The contribution of the alternative pathway in complement activation on cell surfaces depends on the strength of classical pathway initiation

Objectives The complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for complement activation. However, the role of the AP in classical pathway (CP) activation has only been studied in ELISA...

Full description

Saved in:
Bibliographic Details
Published inClinical & translational immunology Vol. 12; no. 1; pp. e1436 - n/a
Main Authors Boer, Esther CW, Thielen, Astrid JF, Langereis, Jeroen D, Kamp, Angela, Brouwer, Mieke C, Oskam, Nienke, Jongsma, Marlieke L, Baral, April J, Spaapen, Robbert M, Zeerleder, Sacha, Vidarsson, Gestur, Rispens, Theo, Wouters, Diana, Pouw, Richard B, Jongerius, Ilse
Format Journal Article
LanguageEnglish
Published Australia John Wiley & Sons, Inc 2023
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text
ISSN2050-0068
2050-0068
DOI10.1002/cti2.1436

Cover

Abstract Objectives The complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for complement activation. However, the role of the AP in classical pathway (CP) activation has only been studied in ELISA settings. Here, we investigated its contribution on physiologically relevant surfaces of human cells and bacterial pathogens and in antibody‐mediated complement activation, including in autoimmune haemolytic anaemia (AIHA) setting with autoantibodies against red blood cells (RBCs). Methods We evaluated the contribution of the AP to complement responses initiated through the CP on human RBCs by serum of AIHA patients and recombinant antibodies. Moreover, we studied complement activation on Neisseria meningitidis and Escherichia coli. The effect of the AP was examined using either AP‐depleted sera or antibodies against factor B and factor D. Results We show that the amplification loop is redundant when efficient CP activation takes place. This is independent of the presence of membrane‐bound complement regulators. The role of the AP may become significant when insufficient CP complement activation occurs, but this depends on antibody levels and (sub)class. Our data indicate that therapeutic intervention in the amplification loop will most likely not be effective to treat antibody‐mediated diseases. Conclusion The AP can be bypassed through efficient CP activation. The AP amplification loop has a role in complement activation during conditions of modest activation via the CP, when it can allow for efficient complement‐mediated killing. The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for activation of the complement system. On physiologically relevant surfaces of red blood cells and bacteria, we show that the AP can be bypassed if classical pathway (CP) activation is strong, due to high antibody levels or antibody class. The AP has a role in complement activation during low activation via the CP, when it can allow for efficient complement‐mediated killing.
AbstractList Objectives The complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for complement activation. However, the role of the AP in classical pathway (CP) activation has only been studied in ELISA settings. Here, we investigated its contribution on physiologically relevant surfaces of human cells and bacterial pathogens and in antibody‐mediated complement activation, including in autoimmune haemolytic anaemia (AIHA) setting with autoantibodies against red blood cells (RBCs). Methods We evaluated the contribution of the AP to complement responses initiated through the CP on human RBCs by serum of AIHA patients and recombinant antibodies. Moreover, we studied complement activation on Neisseria meningitidis and Escherichia coli. The effect of the AP was examined using either AP‐depleted sera or antibodies against factor B and factor D. Results We show that the amplification loop is redundant when efficient CP activation takes place. This is independent of the presence of membrane‐bound complement regulators. The role of the AP may become significant when insufficient CP complement activation occurs, but this depends on antibody levels and (sub)class. Our data indicate that therapeutic intervention in the amplification loop will most likely not be effective to treat antibody‐mediated diseases. Conclusion The AP can be bypassed through efficient CP activation. The AP amplification loop has a role in complement activation during conditions of modest activation via the CP, when it can allow for efficient complement‐mediated killing. The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for activation of the complement system. On physiologically relevant surfaces of red blood cells and bacteria, we show that the AP can be bypassed if classical pathway (CP) activation is strong, due to high antibody levels or antibody class. The AP has a role in complement activation during low activation via the CP, when it can allow for efficient complement‐mediated killing.
ObjectivesThe complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for complement activation. However, the role of the AP in classical pathway (CP) activation has only been studied in ELISA settings. Here, we investigated its contribution on physiologically relevant surfaces of human cells and bacterial pathogens and in antibody-mediated complement activation, including in autoimmune haemolytic anaemia (AIHA) setting with autoantibodies against red blood cells (RBCs).MethodsWe evaluated the contribution of the AP to complement responses initiated through the CP on human RBCs by serum of AIHA patients and recombinant antibodies. Moreover, we studied complement activation on Neisseria meningitidis and Escherichia coli. The effect of the AP was examined using either AP-depleted sera or antibodies against factor B and factor D.ResultsWe show that the amplification loop is redundant when efficient CP activation takes place. This is independent of the presence of membrane-bound complement regulators. The role of the AP may become significant when insufficient CP complement activation occurs, but this depends on antibody levels and (sub)class. Our data indicate that therapeutic intervention in the amplification loop will most likely not be effective to treat antibody-mediated diseases.ConclusionThe AP can be bypassed through efficient CP activation. The AP amplification loop has a role in complement activation during conditions of modest activation via the CP, when it can allow for efficient complement-mediated killing.
Abstract Objectives The complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for complement activation. However, the role of the AP in classical pathway (CP) activation has only been studied in ELISA settings. Here, we investigated its contribution on physiologically relevant surfaces of human cells and bacterial pathogens and in antibody‐mediated complement activation, including in autoimmune haemolytic anaemia (AIHA) setting with autoantibodies against red blood cells (RBCs). Methods We evaluated the contribution of the AP to complement responses initiated through the CP on human RBCs by serum of AIHA patients and recombinant antibodies. Moreover, we studied complement activation on Neisseria meningitidis and Escherichia coli. The effect of the AP was examined using either AP‐depleted sera or antibodies against factor B and factor D. Results We show that the amplification loop is redundant when efficient CP activation takes place. This is independent of the presence of membrane‐bound complement regulators. The role of the AP may become significant when insufficient CP complement activation occurs, but this depends on antibody levels and (sub)class. Our data indicate that therapeutic intervention in the amplification loop will most likely not be effective to treat antibody‐mediated diseases. Conclusion The AP can be bypassed through efficient CP activation. The AP amplification loop has a role in complement activation during conditions of modest activation via the CP, when it can allow for efficient complement‐mediated killing.
The complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for complement activation. However, the role of the AP in classical pathway (CP) activation has only been studied in ELISA settings. Here, we investigated its contribution on physiologically relevant surfaces of human cells and bacterial pathogens and in antibody-mediated complement activation, including in autoimmune haemolytic anaemia (AIHA) setting with autoantibodies against red blood cells (RBCs). We evaluated the contribution of the AP to complement responses initiated through the CP on human RBCs by serum of AIHA patients and recombinant antibodies. Moreover, we studied complement activation on and . The effect of the AP was examined using either AP-depleted sera or antibodies against factor B and factor D. We show that the amplification loop is redundant when efficient CP activation takes place. This is independent of the presence of membrane-bound complement regulators. The role of the AP may become significant when insufficient CP complement activation occurs, but this depends on antibody levels and (sub)class. Our data indicate that therapeutic intervention in the amplification loop will most likely not be effective to treat antibody-mediated diseases. The AP can be bypassed through efficient CP activation. The AP amplification loop has a role in complement activation during conditions of modest activation via the CP, when it can allow for efficient complement-mediated killing.
The complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for complement activation. However, the role of the AP in classical pathway (CP) activation has only been studied in ELISA settings. Here, we investigated its contribution on physiologically relevant surfaces of human cells and bacterial pathogens and in antibody-mediated complement activation, including in autoimmune haemolytic anaemia (AIHA) setting with autoantibodies against red blood cells (RBCs).ObjectivesThe complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for complement activation. However, the role of the AP in classical pathway (CP) activation has only been studied in ELISA settings. Here, we investigated its contribution on physiologically relevant surfaces of human cells and bacterial pathogens and in antibody-mediated complement activation, including in autoimmune haemolytic anaemia (AIHA) setting with autoantibodies against red blood cells (RBCs).We evaluated the contribution of the AP to complement responses initiated through the CP on human RBCs by serum of AIHA patients and recombinant antibodies. Moreover, we studied complement activation on Neisseria meningitidis and Escherichia coli. The effect of the AP was examined using either AP-depleted sera or antibodies against factor B and factor D.MethodsWe evaluated the contribution of the AP to complement responses initiated through the CP on human RBCs by serum of AIHA patients and recombinant antibodies. Moreover, we studied complement activation on Neisseria meningitidis and Escherichia coli. The effect of the AP was examined using either AP-depleted sera or antibodies against factor B and factor D.We show that the amplification loop is redundant when efficient CP activation takes place. This is independent of the presence of membrane-bound complement regulators. The role of the AP may become significant when insufficient CP complement activation occurs, but this depends on antibody levels and (sub)class. Our data indicate that therapeutic intervention in the amplification loop will most likely not be effective to treat antibody-mediated diseases.ResultsWe show that the amplification loop is redundant when efficient CP activation takes place. This is independent of the presence of membrane-bound complement regulators. The role of the AP may become significant when insufficient CP complement activation occurs, but this depends on antibody levels and (sub)class. Our data indicate that therapeutic intervention in the amplification loop will most likely not be effective to treat antibody-mediated diseases.The AP can be bypassed through efficient CP activation. The AP amplification loop has a role in complement activation during conditions of modest activation via the CP, when it can allow for efficient complement-mediated killing.ConclusionThe AP can be bypassed through efficient CP activation. The AP amplification loop has a role in complement activation during conditions of modest activation via the CP, when it can allow for efficient complement-mediated killing.
The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for activation of the complement system. On physiologically relevant surfaces of red blood cells and bacteria, we show that the AP can be bypassed if classical pathway (CP) activation is strong, due to high antibody levels or antibody class. The AP has a role in complement activation during low activation via the CP, when it can allow for efficient complement‐mediated killing.
Author Kamp, Angela
Jongsma, Marlieke L
Spaapen, Robbert M
Pouw, Richard B
Rispens, Theo
Thielen, Astrid JF
Jongerius, Ilse
Brouwer, Mieke C
Oskam, Nienke
Baral, April J
Boer, Esther CW
Langereis, Jeroen D
Zeerleder, Sacha
Wouters, Diana
Vidarsson, Gestur
AuthorAffiliation 2 Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital Amsterdam University Medical Centre Amsterdam The Netherlands
5 Translational and Clinical Research Institute Newcastle upon Tyne UK
3 Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands
9 Centre for Infectious Disease Control National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands
10 Sanquin Health Solutions Amsterdam The Netherlands
6 Department of Hematology, Luzerner Kantonsspital Luzern and University of Bern Bern Switzerland
1 Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centre Amsterdam The Netherlands
4 Radboud Center for Infectious Diseases, Radboudumc Nijmegen The Netherlands
7 Department for BioMedical Research University of Bern Bern Switzerland
8 Department of Experimental Immunohemat
AuthorAffiliation_xml – name: 1 Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centre Amsterdam The Netherlands
– name: 3 Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands
– name: 9 Centre for Infectious Disease Control National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands
– name: 7 Department for BioMedical Research University of Bern Bern Switzerland
– name: 8 Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory Amsterdam University Medical Center Amsterdam The Netherlands
– name: 4 Radboud Center for Infectious Diseases, Radboudumc Nijmegen The Netherlands
– name: 5 Translational and Clinical Research Institute Newcastle upon Tyne UK
– name: 6 Department of Hematology, Luzerner Kantonsspital Luzern and University of Bern Bern Switzerland
– name: 2 Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital Amsterdam University Medical Centre Amsterdam The Netherlands
– name: 10 Sanquin Health Solutions Amsterdam The Netherlands
Author_xml – sequence: 1
  givenname: Esther CW
  orcidid: 0000-0002-8739-3577
  surname: Boer
  fullname: Boer, Esther CW
  organization: Amsterdam University Medical Centre
– sequence: 2
  givenname: Astrid JF
  surname: Thielen
  fullname: Thielen, Astrid JF
  organization: Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centre
– sequence: 3
  givenname: Jeroen D
  orcidid: 0000-0001-5317-3202
  surname: Langereis
  fullname: Langereis, Jeroen D
  organization: Radboud Center for Infectious Diseases, Radboudumc
– sequence: 4
  givenname: Angela
  surname: Kamp
  fullname: Kamp, Angela
  organization: Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centre
– sequence: 5
  givenname: Mieke C
  surname: Brouwer
  fullname: Brouwer, Mieke C
  organization: Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centre
– sequence: 6
  givenname: Nienke
  surname: Oskam
  fullname: Oskam, Nienke
  organization: Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centre
– sequence: 7
  givenname: Marlieke L
  orcidid: 0000-0002-0695-6623
  surname: Jongsma
  fullname: Jongsma, Marlieke L
  organization: Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centre
– sequence: 8
  givenname: April J
  orcidid: 0000-0002-9891-8228
  surname: Baral
  fullname: Baral, April J
  organization: Translational and Clinical Research Institute
– sequence: 9
  givenname: Robbert M
  orcidid: 0000-0002-1329-8606
  surname: Spaapen
  fullname: Spaapen, Robbert M
  organization: Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centre
– sequence: 10
  givenname: Sacha
  orcidid: 0000-0002-2290-2019
  surname: Zeerleder
  fullname: Zeerleder, Sacha
  organization: University of Bern
– sequence: 11
  givenname: Gestur
  orcidid: 0000-0001-5621-003X
  surname: Vidarsson
  fullname: Vidarsson, Gestur
  organization: Amsterdam University Medical Center
– sequence: 12
  givenname: Theo
  orcidid: 0000-0001-9600-1312
  surname: Rispens
  fullname: Rispens, Theo
  organization: Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centre
– sequence: 13
  givenname: Diana
  surname: Wouters
  fullname: Wouters, Diana
  organization: National Institute for Public Health and the Environment (RIVM)
– sequence: 14
  givenname: Richard B
  orcidid: 0000-0003-3469-8454
  surname: Pouw
  fullname: Pouw, Richard B
  email: richard.pouw@sanquin.nl
  organization: Sanquin Health Solutions
– sequence: 15
  givenname: Ilse
  orcidid: 0000-0002-7759-9897
  surname: Jongerius
  fullname: Jongerius, Ilse
  organization: Amsterdam University Medical Centre
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36721662$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1uGyEQgFGVqknTHPoC1Uq9tAcnwC6s91KpsvpjKVIv7hkBO9hYGFxgHfkh-s5lbadyovYEYr75GJh5jS588IDQW4JvCcb0TmdLb0lT8xfoimKGJxjz6cXZ_hLdpLTGGJO6wYzwV-iy5i0lnNMr9HuxgkoHn6NVQ7bBV8FUuZxJlyF6me0Oqq3Mqwe5r6wv6GbrYAM-V7LcvJPHnBIA56o0RCM1pKqHLfg-jYFRlnIEv8yrUa6dTMlq6c60NtuD6A16aaRLcHNar9HPr18Ws--T-x_f5rPP9xPNcMcnDVVQt6Y1qqsNkbxWstOqw1o31DSEsEb10kjeQd8SoKQrsOGYsimhte50fY3mR28f5Fpso93IuBdBWnE4CHEpZMxWOxCGU4aBKdLrtsHFC0oC44ppMwXV4OL6dHRtB7WBXpevidI9kT6NeLsSy7AT3bSUQ0gRfDgJYvg1QMpiY9P4ndJDGJKgbUt43bHyjGv0_hm6DkPpkhsp3nWMtk1bqHfnFf0t5bHrBbg7AjqGlCIYoW0-NKAUaJ0gWIyjJcbREuNolYyPzzIepf9iT_YH62D_f1DMFnN6yPgD21ThIQ
CitedBy_id crossref_primary_10_3390_biomedicines12020455
crossref_primary_10_1182_blood_2024025850
crossref_primary_10_1016_j_imbio_2025_152876
crossref_primary_10_1111_iji_12704
crossref_primary_10_1182_blood_2024026964
crossref_primary_10_3390_ijms26031393
crossref_primary_10_2147_CCID_S502252
crossref_primary_10_3390_cimb45060330
crossref_primary_10_1111_jocd_15956
crossref_primary_10_3389_fimmu_2023_1229806
crossref_primary_10_4049_jimmunol_2300630
crossref_primary_10_1038_s41581_023_00766_1
crossref_primary_10_1016_j_kint_2023_10_035
Cites_doi 10.1038/ni772
10.1007/s00281-021-00859-8
10.1016/j.jim.2018.02.004
10.1016/j.molimm.2015.03.246
10.3389/fimmu.2021.732146
10.1182/blood-2018-09-876136
10.1182/blood.2020006931
10.1182/blood-2012-11-467209
10.1182/blood-2014-02-522128
10.1016/j.molimm.2004.07.043
10.1016/j.mcna.2016.09.007
10.3389/fimmu.2021.602277
10.1126/science.1248943
10.1016/j.molimm.2018.06.008
10.1155/2015/363278
10.1016/0014-5793(93)81108-C
10.1001/jamaophthalmol.2018.1544
10.1056/NEJMc1306326
10.3389/fimmu.2015.00262
10.3324/haematol.2015.128538
10.1073/pnas.261428398
10.1021/acs.jmedchem.9b01870
10.3324/haematol.2020.261826
10.3389/fimmu.2020.578069
10.1111/1744-9987.12763
10.1038/s41573-019-0031-6
10.1016/j.smim.2018.03.003
10.1073/pnas.1019338108
10.1016/j.ajhg.2021.06.002
10.4049/jimmunol.1402013
10.1016/j.molimm.2019.05.012
10.1182/bloodadvances.2018025692
10.1016/j.molimm.2016.06.004
10.4049/jimmunol.2000368
10.1007/s12016-019-08774-5
10.1038/nrneph.2016.70
10.1182/blood-2014-02-556027
10.1084/jem.166.5.1351
10.3324/haematol.2015.128991
10.1111/cei.13368
10.1073/pnas.1901841116
10.1111/j.1365-2249.2004.02627.x
10.1182/blood.2021014955
10.1172/JCI200112023
10.4049/jimmunol.1600648
10.1016/S1567-5769(00)00043-6
10.1016/j.immuni.2016.08.003
10.1016/S0076-6879(97)79049-9
10.3389/fmicb.2016.02004
10.1038/nri2620
10.4049/jimmunol.177.3.1904
10.1007/s00005-013-0229-y
10.1016/j.molimm.2009.09.005
10.1136/ard.58.3.175
10.1016/0161-5890(88)90169-1
10.1172/JCI114384
10.1182/blood-2005-07-2820
10.1056/NEJMoa2029073
10.1016/j.exphem.2014.06.007
10.3389/fimmu.2014.00520
10.4049/jimmunol.2101196
10.1159/000445127
10.1111/trf.15147
10.1016/j.smim.2019.101339
10.1182/blood-2009-05-221549
10.1016/j.molimm.2015.03.011
10.4049/jimmunol.141.5.1602
10.1016/j.micinf.2012.08.002
10.1002/art.41430
10.1007/s00109-021-02102-1
10.1016/S1074-7613(02)00275-3
10.1007/s00018-021-03796-9
10.3389/fimmu.2021.747594
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.
2023 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.
– notice: 2023 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1002/cti2.1436
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Bypassing the complement amplification loop
EISSN 2050-0068
EndPage n/a
ExternalDocumentID oai_doaj_org_article_f6250e5b1dc740bdaebae56b5cf8eb40
PMC9881211
36721662
10_1002_cti2_1436
CTI21436
Genre article
Journal Article
GrantInformation_xml – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  funderid: 015.014.069; 016.131.047
– fundername: Stichting Sanquin Bloedvoorziening
  funderid: PPOC‐12‐038‐PRG; PPOC‐19‐25‐L2476
– fundername: ;
  grantid: 015.014.069; 016.131.047
– fundername: ;
  grantid: PPOC‐12‐038‐PRG; PPOC‐19‐25‐L2476
GroupedDBID 0R~
1OC
24P
3V.
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAHHS
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACXQS
ADBBV
ADKYN
ADPDF
ADRAZ
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
DIK
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
INH
ITC
KQ8
LK8
M48
M7P
M~E
NAO
O9-
OK1
OVD
OVEED
PIMPY
PQQKQ
PROAC
RNTTT
RPM
TEORI
UKHRP
WIN
AAYXX
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5096-42be37f7fb93f1a63ba9cb90cc42f41154bdafa69ed71e21937ff60258123c9c3
IEDL.DBID M48
ISSN 2050-0068
IngestDate Wed Aug 27 01:28:34 EDT 2025
Thu Aug 21 18:38:30 EDT 2025
Fri Sep 05 08:34:50 EDT 2025
Wed Aug 13 06:31:57 EDT 2025
Wed Feb 19 02:25:30 EST 2025
Tue Jul 01 03:51:00 EDT 2025
Thu Apr 24 23:12:10 EDT 2025
Wed Jan 22 16:20:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords complement activation
amplification loop
alternative pathway
classical pathway
antibodies
autoimmune haemolytic anaemia
Language English
License Attribution
2023 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5096-42be37f7fb93f1a63ba9cb90cc42f41154bdafa69ed71e21937ff60258123c9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5317-3202
0000-0001-5621-003X
0000-0003-3469-8454
0000-0002-8739-3577
0000-0002-9891-8228
0000-0001-9600-1312
0000-0002-2290-2019
0000-0002-0695-6623
0000-0002-1329-8606
0000-0002-7759-9897
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/cti2.1436
PMID 36721662
PQID 2769952747
PQPubID 2041959
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_f6250e5b1dc740bdaebae56b5cf8eb40
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9881211
proquest_miscellaneous_2771639519
proquest_journals_2769952747
pubmed_primary_36721662
crossref_citationtrail_10_1002_cti2_1436
crossref_primary_10_1002_cti2_1436
wiley_primary_10_1002_cti2_1436_CTI21436
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationPlace Australia
PublicationPlace_xml – name: Australia
– name: Milton, Queensland
– name: Hoboken
PublicationTitle Clinical & translational immunology
PublicationTitleAlternate Clin Transl Immunology
PublicationYear 2023
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2002; 16
1989; 84
1997; 279
2009; 47
2020; 63
2013; 369
2015; 100
2013; 61
2019; 59
2016; 76
2020; 58
2019; 18
2020; 205
2020; 11
2013; 121
1988; 141
2001; 108
2012; 14
1993; 322
2006; 177
2004; 138
2014; 5
2021; 78
2019; 23
2010; 115
2018; 456
2018; 136
1999; 58
2016; 43
2019; 116
2022; 209
2020; 136
2018; 38
2016; 197
2019; 112
2016; 45
2014; 123
2014; 124
2019; 198
2001; 98
2015; 6
2021; 43
2019; 3
1987; 166
2018; 102
2021; 108
2020; 105
2020; 106
2005; 42
2002; 3
2021; 384
2014; 193
2014; 83
2016; 12
2014; 42
2022; 100
2015; 67
2016; 7
2022; 140
2011; 108
2021; 12
2020; 72
1988; 25
2019; 45
2015; 2015
2009; 9
2001; 1
2017; 101
2006; 107
2019; 133
2014; 343
e_1_2_8_28_1
Baas I (e_1_2_8_35_1) 2020; 105
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
Meulenbroek EM (e_1_2_8_34_1) 2014; 83
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 5
  year: 2014
  article-title: IgG subclasses and allotypes: from structure to effector functions
  publication-title: Front Immunol
– volume: 140
  start-page: 980
  year: 2022
  end-page: 991
  article-title: Sutimlimab in patients with cold agglutinin disease: results of the randomized placebo‐controlled phase 3 CADENZA trial
  publication-title: Blood
– volume: 72
  start-page: 2005
  year: 2020
  end-page: 2016
  article-title: Identification of clinically and Pathophysiologically relevant rheumatoid factor epitopes by engineered IgG targets
  publication-title: Arthritis Rheumatol
– volume: 384
  start-page: 1028
  year: 2021
  end-page: 1037
  article-title: Pegcetacoplan versus eculizumab in paroxysmal nocturnal hemoglobinuria
  publication-title: N Engl J Med
– volume: 279
  start-page: 451
  year: 1997
  end-page: 463
  article-title: Preparation and properties of anti‐biotin antibodies
  publication-title: Methods Enzymol
– volume: 136
  start-page: 666
  year: 2018
  end-page: 677
  article-title: Efficacy and safety of lampalizumab for geographic atrophy due to age‐related macular degeneration: chroma and spectri phase 3 randomized clinical trials
  publication-title: JAMA Ophthalmol
– volume: 107
  start-page: 4865
  year: 2006
  end-page: 4870
  article-title: Deficient alternative complement pathway activation due to factor D deficiency by 2 novel mutations in the complement factor D gene in a family with meningococcal infections
  publication-title: Blood
– volume: 1
  start-page: 445
  year: 2001
  end-page: 459
  article-title: Membrane complement regulatory proteins: insight from animal studies and relevance to human diseases
  publication-title: Int Immunopharmacol
– volume: 138
  start-page: 439
  year: 2004
  end-page: 446
  article-title: The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation
  publication-title: Clin Exp Immunol
– volume: 369
  start-page: 1664
  year: 2013
  end-page: 1667
  article-title: Deficiency in complement factor B
  publication-title: N Engl J Med
– volume: 76
  start-page: 13
  year: 2016
  end-page: 21
  article-title: Sex matters: systemic complement activity of female C57BL/6J and BALB/cJ mice is limited by serum terminal pathway components
  publication-title: Mol Immunol
– volume: 23
  start-page: 4
  year: 2019
  end-page: 21
  article-title: Atypical hemolytic‐uremic syndrome: an update on pathophysiology, diagnosis, and treatment
  publication-title: Ther Apher Dial
– volume: 67
  start-page: 31
  year: 2015
  end-page: 42
  article-title: Atypical aHUS: state of the art
  publication-title: Mol Immunol
– volume: 78
  start-page: 4487
  year: 2021
  end-page: 4505
  article-title: The complement system in age ‐ related macular degeneration
  publication-title: Cell Mol Life Sci
– volume: 116
  start-page: 11900
  year: 2019
  end-page: 11905
  article-title: Insights into IgM‐mediated complement activation based on in situ structures of IgM‐C1‐C4b
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: 1308
  year: 2012
  end-page: 1318
  article-title: Role of the alternative and classical complement activation pathway in complement mediated killing against colony opacity variants during acute pneumococcal otitis media in mice
  publication-title: Microbes Infect
– volume: 61
  start-page: 273
  year: 2013
  end-page: 283
  article-title: Structural and functional overview of the lectin complement pathway: its molecular basis and physiological implication
  publication-title: Arch Immunol Ther Exp (Warsz)
– volume: 166
  start-page: 1351
  year: 1987
  end-page: 1361
  article-title: Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies
  publication-title: J Exp Med
– volume: 108
  start-page: 8761
  year: 2011
  end-page: 8766
  article-title: Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk
  publication-title: Proc Natl Acad Sci USA
– volume: 108
  start-page: 233
  year: 2001
  end-page: 240
  article-title: A family with complement factor D deficiency
  publication-title: J Clin Invest
– volume: 42
  start-page: 857
  year: 2014
  end-page: 861.e1
  article-title: Complement blockade with a C1 esterase inhibitor in paroxysmal nocturnal hemoglobinuria
  publication-title: Exp Hematol
– volume: 47
  start-page: 373
  year: 2009
  end-page: 380
  article-title: The down‐stream effects of mannan‐induced lectin complement pathway activation depend quantitatively on alternative pathway amplification
  publication-title: Mol Immunol
– volume: 322
  start-page: 47
  year: 1993
  end-page: 50
  article-title: Monoclonal anti‐biotin antibodies simulate avidin in the recognition of biotin
  publication-title: FEBS Lett
– volume: 7
  year: 2016
  article-title: Hijacking complement regulatory proteins for bacterial immune evasion
  publication-title: Front Microbiol
– volume: 12
  year: 2021
  article-title: Hijacking factor H for complement immune evasion
  publication-title: Front Immunol
– volume: 105
  start-page: 471
  year: 2020
  end-page: 473
  article-title: Complement C3 inhibition by compstatin Cp40 prevents intra‐ and extravascular hemolysis of red blood cells
  publication-title: Haemotologica
– volume: 67
  start-page: 12
  year: 2015
  end-page: 20
  article-title: Of mice and men: the factor H protein family and complement regulation
  publication-title: Mol Immunol
– volume: 12
  start-page: 383
  year: 2016
  end-page: 401
  article-title: Complement in disease: a defence system turning offensive
  publication-title: Nat Rev Nephrol
– volume: 43
  start-page: 799
  year: 2021
  end-page: 816
  article-title: Halting targeted and collateral damage to red blood cells by the complement system
  publication-title: Semin Immunopathol
– volume: 124
  start-page: 2804
  year: 2014
  end-page: 2811
  article-title: Paroxysmal nocturnal hemoglobinuria
  publication-title: Blood
– volume: 84
  start-page: 1957
  year: 1989
  end-page: 1961
  article-title: Complete and partial deficiencies of complement factor D in a Dutch family
  publication-title: J Clin Invest
– volume: 3
  start-page: 360
  year: 2002
  end-page: 365
  article-title: How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint‐specific autoimmune disease
  publication-title: Nat Immunol
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 11
  article-title: Red blood cell destruction in autoimmune hemolytic anemia: role of complement and potential new targets for therapy
  publication-title: Biomed Res Int
– volume: 43
  start-page: 160
  year: 2016
  end-page: 169
  article-title: Comprehensive analysis of complement genes in patients with atypical hemolytic uremic syndrome
  publication-title: Am J Nephrol
– volume: 3
  start-page: 621
  year: 2019
  end-page: 632
  article-title: Potentiation of complement regulator factor H protects human endothelial cells from complement attack in aHUS sera
  publication-title: Blood Adv
– volume: 6
  start-page: 1778
  year: 2015
  end-page: 1786
  article-title: Complement system part I ‐ molecular mechanisms of activation and regulation
  publication-title: Front Immunol
– volume: 100
  start-page: 269
  year: 2022
  end-page: 284
  article-title: Genetic abnormalities in biopsy ‐ proven, adult ‐ onset hemolytic uremic syndrome and C3 glomerulopathy
  publication-title: J Mol Med
– volume: 63
  start-page: 5697
  year: 2020
  end-page: 5722
  article-title: Discovery of 4‐((2 S,4 S)‐4‐Ethoxy‐1‐((5‐methoxy‐7‐methyl‐1 H‐indol‐4‐yl)methyl)piperidin‐2‐yl)benzoic acid (LNP023), a factor B inhibitor specifically designed to be applicable to treating a diverse array of complement mediated diseases
  publication-title: J Med Chem
– volume: 100
  start-page: 1407
  year: 2015
  end-page: 1414
  article-title: Complement deposition in autoimmune hemolytic anemia is a footprint for difficult‐to‐detect IgM autoantibodies
  publication-title: Haematologica
– volume: 9
  start-page: 729
  year: 2009
  end-page: 740
  article-title: Complement regulators and inhibitory proteins
  publication-title: Nat Rev Immunol
– volume: 106
  start-page: 3188
  year: 2020
  end-page: 3197
  article-title: Danicopan: an oral complement factor D inhibitor for paroxysmal nocturnal hemoglobinuria
  publication-title: Haematologica
– volume: 456
  start-page: 15
  year: 2018
  end-page: 22
  article-title: CRISPR/Cas9 generated human CD46, CD55 and CD59 knockout cell lines as a tool for complement research
  publication-title: J Immunol Methods
– volume: 209
  start-page: 16
  year: 2022
  end-page: 25
  article-title: At critically low antigen densities, IgM hexamers outcompete both IgM Pentamers and IgG1 for human complement deposition and complement‐dependent cytotoxicity
  publication-title: J Immunol
– volume: 45
  start-page: 1
  year: 2019
  end-page: 9
  article-title: Seminars in immunology complement activation and regulation in rheumatic disease
  publication-title: Semin Immunol
– volume: 98
  start-page: 14577
  year: 2001
  end-page: 14582
  article-title: Complement activation in factor D‐deficient mice
  publication-title: Proc Natl Acad Sci USA
– volume: 42
  start-page: 87
  year: 2005
  end-page: 97
  article-title: A novel inhibitor of the alternative complement pathway prevents antiphospholipid antibody‐induced pregnancy loss in mice
  publication-title: Mol Immunol
– volume: 12
  year: 2021
  article-title: Alternative complement pathway inhibition does not abrogate meningococcal killing by serum of vaccinated individuals
  publication-title: Front Immunol
– volume: 45
  start-page: 240
  year: 2016
  end-page: 254
  article-title: Regulation of metabolism and basic cellular processes
  publication-title: Immunity
– volume: 343
  start-page: 1260
  year: 2014
  end-page: 1263
  article-title: Complement is activated by IgG hexamers assembled at the cell surface
  publication-title: Science
– volume: 38
  start-page: 54
  year: 2018
  end-page: 62
  article-title: Intracellular complement activation—an alarm raising mechanism?
  publication-title: Semin Immunol
– volume: 108
  start-page: 1367
  year: 2021
  end-page: 1384
  article-title: Common haplotypes at the CFH locus and low‐frequency variants in CFHR2 and CFHR5 associate with systemic FHR concentrations and age‐related macular degeneration
  publication-title: Am J Hum Genet
– volume: 12
  year: 2021
  article-title: Alternative complement pathway inhibition abrogates pneumococcal Opsonophagocytosis in vaccine‐Naïve, but not in vaccinated individuals
  publication-title: Front Immunol
– volume: 102
  start-page: 89
  year: 2018
  end-page: 119
  article-title: Developments in anti‐complement therapy; from disease to clinical trial
  publication-title: Mol Immunol
– volume: 18
  start-page: 707
  year: 2019
  end-page: 729
  article-title: Clinical promise of next‐generation complement therapeutics
  publication-title: Nat Rev Drug Discov
– volume: 133
  start-page: 530
  year: 2019
  end-page: 539
  article-title: Ravulizumab (ALXN1210) vs eculizumab in adult patients with PNH naive to complement inhibitors: the 301 study
  publication-title: Blood
– volume: 58
  start-page: 175
  year: 1999
  end-page: 181
  article-title: Complement C1s activation in degenerating articular cartilage of rheumatoid arthritis patients: immunohistochemical studies with an active form specific antibody
  publication-title: Ann Rheum Dis
– volume: 123
  start-page: 4015
  year: 2014
  end-page: 4022
  article-title: TNT003, an inhibitor of the serine protease C1s, prevents complement activation induced by cold agglutinins
  publication-title: Blood
– volume: 205
  start-page: 1778
  year: 2020
  end-page: 1786
  article-title: Unravelling the effect of a potentiating anti‐factor H antibody on atypical hemolytic uremic syndrome associated factor H variants
  publication-title: J Immunol
– volume: 100
  start-page: 1388
  year: 2015
  end-page: 1395
  article-title: Complement inhibitors to treat igM‐mediated autoimmune hemolysis
  publication-title: Haematologica
– volume: 197
  start-page: 1762
  year: 2016
  end-page: 1775
  article-title: Antibodies that efficiently form hexamers upon antigen binding can induce complement‐dependent cytotoxicity under complement‐limiting conditions
  publication-title: J Immunol
– volume: 115
  start-page: 379
  year: 2010
  end-page: 387
  article-title: Association of factor H autoantibodies with deletions of CFHR1, CFHR3, CFHR4, and with mutations in CFH, CFI, CD46, and C3 in patients with atypical hemolytic uremic syndrome
  publication-title: Blood
– volume: 193
  start-page: 5567
  year: 2014
  end-page: 5575
  article-title: A novel antibody against human factor B that blocks formation of the C3bB proconvertase and inhibits complement activation in disease models
  publication-title: J Immunol
– volume: 112
  start-page: 256
  year: 2019
  end-page: 265
  article-title: Complement and its environmental determinants in the progression of human rheumatoid arthritis
  publication-title: Mol Immunol
– volume: 177
  start-page: 1904
  year: 2006
  end-page: 1912
  article-title: Alternative complement pathway activation is essential for inflammation and joint destruction in the passive transfer model of collagen‐induced arthritis
  publication-title: J Immunol
– volume: 101
  start-page: 351
  year: 2017
  end-page: 359
  article-title: Autoimmune hemolytic anemia
  publication-title: Med Clin North Am
– volume: 58
  start-page: 229
  year: 2020
  end-page: 251
  article-title: The immunopathology of complement proteins and innate immunity in autoimmune disease
  publication-title: Clin Rev Allergy Immunol
– volume: 16
  start-page: 157
  year: 2002
  end-page: 168
  article-title: Arthritis critically dependent on innate immune system players
  publication-title: Immunity
– volume: 25
  start-page: 485
  year: 1988
  end-page: 494
  article-title: The distortive mechanism for the activation of complement component C1 supported by studies with a monoclonal antibody against the ‘arms’ of C1q
  publication-title: Mol Immunol
– volume: 11
  year: 2020
  article-title: Therapeutic lessons to be learned from the role of complement regulators as double‐edged sword in health and disease
  publication-title: Front Immunol
– volume: 141
  start-page: 1602
  year: 1988
  end-page: 1609
  article-title: Disruption of the internal thioester bond in the third component of complement (C3) results in the exposure of neodeterminants also present on activation products of C3. An analysis with monoclonal antibodies
  publication-title: J Immunol
– volume: 198
  start-page: 381
  year: 2019
  end-page: 389
  article-title: Multi‐component meningococcal serogroup B (MenB)‐4C vaccine induces effective opsonophagocytic killing in children with a complement deficiency
  publication-title: Clin Exp Immunol
– volume: 121
  start-page: 1242
  year: 2013
  end-page: 1244
  article-title: C1‐esterase inhibitor concentrate rescues erythrocytes from complement‐mediated destruction in autoimmune hemolytic anemia
  publication-title: Blood
– volume: 136
  start-page: 1558
  year: 2020
  end-page: 1561
  article-title: The familial risk of developing atypical hemolytic uremic syndrome
  publication-title: Blood
– volume: 59
  start-page: 1359
  year: 2019
  end-page: 1366
  article-title: Development of a recombinant anti‐Vel immunoglobulin M to identify Vel‐negative donors
  publication-title: Transfusion
– volume: 83
  year: 2014
  article-title: Methods for quantitative detection of antibody‐induced complement activation on red blood cells
  publication-title: J Vis Exp
– ident: e_1_2_8_56_1
  doi: 10.1038/ni772
– ident: e_1_2_8_12_1
  doi: 10.1007/s00281-021-00859-8
– ident: e_1_2_8_37_1
  doi: 10.1016/j.jim.2018.02.004
– ident: e_1_2_8_17_1
  doi: 10.1016/j.molimm.2015.03.246
– ident: e_1_2_8_45_1
  doi: 10.3389/fimmu.2021.732146
– ident: e_1_2_8_24_1
  doi: 10.1182/blood-2018-09-876136
– ident: e_1_2_8_18_1
  doi: 10.1182/blood.2020006931
– ident: e_1_2_8_65_1
  doi: 10.1182/blood-2012-11-467209
– ident: e_1_2_8_9_1
  doi: 10.1182/blood-2014-02-522128
– ident: e_1_2_8_48_1
  doi: 10.1016/j.molimm.2004.07.043
– ident: e_1_2_8_11_1
  doi: 10.1016/j.mcna.2016.09.007
– ident: e_1_2_8_58_1
  doi: 10.3389/fimmu.2021.602277
– ident: e_1_2_8_38_1
  doi: 10.1126/science.1248943
– ident: e_1_2_8_26_1
  doi: 10.1016/j.molimm.2018.06.008
– ident: e_1_2_8_22_1
  doi: 10.1155/2015/363278
– ident: e_1_2_8_40_1
  doi: 10.1016/0014-5793(93)81108-C
– ident: e_1_2_8_31_1
  doi: 10.1001/jamaophthalmol.2018.1544
– ident: e_1_2_8_59_1
  doi: 10.1056/NEJMc1306326
– ident: e_1_2_8_2_1
  doi: 10.3389/fimmu.2015.00262
– ident: e_1_2_8_68_1
  doi: 10.3324/haematol.2015.128538
– volume: 83
  year: 2014
  ident: e_1_2_8_34_1
  article-title: Methods for quantitative detection of antibody‐induced complement activation on red blood cells
  publication-title: J Vis Exp
– ident: e_1_2_8_62_1
  doi: 10.1073/pnas.261428398
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.jmedchem.9b01870
– ident: e_1_2_8_33_1
  doi: 10.3324/haematol.2020.261826
– ident: e_1_2_8_7_1
  doi: 10.3389/fimmu.2020.578069
– ident: e_1_2_8_15_1
  doi: 10.1111/1744-9987.12763
– ident: e_1_2_8_27_1
  doi: 10.1038/s41573-019-0031-6
– ident: e_1_2_8_4_1
  doi: 10.1016/j.smim.2018.03.003
– ident: e_1_2_8_20_1
  doi: 10.1073/pnas.1019338108
– ident: e_1_2_8_10_1
  doi: 10.1016/j.ajhg.2021.06.002
– ident: e_1_2_8_49_1
  doi: 10.4049/jimmunol.1402013
– ident: e_1_2_8_55_1
  doi: 10.1016/j.molimm.2019.05.012
– ident: e_1_2_8_75_1
  doi: 10.1182/bloodadvances.2018025692
– ident: e_1_2_8_51_1
  doi: 10.1016/j.molimm.2016.06.004
– ident: e_1_2_8_76_1
  doi: 10.4049/jimmunol.2000368
– ident: e_1_2_8_6_1
  doi: 10.1007/s12016-019-08774-5
– ident: e_1_2_8_13_1
  doi: 10.1038/nrneph.2016.70
– ident: e_1_2_8_67_1
  doi: 10.1182/blood-2014-02-556027
– ident: e_1_2_8_36_1
  doi: 10.1084/jem.166.5.1351
– ident: e_1_2_8_69_1
  doi: 10.3324/haematol.2015.128991
– ident: e_1_2_8_43_1
  doi: 10.1111/cei.13368
– ident: e_1_2_8_44_1
  doi: 10.1073/pnas.1901841116
– ident: e_1_2_8_29_1
  doi: 10.1111/j.1365-2249.2004.02627.x
– ident: e_1_2_8_25_1
  doi: 10.1182/blood.2021014955
– ident: e_1_2_8_61_1
  doi: 10.1172/JCI200112023
– ident: e_1_2_8_30_1
  doi: 10.4049/jimmunol.1600648
– ident: e_1_2_8_52_1
  doi: 10.1016/S1567-5769(00)00043-6
– ident: e_1_2_8_3_1
  doi: 10.1016/j.immuni.2016.08.003
– ident: e_1_2_8_39_1
  doi: 10.1016/S0076-6879(97)79049-9
– ident: e_1_2_8_57_1
  doi: 10.3389/fmicb.2016.02004
– ident: e_1_2_8_5_1
  doi: 10.1038/nri2620
– ident: e_1_2_8_50_1
  doi: 10.4049/jimmunol.177.3.1904
– ident: e_1_2_8_64_1
  doi: 10.1007/s00005-013-0229-y
– ident: e_1_2_8_28_1
  doi: 10.1016/j.molimm.2009.09.005
– ident: e_1_2_8_54_1
  doi: 10.1136/ard.58.3.175
– ident: e_1_2_8_71_1
  doi: 10.1016/0161-5890(88)90169-1
– ident: e_1_2_8_60_1
  doi: 10.1172/JCI114384
– ident: e_1_2_8_42_1
  doi: 10.1182/blood-2005-07-2820
– ident: e_1_2_8_23_1
  doi: 10.1056/NEJMoa2029073
– ident: e_1_2_8_66_1
  doi: 10.1016/j.exphem.2014.06.007
– ident: e_1_2_8_41_1
  doi: 10.3389/fimmu.2014.00520
– ident: e_1_2_8_73_1
  doi: 10.4049/jimmunol.2101196
– ident: e_1_2_8_8_1
  doi: 10.1159/000445127
– ident: e_1_2_8_72_1
  doi: 10.1111/trf.15147
– ident: e_1_2_8_21_1
  doi: 10.1016/j.smim.2019.101339
– ident: e_1_2_8_19_1
  doi: 10.1182/blood-2009-05-221549
– volume: 105
  start-page: 471
  year: 2020
  ident: e_1_2_8_35_1
  article-title: Complement C3 inhibition by compstatin Cp40 prevents intra‐ and extravascular hemolysis of red blood cells
  publication-title: Haemotologica
– ident: e_1_2_8_53_1
  doi: 10.1016/j.molimm.2015.03.011
– ident: e_1_2_8_70_1
  doi: 10.4049/jimmunol.141.5.1602
– ident: e_1_2_8_63_1
  doi: 10.1016/j.micinf.2012.08.002
– ident: e_1_2_8_74_1
  doi: 10.1002/art.41430
– ident: e_1_2_8_14_1
  doi: 10.1007/s00109-021-02102-1
– ident: e_1_2_8_47_1
  doi: 10.1016/S1074-7613(02)00275-3
– ident: e_1_2_8_16_1
  doi: 10.1007/s00018-021-03796-9
– ident: e_1_2_8_46_1
  doi: 10.3389/fimmu.2021.747594
SSID ssj0001340516
Score 2.314031
Snippet Objectives The complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed...
The complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed forward...
ObjectivesThe complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed...
The complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed forward...
The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for activation of the complement system. On physiologically...
Abstract Objectives The complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1436
SubjectTerms Alternative pathway
amplification loop
Antibodies
Autoantibodies
autoimmune haemolytic anaemia
Autoimmune hemolytic anemia
Classical pathway
Complement activation
Complement system
Escherichia coli
Immune system
Innate immunity
Neisseria meningitidis
Original
Proteins
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELUqDqiXCmhpFwIyVQ9cVuzaXu_6CBEIkMIpSNystdduIqENyoeq_gj-MzP2JiRqql4q5bCKR5bXM7bfzI7fEPKDe85sWTVpkzuVitrx1AiZoatiwKQ8HJp4d3jwIG8fxf1T8bRW6gtzwiI9cJy4Cw8APXOFyRtbisw0tTO1K6QprK-cEcFbz1S25kyF6AoHIJLLJZVQxi5g92CwLQQq5vcDKPD0bwOXf-ZIrmPXcPjc7JFPHWqkl3G0--SDaw_I7qD7Lv6ZvIK2acg678pX0YmnAO1o-BjeBnJvisWHf9W_6bilIZE8BAYpXmyIYVkKP4zj09li6jFTi8YKuTNswM7wXkn7cz7Czi2iblTwWrfjedTzF_J4cz3s36ZdoYXUIvtLKphxvPSlN4r7vJbc1MoalVkrmBdI2APz7mupXFPmDvY4EPYS0BKgA26V5Ydkp5207huhtnBKIqOOa3JhAUxU1tgKQVHOQZUsIefL2de2YyHHYhjPOvInM42K0qiohHxfib5E6o1tQleowpUAsmWHP8CGdGdD-l82lJDe0gB0t4RnmpVSqQKd9oScrZph8aEm6tZNFigD7iYHkKoS8jXay2okXCIvkoQ3LjcsaWOomy3teBQIvlVVIfMezFWwub-_ve4P7xg-HP2PaTgmHxlAuBhg6pGd-XThTgByzc1pWF1vJ9ovGQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaKlW9oAJ9pNDKrTj0EpHYjh2fKkAgqERPIO3Nih0bVqoS2IcQP6L_mRnHu8uqtNIeVuuRN86Mx5_H428I2eeBM6fqNm9Lr3PReJ5bIQvcqlgwqQCLJt4dvvglz67Ez1E1SgG3aUqrXPjE6Kjb3mGM_IApqXWFe6gft3c5Vo3C09VUQuMleVUCEsHSDWqkVjEWDnCklAtCoYIdgA9h4BwiIfNqGYps_c9BzL8zJZ8i2LgEnb4lmwk70sNB2Vvkhe-2yeuLdDq-Q_6AzmnMPU9FrGgfKAA8Go_Eu0jxTbEE8X3zQMcdjenkMTxI8XrDEJyl8MFoPp3OJwHztehQJ3eKDdgZ3i7prmc32LlD7I1qftLteDZo-x25Oj25PD7LU7mF3CEHTC6Y9VwFFazmoWwkt412VhfOCRYE0vbYtgmN1L5VpQdPB8JBAmYCjMCddvw92ej6zn8k1FVeS-TV8W0pHECK2llXIzQqeZCMZeT74u0bl7jIsSTGbzOwKDODijKoqIx8W4reDgQczwkdoQqXAsiZHX_oJ9cmTUEDf1wVvrJl65QoYCzeNr6StnKh9lYUGdlbGIBJE3lqVmaXka_LZpiCqImm8_0cZWDTyQGq6ox8GOxl-SRcIjuShBGrNUtae9T1lm58E2m-dV0j_x68q2hz_x69Ob48Z_jl0_9HsEveMIBoQwBpj2zMJnP_GSDVzH6J8-YRGzUk1w
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access (WRLC)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9qBfFF_Ha1ShQffFm6m2SzG3zSYqlCxYcW-haSbNIeyJ7cB6V_hP-zM8netocVhIM7LnO5zc5M8sts5jcA70UU3LddX_Z10KW0QZROqoq2Kg5NKuKiSbnDx9_V0an8dtac7cDHTS5M5oeYAm7kGWm-Jge3brl_TRqK0wFHPxfqDtyt6Z1oneWP6wCLQCySSp_yqqHsadVtmIUqvj_9ems9SrT9t2HNv49M3oSyaS06fAgPRhDJPmWtP4KdMDyGe8fjY_In8BuVz9Ih9LGaFZtHhkiPpWfjQ-L6ZlSL-NJesdnA0rnyFCdklOeQo7QMXxTWZ8v1ItLBLZYL5i6pgTqjNJPhfHVBnXsC4aTvG93OVlntT-H08MvJwVE51l0oPZHBlJK7INrYRqdFrK0SzmrvdOW95FESf4_rbbRKh76tA055KBwVgicEC8JrL57B7jAfwgtgvglaEcFO6GvpEVt03vmOMFItouK8gA-bu2_8SEpOtTF-mkynzA0pypCiCng3if7KTBy3CX0mFU4CRJ6dvpgvzs3oiwb_uKlC4-ret7LCsQRnQ6Nc42MXnKwK2NsYgBk9eml4q7RuaA9fwNupGX2RNGGHMF-TDO4-BWJWXcDzbC_TlQhFNEkKR9xuWdLWpW63DLOLxPetu46I-PBeJZv79-jNwclXTh9e_r_oK7jPEbflqNIe7K4W6_AacdbKvUn-9AdgAyaV
  priority: 102
  providerName: Wiley-Blackwell
Title The contribution of the alternative pathway in complement activation on cell surfaces depends on the strength of classical pathway initiation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcti2.1436
https://www.ncbi.nlm.nih.gov/pubmed/36721662
https://www.proquest.com/docview/2769952747
https://www.proquest.com/docview/2771639519
https://pubmed.ncbi.nlm.nih.gov/PMC9881211
https://doaj.org/article/f6250e5b1dc740bdaebae56b5cf8eb40
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_6AWMvY91XvbVBG3vYizdbkmXrYYy2tHSDljIayJuxZKkNFGfLB1v_iP3Pu5PtkNAMBsGE6KxYupP10-n0O4D3wgtu86KO69TpWFZOxEaqhJYqBk3K46RJZ4cvLtX5UH4bZaMt6HNsdh0427i0o3xSw-ndx98_77_ggP_cEYh-whcDxxEv1Dbshm0iiuDrUH5wtQhEJSEJKk8yOketip5jaPXutZkpEPhvQp0PgydXQW2Ylc6ewpMOTrKjVv97sOWaZ_Dootswfw5_0AxYCEfv8lqxiWeI-VjYJW8C6zejrMS_qns2bliIMA8eQ0YnHlp_LcMPOfjZbDH1FMLF2tS5MyqgyujASXMzv6XKLcFx0vxKteN5awAvYHh2en1yHncZGGJLtDCx5MaJ3OfeaOHTSglTaWt0Yq3kXhKTj6krXynt6jx1-PJDYa8QRiFsEFZb8RJ2mknj9oHZzGlFVDuuTqVFlFFYYwtCS6nwivMIPvS9X9qOnpyyZNyVLbEyL0lRJSkqgndL0R8tJ8cmoWNS4VKAaLTDD5PpTdmNyhL_OEtcZtLa5jLBtjhTuUyZzPrCGZlEcNAbQNmbZslzpXVGq_kI3i6LcVSSJqrGTRYkg-tQgehVR_CqtZflkwhFhEkKW5yvWdLao66XNOPbwPyti4Io-bCvgs39u_XlyfVXTl9e_09fvYHHHLFb61k6gJ35dOEOEWvNzQC2ubzCaz7KB7B7fHp59X0Q_BaDMMb-AjOqLok
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXGkIAXxDeBAQaBxEu0xHac-AEhGEwtW_fUSX0zsWNvlVAy-qFpP4K_wm_kXidpVzF4m9SHqrbcOPdc-_jaPpeQt9xzZvOiiqvUqViUjsdGyASXKgYg5WHSxLvDoyM5OBbfJtlki_zu78Lgscp-TAwDddVYjJHvslwqleEa6uPZzxizRuHuap9Co4XFgbs4hyXb_MPwC9j3HWP7X8d7g7jLKhBblDqJBTOO5z73RnGflpKbUlmjEmsF8wLVaUxV-lIqV-WpA4eGyl4CNYCpkFtlObR7g9wUuMUI_pNP8nVMhwP9SWUvYJSwXRizGAxGQQB6Pe2F7ABXUdq_T2ZeZsxhytu_R-52XJV-asF1n2y5-gG5Nep24x-SX4AxGs66d0mzaOMpEEoatuDrIClOMeXxeXlBpzUNx9dDOJLidYo2GEzhg7sHdL6ceTwfRtu8vHMswMbwNkt9sjjFxi1yfYTVpWanixZdj8jxtRjiMdmum9o9JdRmTknU8XFVKixQmMIaWyAVS7mXjEXkff_2te20zzEFxw_dqjYzjYbSaKiIvFlVPWsFP66q9BlNuKqAGt3hh2Z2ojuX1_DHWeIyk1Y2Fwn0xZnSZdJk1hfOiCQiOz0AdDdwzPUa5hF5vSoGl0dLlLVrllgHFrkcqLGKyJMWL6sn4RLVmCT0ON9A0sajbpbU09MgK66KAvX-4F0FzP2793pvPGT45dn_e_CK3B6MR4f6cHh08JzcYUAP2-DVDtlezJbuBdC5hXkZfIiS79fttH8AIKhhxg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZpAqGX0necpq1aWujFrC3ZsnUIpXks2aZZQkkgN9eSpWSh2Mk-CPkR_WP9VZ2R5d0sTXsL7GFZCa3lGY2-GY2-IeQDt5zpLK_CKjYyTErDQ5WICF0VBSplYdPEu8NHQ3Fwmnw9S89WyO_uLgymVXY20RnqqtEYI--xTEiZog_Vsz4t4niv__nyKsQKUnjS2pXTKH2ZhWrb0Y35Sx6H5uYa3LnJ9mAPZP-Rsf7-ye5B6CsOhBppUMKEKcMzm1kluY1LwVUptZKR1gmzCTLXqKq0pZCmymIDix06WwGwAbZJrqXmMO4DspbBrg-O4NrO_vD4-yLiwwEcxaKjN4pYDywaA1Pl6KEXm6KrHXAX4P07b_M2nnYbYv8xeeSRLP3Sqt4TsmLqp2T9yJ_VPyO_QAOpy4T3JbVoYynATeoO6GtHOE6xIPJ1eUNHNXXJ7S5YSfGyRRsqpvDBswU6mY0tZo_RtmrvBBtwMLzrUp9PL3BwjZ4AKt2tYUfTVveek9N7EcULslo3tdkgVKdGCmT5MVWcaAA4uVY6R6AWcysYC8in7u0X2jOjY4GOn0XL6cwKFFSBggrI-3nXy5YO5K5OOyjCeQdk8HY_NOPzwhuEAv44jUyq4kpnSQRzMao0qVCptrlRSRSQrU4BCm9WJsViEQTk3bwZDAJKoqxNM8M-4AJzAM4yIC9bfZk_CRfI1SRgxtmSJi096nJLPbpwpOMyz5ENEN6V07l_z77YPRkw_LL5_xm8JeuwgItvg-HhK_KQAXZsI1tbZHU6npnXgPWm6o1fRJT8uO91-wfYbGyh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+contribution+of+the+alternative+pathway+in+complement+activation+on+cell+surfaces+depends+on+the+strength+of+classical+pathway+initiation&rft.jtitle=Clinical+%26+translational+immunology&rft.au=de+Boer%2C+Esther+CW&rft.au=Thielen%2C+Astrid+JF&rft.au=Langereis%2C+Jeroen+D&rft.au=Kamp%2C+Angela&rft.date=2023&rft.issn=2050-0068&rft.eissn=2050-0068&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1002%2Fcti2.1436&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cti2_1436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0068&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0068&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0068&client=summon