Changing brain connectivity dynamics: From early childhood to adulthood
Brain maturation through adolescence has been the topic of recent studies. Previous works have evaluated changes in morphometry and also changes in functional connectivity. However, most resting‐state fMRI studies have focused on static connectivity. Here we examine the relationship between age/matu...
Saved in:
Published in | Human brain mapping Vol. 39; no. 3; pp. 1108 - 1117 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.03.2018
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 1097-0193 |
DOI | 10.1002/hbm.23896 |
Cover
Abstract | Brain maturation through adolescence has been the topic of recent studies. Previous works have evaluated changes in morphometry and also changes in functional connectivity. However, most resting‐state fMRI studies have focused on static connectivity. Here we examine the relationship between age/maturity and the dynamics of brain functional connectivity. Utilizing a resting fMRI dataset comprised 421 subjects ages 3–22 from the PING study, we first performed group ICA to extract independent components and their time courses. Next, dynamic functional network connectivity (dFNC) was calculated via a sliding window followed by clustering of connectivity patterns into 5 states. Finally, we evaluated the relationship between age and the amount of time each participant spent in each state as well as the transitions among different states. Results showed that older participants tend to spend more time in states which reflect overall stronger connectivity patterns throughout the brain. In addition, the relationship between age and state transition is symmetric. This can mean individuals change functional connectivity through time within a specific set of states. On the whole, results indicated that dynamic functional connectivity is an important factor to consider when examining brain development across childhood. |
---|---|
AbstractList | Brain maturation through adolescence has been the topic of recent studies. Previous works have evaluated changes in morphometry and also changes in functional connectivity. However, most resting-state fMRI studies have focused on static connectivity. Here we examine the relationship between age/maturity and the dynamics of brain functional connectivity. Utilizing a resting fMRI dataset comprised 421 subjects ages 3-22 from the PING study, we first performed group ICA to extract independent components and their time courses. Next, dynamic functional network connectivity (dFNC) was calculated via a sliding window followed by clustering of connectivity patterns into 5 states. Finally, we evaluated the relationship between age and the amount of time each participant spent in each state as well as the transitions among different states. Results showed that older participants tend to spend more time in states which reflect overall stronger connectivity patterns throughout the brain. In addition, the relationship between age and state transition is symmetric. This can mean individuals change functional connectivity through time within a specific set of states. On the whole, results indicated that dynamic functional connectivity is an important factor to consider when examining brain development across childhood.Brain maturation through adolescence has been the topic of recent studies. Previous works have evaluated changes in morphometry and also changes in functional connectivity. However, most resting-state fMRI studies have focused on static connectivity. Here we examine the relationship between age/maturity and the dynamics of brain functional connectivity. Utilizing a resting fMRI dataset comprised 421 subjects ages 3-22 from the PING study, we first performed group ICA to extract independent components and their time courses. Next, dynamic functional network connectivity (dFNC) was calculated via a sliding window followed by clustering of connectivity patterns into 5 states. Finally, we evaluated the relationship between age and the amount of time each participant spent in each state as well as the transitions among different states. Results showed that older participants tend to spend more time in states which reflect overall stronger connectivity patterns throughout the brain. In addition, the relationship between age and state transition is symmetric. This can mean individuals change functional connectivity through time within a specific set of states. On the whole, results indicated that dynamic functional connectivity is an important factor to consider when examining brain development across childhood. Brain maturation through adolescence has been the topic of recent studies. Previous works have evaluated changes in morphometry and also changes in functional connectivity. However, most resting‐state fMRI studies have focused on static connectivity. Here we examine the relationship between age/maturity and the dynamics of brain functional connectivity. Utilizing a resting fMRI dataset comprised 421 subjects ages 3–22 from the PING study, we first performed group ICA to extract independent components and their time courses. Next, dynamic functional network connectivity (dFNC) was calculated via a sliding window followed by clustering of connectivity patterns into 5 states. Finally, we evaluated the relationship between age and the amount of time each participant spent in each state as well as the transitions among different states. Results showed that older participants tend to spend more time in states which reflect overall stronger connectivity patterns throughout the brain. In addition, the relationship between age and state transition is symmetric. This can mean individuals change functional connectivity through time within a specific set of states. On the whole, results indicated that dynamic functional connectivity is an important factor to consider when examining brain development across childhood. Brain maturation through adolescence has been the topic of recent studies. Previous works have evaluated changes in morphometry and also changes in functional connectivity. However, most resting‐state fMRI studies have focused on static connectivity. Here we examine the relationship between age/maturity and the dynamics of brain functional connectivity. Utilizing a resting fMRI dataset comprised 421 subjects ages 3–22 from the PING study, we first performed group ICA to extract independent components and their time courses. Next, dynamic functional network connectivity (dFNC) was calculated via a sliding window followed by clustering of connectivity patterns into 5 states. Finally, we evaluated the relationship between age and the amount of time each participant spent in each state as well as the transitions among different states. Results showed that older participants tend to spend more time in states which reflect overall stronger connectivity patterns throughout the brain. In addition, the relationship between age and state transition is symmetric. This can mean individuals change functional connectivity through time within a specific set of states. On the whole, results indicated that dynamic functional connectivity is an important factor to consider when examining brain development across childhood. |
Author | Faghiri, Ashkan Wang, Yu‐Ping Wilson, Tony W. Stephen, Julia M. Calhoun, Vince D. |
AuthorAffiliation | 5 Department of Neurological Sciences University of Nebraska Medical Center Omaha Nebraska 3 Biomedical Engineering Department Tulane University New Orleans Louisiana 1 The Mind Research Network, 1101 Yale Blvd NE Albuquerque New Mexico 6 Center for Magnetoencephalography University of Nebraska Medical Center Omaha Nebraska 2 Electrical and Computer Engineering Department University of New Mexico Albuquerque New Mexico 4 Center of Genomics and Bioinformatics Tulane University New Orleans Louisiana |
AuthorAffiliation_xml | – name: 1 The Mind Research Network, 1101 Yale Blvd NE Albuquerque New Mexico – name: 5 Department of Neurological Sciences University of Nebraska Medical Center Omaha Nebraska – name: 6 Center for Magnetoencephalography University of Nebraska Medical Center Omaha Nebraska – name: 3 Biomedical Engineering Department Tulane University New Orleans Louisiana – name: 4 Center of Genomics and Bioinformatics Tulane University New Orleans Louisiana – name: 2 Electrical and Computer Engineering Department University of New Mexico Albuquerque New Mexico |
Author_xml | – sequence: 1 givenname: Ashkan orcidid: 0000-0003-1807-6815 surname: Faghiri fullname: Faghiri, Ashkan email: ashkanfa.shirazu@gmail.com organization: University of New Mexico – sequence: 2 givenname: Julia M. surname: Stephen fullname: Stephen, Julia M. organization: The Mind Research Network, 1101 Yale Blvd NE – sequence: 3 givenname: Yu‐Ping surname: Wang fullname: Wang, Yu‐Ping organization: Tulane University – sequence: 4 givenname: Tony W. orcidid: 0000-0002-5053-8306 surname: Wilson fullname: Wilson, Tony W. organization: University of Nebraska Medical Center – sequence: 5 givenname: Vince D. surname: Calhoun fullname: Calhoun, Vince D. organization: University of New Mexico |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29205692$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtv1DAUhS3Uij5gwR9AkdjQRVo_xk7MohId0RapiA2sLb8yceXYxU5a5d_XYaaIVrDy43733GOfI7AXYrAAvEPwFEGIz3o1nGLScvYKHCLImxoiTvaWPaM1XzXoABzlfAshQhSi1-AAcwwp4_gQXK17GTYubCqVpAuVjiFYPbp7N86VmYMcnM6fqssUh8rK5OdK986bPkZTjbGSZvLjcngD9jvps327W4_Bz8svP9bX9c33q6_rzze1ppCzWplWUa6I5VAiqLp2hQgmpcY6iFvSdcq2zChoGDKEN5SuWqwgxcuNkWpFjsH5VvduUoM12oYxSS_ukhtkmkWUTjyvBNeLTbwXtIUNalgR-LgTSPHXZPMoBpe19V4GG6csEG8IxIihZdaHF-htnFIozysU54y0xV6h3v_t6I-Vpz8uwNkW0CnmnGwntBvl6OJi0HmBoFhSFCVF8TvF0nHyouNJ9F_sTv3BeTv_HxTXF9-2HY_omauY |
CitedBy_id | crossref_primary_10_1002_hbm_26200 crossref_primary_10_1007_s00406_024_01854_4 crossref_primary_10_1093_cercor_bhae036 crossref_primary_10_3389_fncom_2022_885126 crossref_primary_10_1093_cercor_bhae396 crossref_primary_10_3390_brainsci13111558 crossref_primary_10_1002_hbm_24064 crossref_primary_10_1016_j_jocn_2025_111053 crossref_primary_10_3389_fnins_2021_621716 crossref_primary_10_1016_j_jad_2021_10_021 crossref_primary_10_1016_j_jneumeth_2019_108531 crossref_primary_10_1111_cns_13994 crossref_primary_10_1109_TBME_2018_2880428 crossref_primary_10_1016_j_jad_2025_02_061 crossref_primary_10_1038_s41398_022_02147_x crossref_primary_10_3389_fnins_2022_1097244 crossref_primary_10_1016_j_nicl_2019_101966 crossref_primary_10_3389_fnins_2022_1008652 crossref_primary_10_1016_j_jad_2018_11_002 crossref_primary_10_1016_j_jpsychires_2024_01_028 crossref_primary_10_1007_s00247_024_06022_3 crossref_primary_10_1038_s41598_024_62635_6 crossref_primary_10_1016_j_neuroimage_2021_118552 crossref_primary_10_1038_s41386_019_0399_3 crossref_primary_10_3389_fnsys_2021_724805 crossref_primary_10_3389_fneur_2019_00033 crossref_primary_10_3389_fpsyt_2021_764932 crossref_primary_10_3389_fpsyt_2022_877417 crossref_primary_10_1016_j_neuroimage_2023_120087 crossref_primary_10_1093_cercor_bhad193 crossref_primary_10_1002_jmri_27740 crossref_primary_10_3389_fpsyt_2023_1169488 crossref_primary_10_3389_fnins_2019_00634 crossref_primary_10_1162_netn_a_00155 crossref_primary_10_1038_s41598_020_68981_5 crossref_primary_10_1002_hbm_24808 crossref_primary_10_1111_ejn_15040 crossref_primary_10_1109_TMI_2019_2929959 crossref_primary_10_1007_s11571_022_09899_8 crossref_primary_10_1002_hbm_25458 crossref_primary_10_3389_fpsyt_2022_941073 crossref_primary_10_1016_j_neurobiolaging_2020_04_021 crossref_primary_10_1093_cercor_bhab263 crossref_primary_10_1007_s00234_022_03033_5 crossref_primary_10_3389_fnimg_2022_1007668 crossref_primary_10_1007_s11071_023_08328_7 crossref_primary_10_1016_j_dcn_2023_101280 crossref_primary_10_1109_TMI_2019_2904555 crossref_primary_10_1016_j_ejrad_2020_109324 crossref_primary_10_1089_brain_2018_0641 crossref_primary_10_17335_sakaifd_1166389 crossref_primary_10_1007_s11071_019_04914_w crossref_primary_10_1177_1087054720964561 crossref_primary_10_3389_fnins_2024_1429084 crossref_primary_10_1093_cercor_bhac038 crossref_primary_10_1093_scan_nsab080 crossref_primary_10_1016_j_isci_2024_110713 crossref_primary_10_3988_jcn_2022_18_5_581 crossref_primary_10_3389_fninf_2022_960607 crossref_primary_10_3758_s13415_019_00718_y crossref_primary_10_3389_fnins_2019_01220 crossref_primary_10_3389_fnins_2021_690743 crossref_primary_10_1002_jmri_27521 crossref_primary_10_1016_j_nicl_2022_103207 crossref_primary_10_1016_j_pnpbp_2024_111076 crossref_primary_10_3389_fnins_2022_770468 crossref_primary_10_1016_j_brainres_2024_149401 crossref_primary_10_1016_j_neuroimage_2020_117438 crossref_primary_10_1162_netn_a_00372 crossref_primary_10_1007_s10803_024_06661_3 crossref_primary_10_1016_j_neuroimage_2021_118188 crossref_primary_10_1002_hbm_24902 crossref_primary_10_1093_cercor_bhad455 |
Cites_doi | 10.3389/fpsyt.2016.00205 10.1073/pnas.0800376105 10.1093/biostatistics/kxm045 10.1016/j.neuroimage.2009.12.011 10.1126/science.1194144 10.1016/j.nicl.2014.07.003 10.1093/cercor/bhq071 10.1523/JNEUROSCI.3153-10.2011 10.1016/j.neuroimage.2012.11.008 10.1016/j.neuroimage.2015.04.057 10.3389/fnhum.2015.00418 10.1002/hbm.23737 10.1371/journal.pone.0025278 10.1002/brb3.809 10.1016/j.neuroimage.2017.09.020 10.1002/hbm.21170 10.1016/j.dcn.2015.02.001 10.1093/cercor/bhs227 10.1016/j.dcn.2010.10.001 10.1016/j.neuroimage.2014.07.067 10.1002/hbm.22058 10.1109/RBME.2012.2211076 10.1002/hbm.1048 10.1093/cercor/bhs382 10.1093/cercor/bhn117 10.1097/00001756-199909090-00022 10.1523/JNEUROSCI.0969-15.2015 10.1371/journal.pbio.1000157 10.1002/mrm.1910340409 10.1016/j.neuroimage.2013.10.039 10.1089/brain.2011.0007 10.1093/brain/awh199 10.1016/j.neuroimage.2014.03.038 10.1002/hbm.22985 10.1016/j.nicl.2017.05.024 10.3389/fnsys.2011.00002 10.1093/cercor/bhs352 10.1016/j.neubiorev.2016.07.027 10.1016/j.neuron.2014.10.015 10.1016/j.neuroimage.2011.10.018 10.1016/j.neuroimage.2015.07.054 10.1007/s10334-010-0197-8 10.1016/j.neuroimage.2013.05.079 10.1371/journal.pbio.1002328 10.1016/j.jadohealth.2008.01.007 10.1016/j.celrep.2013.10.001 10.1016/j.neuroimage.2010.04.009 10.1523/JNEUROSCI.2612-10.2010 10.1109/TMI.2002.1009383 10.1002/hbm.23086 10.1016/j.neuroimage.2016.04.051 10.1523/JNEUROSCI.4638-14.2015 |
ContentType | Journal Article |
Copyright | 2017 Wiley Periodicals, Inc. 2018 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. – notice: 2018 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.23896 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | FAGHIRI et al |
EISSN | 1097-0193 |
EndPage | 1117 |
ExternalDocumentID | PMC5807176 29205692 10_1002_hbm_23896 HBM23896 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute on Drug Abuse – fundername: National Science Foundation funderid: 1539067 ; 1631819 – fundername: National Institute of Health funderid: P20GM103472/5P20RR021938 ; R01EB005846 ; 1R01DA040487 ; RC2DA029475 – fundername: Eunice Kennedy Shriver National Institute of Child Health & Human Development – fundername: NIDA NIH HHS grantid: R01 DA040487 – fundername: NIBIB NIH HHS grantid: R01 EB005846 – fundername: NCRR NIH HHS grantid: P20 RR021938 – fundername: NIBIB NIH HHS grantid: R01 EB020407 – fundername: NIBIB NIH HHS grantid: R01 EB006841 – fundername: NIGMS NIH HHS grantid: P20 GM103472 – fundername: NIDA NIH HHS grantid: RC2 DA029475 – fundername: ; – fundername: ; grantid: P20GM103472/5P20RR021938 ; R01EB005846 ; 1R01DA040487 ; RC2DA029475 – fundername: ; grantid: 1539067 ; 1631819 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AFBPY AFGKR AFKRA AFPKN AFRAH AFZJQ AGQPQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PHGZT PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY AIQQE CITATION PHGZM PUEGO WIN CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5096-bd8b59b3e90a10bf841323c506f0283ffbe86db0d61d39755482b052b0d6dab43 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Tue Sep 30 16:58:44 EDT 2025 Sun Sep 28 07:49:33 EDT 2025 Sat Jul 26 02:19:29 EDT 2025 Thu Apr 03 06:49:02 EDT 2025 Wed Oct 01 01:55:35 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Thu Apr 24 03:18:07 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5096-bd8b59b3e90a10bf841323c506f0283ffbe86db0d61d39755482b052b0d6dab43 |
Notes | Funding information National Institute of Health, Grant/Award Numbers: P20GM103472/5P20RR021938, R01EB005846, 1R01DA040487, and RC2DA029475; National Science Foundation, Grant/Award Numbers: 1539067 and 1631819; National Institute on Drug Abuse; Eunice Kennedy Shriver National Institute of Child Health & Human Development ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information National Institute of Health, Grant/Award Numbers: P20GM103472/5P20RR021938, R01EB005846, 1R01DA040487, and RC2DA029475; National Science Foundation, Grant/Award Numbers: 1539067 and 1631819; National Institute on Drug Abuse; Eunice Kennedy Shriver National Institute of Child Health & Human Development |
ORCID | 0000-0002-5053-8306 0000-0003-1807-6815 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5807176 |
PMID | 29205692 |
PQID | 1999638548 |
PQPubID | 996345 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5807176 proquest_miscellaneous_1973021614 proquest_journals_1999638548 pubmed_primary_29205692 crossref_citationtrail_10_1002_hbm_23896 crossref_primary_10_1002_hbm_23896 wiley_primary_10_1002_hbm_23896_HBM23896 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2018 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Antonio – name: Hoboken |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2015; 35 2015; 36 2004; 127 2013; 69 2013; 23 1995; 34 2008; 9 2014; 24 2008; 105 2016; 70 2012; 59 2013; 5 2016; 37 2010; 23 2014; 5 2017; 38 2011; 21 1999; 10 2017; 163 2014; 95 2009; 19 2001; 14 2010; 4 2010; 30 2015; 13 2015; 12 2010; 329 2013b; 34 2011; 1 2010 2015; 122 2016; 124 2011; 31 2011; 32 2014; 84 2015; 9 2011; 6 2011; 5 2014; 89 2013a; 80 2016; 7 2017; 15 2002; 21 2016; 134 2017 2016 2009; 7 2008; 42 2014; 102 Pt 2 2012; 5 2010; 52 2010; 50 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 Preti M. G. (e_1_2_8_42_1) 2016 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Vergara V. M. (e_1_2_8_54_1) 2017 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Damaraju E. (e_1_2_8_15_1) 2010; 4 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 105 start-page: 4028 year: 2008 end-page: 4032 article-title: The maturing architecture of the brain's default network publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 6 start-page: e25278 year: 2011 article-title: Temporal and spatial evolution of brain network topology during the first two years of life publication-title: PLoS One – volume: 52 start-page: 290 year: 2010 end-page: 301 article-title: Development of functional and structural connectivity within the default mode network in young children publication-title: Neuroimage – volume: 34 start-page: 2154 year: 2013b end-page: 2177 article-title: Resting‐state networks show dynamic functional connectivity in awake humans and anesthetized macaques publication-title: Human Brain Mapping – volume: 35 start-page: 14624 year: 2015 end-page: 14635 article-title: Typical and atypical development of functional connectivity in the face network publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience – volume: 32 start-page: 2075 year: 2011 end-page: 2095 article-title: Comparison of multi‐subject ICA methods for analysis of fMRI data publication-title: Human Brain Mapping – volume: 124 start-page: 1149 year: 2016 end-page: 1154 article-title: The Pediatric Imaging, Neurocognition, and Genetics (PING) data repository publication-title: NeuroImage – volume: 5 start-page: 738 year: 2013 end-page: 747 article-title: Brain hyperconnectivity in children with autism and its links to social deficits publication-title: Cell Reports – volume: 127 start-page: 1811 year: 2004 end-page: 1821 article-title: Cortical activation and synchronization during sentence comprehension in high‐functioning autism: Evidence of underconnectivity publication-title: Brain: A Journal of Neurology – volume: 89 start-page: 45 year: 2014 end-page: 56 article-title: Connectivity trajectory across lifespan differentiates the precuneus from the default network publication-title: NeuroImage – volume: 12 start-page: 165 year: 2015 end-page: 174 article-title: Asymmetric development of dorsal and ventral attention networks in the human brain publication-title: Developmental Cognitive Neuroscience – volume: 7 start-page: 205 year: 2016 article-title: Resting‐state functional connectivity in autism spectrum disorders: A review publication-title: Frontiers in Psychiatry – year: 2016 article-title: The dynamic functional connectome: State‐of‐the‐art and perspectives publication-title: NeuroImage. – volume: 1 start-page: 147 year: 2011 end-page: 157 article-title: Connectivity gradients between the default mode and attention control networks publication-title: Brain Connectivity – volume: 122 start-page: 272 year: 2015 end-page: 280 article-title: A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: Application to schizophrenia, bipolar, and schizoaffective disorders publication-title: NeuroImage – volume: 21 start-page: 145 year: 2011 end-page: 154 article-title: The functional architecture of the infant brain as revealed by resting‐state fMRI publication-title: Cerebral Cortex (New York, N.Y.: 1991) – start-page: e00809 year: 2017 article-title: The effect of preprocessing in dynamic functional network connectivity used to classify mild traumatic brain injury publication-title: Brain and Behavior – volume: 59 start-page: 2142 year: 2012 end-page: 2154 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage – volume: 5 start-page: 60 year: 2012 end-page: 73 article-title: Multisubject independent component analysis of fMRI: A decade of intrinsic networks, default mode, and neurodiagnostic discovery publication-title: IEEE Reviews in Biomedical Engineering – volume: 69 start-page: 157 year: 2013 end-page: 197 article-title: Group information guided ICA for fMRI data analysis publication-title: NeuroImage – volume: 23 start-page: 2380 year: 2013 end-page: 2393 article-title: The development of hub architecture in the human functional brain network publication-title: Cerebral Cortex (New York, N.Y.: 1991) – volume: 7 start-page: e1000157 year: 2009 article-title: Development of large‐scale functional brain networks in children publication-title: PLoS Biology – volume: 15 start-page: 513 year: 2017 end-page: 524 article-title: Disruption to control network function correlates with altered dynamic connectivity in the wider autism spectrum publication-title: NeuroImage Clinics – volume: 37 start-page: 1005 year: 2016 end-page: 1025 article-title: Artifact removal in the context of group ICA: A comparison of single‐subject and group approaches publication-title: Human Brain Mapping – volume: 4 year: 2010 article-title: Resting‐state functional connectivity differences in premature children publication-title: Frontiers in Systems Neuroscience – volume: 34 start-page: 537 year: 1995 end-page: 541 article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI publication-title: Magnetic Resonance in Medicine – volume: 95 start-page: 193 year: 2014 end-page: 207 article-title: The development of human amygdala functional connectivity at rest from 4 to 23 years: A cross‐sectional study publication-title: NeuroImage – volume: 14 start-page: 140 year: 2001 end-page: 151 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Human Brain Mapping – volume: 9 start-page: 432 year: 2008 end-page: 441 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics (Oxford, England) – volume: 50 start-page: 81 year: 2010 end-page: 98 article-title: Time‐frequency dynamics of resting‐state brain connectivity measured with fMRI publication-title: NeuroImage – volume: 102 Pt 2 start-page: 345 year: 2014 end-page: 357 article-title: Changes in structural and functional connectivity among resting‐state networks across the human lifespan publication-title: NeuroImage – volume: 1 start-page: 187 year: 2011 end-page: 197 article-title: Local brain connectivity and associations with gender and age publication-title: Developmental Cognitive Neuroscience – volume: 5 start-page: 2 year: 2011 article-title: A baseline for the multivariate comparison of resting‐state networks publication-title: Frontiers in Systems Neuroscience – volume: 329 start-page: 1358 year: 2010 end-page: 1361 article-title: Prediction of individual brain maturity using fMRI publication-title: Science (New York, N.Y.) – volume: 134 start-page: 645 year: 2016 end-page: 657 article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting‐state fMRI brain connectivity publication-title: NeuroImage – volume: 5 start-page: 298 year: 2014 end-page: 308 article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia publication-title: NeuroImage Clinics – year: 2010 – volume: 163 start-page: 160 year: 2017 end-page: 176 article-title: Replicability of time‐varying connectivity patterns in large resting state fMRI samples publication-title: NeuroImage – volume: 23 start-page: 351 year: 2010 end-page: 366 article-title: A method for evaluating dynamic functional network connectivity and task‐modulation: Application to schizophrenia publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine – volume: 36 start-page: 4926 year: 2015 end-page: 4937 article-title: Temporal stability of network centrality in control and default mode networks: Specific associations with externalizing psychopathology in children and adolescents publication-title: Human Brain Mapping – volume: 38 start-page: 5331 year: 2017 end-page: 5342 article-title: The impact of T1 versus EPI spatial normalization templates for fMRI data analyses publication-title: Human Brain Mapping – volume: 21 start-page: 470 year: 2002 end-page: 484 article-title: What is the best similarity measure for motion correction in fMRI time series? publication-title: IEEE Transactions on Medical Imaging – volume: 84 start-page: 262 year: 2014 end-page: 274 article-title: The chronnectome: Time‐varying connectivity networks as the next frontier in fMRI data discovery publication-title: Neuron – volume: 80 start-page: 360 year: 2013a end-page: 378 article-title: Dynamic functional connectivity: Promise, issues, and interpretations publication-title: NeuroImage – volume: 31 start-page: 6405 year: 2011 end-page: 6413 article-title: Variability of brain signals processed locally transforms into higher connectivity with brain development publication-title: Journal of Neuroscience – volume: 30 start-page: 15034 year: 2010 end-page: 15043 article-title: Growing together and growing apart: Regional and sex differences in the lifespan developmental trajectories of functional homotopy publication-title: Journal of Neuroscience – volume: 24 start-page: 663 year: 2014 end-page: 676 article-title: Tracking whole‐brain connectivity dynamics in the resting state publication-title: Cerebral Cortex – volume: 70 start-page: 13 year: 2016 end-page: 32 article-title: The contributions of resting state and task‐based functional connectivity studies to our understanding of adolescent brain network maturation publication-title: Neuroscience & Biobehavioral Reviews – volume: 42 start-page: 335 year: 2008 end-page: 343 article-title: The teen brain: Insights from neuroimaging. The publication-title: Journal of Adolescent Health: Official Publication of the Society for Adolescent Medicine – volume: 13 start-page: e1002328 year: 2015 article-title: The contribution of network organization and integration to the development of cognitive control publication-title: PLoS Biology – volume: 19 start-page: 640 year: 2009 end-page: 657 article-title: Development of anterior cingulate functional connectivity from late childhood to early adulthood publication-title: Cerebral Cortex – volume: 10 start-page: 2817 year: 1999 end-page: 2821 article-title: Myelination and organization of the frontal white matter in children: A diffusion tensor MRI study publication-title: Neuroreport – volume: 24 start-page: 935 year: 2014 end-page: 944 article-title: Functional connectivity of substantia nigra and ventral tegmental area: Maturation during adolescence and effects of ADHD publication-title: Cerebral Cortex – volume: 9 start-page: 418 year: 2015 article-title: Predicting individual brain maturity using dynamic functional connectivity publication-title: Frontiers in Human Neuroscience – volume: 35 start-page: 6849 year: 2015 end-page: 6859 article-title: Tracking the brain's functional coupling dynamics over development publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience – ident: e_1_2_8_30_1 doi: 10.3389/fpsyt.2016.00205 – ident: e_1_2_8_22_1 doi: 10.1073/pnas.0800376105 – ident: e_1_2_8_26_1 doi: 10.1093/biostatistics/kxm045 – ident: e_1_2_8_13_1 doi: 10.1016/j.neuroimage.2009.12.011 – ident: e_1_2_8_3_1 – ident: e_1_2_8_17_1 doi: 10.1126/science.1194144 – ident: e_1_2_8_14_1 doi: 10.1016/j.nicl.2014.07.003 – ident: e_1_2_8_24_1 doi: 10.1093/cercor/bhq071 – ident: e_1_2_8_53_1 doi: 10.1523/JNEUROSCI.3153-10.2011 – ident: e_1_2_8_19_1 doi: 10.1016/j.neuroimage.2012.11.008 – ident: e_1_2_8_35_1 doi: 10.1016/j.neuroimage.2015.04.057 – ident: e_1_2_8_43_1 doi: 10.3389/fnhum.2015.00418 – ident: e_1_2_8_12_1 doi: 10.1002/hbm.23737 – ident: e_1_2_8_28_1 doi: 10.1371/journal.pone.0025278 – start-page: e00809 year: 2017 ident: e_1_2_8_54_1 article-title: The effect of preprocessing in dynamic functional network connectivity used to classify mild traumatic brain injury publication-title: Brain and Behavior doi: 10.1002/brb3.809 – year: 2016 ident: e_1_2_8_42_1 article-title: The dynamic functional connectome: State‐of‐the‐art and perspectives publication-title: NeuroImage. – ident: e_1_2_8_2_1 doi: 10.1016/j.neuroimage.2017.09.020 – ident: e_1_2_8_21_1 doi: 10.1002/hbm.21170 – ident: e_1_2_8_23_1 doi: 10.1016/j.dcn.2015.02.001 – ident: e_1_2_8_34_1 doi: 10.1093/cercor/bhs227 – ident: e_1_2_8_39_1 doi: 10.1016/j.dcn.2010.10.001 – ident: e_1_2_8_7_1 doi: 10.1016/j.neuroimage.2014.07.067 – ident: e_1_2_8_33_1 doi: 10.1002/hbm.22058 – ident: e_1_2_8_9_1 doi: 10.1109/RBME.2012.2211076 – ident: e_1_2_8_10_1 doi: 10.1002/hbm.1048 – ident: e_1_2_8_52_1 doi: 10.1093/cercor/bhs382 – ident: e_1_2_8_37_1 doi: 10.1093/cercor/bhn117 – ident: e_1_2_8_38_1 doi: 10.1097/00001756-199909090-00022 – ident: e_1_2_8_47_1 doi: 10.1523/JNEUROSCI.0969-15.2015 – ident: e_1_2_8_49_1 doi: 10.1371/journal.pbio.1000157 – ident: e_1_2_8_8_1 doi: 10.1002/mrm.1910340409 – ident: e_1_2_8_55_1 doi: 10.1016/j.neuroimage.2013.10.039 – ident: e_1_2_8_6_1 doi: 10.1089/brain.2011.0007 – ident: e_1_2_8_36_1 doi: 10.1093/brain/awh199 – ident: e_1_2_8_27_1 doi: 10.1016/j.neuroimage.2014.03.038 – ident: e_1_2_8_46_1 doi: 10.1002/hbm.22985 – ident: e_1_2_8_16_1 doi: 10.1016/j.nicl.2017.05.024 – ident: e_1_2_8_5_1 doi: 10.3389/fnsys.2011.00002 – ident: e_1_2_8_4_1 doi: 10.1093/cercor/bhs352 – ident: e_1_2_8_48_1 doi: 10.1016/j.neubiorev.2016.07.027 – ident: e_1_2_8_11_1 doi: 10.1016/j.neuron.2014.10.015 – ident: e_1_2_8_41_1 doi: 10.1016/j.neuroimage.2011.10.018 – ident: e_1_2_8_20_1 doi: 10.1016/j.neuroimage.2015.07.054 – ident: e_1_2_8_45_1 doi: 10.1007/s10334-010-0197-8 – ident: e_1_2_8_32_1 doi: 10.1016/j.neuroimage.2013.05.079 – ident: e_1_2_8_40_1 doi: 10.1371/journal.pbio.1002328 – ident: e_1_2_8_29_1 doi: 10.1016/j.jadohealth.2008.01.007 – volume: 4 year: 2010 ident: e_1_2_8_15_1 article-title: Resting‐state functional connectivity differences in premature children publication-title: Frontiers in Systems Neuroscience – ident: e_1_2_8_50_1 doi: 10.1016/j.celrep.2013.10.001 – ident: e_1_2_8_51_1 doi: 10.1016/j.neuroimage.2010.04.009 – ident: e_1_2_8_56_1 doi: 10.1523/JNEUROSCI.2612-10.2010 – ident: e_1_2_8_25_1 doi: 10.1109/TMI.2002.1009383 – ident: e_1_2_8_18_1 doi: 10.1002/hbm.23086 – ident: e_1_2_8_44_1 doi: 10.1016/j.neuroimage.2016.04.051 – ident: e_1_2_8_31_1 doi: 10.1523/JNEUROSCI.4638-14.2015 |
SSID | ssj0011501 |
Score | 2.538645 |
Snippet | Brain maturation through adolescence has been the topic of recent studies. Previous works have evaluated changes in morphometry and also changes in functional... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1108 |
SubjectTerms | Adolescent Adolescents Age Brain Brain - diagnostic imaging Brain - growth & development Brain - physiology Brain Mapping Child Child, Preschool Children Clustering Female Functional magnetic resonance imaging Humans Magnetic Resonance Imaging Male Morphometry Neural networks Neural Pathways - diagnostic imaging Neural Pathways - growth & development Neural Pathways - physiology Rest Young Adult |
Title | Changing brain connectivity dynamics: From early childhood to adulthood |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23896 https://www.ncbi.nlm.nih.gov/pubmed/29205692 https://www.proquest.com/docview/1999638548 https://www.proquest.com/docview/1973021614 https://pubmed.ncbi.nlm.nih.gov/PMC5807176 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: RPM dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: OVEED dateStart: 19930101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1065-9471 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB7Eg3jx_YgvVhHxkpomuzHRk4q1CPUgCh6EkM1uqGhTse1Bf70zu0m0PkC8Nd0J2STz-GZ38g3ALimRztH7KbN0k_PAxTSIu4gl_Dw9FFlsujV0rsL2Lb-8E3cTcFx9C2P5IeoFN7IM46_JwFM5OPggDe3KXgPjTUx0281AmC3a65o6ioCOSbYwxLoxeuCKVcjzD-ozx2PRN4D5vU7yM341Aag1C_fV1G3dyWNjNJSN7O0Lq-M_720OZkpgyk6sJs3DhC4WYPGkwKS898r2mCkVNWvwCzDVKXfkF-HCfJ6A8Y9JajbBMiqcyWxLCqZsu_vBEWu99HtME5kyyyoyZTbsM0P_QQdLcNs6vzlru2VzBjcjxhhXqkiKWAY69tKmJ_MIo6Ef4FiYE2TJc6mjUElPhU2FmAdRS-RLT_j0j0olD5ZhsugXehWYJ6VSKWYuXAqOHiGideRAxJrzLNBh6MB-9ZqSrGQupwYaT4nlXPYTfF6JeV4O7NSiz5au4yehjepdJ6XFDhKiY0BfhNN0YLseRlujDZS00P0RyaA_9BEjcwdWrGrUV6GuXyKMfQcOx5SmFiAe7_GR4qFr-LxFREk13abRid8nnrRPO-bH2t9F12EaMV5ky-Y2YHL4MtKbiKOGcssYzDudShiE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIEEvBdpC3QZYKoS4OHHstWMjLuERTNv0gFopl8ryetdK1cauWucAv74zu7ZpCJUQtzg7ltf2PL6ZXX8D8JaUSOXo_aQu3eTcszEN4jZiCTdPh34W6W4Nk-MgPuUHU3-6Bh-bb2EMP0RbcCPL0P6aDJwK0v3frKEzMe9hwImCB_CQ1ufILL_8aMmjCOrodAuDrB2hD254hRy33566HI1WIObqTsm7CFaHoPETOGsmb3aeXPQWlehlv_7gdfzfu3sKGzU2ZSOjTM9gTRWbsDUqMC-f_2TvmN4tqsvwm_BoUi_Kb8E3_YUChkAmqN8Ey2jvTGa6UjBpOt7ffGDj63LOFPEps6zhU2ZVyTQDCB1sw-n468nn2K77M9gZkcbYQobCj4SnIicdOCIPMSC6Ho4FOaGWPBcqDKRwZDCQCHsQuISucHyX_pGp4N5z6BRloXaAOUJImWLywoXP0SmEVEr2_EhxnnkqCCx437ynJKvJy6mHxmViaJfdBJ9Xop-XBfut6JVh7PibULd52UlttDcJMTKgO8JpWvCmHUZzozWUtFDlgmTQJboIk7kFL4xutFehxl9-ELkWDJe0phUgKu_lkeJ8pim9_ZDyarpNrRT3TzyJP030j91_F30Nj-OTyVFy9P34cA_WEfKFZhddFzrV9UK9RFhViVfaem4BDywcoA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT5xAEJ-cNjG-qD37gdp2bRrTF06EZQ_sk209z9ozTVMTH0wIyy7R6HGXO-7B_vWd2QXqaZsY34AdwgLz8Ztl-A3AB1IinaP3U2bpJueBi2kQdxFL-HnaDbPYdGsYnIr-Gf92Hp634FP9L4zlh2gW3MgyjL8mAx-rfPcvaeilHHYw3sRiAZ5xgdkVIaKfDXcUIR2TbWGMdWN0wTWtkOfvNqfOB6MHCPNhoeRdAGsiUG8VLuq528KT686slJ3s9z1axyfe3BqsVMiUHVhVeg4tXbRh_aDArHx4y3aYqRU1i_BtWBpUn-TX4cj8n4ABkEnqNsEyqpzJbE8Kpmy_--k-601GQ6aJTZllNZsyK0fM8H_Qzgs46x3--tJ3q-4MbkaUMa5UkQxjGejYS_c8mUcYDv0Ax0ROmCXPpY6Ekp4SewpBD8KWyJde6NMRlUoevITFYlTo18A8KZVKMXXhMuToEiJaSA7CWHOeBVoIBz7WrynJKupy6qBxk1jSZT_B55WY5-XA-0Z0bPk6_iW0Vb_rpDLZaUJ8DOiMcJoObDfDaGz0BSUt9GhGMugQfQTJ3IFXVjWaq1Dbr1DEvgPdOaVpBIjIe36kuLo0hN5hRFk13abRif9PPOl_HpiNjceLvoOlH197yffj05NNWEa8F9kSui1YLCcz_QYxVSnfGtv5A6kkG08 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changing+brain+connectivity+dynamics%3A+From+early+childhood+to+adulthood&rft.jtitle=Human+brain+mapping&rft.au=Faghiri%2C+Ashkan&rft.au=Stephen%2C+Julia+M&rft.au=Wang%2C+Yu-Ping&rft.au=Wilson%2C+Tony+W&rft.date=2018-03-01&rft.eissn=1097-0193&rft.volume=39&rft.issue=3&rft.spage=1108&rft_id=info:doi/10.1002%2Fhbm.23896&rft_id=info%3Apmid%2F29205692&rft.externalDocID=29205692 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |