Changing brain connectivity dynamics: From early childhood to adulthood

Brain maturation through adolescence has been the topic of recent studies. Previous works have evaluated changes in morphometry and also changes in functional connectivity. However, most resting‐state fMRI studies have focused on static connectivity. Here we examine the relationship between age/matu...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 39; no. 3; pp. 1108 - 1117
Main Authors Faghiri, Ashkan, Stephen, Julia M., Wang, Yu‐Ping, Wilson, Tony W., Calhoun, Vince D.
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.03.2018
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.23896

Cover

Abstract Brain maturation through adolescence has been the topic of recent studies. Previous works have evaluated changes in morphometry and also changes in functional connectivity. However, most resting‐state fMRI studies have focused on static connectivity. Here we examine the relationship between age/maturity and the dynamics of brain functional connectivity. Utilizing a resting fMRI dataset comprised 421 subjects ages 3–22 from the PING study, we first performed group ICA to extract independent components and their time courses. Next, dynamic functional network connectivity (dFNC) was calculated via a sliding window followed by clustering of connectivity patterns into 5 states. Finally, we evaluated the relationship between age and the amount of time each participant spent in each state as well as the transitions among different states. Results showed that older participants tend to spend more time in states which reflect overall stronger connectivity patterns throughout the brain. In addition, the relationship between age and state transition is symmetric. This can mean individuals change functional connectivity through time within a specific set of states. On the whole, results indicated that dynamic functional connectivity is an important factor to consider when examining brain development across childhood.
AbstractList Brain maturation through adolescence has been the topic of recent studies. Previous works have evaluated changes in morphometry and also changes in functional connectivity. However, most resting-state fMRI studies have focused on static connectivity. Here we examine the relationship between age/maturity and the dynamics of brain functional connectivity. Utilizing a resting fMRI dataset comprised 421 subjects ages 3-22 from the PING study, we first performed group ICA to extract independent components and their time courses. Next, dynamic functional network connectivity (dFNC) was calculated via a sliding window followed by clustering of connectivity patterns into 5 states. Finally, we evaluated the relationship between age and the amount of time each participant spent in each state as well as the transitions among different states. Results showed that older participants tend to spend more time in states which reflect overall stronger connectivity patterns throughout the brain. In addition, the relationship between age and state transition is symmetric. This can mean individuals change functional connectivity through time within a specific set of states. On the whole, results indicated that dynamic functional connectivity is an important factor to consider when examining brain development across childhood.Brain maturation through adolescence has been the topic of recent studies. Previous works have evaluated changes in morphometry and also changes in functional connectivity. However, most resting-state fMRI studies have focused on static connectivity. Here we examine the relationship between age/maturity and the dynamics of brain functional connectivity. Utilizing a resting fMRI dataset comprised 421 subjects ages 3-22 from the PING study, we first performed group ICA to extract independent components and their time courses. Next, dynamic functional network connectivity (dFNC) was calculated via a sliding window followed by clustering of connectivity patterns into 5 states. Finally, we evaluated the relationship between age and the amount of time each participant spent in each state as well as the transitions among different states. Results showed that older participants tend to spend more time in states which reflect overall stronger connectivity patterns throughout the brain. In addition, the relationship between age and state transition is symmetric. This can mean individuals change functional connectivity through time within a specific set of states. On the whole, results indicated that dynamic functional connectivity is an important factor to consider when examining brain development across childhood.
Brain maturation through adolescence has been the topic of recent studies. Previous works have evaluated changes in morphometry and also changes in functional connectivity. However, most resting‐state fMRI studies have focused on static connectivity. Here we examine the relationship between age/maturity and the dynamics of brain functional connectivity. Utilizing a resting fMRI dataset comprised 421 subjects ages 3–22 from the PING study, we first performed group ICA to extract independent components and their time courses. Next, dynamic functional network connectivity (dFNC) was calculated via a sliding window followed by clustering of connectivity patterns into 5 states. Finally, we evaluated the relationship between age and the amount of time each participant spent in each state as well as the transitions among different states. Results showed that older participants tend to spend more time in states which reflect overall stronger connectivity patterns throughout the brain. In addition, the relationship between age and state transition is symmetric. This can mean individuals change functional connectivity through time within a specific set of states. On the whole, results indicated that dynamic functional connectivity is an important factor to consider when examining brain development across childhood.
Brain maturation through adolescence has been the topic of recent studies. Previous works have evaluated changes in morphometry and also changes in functional connectivity. However, most resting‐state fMRI studies have focused on static connectivity. Here we examine the relationship between age/maturity and the dynamics of brain functional connectivity. Utilizing a resting fMRI dataset comprised 421 subjects ages 3–22 from the PING study, we first performed group ICA to extract independent components and their time courses. Next, dynamic functional network connectivity (dFNC) was calculated via a sliding window followed by clustering of connectivity patterns into 5 states. Finally, we evaluated the relationship between age and the amount of time each participant spent in each state as well as the transitions among different states. Results showed that older participants tend to spend more time in states which reflect overall stronger connectivity patterns throughout the brain. In addition, the relationship between age and state transition is symmetric. This can mean individuals change functional connectivity through time within a specific set of states. On the whole, results indicated that dynamic functional connectivity is an important factor to consider when examining brain development across childhood.
Author Faghiri, Ashkan
Wang, Yu‐Ping
Wilson, Tony W.
Stephen, Julia M.
Calhoun, Vince D.
AuthorAffiliation 5 Department of Neurological Sciences University of Nebraska Medical Center Omaha Nebraska
3 Biomedical Engineering Department Tulane University New Orleans Louisiana
1 The Mind Research Network, 1101 Yale Blvd NE Albuquerque New Mexico
6 Center for Magnetoencephalography University of Nebraska Medical Center Omaha Nebraska
2 Electrical and Computer Engineering Department University of New Mexico Albuquerque New Mexico
4 Center of Genomics and Bioinformatics Tulane University New Orleans Louisiana
AuthorAffiliation_xml – name: 1 The Mind Research Network, 1101 Yale Blvd NE Albuquerque New Mexico
– name: 5 Department of Neurological Sciences University of Nebraska Medical Center Omaha Nebraska
– name: 6 Center for Magnetoencephalography University of Nebraska Medical Center Omaha Nebraska
– name: 3 Biomedical Engineering Department Tulane University New Orleans Louisiana
– name: 4 Center of Genomics and Bioinformatics Tulane University New Orleans Louisiana
– name: 2 Electrical and Computer Engineering Department University of New Mexico Albuquerque New Mexico
Author_xml – sequence: 1
  givenname: Ashkan
  orcidid: 0000-0003-1807-6815
  surname: Faghiri
  fullname: Faghiri, Ashkan
  email: ashkanfa.shirazu@gmail.com
  organization: University of New Mexico
– sequence: 2
  givenname: Julia M.
  surname: Stephen
  fullname: Stephen, Julia M.
  organization: The Mind Research Network, 1101 Yale Blvd NE
– sequence: 3
  givenname: Yu‐Ping
  surname: Wang
  fullname: Wang, Yu‐Ping
  organization: Tulane University
– sequence: 4
  givenname: Tony W.
  orcidid: 0000-0002-5053-8306
  surname: Wilson
  fullname: Wilson, Tony W.
  organization: University of Nebraska Medical Center
– sequence: 5
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: University of New Mexico
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29205692$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtv1DAUhS3Uij5gwR9AkdjQRVo_xk7MohId0RapiA2sLb8yceXYxU5a5d_XYaaIVrDy43733GOfI7AXYrAAvEPwFEGIz3o1nGLScvYKHCLImxoiTvaWPaM1XzXoABzlfAshQhSi1-AAcwwp4_gQXK17GTYubCqVpAuVjiFYPbp7N86VmYMcnM6fqssUh8rK5OdK986bPkZTjbGSZvLjcngD9jvps327W4_Bz8svP9bX9c33q6_rzze1ppCzWplWUa6I5VAiqLp2hQgmpcY6iFvSdcq2zChoGDKEN5SuWqwgxcuNkWpFjsH5VvduUoM12oYxSS_ukhtkmkWUTjyvBNeLTbwXtIUNalgR-LgTSPHXZPMoBpe19V4GG6csEG8IxIihZdaHF-htnFIozysU54y0xV6h3v_t6I-Vpz8uwNkW0CnmnGwntBvl6OJi0HmBoFhSFCVF8TvF0nHyouNJ9F_sTv3BeTv_HxTXF9-2HY_omauY
CitedBy_id crossref_primary_10_1002_hbm_26200
crossref_primary_10_1007_s00406_024_01854_4
crossref_primary_10_1093_cercor_bhae036
crossref_primary_10_3389_fncom_2022_885126
crossref_primary_10_1093_cercor_bhae396
crossref_primary_10_3390_brainsci13111558
crossref_primary_10_1002_hbm_24064
crossref_primary_10_1016_j_jocn_2025_111053
crossref_primary_10_3389_fnins_2021_621716
crossref_primary_10_1016_j_jad_2021_10_021
crossref_primary_10_1016_j_jneumeth_2019_108531
crossref_primary_10_1111_cns_13994
crossref_primary_10_1109_TBME_2018_2880428
crossref_primary_10_1016_j_jad_2025_02_061
crossref_primary_10_1038_s41398_022_02147_x
crossref_primary_10_3389_fnins_2022_1097244
crossref_primary_10_1016_j_nicl_2019_101966
crossref_primary_10_3389_fnins_2022_1008652
crossref_primary_10_1016_j_jad_2018_11_002
crossref_primary_10_1016_j_jpsychires_2024_01_028
crossref_primary_10_1007_s00247_024_06022_3
crossref_primary_10_1038_s41598_024_62635_6
crossref_primary_10_1016_j_neuroimage_2021_118552
crossref_primary_10_1038_s41386_019_0399_3
crossref_primary_10_3389_fnsys_2021_724805
crossref_primary_10_3389_fneur_2019_00033
crossref_primary_10_3389_fpsyt_2021_764932
crossref_primary_10_3389_fpsyt_2022_877417
crossref_primary_10_1016_j_neuroimage_2023_120087
crossref_primary_10_1093_cercor_bhad193
crossref_primary_10_1002_jmri_27740
crossref_primary_10_3389_fpsyt_2023_1169488
crossref_primary_10_3389_fnins_2019_00634
crossref_primary_10_1162_netn_a_00155
crossref_primary_10_1038_s41598_020_68981_5
crossref_primary_10_1002_hbm_24808
crossref_primary_10_1111_ejn_15040
crossref_primary_10_1109_TMI_2019_2929959
crossref_primary_10_1007_s11571_022_09899_8
crossref_primary_10_1002_hbm_25458
crossref_primary_10_3389_fpsyt_2022_941073
crossref_primary_10_1016_j_neurobiolaging_2020_04_021
crossref_primary_10_1093_cercor_bhab263
crossref_primary_10_1007_s00234_022_03033_5
crossref_primary_10_3389_fnimg_2022_1007668
crossref_primary_10_1007_s11071_023_08328_7
crossref_primary_10_1016_j_dcn_2023_101280
crossref_primary_10_1109_TMI_2019_2904555
crossref_primary_10_1016_j_ejrad_2020_109324
crossref_primary_10_1089_brain_2018_0641
crossref_primary_10_17335_sakaifd_1166389
crossref_primary_10_1007_s11071_019_04914_w
crossref_primary_10_1177_1087054720964561
crossref_primary_10_3389_fnins_2024_1429084
crossref_primary_10_1093_cercor_bhac038
crossref_primary_10_1093_scan_nsab080
crossref_primary_10_1016_j_isci_2024_110713
crossref_primary_10_3988_jcn_2022_18_5_581
crossref_primary_10_3389_fninf_2022_960607
crossref_primary_10_3758_s13415_019_00718_y
crossref_primary_10_3389_fnins_2019_01220
crossref_primary_10_3389_fnins_2021_690743
crossref_primary_10_1002_jmri_27521
crossref_primary_10_1016_j_nicl_2022_103207
crossref_primary_10_1016_j_pnpbp_2024_111076
crossref_primary_10_3389_fnins_2022_770468
crossref_primary_10_1016_j_brainres_2024_149401
crossref_primary_10_1016_j_neuroimage_2020_117438
crossref_primary_10_1162_netn_a_00372
crossref_primary_10_1007_s10803_024_06661_3
crossref_primary_10_1016_j_neuroimage_2021_118188
crossref_primary_10_1002_hbm_24902
crossref_primary_10_1093_cercor_bhad455
Cites_doi 10.3389/fpsyt.2016.00205
10.1073/pnas.0800376105
10.1093/biostatistics/kxm045
10.1016/j.neuroimage.2009.12.011
10.1126/science.1194144
10.1016/j.nicl.2014.07.003
10.1093/cercor/bhq071
10.1523/JNEUROSCI.3153-10.2011
10.1016/j.neuroimage.2012.11.008
10.1016/j.neuroimage.2015.04.057
10.3389/fnhum.2015.00418
10.1002/hbm.23737
10.1371/journal.pone.0025278
10.1002/brb3.809
10.1016/j.neuroimage.2017.09.020
10.1002/hbm.21170
10.1016/j.dcn.2015.02.001
10.1093/cercor/bhs227
10.1016/j.dcn.2010.10.001
10.1016/j.neuroimage.2014.07.067
10.1002/hbm.22058
10.1109/RBME.2012.2211076
10.1002/hbm.1048
10.1093/cercor/bhs382
10.1093/cercor/bhn117
10.1097/00001756-199909090-00022
10.1523/JNEUROSCI.0969-15.2015
10.1371/journal.pbio.1000157
10.1002/mrm.1910340409
10.1016/j.neuroimage.2013.10.039
10.1089/brain.2011.0007
10.1093/brain/awh199
10.1016/j.neuroimage.2014.03.038
10.1002/hbm.22985
10.1016/j.nicl.2017.05.024
10.3389/fnsys.2011.00002
10.1093/cercor/bhs352
10.1016/j.neubiorev.2016.07.027
10.1016/j.neuron.2014.10.015
10.1016/j.neuroimage.2011.10.018
10.1016/j.neuroimage.2015.07.054
10.1007/s10334-010-0197-8
10.1016/j.neuroimage.2013.05.079
10.1371/journal.pbio.1002328
10.1016/j.jadohealth.2008.01.007
10.1016/j.celrep.2013.10.001
10.1016/j.neuroimage.2010.04.009
10.1523/JNEUROSCI.2612-10.2010
10.1109/TMI.2002.1009383
10.1002/hbm.23086
10.1016/j.neuroimage.2016.04.051
10.1523/JNEUROSCI.4638-14.2015
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
– notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.23896
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
CrossRef

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate FAGHIRI et al
EISSN 1097-0193
EndPage 1117
ExternalDocumentID PMC5807176
29205692
10_1002_hbm_23896
HBM23896
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute on Drug Abuse
– fundername: National Science Foundation
  funderid: 1539067 ; 1631819
– fundername: National Institute of Health
  funderid: P20GM103472/5P20RR021938 ; R01EB005846 ; 1R01DA040487 ; RC2DA029475
– fundername: Eunice Kennedy Shriver National Institute of Child Health & Human Development
– fundername: NIDA NIH HHS
  grantid: R01 DA040487
– fundername: NIBIB NIH HHS
  grantid: R01 EB005846
– fundername: NCRR NIH HHS
  grantid: P20 RR021938
– fundername: NIBIB NIH HHS
  grantid: R01 EB020407
– fundername: NIBIB NIH HHS
  grantid: R01 EB006841
– fundername: NIGMS NIH HHS
  grantid: P20 GM103472
– fundername: NIDA NIH HHS
  grantid: RC2 DA029475
– fundername: ;
– fundername: ;
  grantid: P20GM103472/5P20RR021938 ; R01EB005846 ; 1R01DA040487 ; RC2DA029475
– fundername: ;
  grantid: 1539067 ; 1631819
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGQPQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZT
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
PHGZM
PUEGO
WIN
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5096-bd8b59b3e90a10bf841323c506f0283ffbe86db0d61d39755482b052b0d6dab43
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Tue Sep 30 16:58:44 EDT 2025
Sun Sep 28 07:49:33 EDT 2025
Sat Jul 26 02:19:29 EDT 2025
Thu Apr 03 06:49:02 EDT 2025
Wed Oct 01 01:55:35 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Thu Apr 24 03:18:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5096-bd8b59b3e90a10bf841323c506f0283ffbe86db0d61d39755482b052b0d6dab43
Notes Funding information
National Institute of Health, Grant/Award Numbers: P20GM103472/5P20RR021938, R01EB005846, 1R01DA040487, and RC2DA029475; National Science Foundation, Grant/Award Numbers: 1539067 and 1631819; National Institute on Drug Abuse; Eunice Kennedy Shriver National Institute of Child Health & Human Development
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information National Institute of Health, Grant/Award Numbers: P20GM103472/5P20RR021938, R01EB005846, 1R01DA040487, and RC2DA029475; National Science Foundation, Grant/Award Numbers: 1539067 and 1631819; National Institute on Drug Abuse; Eunice Kennedy Shriver National Institute of Child Health & Human Development
ORCID 0000-0002-5053-8306
0000-0003-1807-6815
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5807176
PMID 29205692
PQID 1999638548
PQPubID 996345
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5807176
proquest_miscellaneous_1973021614
proquest_journals_1999638548
pubmed_primary_29205692
crossref_citationtrail_10_1002_hbm_23896
crossref_primary_10_1002_hbm_23896
wiley_primary_10_1002_hbm_23896_HBM23896
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2018
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2015; 35
2015; 36
2004; 127
2013; 69
2013; 23
1995; 34
2008; 9
2014; 24
2008; 105
2016; 70
2012; 59
2013; 5
2016; 37
2010; 23
2014; 5
2017; 38
2011; 21
1999; 10
2017; 163
2014; 95
2009; 19
2001; 14
2010; 4
2010; 30
2015; 13
2015; 12
2010; 329
2013b; 34
2011; 1
2010
2015; 122
2016; 124
2011; 31
2011; 32
2014; 84
2015; 9
2011; 6
2011; 5
2014; 89
2013a; 80
2016; 7
2017; 15
2002; 21
2016; 134
2017
2016
2009; 7
2008; 42
2014; 102 Pt 2
2012; 5
2010; 52
2010; 50
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
Preti M. G. (e_1_2_8_42_1) 2016
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Vergara V. M. (e_1_2_8_54_1) 2017
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Damaraju E. (e_1_2_8_15_1) 2010; 4
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 105
  start-page: 4028
  year: 2008
  end-page: 4032
  article-title: The maturing architecture of the brain's default network
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 6
  start-page: e25278
  year: 2011
  article-title: Temporal and spatial evolution of brain network topology during the first two years of life
  publication-title: PLoS One
– volume: 52
  start-page: 290
  year: 2010
  end-page: 301
  article-title: Development of functional and structural connectivity within the default mode network in young children
  publication-title: Neuroimage
– volume: 34
  start-page: 2154
  year: 2013b
  end-page: 2177
  article-title: Resting‐state networks show dynamic functional connectivity in awake humans and anesthetized macaques
  publication-title: Human Brain Mapping
– volume: 35
  start-page: 14624
  year: 2015
  end-page: 14635
  article-title: Typical and atypical development of functional connectivity in the face network
  publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience
– volume: 32
  start-page: 2075
  year: 2011
  end-page: 2095
  article-title: Comparison of multi‐subject ICA methods for analysis of fMRI data
  publication-title: Human Brain Mapping
– volume: 124
  start-page: 1149
  year: 2016
  end-page: 1154
  article-title: The Pediatric Imaging, Neurocognition, and Genetics (PING) data repository
  publication-title: NeuroImage
– volume: 5
  start-page: 738
  year: 2013
  end-page: 747
  article-title: Brain hyperconnectivity in children with autism and its links to social deficits
  publication-title: Cell Reports
– volume: 127
  start-page: 1811
  year: 2004
  end-page: 1821
  article-title: Cortical activation and synchronization during sentence comprehension in high‐functioning autism: Evidence of underconnectivity
  publication-title: Brain: A Journal of Neurology
– volume: 89
  start-page: 45
  year: 2014
  end-page: 56
  article-title: Connectivity trajectory across lifespan differentiates the precuneus from the default network
  publication-title: NeuroImage
– volume: 12
  start-page: 165
  year: 2015
  end-page: 174
  article-title: Asymmetric development of dorsal and ventral attention networks in the human brain
  publication-title: Developmental Cognitive Neuroscience
– volume: 7
  start-page: 205
  year: 2016
  article-title: Resting‐state functional connectivity in autism spectrum disorders: A review
  publication-title: Frontiers in Psychiatry
– year: 2016
  article-title: The dynamic functional connectome: State‐of‐the‐art and perspectives
  publication-title: NeuroImage.
– volume: 1
  start-page: 147
  year: 2011
  end-page: 157
  article-title: Connectivity gradients between the default mode and attention control networks
  publication-title: Brain Connectivity
– volume: 122
  start-page: 272
  year: 2015
  end-page: 280
  article-title: A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: Application to schizophrenia, bipolar, and schizoaffective disorders
  publication-title: NeuroImage
– volume: 21
  start-page: 145
  year: 2011
  end-page: 154
  article-title: The functional architecture of the infant brain as revealed by resting‐state fMRI
  publication-title: Cerebral Cortex (New York, N.Y.: 1991)
– start-page: e00809
  year: 2017
  article-title: The effect of preprocessing in dynamic functional network connectivity used to classify mild traumatic brain injury
  publication-title: Brain and Behavior
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
– volume: 5
  start-page: 60
  year: 2012
  end-page: 73
  article-title: Multisubject independent component analysis of fMRI: A decade of intrinsic networks, default mode, and neurodiagnostic discovery
  publication-title: IEEE Reviews in Biomedical Engineering
– volume: 69
  start-page: 157
  year: 2013
  end-page: 197
  article-title: Group information guided ICA for fMRI data analysis
  publication-title: NeuroImage
– volume: 23
  start-page: 2380
  year: 2013
  end-page: 2393
  article-title: The development of hub architecture in the human functional brain network
  publication-title: Cerebral Cortex (New York, N.Y.: 1991)
– volume: 7
  start-page: e1000157
  year: 2009
  article-title: Development of large‐scale functional brain networks in children
  publication-title: PLoS Biology
– volume: 15
  start-page: 513
  year: 2017
  end-page: 524
  article-title: Disruption to control network function correlates with altered dynamic connectivity in the wider autism spectrum
  publication-title: NeuroImage Clinics
– volume: 37
  start-page: 1005
  year: 2016
  end-page: 1025
  article-title: Artifact removal in the context of group ICA: A comparison of single‐subject and group approaches
  publication-title: Human Brain Mapping
– volume: 4
  year: 2010
  article-title: Resting‐state functional connectivity differences in premature children
  publication-title: Frontiers in Systems Neuroscience
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI
  publication-title: Magnetic Resonance in Medicine
– volume: 95
  start-page: 193
  year: 2014
  end-page: 207
  article-title: The development of human amygdala functional connectivity at rest from 4 to 23 years: A cross‐sectional study
  publication-title: NeuroImage
– volume: 14
  start-page: 140
  year: 2001
  end-page: 151
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Human Brain Mapping
– volume: 9
  start-page: 432
  year: 2008
  end-page: 441
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics (Oxford, England)
– volume: 50
  start-page: 81
  year: 2010
  end-page: 98
  article-title: Time‐frequency dynamics of resting‐state brain connectivity measured with fMRI
  publication-title: NeuroImage
– volume: 102 Pt 2
  start-page: 345
  year: 2014
  end-page: 357
  article-title: Changes in structural and functional connectivity among resting‐state networks across the human lifespan
  publication-title: NeuroImage
– volume: 1
  start-page: 187
  year: 2011
  end-page: 197
  article-title: Local brain connectivity and associations with gender and age
  publication-title: Developmental Cognitive Neuroscience
– volume: 5
  start-page: 2
  year: 2011
  article-title: A baseline for the multivariate comparison of resting‐state networks
  publication-title: Frontiers in Systems Neuroscience
– volume: 329
  start-page: 1358
  year: 2010
  end-page: 1361
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science (New York, N.Y.)
– volume: 134
  start-page: 645
  year: 2016
  end-page: 657
  article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting‐state fMRI brain connectivity
  publication-title: NeuroImage
– volume: 5
  start-page: 298
  year: 2014
  end-page: 308
  article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
  publication-title: NeuroImage Clinics
– year: 2010
– volume: 163
  start-page: 160
  year: 2017
  end-page: 176
  article-title: Replicability of time‐varying connectivity patterns in large resting state fMRI samples
  publication-title: NeuroImage
– volume: 23
  start-page: 351
  year: 2010
  end-page: 366
  article-title: A method for evaluating dynamic functional network connectivity and task‐modulation: Application to schizophrenia
  publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine
– volume: 36
  start-page: 4926
  year: 2015
  end-page: 4937
  article-title: Temporal stability of network centrality in control and default mode networks: Specific associations with externalizing psychopathology in children and adolescents
  publication-title: Human Brain Mapping
– volume: 38
  start-page: 5331
  year: 2017
  end-page: 5342
  article-title: The impact of T1 versus EPI spatial normalization templates for fMRI data analyses
  publication-title: Human Brain Mapping
– volume: 21
  start-page: 470
  year: 2002
  end-page: 484
  article-title: What is the best similarity measure for motion correction in fMRI time series?
  publication-title: IEEE Transactions on Medical Imaging
– volume: 84
  start-page: 262
  year: 2014
  end-page: 274
  article-title: The chronnectome: Time‐varying connectivity networks as the next frontier in fMRI data discovery
  publication-title: Neuron
– volume: 80
  start-page: 360
  year: 2013a
  end-page: 378
  article-title: Dynamic functional connectivity: Promise, issues, and interpretations
  publication-title: NeuroImage
– volume: 31
  start-page: 6405
  year: 2011
  end-page: 6413
  article-title: Variability of brain signals processed locally transforms into higher connectivity with brain development
  publication-title: Journal of Neuroscience
– volume: 30
  start-page: 15034
  year: 2010
  end-page: 15043
  article-title: Growing together and growing apart: Regional and sex differences in the lifespan developmental trajectories of functional homotopy
  publication-title: Journal of Neuroscience
– volume: 24
  start-page: 663
  year: 2014
  end-page: 676
  article-title: Tracking whole‐brain connectivity dynamics in the resting state
  publication-title: Cerebral Cortex
– volume: 70
  start-page: 13
  year: 2016
  end-page: 32
  article-title: The contributions of resting state and task‐based functional connectivity studies to our understanding of adolescent brain network maturation
  publication-title: Neuroscience & Biobehavioral Reviews
– volume: 42
  start-page: 335
  year: 2008
  end-page: 343
  article-title: The teen brain: Insights from neuroimaging. The
  publication-title: Journal of Adolescent Health: Official Publication of the Society for Adolescent Medicine
– volume: 13
  start-page: e1002328
  year: 2015
  article-title: The contribution of network organization and integration to the development of cognitive control
  publication-title: PLoS Biology
– volume: 19
  start-page: 640
  year: 2009
  end-page: 657
  article-title: Development of anterior cingulate functional connectivity from late childhood to early adulthood
  publication-title: Cerebral Cortex
– volume: 10
  start-page: 2817
  year: 1999
  end-page: 2821
  article-title: Myelination and organization of the frontal white matter in children: A diffusion tensor MRI study
  publication-title: Neuroreport
– volume: 24
  start-page: 935
  year: 2014
  end-page: 944
  article-title: Functional connectivity of substantia nigra and ventral tegmental area: Maturation during adolescence and effects of ADHD
  publication-title: Cerebral Cortex
– volume: 9
  start-page: 418
  year: 2015
  article-title: Predicting individual brain maturity using dynamic functional connectivity
  publication-title: Frontiers in Human Neuroscience
– volume: 35
  start-page: 6849
  year: 2015
  end-page: 6859
  article-title: Tracking the brain's functional coupling dynamics over development
  publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience
– ident: e_1_2_8_30_1
  doi: 10.3389/fpsyt.2016.00205
– ident: e_1_2_8_22_1
  doi: 10.1073/pnas.0800376105
– ident: e_1_2_8_26_1
  doi: 10.1093/biostatistics/kxm045
– ident: e_1_2_8_13_1
  doi: 10.1016/j.neuroimage.2009.12.011
– ident: e_1_2_8_3_1
– ident: e_1_2_8_17_1
  doi: 10.1126/science.1194144
– ident: e_1_2_8_14_1
  doi: 10.1016/j.nicl.2014.07.003
– ident: e_1_2_8_24_1
  doi: 10.1093/cercor/bhq071
– ident: e_1_2_8_53_1
  doi: 10.1523/JNEUROSCI.3153-10.2011
– ident: e_1_2_8_19_1
  doi: 10.1016/j.neuroimage.2012.11.008
– ident: e_1_2_8_35_1
  doi: 10.1016/j.neuroimage.2015.04.057
– ident: e_1_2_8_43_1
  doi: 10.3389/fnhum.2015.00418
– ident: e_1_2_8_12_1
  doi: 10.1002/hbm.23737
– ident: e_1_2_8_28_1
  doi: 10.1371/journal.pone.0025278
– start-page: e00809
  year: 2017
  ident: e_1_2_8_54_1
  article-title: The effect of preprocessing in dynamic functional network connectivity used to classify mild traumatic brain injury
  publication-title: Brain and Behavior
  doi: 10.1002/brb3.809
– year: 2016
  ident: e_1_2_8_42_1
  article-title: The dynamic functional connectome: State‐of‐the‐art and perspectives
  publication-title: NeuroImage.
– ident: e_1_2_8_2_1
  doi: 10.1016/j.neuroimage.2017.09.020
– ident: e_1_2_8_21_1
  doi: 10.1002/hbm.21170
– ident: e_1_2_8_23_1
  doi: 10.1016/j.dcn.2015.02.001
– ident: e_1_2_8_34_1
  doi: 10.1093/cercor/bhs227
– ident: e_1_2_8_39_1
  doi: 10.1016/j.dcn.2010.10.001
– ident: e_1_2_8_7_1
  doi: 10.1016/j.neuroimage.2014.07.067
– ident: e_1_2_8_33_1
  doi: 10.1002/hbm.22058
– ident: e_1_2_8_9_1
  doi: 10.1109/RBME.2012.2211076
– ident: e_1_2_8_10_1
  doi: 10.1002/hbm.1048
– ident: e_1_2_8_52_1
  doi: 10.1093/cercor/bhs382
– ident: e_1_2_8_37_1
  doi: 10.1093/cercor/bhn117
– ident: e_1_2_8_38_1
  doi: 10.1097/00001756-199909090-00022
– ident: e_1_2_8_47_1
  doi: 10.1523/JNEUROSCI.0969-15.2015
– ident: e_1_2_8_49_1
  doi: 10.1371/journal.pbio.1000157
– ident: e_1_2_8_8_1
  doi: 10.1002/mrm.1910340409
– ident: e_1_2_8_55_1
  doi: 10.1016/j.neuroimage.2013.10.039
– ident: e_1_2_8_6_1
  doi: 10.1089/brain.2011.0007
– ident: e_1_2_8_36_1
  doi: 10.1093/brain/awh199
– ident: e_1_2_8_27_1
  doi: 10.1016/j.neuroimage.2014.03.038
– ident: e_1_2_8_46_1
  doi: 10.1002/hbm.22985
– ident: e_1_2_8_16_1
  doi: 10.1016/j.nicl.2017.05.024
– ident: e_1_2_8_5_1
  doi: 10.3389/fnsys.2011.00002
– ident: e_1_2_8_4_1
  doi: 10.1093/cercor/bhs352
– ident: e_1_2_8_48_1
  doi: 10.1016/j.neubiorev.2016.07.027
– ident: e_1_2_8_11_1
  doi: 10.1016/j.neuron.2014.10.015
– ident: e_1_2_8_41_1
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: e_1_2_8_20_1
  doi: 10.1016/j.neuroimage.2015.07.054
– ident: e_1_2_8_45_1
  doi: 10.1007/s10334-010-0197-8
– ident: e_1_2_8_32_1
  doi: 10.1016/j.neuroimage.2013.05.079
– ident: e_1_2_8_40_1
  doi: 10.1371/journal.pbio.1002328
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jadohealth.2008.01.007
– volume: 4
  year: 2010
  ident: e_1_2_8_15_1
  article-title: Resting‐state functional connectivity differences in premature children
  publication-title: Frontiers in Systems Neuroscience
– ident: e_1_2_8_50_1
  doi: 10.1016/j.celrep.2013.10.001
– ident: e_1_2_8_51_1
  doi: 10.1016/j.neuroimage.2010.04.009
– ident: e_1_2_8_56_1
  doi: 10.1523/JNEUROSCI.2612-10.2010
– ident: e_1_2_8_25_1
  doi: 10.1109/TMI.2002.1009383
– ident: e_1_2_8_18_1
  doi: 10.1002/hbm.23086
– ident: e_1_2_8_44_1
  doi: 10.1016/j.neuroimage.2016.04.051
– ident: e_1_2_8_31_1
  doi: 10.1523/JNEUROSCI.4638-14.2015
SSID ssj0011501
Score 2.538645
Snippet Brain maturation through adolescence has been the topic of recent studies. Previous works have evaluated changes in morphometry and also changes in functional...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1108
SubjectTerms Adolescent
Adolescents
Age
Brain
Brain - diagnostic imaging
Brain - growth & development
Brain - physiology
Brain Mapping
Child
Child, Preschool
Children
Clustering
Female
Functional magnetic resonance imaging
Humans
Magnetic Resonance Imaging
Male
Morphometry
Neural networks
Neural Pathways - diagnostic imaging
Neural Pathways - growth & development
Neural Pathways - physiology
Rest
Young Adult
Title Changing brain connectivity dynamics: From early childhood to adulthood
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23896
https://www.ncbi.nlm.nih.gov/pubmed/29205692
https://www.proquest.com/docview/1999638548
https://www.proquest.com/docview/1973021614
https://pubmed.ncbi.nlm.nih.gov/PMC5807176
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: RPM
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: OVEED
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1065-9471
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB7Eg3jx_YgvVhHxkpomuzHRk4q1CPUgCh6EkM1uqGhTse1Bf70zu0m0PkC8Nd0J2STz-GZ38g3ALimRztH7KbN0k_PAxTSIu4gl_Dw9FFlsujV0rsL2Lb-8E3cTcFx9C2P5IeoFN7IM46_JwFM5OPggDe3KXgPjTUx0281AmC3a65o6ioCOSbYwxLoxeuCKVcjzD-ozx2PRN4D5vU7yM341Aag1C_fV1G3dyWNjNJSN7O0Lq-M_720OZkpgyk6sJs3DhC4WYPGkwKS898r2mCkVNWvwCzDVKXfkF-HCfJ6A8Y9JajbBMiqcyWxLCqZsu_vBEWu99HtME5kyyyoyZTbsM0P_QQdLcNs6vzlru2VzBjcjxhhXqkiKWAY69tKmJ_MIo6Ef4FiYE2TJc6mjUElPhU2FmAdRS-RLT_j0j0olD5ZhsugXehWYJ6VSKWYuXAqOHiGideRAxJrzLNBh6MB-9ZqSrGQupwYaT4nlXPYTfF6JeV4O7NSiz5au4yehjepdJ6XFDhKiY0BfhNN0YLseRlujDZS00P0RyaA_9BEjcwdWrGrUV6GuXyKMfQcOx5SmFiAe7_GR4qFr-LxFREk13abRid8nnrRPO-bH2t9F12EaMV5ky-Y2YHL4MtKbiKOGcssYzDudShiE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIEEvBdpC3QZYKoS4OHHstWMjLuERTNv0gFopl8ryetdK1cauWucAv74zu7ZpCJUQtzg7ltf2PL6ZXX8D8JaUSOXo_aQu3eTcszEN4jZiCTdPh34W6W4Nk-MgPuUHU3-6Bh-bb2EMP0RbcCPL0P6aDJwK0v3frKEzMe9hwImCB_CQ1ufILL_8aMmjCOrodAuDrB2hD254hRy33566HI1WIObqTsm7CFaHoPETOGsmb3aeXPQWlehlv_7gdfzfu3sKGzU2ZSOjTM9gTRWbsDUqMC-f_2TvmN4tqsvwm_BoUi_Kb8E3_YUChkAmqN8Ey2jvTGa6UjBpOt7ffGDj63LOFPEps6zhU2ZVyTQDCB1sw-n468nn2K77M9gZkcbYQobCj4SnIicdOCIPMSC6Ho4FOaGWPBcqDKRwZDCQCHsQuISucHyX_pGp4N5z6BRloXaAOUJImWLywoXP0SmEVEr2_EhxnnkqCCx437ynJKvJy6mHxmViaJfdBJ9Xop-XBfut6JVh7PibULd52UlttDcJMTKgO8JpWvCmHUZzozWUtFDlgmTQJboIk7kFL4xutFehxl9-ELkWDJe0phUgKu_lkeJ8pim9_ZDyarpNrRT3TzyJP030j91_F30Nj-OTyVFy9P34cA_WEfKFZhddFzrV9UK9RFhViVfaem4BDywcoA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT5xAEJ-cNjG-qD37gdp2bRrTF06EZQ_sk209z9ozTVMTH0wIyy7R6HGXO-7B_vWd2QXqaZsY34AdwgLz8Ztl-A3AB1IinaP3U2bpJueBi2kQdxFL-HnaDbPYdGsYnIr-Gf92Hp634FP9L4zlh2gW3MgyjL8mAx-rfPcvaeilHHYw3sRiAZ5xgdkVIaKfDXcUIR2TbWGMdWN0wTWtkOfvNqfOB6MHCPNhoeRdAGsiUG8VLuq528KT686slJ3s9z1axyfe3BqsVMiUHVhVeg4tXbRh_aDArHx4y3aYqRU1i_BtWBpUn-TX4cj8n4ABkEnqNsEyqpzJbE8Kpmy_--k-601GQ6aJTZllNZsyK0fM8H_Qzgs46x3--tJ3q-4MbkaUMa5UkQxjGejYS_c8mUcYDv0Ax0ROmCXPpY6Ekp4SewpBD8KWyJde6NMRlUoevITFYlTo18A8KZVKMXXhMuToEiJaSA7CWHOeBVoIBz7WrynJKupy6qBxk1jSZT_B55WY5-XA-0Z0bPk6_iW0Vb_rpDLZaUJ8DOiMcJoObDfDaGz0BSUt9GhGMugQfQTJ3IFXVjWaq1Dbr1DEvgPdOaVpBIjIe36kuLo0hN5hRFk13abRif9PPOl_HpiNjceLvoOlH197yffj05NNWEa8F9kSui1YLCcz_QYxVSnfGtv5A6kkG08
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changing+brain+connectivity+dynamics%3A+From+early+childhood+to+adulthood&rft.jtitle=Human+brain+mapping&rft.au=Faghiri%2C+Ashkan&rft.au=Stephen%2C+Julia+M&rft.au=Wang%2C+Yu-Ping&rft.au=Wilson%2C+Tony+W&rft.date=2018-03-01&rft.eissn=1097-0193&rft.volume=39&rft.issue=3&rft.spage=1108&rft_id=info:doi/10.1002%2Fhbm.23896&rft_id=info%3Apmid%2F29205692&rft.externalDocID=29205692
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon