Resveratrol increases the bone marrow hematopoietic stem and progenitor cell capacity
Resveratrol is a plant‐derived polyphenol that has shown protective effects against many disorders including, several types of cancers and other age‐associated diseases as well as blood disorders in cultured cells and/or animal models. However, whether resveratrol has any impact specifically on norm...
Saved in:
Published in | American journal of hematology Vol. 89; no. 12; pp. E235 - E238 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.12.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0361-8609 1096-8652 1096-8652 |
DOI | 10.1002/ajh.23837 |
Cover
Abstract | Resveratrol is a plant‐derived polyphenol that has shown protective effects against many disorders including, several types of cancers and other age‐associated diseases as well as blood disorders in cultured cells and/or animal models. However, whether resveratrol has any impact specifically on normal blood stem cells remains unknown. Here, we show that a 3‐week treatment of resveratrol increases the frequency and total numbers of normal bone marrow hematopoietic stem cells (HSC) without any impact on their competitive repopulation capacity. In addition, we show that resveratrol enhances the bone marrow multipotent progenitor capacity in vivo. These results have therapeutic value for disorders of hematopoietic stem and progenitor cells (HSPC) as well as for bone marrow transplantation settings. Am. J. Hematol. 89:E235–E238, 2014. © 2014 Wiley Periodicals, Inc. |
---|---|
AbstractList | Resveratrol is a plant-derived polyphenol that has shown protective effects against many disorders including, several types of cancers and other age-associated diseases as well as blood disorders in cultured cells and/or animal models. However, whether resveratrol has any impact specifically on normal blood stem cells remains unknown. Here we show that a three-week treatment of resveratrol increases the frequency and total numbers of normal bone marrow hematopoietic stem cells (HSC) without any impact on their competitive repopulation capacity. In addition, we show that resveratrol enhances the bone marrow multipotent progenitor capacity
in vivo
. These results have therapeutic value for disorders of hematopoietic stem and progenitor cells (HSPC) as well as for bone marrow transplantation settings. Resveratrol is a plant-derived polyphenol that has shown protective effects against many disorders including, several types of cancers and other age-associated diseases as well as blood disorders in cultured cells and/or animal models. However, whether resveratrol has any impact specifically on normal blood stem cells remains unknown. Here, we show that a 3-week treatment of resveratrol increases the frequency and total numbers of normal bone marrow hematopoietic stem cells (HSC) without any impact on their competitive repopulation capacity. In addition, we show that resveratrol enhances the bone marrow multipotent progenitor capacity in vivo. These results have therapeutic value for disorders of hematopoietic stem and progenitor cells (HSPC) as well as for bone marrow transplantation settings. Resveratrol is a plant‐derived polyphenol that has shown protective effects against many disorders including, several types of cancers and other age‐associated diseases as well as blood disorders in cultured cells and/or animal models. However, whether resveratrol has any impact specifically on normal blood stem cells remains unknown. Here, we show that a 3‐week treatment of resveratrol increases the frequency and total numbers of normal bone marrow hematopoietic stem cells (HSC) without any impact on their competitive repopulation capacity. In addition, we show that resveratrol enhances the bone marrow multipotent progenitor capacity in vivo. These results have therapeutic value for disorders of hematopoietic stem and progenitor cells (HSPC) as well as for bone marrow transplantation settings. Am. J. Hematol. 89:E235–E238, 2014. © 2014 Wiley Periodicals, Inc. Resveratrol is a plant-derived polyphenol that has shown protective effects against many disorders including, several types of cancers and other age-associated diseases as well as blood disorders in cultured cells and/or animal models. However, whether resveratrol has any impact specifically on normal blood stem cells remains unknown. Here, we show that a 3-week treatment of resveratrol increases the frequency and total numbers of normal bone marrow hematopoietic stem cells (HSC) without any impact on their competitive repopulation capacity. In addition, we show that resveratrol enhances the bone marrow multipotent progenitor capacity in vivo. These results have therapeutic value for disorders of hematopoietic stem and progenitor cells (HSPC) as well as for bone marrow transplantation settings.Resveratrol is a plant-derived polyphenol that has shown protective effects against many disorders including, several types of cancers and other age-associated diseases as well as blood disorders in cultured cells and/or animal models. However, whether resveratrol has any impact specifically on normal blood stem cells remains unknown. Here, we show that a 3-week treatment of resveratrol increases the frequency and total numbers of normal bone marrow hematopoietic stem cells (HSC) without any impact on their competitive repopulation capacity. In addition, we show that resveratrol enhances the bone marrow multipotent progenitor capacity in vivo. These results have therapeutic value for disorders of hematopoietic stem and progenitor cells (HSPC) as well as for bone marrow transplantation settings. |
Author | Ghaffari, Saghi Lofek‐Czubek, Sébastien Rimmelé, Pauline |
AuthorAffiliation | 3 Department of Medicine, Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, New York 10029 4 Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029 2 Developmental and Stem Cell Biology, Multidisciplinary Training Area, Icahn School of Medicine at Mount Sinai, New York, New York 10029 1 Department of Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029 5 Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029 |
AuthorAffiliation_xml | – name: 2 Developmental and Stem Cell Biology, Multidisciplinary Training Area, Icahn School of Medicine at Mount Sinai, New York, New York 10029 – name: 3 Department of Medicine, Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, New York 10029 – name: 4 Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029 – name: 1 Department of Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029 – name: 5 Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029 |
Author_xml | – sequence: 1 givenname: Pauline surname: Rimmelé fullname: Rimmelé, Pauline organization: Icahn School of Medicine at Mount Sinai – sequence: 2 givenname: Sébastien surname: Lofek‐Czubek fullname: Lofek‐Czubek, Sébastien organization: Icahn School of Medicine at Mount Sinai – sequence: 3 givenname: Saghi surname: Ghaffari fullname: Ghaffari, Saghi organization: Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25163926$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV9rFDEUxYNU7Lb64BeQgC_1Ydv8mSQzL0IpapWCIPY5ZDI33SwzyZhkW_bbm3W3okWfEsjvnJx7zwk6CjEAQq8pOaeEsAuzXp0z3nL1DC0o6eSylYIdoQXhktY76Y7RSc5rQihtWvICHTNBJe-YXKDbb5DvIZmS4oh9sAlMhozLCnBfP8GTSSk-4BVMpsQ5eije4lxgwiYMeE7xDoIvMWEL44itmY31ZfsSPXdmzPDqcJ6i248fvl9dL2--fvp8dXmztIJ0atkQY7qW2KZ1SglmjOulhUaAcFL2vGsaRdTgOG0Zl4MbbO-EA5BEyW7gg-Kn6P3ed970EwwWQklm1HPyNfdWR-P13y_Br_RdvNcN40oyUg3ODgYp_thALnryeTeKCRA3WVPJagQp2qaib5-g67hJoY63o0SNSBSr1Js_E_2O8rjxClzsAZtizgmcrgszxcddQD9qSvSuU1071b86rYp3TxSPpv9iD-4PfoTt_0F9-eV6r_gJxGqxuQ |
CitedBy_id | crossref_primary_10_1016_j_apsb_2021_12_006 crossref_primary_10_1002_stem_3234 crossref_primary_10_1007_s40495_023_00322_2 crossref_primary_10_1016_j_jphs_2019_05_004 crossref_primary_10_3390_epigenomes7040032 crossref_primary_10_5966_sctm_2014_0284 crossref_primary_10_1016_j_freeradbiomed_2016_10_501 crossref_primary_10_1016_j_freeradbiomed_2021_01_034 crossref_primary_10_14348_molcells_2016_2345 crossref_primary_10_1182_blood_2019000040 crossref_primary_10_1016_j_blre_2018_07_001 crossref_primary_10_3390_jpm10020049 crossref_primary_10_1016_j_tem_2020_02_005 crossref_primary_10_1016_j_mam_2020_100923 crossref_primary_10_1016_j_vas_2023_100300 crossref_primary_10_1186_s12896_015_0176_2 crossref_primary_10_1155_2019_5153268 crossref_primary_10_47855_jal9020_2023_2_2 crossref_primary_10_1021_acs_orglett_6b02688 crossref_primary_10_2217_rme_2017_0143 crossref_primary_10_1016_j_jff_2020_103822 |
Cites_doi | 10.1182/blood-2010-03-273011 10.1016/j.stemcr.2014.04.015 10.1038/nrd2060 10.4161/cc.6.20.4815 10.1111/nyas.12147 10.1038/emboj.2010.292 10.1084/jem.20121608 10.1182/blood-2005-06-2516 10.1038/nature02789 10.1182/blood-2011-06-361691 10.1016/j.bbrc.2012.01.109 10.1074/jbc.M501250200 10.1111/j.1474-9728.2004.00097.x 10.1371/journal.pone.0049761 10.1093/carcin/23.8.1327 10.1074/jbc.M800517200 10.1126/science.1231097 10.1038/nature01960 10.1016/j.cell.2006.11.013 10.1016/j.cmet.2012.04.003 10.1016/j.ccr.2011.12.020 10.1126/science.275.5297.218 10.1016/j.tips.2013.12.004 10.3324/haematol.2013.090076 10.2307/3570892 10.1016/j.cell.2005.05.026 10.1016/j.stem.2008.01.002 10.1074/jbc.M500655200 10.1093/jn/132.7.2076 10.1038/sj.bmt.1702189 10.1016/j.freeradbiomed.2012.10.530 10.1182/blood-2010-04-278226 10.1093/jn/132.2.257 10.2203/dose-response.09-015.Mukherjee |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1002/ajh.23837 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1096-8652 |
EndPage | E238 |
ExternalDocumentID | PMC4237620 3500020361 25163926 10_1002_ajh_23837 AJH23837 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: RO1 DK077174 (to SG) ; RO1 HL116365 (SG, CoPI) – fundername: Myeloproliferative Neoplasm (MPN) foundation – fundername: NHLBI NIH HHS grantid: R01 HL116365 – fundername: NIDDK NIH HHS grantid: R01 DK077174 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EGARE EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IH2 IX1 J0M J5H JPC KBYEO KD1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6P MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D P6G PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TEORI TR2 UB1 V2E V8K VH1 W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WWO WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5097-40aa980c48f7752aafb6ce45e5f66b3944707df318236dfdcbf5fee60769d3d73 |
IEDL.DBID | DR2 |
ISSN | 0361-8609 1096-8652 |
IngestDate | Thu Aug 21 18:06:06 EDT 2025 Fri Jul 11 12:39:50 EDT 2025 Thu Jul 10 13:10:37 EDT 2025 Mon Jul 21 06:06:27 EDT 2025 Tue Jul 01 02:27:53 EDT 2025 Thu Apr 24 23:07:51 EDT 2025 Wed Jan 22 16:54:31 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5097-40aa980c48f7752aafb6ce45e5f66b3944707df318236dfdcbf5fee60769d3d73 |
Notes | The authors do not have any conflict of interest to declare. Conflict of interest ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ajh.23837 |
PMID | 25163926 |
PQID | 1625823072 |
PQPubID | 866345 |
PageCount | 4 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4237620 proquest_miscellaneous_1627076584 proquest_journals_1625823072 pubmed_primary_25163926 crossref_citationtrail_10_1002_ajh_23837 crossref_primary_10_1002_ajh_23837 wiley_primary_10_1002_ajh_23837_AJH23837 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2014 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: December 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | American journal of hematology |
PublicationTitleAlternate | Am J Hematol |
PublicationYear | 2014 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 117 2000; 25 2002; 132 1997; 275 2006; 5 2012; 15 2008; 2 1961; 14 2008; 283 2004; 430 2005; 280 2003; 425 2014; 3 2005; 121 2013; 339 2013; 54 2010; 116 2010; 29 2002; 23 2013; 1290 2013; 210 2007; 6 2014; 35 2006; 127 2012; 7 2006; 107 2012; 21 2012; 119 2014; 99 2006; 444 2012; 418 2010; 8 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 12939617 - Nature. 2003 Sep 11;425(6954):191-6 15749705 - J Biol Chem. 2005 Apr 29;280(17):17187-95 12097696 - J Nutr. 2002 Jul;132(7):2076-81 21191486 - Dose Response. 2010 Mar 18;8(4):478-500 23630229 - J Exp Med. 2013 May 6;210(5):987-1001 15254550 - Nature. 2004 Aug 5;430(7000):686-9 24439680 - Trends Pharmacol Sci. 2014 Mar;35(3):146-54 23185430 - PLoS One. 2012;7(11):e49761 23471411 - Science. 2013 Mar 8;339(6124):1216-9 22207735 - Blood. 2012 Feb 23;119(8):1904-14 23975182 - Haematologica. 2014 Feb;99(2):267-75 13776896 - Radiat Res. 1961 Feb;14:213-22 18371449 - Cell Stem Cell. 2008 Mar 6;2(3):241-51 20966168 - Blood. 2011 Jan 13;117(2):440-50 15684413 - J Biol Chem. 2005 Apr 29;280(17):17038-45 22306819 - Biochem Biophys Res Commun. 2012 Feb 24;418(4):811-7 12151351 - Carcinogenesis. 2002 Aug;23(8):1327-33 23124026 - Free Radic Biol Med. 2013 Jan;54:40-50 16204311 - Blood. 2006 Feb 1;107(3):907-15 17726376 - Cell Cycle. 2007 Oct 15;6(20):2495-510 22340598 - Cancer Cell. 2012 Feb 14;21(2):266-81 15989959 - Cell. 2005 Jul 1;121(7):1109-21 17112576 - Cell. 2006 Dec 15;127(6):1109-22 16732220 - Nat Rev Drug Discov. 2006 Jun;5(6):493-506 20826722 - Blood. 2010 Dec 9;116(24):5140-8 21113129 - EMBO J. 2010 Dec 15;29(24):4118-31 22560220 - Cell Metab. 2012 May 2;15(5):675-90 23855476 - Ann N Y Acad Sci. 2013 Jul;1290:136-41 25068121 - Stem Cell Reports. 2014 Jul 8;3(1):44-59 11823587 - J Nutr. 2002 Feb;132(2):257-60 10734298 - Bone Marrow Transplant. 2000 Mar;25(6):639-45 17086191 - Nature. 2006 Nov 16;444(7117):337-42 8985016 - Science. 1997 Jan 10;275(5297):218-20 18424439 - J Biol Chem. 2008 Sep 12;283(37):25692-705 |
References_xml | – volume: 280 start-page: 17038 year: 2005 end-page: 17045 article-title: Substrate‐specific activation of sirtuins by resveratrol publication-title: J Biol Chem – volume: 425 start-page: 191 year: 2003 end-page: 196 article-title: Small molecule activators of sirtuins extend lifespan publication-title: Nature – volume: 3 start-page: 44 year: 2014 end-page: 59 article-title: Aging‐like phenotype and defective lineage specification in SIRT1‐deleted hematopoietic stem and progenitor cells publication-title: Stem Cell Rep – volume: 1290 start-page: 136 year: 2013 end-page: 141 article-title: Resveratrol, from experimental data to nutritional evidence: The emergence of a new food ingredient publication-title: Ann N Y Acad Sci – volume: 6 start-page: 2495 year: 2007 end-page: 2510 article-title: Resveratrol: From basic science to the clinic publication-title: Cell Cycle – volume: 116 start-page: 5140 year: 2010 end-page: 5148 article-title: Fancd2‐/‐ mice have hematopoietic defects that can be partially corrected by resveratrol publication-title: Blood – volume: 283 start-page: 25692 year: 2008 end-page: 25705 article-title: Foxo3 Is Essential for the regulation of ataxia telangiectasia mutated and oxidative stress‐mediated homeostasis of hematopoietic stem cells publication-title: J Biol Chem – volume: 275 start-page: 218 year: 1997 end-page: 220 article-title: Cancer chemopreventive activity of resveratrol, a natural product derived from grapes publication-title: Science – volume: 280 start-page: 17187 year: 2005 end-page: 17195 article-title: Mechanism of human SIRT1 activation by resveratrol publication-title: J Biol Chem – volume: 418 start-page: 811 year: 2012 end-page: 817 article-title: NAD‐dependent histone deacetylase, SIRT1, plays essential roles in the maintenance of hematopoietic stem cells publication-title: Biochem Biophys Res Commun – volume: 339 start-page: 1216 year: 2013 end-page: 1219 article-title: Evidence for a common mechanism of SIRT1 regulation by allosteric activators publication-title: Science – volume: 2 start-page: 241 year: 2008 end-page: 251 article-title: SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization publication-title: Cell Stem Cell – volume: 54 start-page: 40 year: 2013 end-page: 50 article-title: Resveratrol ameliorates ionizing irradiation‐induced long‐term hematopoietic stem cell injury in mice publication-title: Free Radic Biol Med – volume: 25 start-page: 639 year: 2000 end-page: 645 article-title: Resveratrol selectively inhibits leukemia cells: A prospective agent for ex vivo bone marrow purging publication-title: Bone Marrow Transplant – volume: 444 start-page: 337 year: 2006 end-page: 342 article-title: Resveratrol improves health and survival of mice on a high‐calorie diet publication-title: Nature – volume: 29 start-page: 4118 year: 2010 end-page: 4131 article-title: ROS‐mediated amplification of AKT/mTOR signalling pathway leads to myeloproliferative syndrome in Foxo3(‐/‐) mice publication-title: EMBO J – volume: 210 start-page: 987 year: 2013 end-page: 1001 article-title: Sirt1 ablation promotes stress‐induced loss of epigenetic and genomic hematopoietic stem and progenitor cell maintenance publication-title: J Exp Med – volume: 14 start-page: 213 year: 1961 end-page: 222 article-title: A direct measurement of the radiation sensitivity of normal mouse bone marrow cells publication-title: Radiat Res – volume: 119 start-page: 1904 year: 2012 end-page: 1914 article-title: Activation of stress response gene SIRT1 by BCR‐ABL promotes leukemogenesis publication-title: Blood – volume: 132 start-page: 257 year: 2002 end-page: 260 article-title: The daily oral administration of high doses of trans‐resveratrol to rats for 28 days is not harmful publication-title: J Nutr – volume: 8 start-page: 478 year: 2010 end-page: 500 article-title: Dose‐dependency of resveratrol in providing health benefits publication-title: Dose Response – volume: 430 start-page: 686 year: 2004 end-page: 689 article-title: Sirtuin activators mimic caloric restriction and delay ageing in metazoans publication-title: Nature – volume: 15 start-page: 675 year: 2012 end-page: 690 article-title: SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function publication-title: Cell Metab – volume: 117 start-page: 440 year: 2011 end-page: 450 article-title: SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse publication-title: Blood – volume: 107 start-page: 907 year: 2006 end-page: 915 article-title: Erythropoietin stimulates phosphorylation and activation of GATA‐1 via the PI3‐kinase/AKT signaling pathway publication-title: Blood – volume: 7 start-page: e49761 year: 2012 article-title: A molecular mechanism for direct sirtuin activation by resveratrol publication-title: PLoS One – volume: 127 start-page: 1109 year: 2006 end-page: 1122 article-title: Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC‐1alpha publication-title: Cell – volume: 23 start-page: 1327 year: 2002 end-page: 1333 article-title: Resveratrol inhibits the growth and induces the apoptosis of both normal and leukemic hematopoietic cells publication-title: Carcinogenesis – volume: 99 start-page: 267 year: 2014 end-page: 275 article-title: Resveratrol accelerates erythroid maturation by activation of FoxO3 and ameliorates anemia in beta‐thalassemic mice publication-title: Haematologica – volume: 35 start-page: 146 year: 2014 end-page: 154 article-title: Small molecule SIRT1 activators for the treatment of aging and age‐related diseases publication-title: Trends Pharmacol Sci – volume: 132 start-page: 2076 year: 2002 end-page: 2081 article-title: Disparate in vitro and in vivo antileukemic effects of resveratrol, a natural polyphenolic compound found in grapes publication-title: J Nutr – volume: 121 start-page: 1109 year: 2005 end-page: 1121 article-title: SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells publication-title: Cell – volume: 5 start-page: 493 year: 2006 end-page: 506 article-title: Therapeutic potential of resveratrol: the in vivo evidence publication-title: Nat Rev Drug Discov – volume: 21 start-page: 266 year: 2012 end-page: 281 article-title: Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib publication-title: Cancer Cell – ident: e_1_2_6_16_1 doi: 10.1182/blood-2010-03-273011 – ident: e_1_2_6_21_1 doi: 10.1016/j.stemcr.2014.04.015 – ident: e_1_2_6_7_1 doi: 10.1038/nrd2060 – ident: e_1_2_6_9_1 doi: 10.4161/cc.6.20.4815 – ident: e_1_2_6_2_1 doi: 10.1111/nyas.12147 – ident: e_1_2_6_28_1 doi: 10.1038/emboj.2010.292 – ident: e_1_2_6_18_1 doi: 10.1084/jem.20121608 – ident: e_1_2_6_31_1 doi: 10.1182/blood-2005-06-2516 – ident: e_1_2_6_3_1 doi: 10.1038/nature02789 – ident: e_1_2_6_19_1 doi: 10.1182/blood-2011-06-361691 – ident: e_1_2_6_17_1 doi: 10.1016/j.bbrc.2012.01.109 – ident: e_1_2_6_12_1 doi: 10.1074/jbc.M501250200 – ident: e_1_2_6_6_1 doi: 10.1111/j.1474-9728.2004.00097.x – ident: e_1_2_6_34_1 doi: 10.1371/journal.pone.0049761 – ident: e_1_2_6_24_1 doi: 10.1093/carcin/23.8.1327 – ident: e_1_2_6_29_1 doi: 10.1074/jbc.M800517200 – ident: e_1_2_6_10_1 doi: 10.1126/science.1231097 – ident: e_1_2_6_4_1 doi: 10.1038/nature01960 – ident: e_1_2_6_8_1 doi: 10.1016/j.cell.2006.11.013 – ident: e_1_2_6_13_1 doi: 10.1016/j.cmet.2012.04.003 – ident: e_1_2_6_20_1 doi: 10.1016/j.ccr.2011.12.020 – ident: e_1_2_6_5_1 doi: 10.1126/science.275.5297.218 – ident: e_1_2_6_14_1 doi: 10.1016/j.tips.2013.12.004 – ident: e_1_2_6_26_1 doi: 10.3324/haematol.2013.090076 – ident: e_1_2_6_30_1 doi: 10.2307/3570892 – ident: e_1_2_6_32_1 doi: 10.1016/j.cell.2005.05.026 – ident: e_1_2_6_15_1 doi: 10.1016/j.stem.2008.01.002 – ident: e_1_2_6_11_1 doi: 10.1074/jbc.M500655200 – ident: e_1_2_6_22_1 doi: 10.1093/jn/132.7.2076 – ident: e_1_2_6_23_1 doi: 10.1038/sj.bmt.1702189 – ident: e_1_2_6_35_1 doi: 10.1016/j.freeradbiomed.2012.10.530 – ident: e_1_2_6_25_1 doi: 10.1182/blood-2010-04-278226 – ident: e_1_2_6_27_1 doi: 10.1093/jn/132.2.257 – ident: e_1_2_6_33_1 doi: 10.2203/dose-response.09-015.Mukherjee – reference: 24439680 - Trends Pharmacol Sci. 2014 Mar;35(3):146-54 – reference: 22340598 - Cancer Cell. 2012 Feb 14;21(2):266-81 – reference: 23471411 - Science. 2013 Mar 8;339(6124):1216-9 – reference: 23124026 - Free Radic Biol Med. 2013 Jan;54:40-50 – reference: 10734298 - Bone Marrow Transplant. 2000 Mar;25(6):639-45 – reference: 17086191 - Nature. 2006 Nov 16;444(7117):337-42 – reference: 23630229 - J Exp Med. 2013 May 6;210(5):987-1001 – reference: 12097696 - J Nutr. 2002 Jul;132(7):2076-81 – reference: 18424439 - J Biol Chem. 2008 Sep 12;283(37):25692-705 – reference: 17726376 - Cell Cycle. 2007 Oct 15;6(20):2495-510 – reference: 21191486 - Dose Response. 2010 Mar 18;8(4):478-500 – reference: 20826722 - Blood. 2010 Dec 9;116(24):5140-8 – reference: 21113129 - EMBO J. 2010 Dec 15;29(24):4118-31 – reference: 13776896 - Radiat Res. 1961 Feb;14:213-22 – reference: 15684413 - J Biol Chem. 2005 Apr 29;280(17):17038-45 – reference: 12939617 - Nature. 2003 Sep 11;425(6954):191-6 – reference: 17112576 - Cell. 2006 Dec 15;127(6):1109-22 – reference: 23185430 - PLoS One. 2012;7(11):e49761 – reference: 16732220 - Nat Rev Drug Discov. 2006 Jun;5(6):493-506 – reference: 22560220 - Cell Metab. 2012 May 2;15(5):675-90 – reference: 15989959 - Cell. 2005 Jul 1;121(7):1109-21 – reference: 23855476 - Ann N Y Acad Sci. 2013 Jul;1290:136-41 – reference: 16204311 - Blood. 2006 Feb 1;107(3):907-15 – reference: 15749705 - J Biol Chem. 2005 Apr 29;280(17):17187-95 – reference: 22207735 - Blood. 2012 Feb 23;119(8):1904-14 – reference: 18371449 - Cell Stem Cell. 2008 Mar 6;2(3):241-51 – reference: 25068121 - Stem Cell Reports. 2014 Jul 8;3(1):44-59 – reference: 23975182 - Haematologica. 2014 Feb;99(2):267-75 – reference: 15254550 - Nature. 2004 Aug 5;430(7000):686-9 – reference: 20966168 - Blood. 2011 Jan 13;117(2):440-50 – reference: 11823587 - J Nutr. 2002 Feb;132(2):257-60 – reference: 22306819 - Biochem Biophys Res Commun. 2012 Feb 24;418(4):811-7 – reference: 12151351 - Carcinogenesis. 2002 Aug;23(8):1327-33 – reference: 8985016 - Science. 1997 Jan 10;275(5297):218-20 |
SSID | ssj0011480 |
Score | 2.2385707 |
Snippet | Resveratrol is a plant‐derived polyphenol that has shown protective effects against many disorders including, several types of cancers and other age‐associated... Resveratrol is a plant-derived polyphenol that has shown protective effects against many disorders including, several types of cancers and other age-associated... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E235 |
SubjectTerms | Animals Antioxidants - pharmacology Biomarkers - metabolism Bone Marrow Cells - cytology Bone Marrow Cells - drug effects Bone Marrow Cells - metabolism Cell Proliferation - drug effects Gamma Rays Hematology Hematopoietic Stem Cell Transplantation Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - drug effects Hematopoietic Stem Cells - metabolism Injections, Intraperitoneal Leukocyte Common Antigens - metabolism Mice Mice, Inbred C57BL Stilbenes Whole-Body Irradiation |
Title | Resveratrol increases the bone marrow hematopoietic stem and progenitor cell capacity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajh.23837 https://www.ncbi.nlm.nih.gov/pubmed/25163926 https://www.proquest.com/docview/1625823072 https://www.proquest.com/docview/1627076584 https://pubmed.ncbi.nlm.nih.gov/PMC4237620 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPSAuPFoeoaUyCCEuu_Umjp2I0wqolqJyqFipB6TIr6gLbVJtdivBr2fGecBSkBCXyFImih8z9jee8WeAF0ILrq3zI2GExQeWcmXMqLTcZbhiOqtpQ__ko5zNxfFZerYFr_uzMC0_xLDhRpYR5msycG2aw5-kofrL-Tgm_wrn30kiiTf_7elAHUUwn7dxyskokzzvWYV4fDh8ubkW3QCYN_Mkf8WvYQE6uguf-6q3eSdfx-uVGdvvv7E6_mfb7sGdDpiyaatJ92HLVzuwO63QKb_8xl6ykCoa9uB34NZJF5Hfhfmpb66JmHlZX7BFRRi08Q1DWMlMXXl2GUgeWaCGra_qBZ2ZZEQezXTlGGWHeZpUlowiCMzi0m3RL3gA86N3n97MRt1VDSOLiEOhF6p1nnErslKpNNa6NNJ6kfq0lNLQ4VvFlStxAokT6UpnTZmW3kuuZO4Sp5KHsF1hrR4Dy5xVPLOizJ1G3bE6SVyMMCTL01RZMYngVT9ohe14zOk6jYuiZWCOC-y9IvReBM8H0auWvONPQvv9yBed_TbFBN1CCkGqOIJnw2u0POoMXfl6HWSwUYTgInjUKsrwF0SNCP1iGYHaUKFBgFi9N99Ui_PA7h3ylGKOzQwa8veKF9PjWSg8-XfRPbiNiE-0-Tj7sL1arv1TRFUrc4Dm8_7DQTCiH9QTIYc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXHi3QQAGDEOKSrTdx4kTiskJUS-n2UHWlXlDk-KEubZNqH0jw65lxHrAUJMQlspSJ4seM_Y1n_BngtVCCK21sKEqh8YGlXJZl6DQ3Ga6YRiva0J8cpeOpODhNTjfgXXcWpuGH6DfcyDL8fE0GThvSez9ZQ9WXs0FEDtYNuOnjcwSJjnvyKAL6vIlUDsMs5XnHK8Sjvf7T9dXoGsS8nin5K4L1S9D-PfjcVb7JPDkfrJblQH__jdfxf1t3H-622JSNGmV6ABu22oLtUYV--eU39ob5bFG_Db8FtyZtUH4bpsd28ZW4mef1BZtVBEMXdsEQWbKyriy79DyPzLPD1lf1jI5NMuKPZqoyjBLELM0rc0ZBBKZx9dboGjyE6f6Hk_fjsL2tIdQIOiQ6okrlGdcic1ImkVKuTLUViU1cmpZ0_lZyaRzOIVGcGmd06RJnbcplmpvYyPgRbFZYqx1gmdGSZ1q43ChUH63i2ESIRLI8SaQWwwDedqNW6JbKnG7UuCgaEuaowN4rfO8F8KoXvWr4O_4ktNsNfdGa8KIYomdIUUgZBfCyf43GR52hKluvvAw2ikBcAI8bTen_gsAR0V-UBiDXdKgXIGLv9TfV7MwTfPtUpYhjM72K_L3ixehg7AtP_l30Bdwen0wOi8OPR5-ewh0EgKJJz9mFzeV8ZZ8hyFqWz70t_QD9oSSs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIlW8cLQcgQIGIcRLtt7EsRPxtAJWS6EVqlipD0iRT3WhTVZ7IMGvZ-wcsBQkxEtkKRPFx4znG3v8GeAZk4xKbWzMFNP4wFIhlIqdpiZHj2m09Av6R8d8MmWHp9npFrzszsI0_BD9gpu3jDBfewOfG3fwkzRUfj4bJD6-ugJXGUc36RHRSc8d5XE-bTYqh3HOadHRCtHkoP900xldQpiXEyV_BbDBA41vwKeu7k3iyZfBeqUG-vtvtI7_2bibcL1FpmTUqNIt2LLVLuyNKozKL76R5yTkioZF-F3YOWq35PdgemKXXz0z86I-J7PKg9ClXRLElUTVlSUXgeWRBG7Yel7P_KFJ4tmjiawM8elh1s8qC-K3EIhG360xMLgN0_Gbj68mcXtXQ6wRcggMQ6UscqpZ7oTIEimd4tqyzGaOc-VP3woqjMMZJEm5cUYrlzlrORW8MKkR6R3YrrBW94DkRguaa-YKI1F5tExTkyAOyYssE5oNI3jRDVqpWyJzf5_GedlQMCcl9l4Zei-Cp73ovGHv-JPQfjfyZWvAy3KIcaHfgxRJBE_612h6vjNkZet1kMFGeQgXwd1GUfq_IGxE7JfwCMSGCvUCntZ78001Owv03iFRKaHYzKAhf694OTqchML9fxd9DDsfXo_L92-P3z2Aa4j-WJObsw_bq8XaPkSEtVKPgiX9AH5PI1s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resveratrol+increases+the+bone+marrow+hematopoietic+stem+and+progenitor+cell+capacity&rft.jtitle=American+journal+of+hematology&rft.au=Rimmel%C3%A9%2C+Pauline&rft.au=Lofek-Czubek%2C+S%C3%A9bastien&rft.au=Ghaffari%2C+Saghi&rft.date=2014-12-01&rft.eissn=1096-8652&rft.volume=89&rft.issue=12&rft.spage=E235&rft_id=info:doi/10.1002%2Fajh.23837&rft_id=info%3Apmid%2F25163926&rft.externalDocID=25163926 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-8609&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-8609&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-8609&client=summon |