
  year: 2002
  end-page: 780
  article-title: Meta‐analysis of the functional neuroanatomy of single‐word reading: Method and validation
  publication-title: NeuroImage
– volume: 37
  start-page: 67
  issue: 1
  year: 2016
  end-page: 80
  article-title: Large‐scale brain network abnormalities in Huntington's disease revealed by structural covariance
  publication-title: Human Brain Mapping
– volume: 64
  start-page: 774
  issue: 9
  year: 2008
  end-page: 781
  article-title: Meta‐analysis of gray matter anomalies in schizophrenia: Application of anatomic likelihood estimation and network analysis
  publication-title: Biological Psychiatry
– volume: 7
  year: 2013
  article-title: ICA model order selection of task co‐activation networks
  publication-title: Frontiers in Neuroscience
– volume: 38
  start-page: 360
  issue: 2
  year: 2018
  end-page: 372
  article-title: Gray matter structural networks are associated with cardiovascular risk factors in healthy older adults
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 360
  start-page: 1001
  issue: 1457
  year: 2005
  end-page: 1013
  article-title: Investigations into resting‐state connectivity using independent component analysis
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 124
  start-page: 1245
  issue: Pt B
  year: 2016
  end-page: 1253
  article-title: ANIMA: A data‐sharing initiative for neuroimaging meta‐analyses
  publication-title: NeuroImage
– volume: 14
  start-page: 137
  issue: 2
  year: 1995
  end-page: 149
  article-title: Meta‐analysis: Weighing the evidence
  publication-title: Statistics in Medicine
– volume: 14
  start-page: 322
  issue: 5
  year: 2013
  end-page: 336
  article-title: Imaging structural co‐variance between human brain regions
  publication-title: Nature Reviews. Neuroscience
– volume: 33
  start-page: 899
  issue: 5
  year: 2012
  end-page: 913
  article-title: Changing topological patterns in normal aging using large‐scale structural networks
  publication-title: Neurobiology of Aging
– volume: 61
  start-page: 1
  issue: 6
  year: 2014
  end-page: 36
  article-title: NbClust: An R Package for determining the relevant number of clusters in a data set
  publication-title: Journal of Statistical Software
– volume: 2
  start-page: 6
  issue: 2
  year: 2012
  article-title: Meta‐analytic methods for neuroimaging data explained
  publication-title: Biology of Mood & Anxiety Disorders
– volume: 25
  start-page: 185
  issue: 1
  year: 2005
  end-page: 198
  article-title: Brainmap taxonomy of experimental design: Description and evaluation
  publication-title: Human Brain Mapping
– volume: 167
  start-page: 748
  issue: 7
  year: 2010
  end-page: 751
  article-title: Research Domain Criteria (RDoC): Toward a new classification framework for research on mental disorders
  publication-title: American Journal of Psychiatry
– volume: 34
  start-page: 3247
  issue: 12
  year: 2013
  end-page: 3266
  article-title: An investigation of the structural, connectional, and functional subspecialization in the human amygdala
  publication-title: Human Brain Mapping
– volume: 36
  start-page: 287
  issue: 3
  year: 1994
  end-page: 314
  article-title: Independent component analysis, A new concept?
  publication-title: Signal Processing
– volume: 137
  start-page: 70
  year: 2016
  end-page: 85
  article-title: Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation
  publication-title: NeuroImage
– volume: 12
  start-page: 1045
  year: 2016
  end-page: 1047
  article-title: Minimum statistical standards for submissions to Neuroimage: Clinical
  publication-title: NeuroImage: Clinical
– volume: 137
  start-page: 2382
  issue: Pt 8
  year: 2014
  end-page: 2395
  article-title: The hubs of the human connectome are generally implicated in the anatomy of brain disorders
  publication-title: Brain
– volume: 52
  start-page: 49
  year: 2015
  end-page: 55
  article-title: False positive rates in voxel‐based morphometry studies of the human brain: Should we be worried?
  publication-title: Neuroscience and Biobehavioral Reviews
– start-page: 675
  year: 2015
  end-page: 683
– volume: 45
  start-page: S210
  issue: 1 Suppl
  year: 2009
  end-page: S221
  article-title: Evaluating the consistency and specificity of neuroimaging data using meta‐analysis
  publication-title: NeuroImage
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
– volume: 10
  start-page: 120
  issue: 3
  year: 2000
  end-page: 131
  article-title: Automated Talairach Atlas labels for functional brain mapping
  publication-title: Human Brain Mapping
– volume: 18
  start-page: 115
  year: 2018
  article-title: The hippocampal network model: A transdiagnostic metaconnectomic approach
  publication-title: NeuroImage: Clinical
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
  publication-title: Journal of Computational and Applied Mathematics
– volume: 11
  start-page: 7900
  year: 2017
  article-title: Commentary: Cluster failure: Why fMRI inferences for spatial extent have inflated false‐positive rates
  publication-title: Frontiers in Human Neuroscience
– volume: 6
  start-page: 10
  year: 2012
  article-title: Correspondence between structure and function in the human brain at rest
  publication-title: Frontiers in Neuroinformatics
– volume: 113
  start-page: 7900
  issue: 28
  year: 2016
  end-page: 7905
  article-title: Cluster failure: Why fMRI inferences for spatial extent have inflated false‐positive rates
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 23
  start-page: 4022
  issue: 12
  year: 2011
  end-page: 4037
  article-title: Behavioral interpretations of intrinsic connectivity networks
  publication-title: . J Cogn Neurosci
– volume: 33
  start-page: 1
  issue: 1
  year: 2012
  end-page: 13
  article-title: Minimizing within‐experiment and within‐group effects in activation likelihood estimation meta‐analyses
  publication-title: Human Brain Mapping
– volume: 220
  start-page: 2059
  issue: 4
  year: 2015
  end-page: 2071
  article-title: Abnormalities in structural covariance of cortical gyrification in schizophrenia
  publication-title: Brain Structure & Function
– volume: 17
  start-page: 1027
  issue: 2
  year: 2002
  end-page: 1030
  article-title: Distributional assumptions in voxel‐based morphometry
  publication-title: NeuroImage
– volume: 9
  start-page: 8
  year: 2015
  article-title: NeuroVault.org: A web‐based repository for collecting and sharing unthresholded statistical maps of the human brain
  publication-title: Frontiers in Neuroinformatics
– start-page: 054262
  year: 2016
  article-title: Best practices in data analysis and sharing in neuroimaging using MRI
  publication-title: bioRxiv
– volume: 6
  start-page: e1000100
  issue: 7
  year: 2009
  article-title: The PRISMA statement for reporting systematic reviews and meta‐analyses of studies that evaluate health care interventions: Explanation and elaboration
  publication-title: PLoS Medicine
– volume: 108
  start-page: 104
  issue: 1–3
  year: 2009
  end-page: 113
  article-title: Mapping grey matter reductions in schizophrenia: An anatomical likelihood estimation analysis of voxel‐based morphometry studies
  publication-title: Schizophrenia Research
– volume: 54
  start-page: 992
  issue: 2
  year: 2011
  end-page: 1000
  article-title: False positives in neuroimaging genetics using voxel‐based morphometry data
  publication-title: NeuroImage
– volume: 106
  start-page: 13040
  issue: 31
  year: 2009
  end-page: 13045
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 12
  issue: 1
  year: 2012
  article-title: Altered small‐world properties of gray matter networks in breast cancer
  publication-title: BMC Neurology
– volume: 63
  start-page: 411
  issue: 2
  year: 2001
  end-page: 423
  article-title: Estimating the number of clusters in a data set via the gap statistic
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 30
  start-page: 711
  issue: 3
  year: 2009
  end-page: 724
  article-title: Source‐based morphometry: The use of independent component analysis to identify gray matter differences with application to schizophrenia
  publication-title: Human Brain Mapping
– volume: 36
  start-page: 4771
  issue: 12
  year: 2015
  end-page: 4792
  article-title: Connectivity‐based parcellation: Critique and implications
  publication-title: Human Brain Mapping
– volume: 258
  start-page: 1872
  issue: 5090
  year: 1992
  end-page: 1873
  article-title: Databasing the brain
  publication-title: Science (New York, N.Y.)
– volume: 72
  start-page: 305
  issue: 4
  year: 2015
  end-page: 315
  article-title: Identification of a common neurobiological substrate for mental illness
  publication-title: JAMA Psychiatry
– volume: 36
  start-page: 2417
  issue: 7
  year: 2015
  end-page: 2431
  article-title: Human pulvinar functional organization and connectivity
  publication-title: Human Brain Mapping
– volume: 3
  start-page: 319
  issue: 4
  year: 2002
  end-page: 321
  article-title: Mapping context and content: The BrainMap model
  publication-title: Nature Reviews. Neuroscience
– volume: 34
  start-page: 721
  issue: 5
  year: 2010
  end-page: 733
  article-title: Motor control and aging: Links to age‐related brain structural, functional, and biochemical effects
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 2
  start-page: 25
  year: 2013
  end-page: 32
  article-title: Thalamic medial dorsal nucleus atrophy in medial temporal lobe epilepsy: A VBM meta‐analysis
  publication-title: NeuroImage: Clinical
– volume: 31
  start-page: 173
  issue: 2
  year: 2010
  end-page: 184
  article-title: Metaanalytic connectivity modeling: Delineating the functional connectivity of the human amygdala
  publication-title: Human Brain Mapping
– volume: 107
  start-page: 18191
  issue: 42
  year: 2010
  end-page: 18196
  article-title: Network‐level structural covariance in the developing brain
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 73
  start-page: 1216
  issue: 6
  year: 2012
  end-page: 1227
  article-title: Predicting regional neurodegeneration from the healthy brain functional connectome
  publication-title: Neuron
– volume: 39
  start-page: 3308
  issue: 11
  year: 2016
  end-page: 3325
  article-title: Neuronal network disintegration: Common pathways linking neurodegenerative diseases
  publication-title: Journal of Neurology, Neurosurgery & Psychiatry
– volume: 84
  start-page: 237
  year: 2017
  end-page: 242
  article-title: Abnormalities in the structural covariance of emotion regulation networks in major depressive disorder
  publication-title: Journal of Psychiatric Research
– volume: 31
  start-page: 15775
  issue: 44
  year: 2011
  end-page: 15786
  article-title: Rich‐club organization of the human connectome
  publication-title: Journal of Neuroscience
– volume: 85
  year: 2010
  article-title: Brain‐derived neurotrophic factor and the development of structural neuronal connectivity. Ed. Moses V Chao, Nancy Y Ip
  publication-title: Developmental Neurobiology
– volume: 11
  start-page: 805
  issue: 6
  year: 2000
  end-page: 821
  article-title: Voxel‐based morphometry—The methods
  publication-title: NeuroImage
– volume: 16
  start-page: 159
  issue: 3
  year: 2015
  end-page: 172
  article-title: The connectomics of brain disorders
  publication-title: Nature Reviews. Neuroscience
– volume: 70
  start-page: 175
  year: 2013
  end-page: 188
  article-title: When the single matters more than the group: Very high false positive rates in single case Voxel Based Morphometry
  publication-title: NeuroImage
– start-page: 126920
  year: 2017
  article-title: Adolescent tuning of association cortex in human structural brain networks
  publication-title: bioRxiv
– volume: 8
  start-page: 178
  issue: 2
  year: 1998
  end-page: 187
  article-title: Beyond the single study: Function/location metanalysis in cognitive neuroimaging
  publication-title: Current Opinion in Neurobiology
– start-page: 1
  year: 2017
  end-page: 10
  article-title: Structural covariance networks in children with autism or ADHD
  publication-title: Cerebral Cortex
– year: 2010
  article-title: Age‐related changes in processing speed: Unique contributions of cerebellar and prefrontal cortex
  publication-title: Frontiers in Human Neuroscience
– volume: 45
  start-page: S173
  issue: 1 Suppl
  year: 2009
  end-page: S186
  article-title: Bayesian analysis of neuroimaging data in FSL
  publication-title: NeuroImage
– volume: 9
  start-page: e115913
  issue: 12
  year: 2014
  article-title: Differences in human cortical gene expression match the temporal properties of large‐scale functional networks. Ed. Alexander G Obukhov
  publication-title: PLoS One
– volume: 6
  start-page: 160
  issue: 3
  year: 1998
  end-page: 188
  article-title: Analysis of fMRI data by blind separation into independent spatial components
  publication-title: Human Brain Mapping
– volume: 35
  start-page: 3052
  issue: 7
  year: 2014
  end-page: 3065
  article-title: Evidence of reporting biases in voxel‐based morphometry (VBM) studies of psychiatric and neurological disorders
  publication-title: Human Brain Mapping
– volume: 37
  start-page: 409
  year: 2014
  end-page: 434
  article-title: Meta‐analysis in human neuroimaging: Computational modeling of large‐scale databases
  publication-title: Annual Review of Neuroscience
– volume: 266
  start-page: 994
  issue: 5187
  year: 1994
  end-page: 996
  article-title: Neuroscience on the net
  publication-title: Science (New York, N.Y.)
– volume: 6
  start-page: 23
  year: 2012
  article-title: Automated regional behavioral analysis for human brain images
  publication-title: Frontiers in Neuroinformatics
– volume: 62
  start-page: 42
  issue: 1
  year: 2009
  end-page: 52
  article-title: Neurodegenerative diseases target large‐scale human brain networks
  publication-title: Neuron
– volume: 7
  year: 2013
  article-title: Age‐related changes in brain structural covariance networks
  publication-title: Frontiers in Human Neuroscience
– volume: 8
  start-page: 665
  issue: 8
  year: 2011
  end-page: 670
  article-title: Large‐scale automated synthesis of human functional neuroimaging data
  publication-title: Nature Methods
– ident: e_1_2_9_33_1
  doi: 10.1016/j.biopsych.2008.03.031
– ident: e_1_2_9_31_1
  doi: 10.1002/hbm.22384
– start-page: 054262
  year: 2016
  ident: e_1_2_9_51_1
  article-title: Best practices in data analysis and sharing in neuroimaging using MRI
  publication-title: bioRxiv
– ident: e_1_2_9_72_1
  doi: 10.1523/JNEUROSCI.3539-11.2011
– ident: e_1_2_9_35_1
  doi: 10.3389/fninf.2015.00008
– ident: e_1_2_9_76_1
  doi: 10.1016/j.jpsychires.2016.10.001
– ident: e_1_2_9_79_1
  doi: 10.1016/j.neuron.2012.03.004
– ident: e_1_2_9_8_1
  doi: 10.1098/rstb.2005.1634
– ident: e_1_2_9_13_1
  doi: 10.1371/journal.pone.0115913
– ident: e_1_2_9_66_1
  doi: 10.1016/j.neuroimage.2010.08.049
– ident: e_1_2_9_55_1
  doi: 10.3389/fnins.2013.00237
– ident: e_1_2_9_29_1
  doi: 10.1146/annurev-neuro-062012-170320
– ident: e_1_2_9_58_1
  doi: 10.1016/j.nicl.2016.08.002
– ident: e_1_2_9_12_1
  doi: 10.18637/jss.v061.i06
– ident: e_1_2_9_22_1
  doi: 10.1002/hbm.22933
– ident: e_1_2_9_34_1
  doi: 10.1001/jamapsychiatry.2014.2206
– ident: e_1_2_9_25_1
  doi: 10.1038/nrn3901
– ident: e_1_2_9_49_1
  doi: 10.3389/fnhum.2017.00345
– ident: e_1_2_9_3_1
  doi: 10.1038/nrn3465
– ident: e_1_2_9_46_1
  doi: 10.1371/journal.pmed.1000100
– ident: e_1_2_9_67_1
  doi: 10.1073/pnas.0905267106
– volume: 85
  year: 2010
  ident: e_1_2_9_14_1
  article-title: Brain‐derived neurotrophic factor and the development of structural neuronal connectivity. Ed. Moses V Chao, Nancy Y Ip
  publication-title: Developmental Neurobiology
– ident: e_1_2_9_71_1
  doi: 10.1002/hbm.21186
– ident: e_1_2_9_37_1
  doi: 10.1186/1471-2377-12-28
– ident: e_1_2_9_56_1
  doi: 10.1016/j.neuroimage.2015.07.060
– ident: e_1_2_9_44_1
  doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
– ident: e_1_2_9_48_1
  doi: 10.1002/hbm.23014
– ident: e_1_2_9_54_1
  doi: 10.1186/2045-5380-2-6
– ident: e_1_2_9_26_1
  doi: 10.1002/hbm.20141
– ident: e_1_2_9_32_1
  doi: 10.1126/science.1470907
– ident: e_1_2_9_52_1
  doi: 10.1007/s00429-014-0772-2
– ident: e_1_2_9_78_1
  doi: 10.1038/nmeth.1635
– ident: e_1_2_9_68_1
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: e_1_2_9_39_1
  doi: 10.1002/sim.4780140206
– ident: e_1_2_9_47_1
  doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
– ident: e_1_2_9_5_1
  doi: 10.1002/hbm.22781
– ident: e_1_2_9_70_1
  doi: 10.1006/nimg.2002.1131
– ident: e_1_2_9_38_1
  doi: 10.1176/appi.ajp.2010.09091379
– ident: e_1_2_9_20_1
  doi: 10.3389/neuro.09.010.2010
– ident: e_1_2_9_24_1
  doi: 10.1016/j.schres.2008.12.011
– ident: e_1_2_9_77_1
  doi: 10.1002/hbm.20540
– ident: e_1_2_9_18_1
  doi: 10.1073/pnas.1220826110
– ident: e_1_2_9_6_1
  doi: 10.1016/B978-0-12-397025-1.00350-X
– ident: e_1_2_9_50_1
  doi: 10.1016/j.neubiorev.2017.11.012
– ident: e_1_2_9_7_1
  doi: 10.1016/j.nicl.2012.11.004
– ident: e_1_2_9_45_1
  doi: 10.3389/fnhum.2013.00098
– ident: e_1_2_9_43_1
  doi: 10.3389/fninf.2012.00023
– ident: e_1_2_9_80_1
  doi: 10.1016/j.neurobiolaging.2010.06.022
– ident: e_1_2_9_28_1
  doi: 10.1038/nrn789
– ident: e_1_2_9_53_1
  doi: 10.1038/nrn.2016.167
– ident: e_1_2_9_75_1
  doi: 10.1016/j.neuroimage.2008.10.055
– ident: e_1_2_9_41_1
  doi: 10.1016/j.nicl.2018.01.002
– ident: e_1_2_9_36_1
  doi: 10.1111/acel.12271
– ident: e_1_2_9_11_1
  doi: 10.1002/hbm.22138
– ident: e_1_2_9_63_1
  doi: 10.1016/j.neuron.2009.03.024
– ident: e_1_2_9_4_1
  doi: 10.1006/nimg.2000.0582
– ident: e_1_2_9_40_1
  doi: 10.1177/0271678X17729111
– ident: e_1_2_9_23_1
  doi: 10.1073/pnas.1602413113
– ident: e_1_2_9_42_1
  doi: 10.1162/jocn_a_00077
– ident: e_1_2_9_60_1
  doi: 10.1006/nimg.2002.1153
– ident: e_1_2_9_17_1
  doi: 10.1093/brain/awu132
– ident: e_1_2_9_19_1
  doi: 10.1001/archgenpsychiatry.2010.31
– ident: e_1_2_9_21_1
  doi: 10.1016/j.neuroimage.2016.04.072
– ident: e_1_2_9_57_1
  doi: 10.1002/hbm.20854
– ident: e_1_2_9_64_1
  doi: 10.3389/fninf.2012.00010
– ident: e_1_2_9_27_1
  doi: 10.1126/science.7973682
– ident: e_1_2_9_9_1
  doi: 10.1109/TMI.2003.822821
– ident: e_1_2_9_61_1
  doi: 10.1016/j.neuroimage.2012.12.045
– ident: e_1_2_9_15_1
  doi: 10.1016/0165-1684(94)90029-9
– ident: e_1_2_9_30_1
  doi: 10.1016/S0959-4388(98)80138-4
– ident: e_1_2_9_81_1
  doi: 10.1073/pnas.1003109107
– ident: e_1_2_9_59_1
  doi: 10.1016/0377-0427(87)90125-7
– ident: e_1_2_9_62_1
  doi: 10.1016/j.neubiorev.2015.02.008
– ident: e_1_2_9_65_1
  doi: 10.1016/j.neubiorev.2009.10.005
– volume: 39
  start-page: 3308
  issue: 11
  year: 2016
  ident: e_1_2_9_2_1
  article-title: Neuronal network disintegration: Common pathways linking neurodegenerative diseases
  publication-title: Journal of Neurology, Neurosurgery & Psychiatry
– start-page: 1
  year: 2017
  ident: e_1_2_9_10_1
  article-title: Structural covariance networks in children with autism or ADHD
  publication-title: Cerebral Cortex
– ident: e_1_2_9_16_1
  doi: 10.1016/j.nicl.2016.10.009
– start-page: 126920
  year: 2017
  ident: e_1_2_9_73_1
  article-title: Adolescent tuning of association cortex in human structural brain networks
  publication-title: bioRxiv
– ident: e_1_2_9_69_1
  doi: 10.1111/1467-9868.00293
– ident: e_1_2_9_74_1
  doi: 10.1016/j.neuroimage.2008.10.061
SSID ssj0011501
Score 2.504744
Snippet The BrainMap database is a community resource that curates peer‐reviewed, coordinate‐based human neuroimaging literature. By pairing the results of...
The BrainMap database is a community resource that curates peer-reviewed, coordinate-based human neuroimaging literature. By pairing the results of...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3308
SubjectTerms atrophy
Brain
Brain - diagnostic imaging
Brain Mapping
Cluster analysis
Clustering
Communities
Data Mining
Data processing
Data structures
Databases, Factual
Diagnostic systems
Disease
Filtration
Humans
Image processing
independent components analysis
Medical imaging
Mental Disorders - diagnostic imaging
Meta-analysis
Meta-Analysis as Topic
Morphometry
Nervous System Diseases - diagnostic imaging
networks
Neuroimaging
Neurological diseases
Neurology
pattern analysis
Redundancy
Software
structural covariance
structural magnetic resonance imaging
transdiagnostic
voxel‐based morphometry
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMdHVQ-FC30BTWmReQj1km1i57Gmp11EtUIKB0RRD0iRJ7ZVxG66UneFyomPwGfkkzB2HrAUEOIWKRPlNTP-T-L5GeBpanLOTapDGVkTJqnIQ8xsHKKJuNQ2UrFndxavs8lZ8uo8PV-Dk64XpuFD9B_cXGT4fO0CXOHV8Q9o6AXOBq4ccY2-sch8OfWmR0c5oeOLLRpiQ0kZuKMKRfy4P3J1LLohMG_Ok7y1rOfq-pOaTle1rB-MTjfhfXcbzRyUj4PlAgfV518Ij_95n1twpxWpbNR41TasmXoHdkc1Feiza_aM-Wmj_nv8DmwU7d_5XTgZu_UmCjVn78bFczaq2U9tdIzUMWtotY70wWZmob59-apaKMpdODt9-fbFJGwXZwir1DFIk9TIWOsh5g5paKXWitSApdSJPJM2d8lBSs1jLSMqAUkXDas4q0hOZRZRobgH6_VlbfaAoUCtBCaIKBLXOWtp2DRiaDMT6whNAEfdayqrllzuFtCYlg1zmZf0jEr_jAJ43JvOG1zH74wOunddthF7VXLXAUxqMhIBPOp3U6y5HyiqNpdLZyOEoAQW8wDuN67Rn4VLKoxJ_gaQrzhNb-A43qt76g8XnuedOeZgLgN40rvX3y7-yHvLny3KybjwG_v_bvoAbpMSHDYzGw9gnbzBHJLaWuBDH1bfAYQGJVk
  priority: 102
  providerName: Wiley-Blackwell
Title BrainMap VBM: An environment for structural meta‐analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24078
https://www.ncbi.nlm.nih.gov/pubmed/29717540
https://www.proquest.com/docview/2069445603
https://www.proquest.com/docview/2033379412
https://pubmed.ncbi.nlm.nih.gov/PMC6866579
https://www.ncbi.nlm.nih.gov/pmc/articles/6866579
UnpaywallVersion acceptedVersion
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: RPM
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: OVEED
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0193
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwEB2VrQS8cGm5BEplLkJ9STaxczM87SKqFVIqVLGoPEV27KgVG3cldoXKE5_AN_IljJ2LWAoI3iJ5lItm7DkTnzkGeJbojFKdKJ-HtfbjhGW-TOvIlzqkXNWhiJx2Z3GUzubxm5PkZAuivhfGkfYreRaYRROYs1PHrVw21bjniY1Tq9CW8SuwnSYIv0ewPT96O_ngdjXTxOddkRValVFEJ72aUEjHp7IJbAGTb-agS8DyMj_y2tosxcVnsVhsYliXhA5vwnH_-i335GOwXsmg-vKLsuN_fd8tuNFBUjJph27DljY7sDsxWI43F-Q5cSRR9_d9B64W3V78Lryc2tMlCrEk76fFCzIx5KemOYJYmLTatFbXgzR6Jb5__SY6CZQ7MD98_e7VzO-OYvCrxCqOxonmkVK5zKyAYc2VEpj7a1woJU15ndmlgHNFI8VDLPgQBeVVlFYIntJaSiHZXRiZc6PvA5FMKsFkLKVkse2TrTFJapbXqY5UKLUHB71zyqrTKbfHZSzKVmGZlujH0vnRgyeD6bIV5_id0V7v4bKbn59Kavt9ETuGzIPHwzDOLLtdIow-X1sbxhguVxH14F4bEMNTKMcyGMGuB9lGqAwGVrV7cwSd7dS7O_968HQIqr-9_IELtz9blLNp4S4e_NMNH8J1hHx5S2HcgxEGgn6EsGol97GgOKb73XT6AXHMIb4
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JbtRAEIZLIUgkF5aExRCgWYRy8cTu9tbAZQYRDRDngBKUC7K63W0lYsYZiRmhcOIReEaehKr2AkMAIW6WXJa3quq_evka4HFsU85tbHwZVNaPYpH6OqlCX9uAS1MFKnTsznw_GR9Gr4_ioxV43q2FafgQfYcbRYbL1xTg1CG984MaeqynA6pHsgtwMUqwTiFJ9LaHR5HUceUWNrK-xBzccYUCvtNfutwanZOY52dKri3qmTr7pCaTZTXrmqPdK_C-e5FmFsqHwWKuB-XnXxiP__umV-Fyq1PZsHGsa7Bi6w3YHNZYo0_P2BPmZo66LvkNuJS3A_Sb8GxEW07kasbejfKnbFizn1bSMRTIrAHWEuyDTe1cffvyVbVclOtwuPvy4MXYb_dn8MuYMKRRbGVoTKZTohpW0hiFgqDC7Kl5IquU8oOUhodGBlgFojTKyjApUVElldZKixuwWp_W9hYwLbRRQkdaaxHR4tkKW04rsiqxoQm09WC7-09F2cLLaQ-NSdFgl3mB36hw38iDh73prCF2_M5oq_vZRRu0HwtOi4BRUAbCgwf9aQw3GkNRtT1dkI0QAnNYyD242fhGfxcusTZGBexBuuQ1vQGhvJfP1CfHDumdEHYwlR486v3rbw-_7dzlzxbFeJS7g9v_bnof1sYH-V6x92r_zR1YR2GYNRMdt2AVPcPeRfE11_dcjH0HzrEpeg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMdHpUilFwot0NAC5iHUS7aJnZeByy5ltTxSIdSiXlBkx7aK2E1XYleonPgI_Yz9JIydBywFhLhFykR5zYz_k4x_BngU65RSHSufB0b7UcxSXyYm9KUOKFcmEKFjd-b7yegwenUUHy3Bs3YuTM2H6D642chw-doGuJ4qs_uDGnosJz1bj2SX4HIU88w29O296-BRVuq4cgsHWZ9jDm65QgHd7Q5dHI0uSMyLnZJX5tVUnH4R4_GimnXD0XANPrQ3UnehfOrNZ7JXfv2F8fi_d3oNrjY6lfRrx7oOS7pah41-hTX65JQ8Jq5z1H2SX4eVvPlBvwFPB3bJiVxMyftB_oT0K_LTTDqCApnUwFoL-yATPRPn385Ew0W5AYfDFwfPR36zPoNfxhZDGsWah0plMrVUQ8OVEigIDGZPSRNuUpsfOFc0VDzAKhClUVaGSYmKKjFSCsluwnJ1UulNIJJJJZiMpJQsspNnDY6cmmUm0aEKpPZgp31PRdnAy-0aGuOixi7TAp9R4Z6RBw8602lN7Pid0Xb7sosmaD8X1E4CRkEZMA_ud7sx3Ow_FFHpk7m1YYxhDgupB7dq3-jOQjnWxqiAPUgXvKYzsCjvxT3Vx2OH9E4sdjDlHjzs_OtvF7_j3OXPFsVokLuN2_9ueg9W3u4Nizcv919vwSrqwqzuc9yGZXQMfQe110zedSH2HUA5KP4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwEB2VrQS8cGmBBgoyF6G-JJvYuRmedhHVCikVQiwqT5Ed22rFJl2pu0LliU_gG_kSxs5FLAUEb5E8ykUz9pyJzxwDPEt0RqlOlM9Do_04YZkvUxP5UoeUKxOKyGl3FkfpbB6_OU6OtyDqe2Ecab-Sp0GzqIPm9MRxK5d1Ne55YuPUKrRl_ApspwnC7xFsz4_eTj66Xc008XlXZIVWZRTRSa8mFNLxiawDW8DkmznoErC8zI-8tm6W4uKzWCw2MaxLQoc34V3_-i335FOwXsmg-vKLsuN_fd8tuNFBUjJph27Dlm52YHfSYDleX5DnxJFE3d_3HbhadHvxu_Byak-XKMSSfJgWL8ikIT81zRHEwqTVprW6HqTWK_H96zfRSaDcgfnh6_evZn53FINfJVZxNE40j5TKZWYFDA1XSmDuN7hQSppyk9mlgHNFI8VDLPgQBeVVlFYInlIjpZDsLoyas0bvAZFMKsFkLKVkse2TNZgkNctNqiMVSu3BQe-csup0yu1xGYuyVVimJfqxdH704MlgumzFOX5ntN97uOzm53lJbb8vYseQefB4GMaZZbdLRKPP1taGMYbLVUQ9uNcGxPAUyrEMRrDrQbYRKoOBVe3eHEFnO_Xuzr8ePB2C6m8vf-DC7c8W5WxauIv7_3TDB3AdIV_eUhj3YYSBoB8irFrJR91E-gGtNSDV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BrainMap+VBM%3A+An+environment+for+structural+meta%E2%80%90analysis&rft.jtitle=Human+brain+mapping&rft.au=Vanasse%2C+Thomas+J.&rft.au=Fox%2C+P.+Mickle&rft.au=Barron%2C+Daniel+S.&rft.au=Robertson%2C+Michaela&rft.date=2018-08-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=39&rft.issue=8&rft.spage=3308&rft.epage=3325&rft_id=info:doi/10.1002%2Fhbm.24078&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_24078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon