Sleep and synaptic down‐selection

The synaptic homeostasis hypothesis (SHY) proposes that sleep is an essential process needed by the brain to maintain the total amount of synaptic strength under control. SHY predicts that by the end of a waking day the synaptic connections of many neural circuits undergo a net increase in synaptic...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 51; no. 1; pp. 413 - 421
Main Authors Tononi, Giulio, Cirelli, Chiara
Format Journal Article
LanguageEnglish
Published France Wiley Subscription Services, Inc 01.01.2020
Subjects
Online AccessGet full text
ISSN0953-816X
1460-9568
1460-9568
DOI10.1111/ejn.14335

Cover

Abstract The synaptic homeostasis hypothesis (SHY) proposes that sleep is an essential process needed by the brain to maintain the total amount of synaptic strength under control. SHY predicts that by the end of a waking day the synaptic connections of many neural circuits undergo a net increase in synaptic strength due to ongoing learning, which is mainly mediated by synaptic potentiation. Stronger synapses require more energy and supplies and are prone to saturation, creating the need for synaptic renormalization. Such renormalization should mainly occur during sleep, when the brain is disconnected from the environment and neural circuits can be broadly reactivated off‐line to undergo a systematic but specific synaptic down‐selection. In short, according to SHY sleep is the price to pay for waking plasticity, to avoid runaway potentiation, decreased signal‐to‐noise ratio, and impaired learning due to saturation. In this review, we briefly discuss the rationale of the hypothesis and recent supportive ultrastructural evidence obtained in our laboratory. We then examine recent studies by other groups showing the causal role of cortical slow waves and hippocampal sharp waves/ripples in sleep‐dependent down‐selection of neural activity and synaptic strength. Finally, we discuss some of the molecular mechanisms that could mediate synaptic weakening during sleep. The synaptic homeostasis hypothesis (SHY): due to ongoing learning synaptic strength increases during wake in many brain circuits, leading to the strengthening of a majority of synapses. This net increase in synaptic strength is followed by synaptic down‐selection during sleep, when the brain is disconnected from the environment, allowing the weakening of the majority of synapses. Learning during waking occurs because the brain adapts to an ever‐changing environment, whether or not the subject is trained in a specific “task.”
AbstractList The synaptic homeostasis hypothesis (SHY) proposes that sleep is an essential process needed by the brain to maintain the total amount of synaptic strength under control. SHY predicts that by the end of a waking day the synaptic connections of many neural circuits undergo a net increase in synaptic strength due to ongoing learning, which is mainly mediated by synaptic potentiation. Stronger synapses require more energy and supplies and are prone to saturation, creating the need for synaptic renormalization. Such renormalization should mainly occur during sleep, when the brain is disconnected from the environment and neural circuits can be broadly reactivated off-line to undergo a systematic but specific synaptic down-selection. In short, according to SHY sleep is the price to pay for waking plasticity, to avoid runaway potentiation, decreased signal-to-noise ratio, and impaired learning due to saturation. In this review we briefly discuss the rationale of the hypothesis and recent supportive ultrastructural evidence obtained in our laboratory. We then examine recent studies by other groups showing the causal role of cortical slow waves and hippocampal sharp waves/ripples in sleep-dependent down-selection of neural activity and synaptic strength. Finally, we discuss some of the molecular mechanisms that could mediate synaptic weakening during sleep. The synaptic homeostasis hypothesis (SHY): due to ongoing learning synaptic strength increases during wake in many brain circuits, leading to the strengthening of a majority of synapses. This net increase in synaptic strength is followed by synaptic down-selection during sleep, when the brain is disconnected from the environment, allowing the weakening of the majority of synapses. Learning during waking occurs because the brain adapts to an ever-changing environment, whether or not the subject is trained in a specific “task”.
The synaptic homeostasis hypothesis (SHY) proposes that sleep is an essential process needed by the brain to maintain the total amount of synaptic strength under control. SHY predicts that by the end of a waking day the synaptic connections of many neural circuits undergo a net increase in synaptic strength due to ongoing learning, which is mainly mediated by synaptic potentiation. Stronger synapses require more energy and supplies and are prone to saturation, creating the need for synaptic renormalization. Such renormalization should mainly occur during sleep, when the brain is disconnected from the environment and neural circuits can be broadly reactivated off-line to undergo a systematic but specific synaptic down-selection. In short, according to SHY sleep is the price to pay for waking plasticity, to avoid runaway potentiation, decreased signal-to-noise ratio, and impaired learning due to saturation. In this review, we briefly discuss the rationale of the hypothesis and recent supportive ultrastructural evidence obtained in our laboratory. We then examine recent studies by other groups showing the causal role of cortical slow waves and hippocampal sharp waves/ripples in sleep-dependent down-selection of neural activity and synaptic strength. Finally, we discuss some of the molecular mechanisms that could mediate synaptic weakening during sleep.The synaptic homeostasis hypothesis (SHY) proposes that sleep is an essential process needed by the brain to maintain the total amount of synaptic strength under control. SHY predicts that by the end of a waking day the synaptic connections of many neural circuits undergo a net increase in synaptic strength due to ongoing learning, which is mainly mediated by synaptic potentiation. Stronger synapses require more energy and supplies and are prone to saturation, creating the need for synaptic renormalization. Such renormalization should mainly occur during sleep, when the brain is disconnected from the environment and neural circuits can be broadly reactivated off-line to undergo a systematic but specific synaptic down-selection. In short, according to SHY sleep is the price to pay for waking plasticity, to avoid runaway potentiation, decreased signal-to-noise ratio, and impaired learning due to saturation. In this review, we briefly discuss the rationale of the hypothesis and recent supportive ultrastructural evidence obtained in our laboratory. We then examine recent studies by other groups showing the causal role of cortical slow waves and hippocampal sharp waves/ripples in sleep-dependent down-selection of neural activity and synaptic strength. Finally, we discuss some of the molecular mechanisms that could mediate synaptic weakening during sleep.
The synaptic homeostasis hypothesis (SHY) proposes that sleep is an essential process needed by the brain to maintain the total amount of synaptic strength under control. SHY predicts that by the end of a waking day the synaptic connections of many neural circuits undergo a net increase in synaptic strength due to ongoing learning, which is mainly mediated by synaptic potentiation. Stronger synapses require more energy and supplies and are prone to saturation, creating the need for synaptic renormalization. Such renormalization should mainly occur during sleep, when the brain is disconnected from the environment and neural circuits can be broadly reactivated off‐line to undergo a systematic but specific synaptic down‐selection. In short, according to SHY sleep is the price to pay for waking plasticity, to avoid runaway potentiation, decreased signal‐to‐noise ratio, and impaired learning due to saturation. In this review, we briefly discuss the rationale of the hypothesis and recent supportive ultrastructural evidence obtained in our laboratory. We then examine recent studies by other groups showing the causal role of cortical slow waves and hippocampal sharp waves/ripples in sleep‐dependent down‐selection of neural activity and synaptic strength. Finally, we discuss some of the molecular mechanisms that could mediate synaptic weakening during sleep.
The synaptic homeostasis hypothesis (SHY) proposes that sleep is an essential process needed by the brain to maintain the total amount of synaptic strength under control. SHY predicts that by the end of a waking day the synaptic connections of many neural circuits undergo a net increase in synaptic strength due to ongoing learning, which is mainly mediated by synaptic potentiation. Stronger synapses require more energy and supplies and are prone to saturation, creating the need for synaptic renormalization. Such renormalization should mainly occur during sleep, when the brain is disconnected from the environment and neural circuits can be broadly reactivated off‐line to undergo a systematic but specific synaptic down‐selection. In short, according to SHY sleep is the price to pay for waking plasticity, to avoid runaway potentiation, decreased signal‐to‐noise ratio, and impaired learning due to saturation. In this review, we briefly discuss the rationale of the hypothesis and recent supportive ultrastructural evidence obtained in our laboratory. We then examine recent studies by other groups showing the causal role of cortical slow waves and hippocampal sharp waves/ripples in sleep‐dependent down‐selection of neural activity and synaptic strength. Finally, we discuss some of the molecular mechanisms that could mediate synaptic weakening during sleep. The synaptic homeostasis hypothesis (SHY): due to ongoing learning synaptic strength increases during wake in many brain circuits, leading to the strengthening of a majority of synapses. This net increase in synaptic strength is followed by synaptic down‐selection during sleep, when the brain is disconnected from the environment, allowing the weakening of the majority of synapses. Learning during waking occurs because the brain adapts to an ever‐changing environment, whether or not the subject is trained in a specific “task.”
Author Tononi, Giulio
Cirelli, Chiara
Author_xml – sequence: 1
  givenname: Giulio
  surname: Tononi
  fullname: Tononi, Giulio
  organization: University of Wisconsin‐Madison
– sequence: 2
  givenname: Chiara
  orcidid: 0000-0003-2563-677X
  surname: Cirelli
  fullname: Cirelli, Chiara
  email: ccirelli@wisc.edu
  organization: University of Wisconsin‐Madison
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30614089$$D View this record in MEDLINE/PubMed
BookMark eNp9kctKAzEUhoMotl4WvoAU3OhiNPfJbAQp9YboQgV3YZqcaso0qZOppTsfwWf0SYxWRQuazVmc7_w5__nX0LIPHhDaInifpHcAQ79POGNiCbUJlzgrhFTLqI0LwTJF5F0LrcU4xBgrycUqajEsCceqaKOd6wpg3Cm97cSZL8eNMx0bpv71-SVCBaZxwW-glUFZRdj8rOvo9rh30z3NLq5OzrpHF5kR6acMJMZ9ahVVfUsFN4owi3NjpIQitTAUA4UZodLQwlqTU8aUGFgpwPZFYSlbR4dz3fGkPwJrwDd1Welx7UZlPdOhdPp3x7sHfR-etJSECiaSwO6nQB0eJxAbPXLRQFWVHsIkakqSfZ7TnCd0ZwEdhkntkz1NGVdcYMLzRG3_3Oh7la_7JWBvDpg6xFjD4BshWL9no1M2-iObxB4ssMY15fuBkxlX_TcxdRXM_pbWvfPL-cQbyzeetA
CitedBy_id crossref_primary_10_2147_NSS_S272176
crossref_primary_10_1038_s41598_023_39984_9
crossref_primary_10_1523_JNEUROSCI_0373_20_2020
crossref_primary_10_1016_j_yebeh_2021_108341
crossref_primary_10_1016_j_nlm_2023_107866
crossref_primary_10_3389_fnetp_2021_830338
crossref_primary_10_3389_fnins_2020_610655
crossref_primary_10_1088_1742_6596_2890_1_012004
crossref_primary_10_2139_ssrn_4151510
crossref_primary_10_3389_fnins_2023_1175478
crossref_primary_10_6065_apem_2448076_038
crossref_primary_10_1111_ejn_14839
crossref_primary_10_1093_sleepadvances_zpab007
crossref_primary_10_1016_j_nlm_2021_107569
crossref_primary_10_1111_epi_16823
crossref_primary_10_1016_j_neuroscience_2022_03_002
crossref_primary_10_1111_jsr_70021
crossref_primary_10_1126_science_abk2734
crossref_primary_10_1016_j_bcp_2021_114533
crossref_primary_10_3389_fpsyt_2024_1456435
crossref_primary_10_1093_braincomms_fcae354
crossref_primary_10_1038_s41467_022_35577_8
crossref_primary_10_1038_s41539_025_00307_4
crossref_primary_10_1093_sleep_zsab006
crossref_primary_10_17116_jnevro2020120081127
crossref_primary_10_1093_sleep_zsaa038
crossref_primary_10_7554_eLife_48881
crossref_primary_10_1038_s41598_022_16478_8
crossref_primary_10_1371_journal_pbio_3002768
crossref_primary_10_1007_s41782_021_00148_2
crossref_primary_10_3389_fphys_2023_1243455
crossref_primary_10_15252_embj_2022111304
crossref_primary_10_1016_j_jsmc_2024_10_004
crossref_primary_10_1016_j_neubiorev_2022_104909
crossref_primary_10_1016_j_smrv_2021_101449
crossref_primary_10_1111_ejn_14560
crossref_primary_10_1111_ejn_16460
crossref_primary_10_1016_j_mhpa_2020_100365
crossref_primary_10_3389_fnins_2022_1013673
crossref_primary_10_1016_j_neubiorev_2024_105574
crossref_primary_10_1016_j_pharmthera_2020_107741
crossref_primary_10_1093_sleep_zsab093
crossref_primary_10_1523_JNEUROSCI_1957_20_2021
crossref_primary_10_3389_fncel_2025_1515922
crossref_primary_10_1152_physrev_00042_2018
crossref_primary_10_1161_STR_0000000000000453
crossref_primary_10_1002_ana_26217
crossref_primary_10_1093_sleep_zsaa143
crossref_primary_10_2183_pjab_101_008
crossref_primary_10_1016_j_bbi_2022_09_016
crossref_primary_10_1038_s41531_022_00391_y
crossref_primary_10_1016_j_cels_2024_06_005
crossref_primary_10_1016_j_yebeh_2020_107513
crossref_primary_10_1371_journal_pcbi_1009045
crossref_primary_10_3390_ijms232012191
crossref_primary_10_1007_s40806_022_00330_3
crossref_primary_10_1016_j_cophys_2020_02_003
crossref_primary_10_1002_npr2_12311
crossref_primary_10_1016_j_tins_2021_09_003
crossref_primary_10_3390_jcm8101737
crossref_primary_10_1016_j_neuroimage_2022_119682
crossref_primary_10_1016_j_cub_2020_02_079
crossref_primary_10_1093_sleep_zsab026
crossref_primary_10_1101_lm_053683_122
crossref_primary_10_1111_ejn_14626
crossref_primary_10_1523_JNEUROSCI_0586_23_2023
crossref_primary_10_1523_ENEURO_0306_19_2019
crossref_primary_10_3390_brainsci11010073
crossref_primary_10_3389_fnins_2022_893015
crossref_primary_10_5664_jcsm_10008
crossref_primary_10_3389_fneur_2023_1272369
crossref_primary_10_1002_hipo_23381
crossref_primary_10_1093_sleep_zsz184
crossref_primary_10_7554_eLife_76384
crossref_primary_10_7554_eLife_63329
crossref_primary_10_1111_ejn_15561
crossref_primary_10_3390_ctn8010006
crossref_primary_10_1016_j_semcdb_2021_02_007
crossref_primary_10_1016_j_bbii_2023_100030
crossref_primary_10_3390_clockssleep2040033
crossref_primary_10_1016_j_cnp_2022_05_002
crossref_primary_10_1007_s43440_021_00232_4
crossref_primary_10_1016_j_isci_2024_110076
crossref_primary_10_1016_j_neuron_2024_04_011
crossref_primary_10_1093_sleep_zsz170
crossref_primary_10_1016_j_neubiorev_2024_105929
crossref_primary_10_1016_j_cub_2025_01_050
crossref_primary_10_1016_j_smrv_2022_101647
crossref_primary_10_1016_j_neuint_2020_104944
crossref_primary_10_1038_s41467_021_23156_2
crossref_primary_10_1093_sleep_zsac022
crossref_primary_10_1523_ENEURO_0184_21_2021
crossref_primary_10_1523_ENEURO_0077_21_2021
crossref_primary_10_3389_fnins_2021_633955
crossref_primary_10_1093_sleep_zsab034
crossref_primary_10_1016_j_sleep_2021_10_025
crossref_primary_10_1093_sleep_zsac246
crossref_primary_10_3389_fnmol_2021_767384
crossref_primary_10_1016_j_cophys_2020_03_005
crossref_primary_10_1016_j_ynstr_2024_100613
crossref_primary_10_1111_jsr_14271
crossref_primary_10_1083_jcb_202401041
crossref_primary_10_3758_s13421_024_01579_8
crossref_primary_10_1038_d41586_024_01559_7
crossref_primary_10_1016_j_patter_2023_100693
crossref_primary_10_1016_j_conb_2020_11_010
crossref_primary_10_3390_biology10100945
crossref_primary_10_1038_s41593_021_00920_7
crossref_primary_10_1073_pnas_2123428119
crossref_primary_10_1093_sleep_zsab160
Cites_doi 10.1152/jn.2001.85.5.1969
10.1038/nn.2384
10.1016/j.neuron.2007.01.029
10.1038/ncomms15405
10.1152/jn.00593.2010
10.1016/j.conb.2017.03.016
10.1016/j.neuron.2018.01.026
10.1016/j.neuron.2013.12.025
10.1126/science.aah5982
10.1038/s41467-017-00748-5
10.1155/2011/203462
10.1016/j.neuron.2018.01.047
10.1038/nature12485
10.1016/j.brainresbull.2008.02.024
10.1126/science.aai8355
10.1016/S0896-6273(03)00814-6
10.1007/BF00288907
10.1038/s41593-018-0150-0
10.1152/physiolgenomics.00189.2007
10.3389/fpsyg.2016.01368
10.1038/nn.4601
10.3389/fncir.2017.00060
10.1016/0306-4522(89)90423-5
10.3389/fncir.2017.00065
10.1016/j.tins.2014.06.005
10.1007/BF00275687
10.1038/s41593-018-0080-x
10.1016/j.neuron.2007.10.030
10.1038/ncomms11828
10.3389/fncir.2017.00061
10.1016/j.neuron.2017.08.008
10.1126/science.aao0862
10.1016/j.neuron.2017.05.021
10.1038/nn2035
10.1523/JNEUROSCI.21-08-02610.2001
10.1016/j.cell.2012.02.062
10.1016/j.neuron.2017.05.029
10.1038/nature15257
10.1038/nature13294
10.1523/JNEUROSCI.20-24-09187.2000
10.1126/science.aao0702
10.1152/physrev.00032.2012
10.1073/pnas.0710131104
10.1523/JNEUROSCI.1813-15.2015
10.1093/cercor/bhs014
10.1073/pnas.1208093110
10.1016/j.smrv.2017.12.006
10.1038/ncomms12455
10.1016/j.celrep.2016.01.061
10.3389/fncir.2014.00009
10.1016/j.celrep.2016.12.085
10.1523/JNEUROSCI.0731-09.2009
10.3389/fneur.2013.00143
10.3389/fncom.2015.00089
10.1126/science.7761831
ContentType Journal Article
Copyright 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Copyright © 2020 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
Copyright_xml – notice: 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
– notice: 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
– notice: Copyright © 2020 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
DBID AAYXX
CITATION
NPM
7QP
7QR
7TK
8FD
FR3
P64
7X8
5PM
DOI 10.1111/ejn.14335
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Chemoreception Abstracts
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
EndPage 421
ExternalDocumentID PMC6612535
30614089
10_1111_ejn_14335
EJN14335
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Institute of Neurological Disorders and Stroke
  funderid: 1P01NS083514
– fundername: National Institute of Mental Health
  funderid: 1R01MH091326; 1R01MH099231
– fundername: NIH Office of the Director
  funderid: DP 1OD579
– fundername: NIH Office of the Director
  grantid: DP 1OD579
– fundername: NIMH NIH HHS
  grantid: R01 MH091326
– fundername: NINDS NIH HHS
  grantid: P01 NS083514
– fundername: NIMH NIH HHS
  grantid: R01 MH099231
– fundername: NIGMS NIH HHS
  grantid: R01 GM075315
– fundername: NIH HHS
  grantid: DP1 OD000579
– fundername: NINDS NIH HHS
  grantid: 1P01NS083514
– fundername: NIMH NIH HHS
  grantid: 1R01MH091326
– fundername: NIMH NIH HHS
  grantid: 1R01MH099231
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
NPM
7QP
7QR
7TK
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5095-e600b2d828bd254c813d07cc66e96000e9f803126c29ddc723385fd65edb59d23
IEDL.DBID DR2
ISSN 0953-816X
1460-9568
IngestDate Tue Sep 30 16:46:57 EDT 2025
Fri Jul 11 02:32:07 EDT 2025
Fri Jul 25 10:04:55 EDT 2025
Thu Apr 03 07:10:06 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Wed Oct 01 03:43:58 EDT 2025
Wed Jan 22 16:34:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords sleep
homeostasis
synapse
synaptic potentiation
serial electron microscopy
Language English
License 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5095-e600b2d828bd254c813d07cc66e96000e9f803126c29ddc723385fd65edb59d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Authors’ contribution. Both authors wrote the paper.
ORCID 0000-0003-2563-677X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6612535
PMID 30614089
PQID 2348450147
PQPubID 34057
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6612535
proquest_miscellaneous_2164547274
proquest_journals_2348450147
pubmed_primary_30614089
crossref_primary_10_1111_ejn_14335
crossref_citationtrail_10_1111_ejn_14335
wiley_primary_10_1111_ejn_14335_EJN14335
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace France
PublicationPlace_xml – name: France
– name: Chichester
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 35
2007; 104
2004; 41
2017; 20
2017; 8
1982; 15
2013; 4
2018; 360
2013; 23
2017; 44
2013; 501
1973; 14
2010; 104
2000; 20
2013; 93
2008; 76
2008; 33
2008; 11
2015; 525
2007; 53
2015; 9
2018; 21
2017; 355
2012; 149
2007; 56
2016; 14
2014; 511
2001; 85
2009; 29
2001; 21
2009; 12
2017; 95
2011; 2011
2017; 96
2016; 7
2018; 39
2014; 81
1989; 31
2018; 359
2017; 11
2014; 37
1995; 268
2017; 18
2013; 110
2014; 8
2018; 97
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_47_1
Hashmi A. (e_1_2_12_23_1) 2013; 4
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_31_1
e_1_2_12_52_1
e_1_2_12_33_1
e_1_2_12_54_1
e_1_2_12_35_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_58_1
e_1_2_12_14_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_50_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_46_1
e_1_2_12_25_1
e_1_2_12_48_1
Cid‐Pellitero E. (e_1_2_12_12_1) 2017; 11
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_36_1
e_1_2_12_15_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_9_1
References_xml – volume: 104
  start-page: 3476
  year: 2010
  end-page: 3493
  article-title: Sleep and synaptic renormalization: A computational study
  publication-title: Journal of Neurophysiology
– volume: 360
  start-page: 1349
  year: 2018
  end-page: 1354
  article-title: Locally coordinated synaptic plasticity of visual cortex neurons in vivo
  publication-title: Science
– volume: 4
  start-page: 144
  year: 2013
  article-title: Sleep dependent synaptic down‐selection (II): Single neuron level benefits for matching, selectivity, and specificity
  publication-title: Frontiers in Sleep and Chronobiology
– volume: 29
  start-page: 6840
  year: 2009
  end-page: 6850
  article-title: Hippocampal place cell firing patterns can induce long‐term synaptic plasticity in vitro
  publication-title: Journal of Neuroscience
– volume: 9
  start-page: 89
  year: 2015
  article-title: Homeostatic role of heterosynaptic plasticity: Models and experiments
  publication-title: Frontiers in Computational Neuroscience
– volume: 511
  start-page: 348
  year: 2014
  end-page: 352
  article-title: Engineering a memory with LTD and LTP
  publication-title: Nature
– volume: 21
  start-page: 843
  year: 2018
  end-page: 850
  article-title: Two distinct mechanisms for experience‐dependent homeostasis
  publication-title: Nature Neuroscience
– volume: 149
  start-page: 886
  year: 2012
  end-page: 898
  article-title: Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIbeta
  publication-title: Cell
– volume: 14
  start-page: 1916
  year: 2016
  end-page: 1929
  article-title: Sharp‐wave ripples orchestrate the induction of synaptic plasticity during reactivation of place cell firing patterns in the hippocampus
  publication-title: Cell Reports
– volume: 18
  start-page: 905
  year: 2017
  end-page: 917
  article-title: Coordinated acetylcholine release in prefrontal cortex and hippocampus is associated with arousal and reward on distinct timescales
  publication-title: Cell Reports
– volume: 268
  start-page: 1158
  year: 1995
  end-page: 1161
  article-title: The “wake‐sleep” algorithm for unsupervised neural networks
  publication-title: Science
– volume: 95
  start-page: 259
  year: 2017
  end-page: 279
  article-title: Memory takes time
  publication-title: Neuron
– volume: 7
  start-page: 1368
  year: 2016
  article-title: The limited capacity of sleep‐dependent memory consolidation
  publication-title: Frontiers in Psychology
– volume: 12
  start-page: 1222
  year: 2009
  end-page: 1223
  article-title: Selective suppression of hippocampal ripples impairs spatial memory
  publication-title: Nature Neuroscience
– volume: 21
  start-page: 2610
  year: 2001
  end-page: 2621
  article-title: The homeostatic regulation of sleep need is under genetic control
  publication-title: Journal of Neuroscience
– volume: 39
  start-page: 1
  year: 2018
  end-page: 2
  article-title: Sleep and plasticity: Waking from a fevered dream
  publication-title: Sleep Medicine Reviews
– volume: 11
  start-page: 200
  year: 2008
  end-page: 208
  article-title: Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep
  publication-title: Nature Neuroscience
– volume: 31
  start-page: 551
  year: 1989
  end-page: 570
  article-title: Two‐stage model of memory trace formation: A role for “noisy” brain states
  publication-title: Neuroscience
– volume: 355
  start-page: 507
  year: 2017
  end-page: 510
  article-title: Ultrastructural evidence for synaptic scaling across the wake/sleep cycle
  publication-title: Science
– volume: 56
  start-page: 582
  year: 2007
  end-page: 592
  article-title: Ubiquitous plasticity and memory storage
  publication-title: Neuron
– volume: 11
  start-page: 65
  year: 2017
  article-title: Plasticity during sleep is linked to specific regulation of cortical circuit activity
  publication-title: Frontiers in Neural Circuits
– volume: 97
  start-page: 1244
  year: 2018
  end-page: 1252
  article-title: Activity‐dependent downscaling of subthreshold synaptic inputs during slow‐wave‐sleep‐like activity in vivo
  publication-title: Neuron
– volume: 76
  start-page: 605
  year: 2008
  end-page: 611
  article-title: Sleep improves the variability of motor performance
  publication-title: Brain Research Bulletin
– volume: 11
  start-page: 61
  year: 2017
  article-title: Linking network activity to synaptic plasticity during sleep: Hypotheses and recent data
  publication-title: Frontiers in Neural Circuits
– volume: 53
  start-page: 703
  year: 2007
  end-page: 717
  article-title: LTP inhibits LTD in the hippocampus via regulation of GSK3beta
  publication-title: Neuron
– volume: 20
  start-page: 1277
  year: 2017
  end-page: 1284
  article-title: Neural reactivations during sleep determine network credit assignment
  publication-title: Nature Neuroscience
– volume: 8
  start-page: 665
  year: 2017
  article-title: Cortical Up states induce the selective weakening of subthreshold synaptic inputs
  publication-title: Nature Communications
– volume: 7
  start-page: 11828
  year: 2016
  article-title: Circadian regulation of human cortical excitability
  publication-title: Nature Communications
– volume: 85
  start-page: 1969
  year: 2001
  end-page: 1985
  article-title: Natural waking and sleep states: A view from inside neocortical neurons
  publication-title: Journal of Neurophysiology
– volume: 23
  start-page: 332
  year: 2013
  end-page: 338
  article-title: Human cortical excitability increases with time awake
  publication-title: Cerebral Cortex
– volume: 81
  start-page: 12
  year: 2014
  end-page: 34
  article-title: Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration
  publication-title: Neuron
– volume: 14
  start-page: 85
  year: 1973
  end-page: 100
  article-title: Self‐organization of orientation sensitive cells in the striate cortex
  publication-title: Kybernetik
– volume: 93
  start-page: 681
  year: 2013
  end-page: 766
  article-title: About sleep's role in memory
  publication-title: Physiological Reviews
– volume: 8
  start-page: 9
  year: 2014
  article-title: Constancy and trade‐offs in the neuroanatomical and metabolic design of the cerebral cortex
  publication-title: Frontiers in Neural Circuits
– volume: 501
  start-page: 543
  year: 2013
  end-page: 546
  article-title: A disinhibitory microcircuit initiates critical‐period plasticity in the visual cortex
  publication-title: Nature
– volume: 21
  start-page: 463
  year: 2018
  end-page: 473
  article-title: Imbalance between firing homeostasis and synaptic plasticity drives early‐phase Alzheimer's disease
  publication-title: Nature Neuroscience
– volume: 37
  start-page: 491
  year: 2014
  end-page: 501
  article-title: Sleep, clocks, and synaptic plasticity
  publication-title: Trends in Neurosciences
– volume: 33
  start-page: 91
  year: 2008
  end-page: 99
  article-title: Analysis of the QTL for sleep homeostasis in mice: Homer1a is a likely candidate
  publication-title: Physiological Genomics
– volume: 96
  start-page: 43
  year: 2017
  end-page: 55
  article-title: Spine dynamics: Are they all the same?
  publication-title: Neuron
– volume: 11
  start-page: 17
  year: 2017
  article-title: Homeostatic changes in GABA and glutamate receptors on excitatory cortical neurons during sleep deprivation and recovery
  publication-title: Frontiers in Systems Neuroscience
– volume: 104
  start-page: 20090
  year: 2007
  end-page: 20095
  article-title: Homer1a is a core brain molecular correlate of sleep loss
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 97
  start-page: 1137
  year: 2018
  end-page: 1152
  article-title: Npas4 Is a critical regulator of learning‐induced plasticity at mossy fiber‐CA3 synapses during contextual memory formation
  publication-title: Neuron
– volume: 2011
  start-page: 203462
  year: 2011
  article-title: Reactivation, replay, and preplay: How it might all fit together
  publication-title: Neural Plasticity
– volume: 359
  start-page: 1524
  year: 2018
  end-page: 1527
  article-title: Hippocampal ripples down‐regulate synapses
  publication-title: Science
– volume: 8
  start-page: 15405
  year: 2017
  article-title: Deep sleep maintains learning efficiency of the human brain
  publication-title: Nature Communications
– volume: 110
  start-page: 3101
  year: 2013
  end-page: 3106
  article-title: Visual experience and subsequent sleep induce sequential plastic changes in putative inhibitory and excitatory cortical neurons
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 15
  start-page: 267
  year: 1982
  end-page: 273
  article-title: A simplified neuron model as a principal component analyzer
  publication-title: Journal of Mathematical Biology
– volume: 525
  start-page: 333
  year: 2015
  end-page: 338
  article-title: Labelling and optical erasure of synaptic memory traces in the motor cortex
  publication-title: Nature
– volume: 7
  start-page: 12455
  year: 2016
  article-title: Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex
  publication-title: Nature Communications
– volume: 44
  start-page: 72
  year: 2017
  end-page: 79
  article-title: Sleep, synaptic homeostasis and neuronal firing rates
  publication-title: Current Opinion in Neurobiology
– volume: 11
  start-page: 60
  year: 2017
  article-title: Higher arc nucleus‐to‐cytoplasm ratio during sleep in the superficial layers of the mouse cortex
  publication-title: Frontiers in Neural Circuits
– volume: 20
  start-page: 9187
  year: 2000
  end-page: 9194
  article-title: Differential expression of plasticity‐related genes in waking and sleep and their regulation by the noradrenergic system
  publication-title: Journal of Neuroscience
– volume: 35
  start-page: 15916
  year: 2015
  end-page: 15920
  article-title: Brief dark exposure reduces tonic inhibition in visual cortex
  publication-title: Journal of Neuroscience
– volume: 355
  start-page: 511
  year: 2017
  end-page: 515
  article-title: Homer1a drives homeostatic scaling‐down of excitatory synapses during sleep
  publication-title: Science
– volume: 41
  start-page: 35
  year: 2004
  end-page: 43
  article-title: Extensive and divergent effects of sleep and wakefulness on brain gene expression
  publication-title: Neuron
– volume: 4
  start-page: 143
  year: 2013
  article-title: Sleep‐dependent synaptic down‐selection (I): Modeling the benefits of sleep on memory consolidation and integration
  publication-title: Frontiers in Neurology
– volume: 95
  start-page: 19
  year: 2017
  end-page: 32
  article-title: Toward a neurocentric view of learning
  publication-title: Neuron
– ident: e_1_2_12_51_1
  doi: 10.1152/jn.2001.85.5.1969
– volume: 11
  start-page: 17
  year: 2017
  ident: e_1_2_12_12_1
  article-title: Homeostatic changes in GABA and glutamate receptors on excitatory cortical neurons during sleep deprivation and recovery
  publication-title: Frontiers in Systems Neuroscience
– ident: e_1_2_12_20_1
  doi: 10.1038/nn.2384
– ident: e_1_2_12_47_1
  doi: 10.1016/j.neuron.2007.01.029
– ident: e_1_2_12_15_1
  doi: 10.1038/ncomms15405
– ident: e_1_2_12_46_1
  doi: 10.1152/jn.00593.2010
– ident: e_1_2_12_9_1
  doi: 10.1016/j.conb.2017.03.016
– ident: e_1_2_12_58_1
  doi: 10.1016/j.neuron.2018.01.026
– ident: e_1_2_12_55_1
  doi: 10.1016/j.neuron.2013.12.025
– ident: e_1_2_12_56_1
  doi: 10.1126/science.aah5982
– ident: e_1_2_12_3_1
  doi: 10.1038/s41467-017-00748-5
– ident: e_1_2_12_6_1
  doi: 10.1155/2011/203462
– ident: e_1_2_12_21_1
  doi: 10.1016/j.neuron.2018.01.047
– ident: e_1_2_12_33_1
  doi: 10.1038/nature12485
– ident: e_1_2_12_25_1
  doi: 10.1016/j.brainresbull.2008.02.024
– ident: e_1_2_12_13_1
  doi: 10.1126/science.aai8355
– ident: e_1_2_12_10_1
  doi: 10.1016/S0896-6273(03)00814-6
– ident: e_1_2_12_38_1
  doi: 10.1007/BF00288907
– ident: e_1_2_12_5_1
  doi: 10.1038/s41593-018-0150-0
– ident: e_1_2_12_37_1
  doi: 10.1152/physiolgenomics.00189.2007
– ident: e_1_2_12_16_1
  doi: 10.3389/fpsyg.2016.01368
– ident: e_1_2_12_22_1
  doi: 10.1038/nn.4601
– ident: e_1_2_12_27_1
  doi: 10.3389/fncir.2017.00060
– ident: e_1_2_12_7_1
  doi: 10.1016/0306-4522(89)90423-5
– ident: e_1_2_12_42_1
  doi: 10.3389/fncir.2017.00065
– ident: e_1_2_12_17_1
  doi: 10.1016/j.tins.2014.06.005
– volume: 4
  start-page: 144
  year: 2013
  ident: e_1_2_12_23_1
  article-title: Sleep dependent synaptic down‐selection (II): Single neuron level benefits for matching, selectivity, and specificity
  publication-title: Frontiers in Sleep and Chronobiology
– ident: e_1_2_12_44_1
  doi: 10.1007/BF00275687
– ident: e_1_2_12_52_1
  doi: 10.1038/s41593-018-0080-x
– ident: e_1_2_12_32_1
  doi: 10.1016/j.neuron.2007.10.030
– ident: e_1_2_12_36_1
  doi: 10.1038/ncomms11828
– ident: e_1_2_12_48_1
  doi: 10.3389/fncir.2017.00061
– ident: e_1_2_12_4_1
  doi: 10.1016/j.neuron.2017.08.008
– ident: e_1_2_12_14_1
  doi: 10.1126/science.aao0862
– ident: e_1_2_12_54_1
  doi: 10.1016/j.neuron.2017.05.021
– ident: e_1_2_12_57_1
  doi: 10.1038/nn2035
– ident: e_1_2_12_19_1
  doi: 10.1523/JNEUROSCI.21-08-02610.2001
– ident: e_1_2_12_45_1
  doi: 10.1016/j.cell.2012.02.062
– ident: e_1_2_12_35_1
  doi: 10.1016/j.neuron.2017.05.029
– ident: e_1_2_12_24_1
  doi: 10.1038/nature15257
– ident: e_1_2_12_40_1
  doi: 10.1038/nature13294
– ident: e_1_2_12_11_1
  doi: 10.1523/JNEUROSCI.20-24-09187.2000
– ident: e_1_2_12_43_1
  doi: 10.1126/science.aao0702
– ident: e_1_2_12_49_1
  doi: 10.1152/physrev.00032.2012
– ident: e_1_2_12_39_1
  doi: 10.1073/pnas.0710131104
– ident: e_1_2_12_28_1
  doi: 10.1523/JNEUROSCI.1813-15.2015
– ident: e_1_2_12_29_1
  doi: 10.1093/cercor/bhs014
– ident: e_1_2_12_2_1
  doi: 10.1073/pnas.1208093110
– ident: e_1_2_12_18_1
  doi: 10.1016/j.smrv.2017.12.006
– ident: e_1_2_12_34_1
  doi: 10.1038/ncomms12455
– ident: e_1_2_12_50_1
  doi: 10.1016/j.celrep.2016.01.061
– ident: e_1_2_12_31_1
  doi: 10.3389/fncir.2014.00009
– ident: e_1_2_12_53_1
  doi: 10.1016/j.celrep.2016.12.085
– ident: e_1_2_12_30_1
  doi: 10.1523/JNEUROSCI.0731-09.2009
– ident: e_1_2_12_41_1
  doi: 10.3389/fneur.2013.00143
– ident: e_1_2_12_8_1
  doi: 10.3389/fncom.2015.00089
– ident: e_1_2_12_26_1
  doi: 10.1126/science.7761831
SSID ssj0008645
Score 2.6124573
SecondaryResourceType review_article
Snippet The synaptic homeostasis hypothesis (SHY) proposes that sleep is an essential process needed by the brain to maintain the total amount of synaptic strength...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 413
SubjectTerms Cerebral cortex
Circuits
Hippocampus
Homeostasis
Hypotheses
Molecular modelling
Neural networks
Potentiation
serial electron microscopy
Sleep
synapse
Synapses
synaptic potentiation
Synaptic strength
Title Sleep and synaptic down‐selection
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.14335
https://www.ncbi.nlm.nih.gov/pubmed/30614089
https://www.proquest.com/docview/2348450147
https://www.proquest.com/docview/2164547274
https://pubmed.ncbi.nlm.nih.gov/PMC6612535
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1460-9568
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0008645
  issn: 0953-816X
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0953-816X
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1460-9568
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008645
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6hvZQLbVmgaQGFh9BeskqcxEnECSEQQoIDD2kPSFFsT0RbalCze4ATP6G_sb-EsfPobhekqrdIniiOx2PPNx5_A7BbIsOYq9Tjhg8xKhPlFYIwT1IG1ORHiNLEIc_O-cl1dDqKRwuw396FqfkhuoCbsQy7XhsDL0Q1ZeT4TZOZh6G5YB6EsT2ivfhDHZVyW6DY0Kl5acBHDauQyeLp3pzdi-YczPk8yWn_1W5Ax-_hpu16nXfyfTgZi6F8-ovV8T__7QMsNY6pe1DPpI-wgHoZ-geaQPmPR3fPtamiNga_DO8O2zJxfdi5vEN8cAut3OpRF7QCSVcRtP_9_KuyNXZI8StwfXx0dXjiNZUXPEkOROwhuUGCKUJjQhGClGkQKj-RknMkxOP7mJUprQaMS5YpJRNGQDcuFY9RiThTLFyFnr7X-AlczlCSW6kyvxSRUoXwA4z8MGUFloUU3IFBq4NcNrTkpjrGXd7CExqM3A6GA9ud6EPNxfGa0HqryLwxxypnYZRG5gQ1cWCra6aBMqcjhcb7CckEltyMULoDa7Xeu6-EBjf7aeZAMjMjOgFD0j3bor_eWrJublxI062BVfjbHc-PTs_tw-d_F_0Ci8zgfxsSWofe-OcEN8hJGotNaw0vqQEOIg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigXHn0RKBBoVfWSKnESJ5G4VKXVUto99CHtpYpieyIexa3Y3UM58RP4jfwSZpwHXQoS4hbJE8XxeJzvGzvfAGzUKDCVJg8k6yEmdWaCShHnyeqImsIEUXMe8mgoB2fJwSgdzcHr7l-YRh-iT7hxZLj1mgOcE9I3ohw_WorzOE7vwF3en-OwfHP8Szwql65EMQuqBXkkR62uEJ_j6W-d_Rrdgpi3T0reRLDuE7T_AM67zjcnTz5tTydqW3_9Tdfxf9_uIdxvsam_00ymRzCHdhGWdizx8s_X_qbvTou6NPwiLOx2leKWYP3kAvHKr6zxx9e2okVI-4bY_Y9v38euzA75fhnO9vdOdwdBW3wh0IQh0gAJCSlhiJApQyRS51FswkxrKZFITxhiUee0IAipRWGMzgRx3bQ2MkWj0sKIeAXm7aXFx-BLgZqQpSnCWiXGVCqMMAnjXFRYV1pJD7Y6J5S6VSbnAhkXZcdQaDBKNxgevOpNrxo5jj8ZrXWeLNuIHJciTvKEN1EzD172zTRQvEFSWbyckk3k9M2IqHuw2ji-f0rM1DnMCw-ymSnRG7BO92yL_fDe6XVLRpHcrS3n8b93vNw7GLqLJ_9u-gIWBqdHh-Xh2-G7p3BPcDrAZYjWYH7yZYrPCDNN1HMXGj8BeM4SPg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BlQqXUqBACoX0oYpLUOIkTiJOiLKiQFdVW6Q9IEWxPRGvmlV39wAnfgK_kV_C2HnAllaqeovkieJ4PM73jZ1vAD6UyDDmKvW40UOMykR5hSDOk5QBNfkRojR5yC9dvncU7ffi3gRsNf_CVPoQbcLNRIZdr02A91X5KMjxTFOYh2E8Cc8iTuzKIKJvD9pRKbcVio2empcGvFfLCpljPO2t4x-jJwjz6UHJxwDWfoE6s3Dc9L06eHK-ORqKTXn9m6zjf77cS3hRI1N3u5pKczCBeh4WtjWx8p9X7kfXnhW1Sfh5mN5p6sQtwPvvF4h9t9DKHVzpgpYg6Sri9nc3twNbZIc8_wqOOrs_dva8uvSCJwlBxB4SDhJMER0TiiikTINQ-YmUnCNRHt_HrExpOWBcskwpmTBiunGpeIxKxJli4SJM6UuNy-ByhpJwpcr8UkRKFcIPMPLDlBVYFlJwBzYaH-Sy1iU35TEu8oaf0GDkdjAceNea9isxjj8ZrTaOzOt4HOQsjNLIbKEmDrxtm2mgzPZIofFyRDaBVTcjmu7AUuX39imhIc5-mjmQjM2I1sCodI-36NMTq9bNDYY03dqwDv97x_Pd_a69eP3vpuvw_OunTn74uXuwAjPM5AJsemgVpoa_RviGANNQrNnAuAc78xDt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sleep+and+synaptic+down%E2%80%90selection&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Tononi%2C+Giulio&rft.au=Cirelli%2C+Chiara&rft.date=2020-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=51&rft.issue=1&rft.spage=413&rft.epage=421&rft_id=info:doi/10.1111%2Fejn.14335&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon