Sleep and synaptic down‐selection
The synaptic homeostasis hypothesis (SHY) proposes that sleep is an essential process needed by the brain to maintain the total amount of synaptic strength under control. SHY predicts that by the end of a waking day the synaptic connections of many neural circuits undergo a net increase in synaptic...
Saved in:
Published in | The European journal of neuroscience Vol. 51; no. 1; pp. 413 - 421 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
France
Wiley Subscription Services, Inc
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0953-816X 1460-9568 1460-9568 |
DOI | 10.1111/ejn.14335 |
Cover
Abstract | The synaptic homeostasis hypothesis (SHY) proposes that sleep is an essential process needed by the brain to maintain the total amount of synaptic strength under control. SHY predicts that by the end of a waking day the synaptic connections of many neural circuits undergo a net increase in synaptic strength due to ongoing learning, which is mainly mediated by synaptic potentiation. Stronger synapses require more energy and supplies and are prone to saturation, creating the need for synaptic renormalization. Such renormalization should mainly occur during sleep, when the brain is disconnected from the environment and neural circuits can be broadly reactivated off‐line to undergo a systematic but specific synaptic down‐selection. In short, according to SHY sleep is the price to pay for waking plasticity, to avoid runaway potentiation, decreased signal‐to‐noise ratio, and impaired learning due to saturation. In this review, we briefly discuss the rationale of the hypothesis and recent supportive ultrastructural evidence obtained in our laboratory. We then examine recent studies by other groups showing the causal role of cortical slow waves and hippocampal sharp waves/ripples in sleep‐dependent down‐selection of neural activity and synaptic strength. Finally, we discuss some of the molecular mechanisms that could mediate synaptic weakening during sleep.
The synaptic homeostasis hypothesis (SHY): due to ongoing learning synaptic strength increases during wake in many brain circuits, leading to the strengthening of a majority of synapses. This net increase in synaptic strength is followed by synaptic down‐selection during sleep, when the brain is disconnected from the environment, allowing the weakening of the majority of synapses. Learning during waking occurs because the brain adapts to an ever‐changing environment, whether or not the subject is trained in a specific “task.” |
---|---|
AbstractList | The synaptic homeostasis hypothesis (SHY) proposes that sleep is an essential process needed by the brain to maintain the total amount of synaptic strength under control. SHY predicts that by the end of a waking day the synaptic connections of many neural circuits undergo a net increase in synaptic strength due to ongoing learning, which is mainly mediated by synaptic potentiation. Stronger synapses require more energy and supplies and are prone to saturation, creating the need for synaptic renormalization. Such renormalization should mainly occur during sleep, when the brain is disconnected from the environment and neural circuits can be broadly reactivated off-line to undergo a systematic but specific synaptic down-selection. In short, according to SHY sleep is the price to pay for waking plasticity, to avoid runaway potentiation, decreased signal-to-noise ratio, and impaired learning due to saturation. In this review we briefly discuss the rationale of the hypothesis and recent supportive ultrastructural evidence obtained in our laboratory. We then examine recent studies by other groups showing the causal role of cortical slow waves and hippocampal sharp waves/ripples in sleep-dependent down-selection of neural activity and synaptic strength. Finally, we discuss some of the molecular mechanisms that could mediate synaptic weakening during sleep. The synaptic homeostasis hypothesis (SHY): due to ongoing learning synaptic strength increases during wake in many brain circuits, leading to the strengthening of a majority of synapses. This net increase in synaptic strength is followed by synaptic down-selection during sleep, when the brain is disconnected from the environment, allowing the weakening of the majority of synapses. Learning during waking occurs because the brain adapts to an ever-changing environment, whether or not the subject is trained in a specific “task”. The synaptic homeostasis hypothesis (SHY) proposes that sleep is an essential process needed by the brain to maintain the total amount of synaptic strength under control. SHY predicts that by the end of a waking day the synaptic connections of many neural circuits undergo a net increase in synaptic strength due to ongoing learning, which is mainly mediated by synaptic potentiation. Stronger synapses require more energy and supplies and are prone to saturation, creating the need for synaptic renormalization. Such renormalization should mainly occur during sleep, when the brain is disconnected from the environment and neural circuits can be broadly reactivated off-line to undergo a systematic but specific synaptic down-selection. In short, according to SHY sleep is the price to pay for waking plasticity, to avoid runaway potentiation, decreased signal-to-noise ratio, and impaired learning due to saturation. In this review, we briefly discuss the rationale of the hypothesis and recent supportive ultrastructural evidence obtained in our laboratory. We then examine recent studies by other groups showing the causal role of cortical slow waves and hippocampal sharp waves/ripples in sleep-dependent down-selection of neural activity and synaptic strength. Finally, we discuss some of the molecular mechanisms that could mediate synaptic weakening during sleep.The synaptic homeostasis hypothesis (SHY) proposes that sleep is an essential process needed by the brain to maintain the total amount of synaptic strength under control. SHY predicts that by the end of a waking day the synaptic connections of many neural circuits undergo a net increase in synaptic strength due to ongoing learning, which is mainly mediated by synaptic potentiation. Stronger synapses require more energy and supplies and are prone to saturation, creating the need for synaptic renormalization. Such renormalization should mainly occur during sleep, when the brain is disconnected from the environment and neural circuits can be broadly reactivated off-line to undergo a systematic but specific synaptic down-selection. In short, according to SHY sleep is the price to pay for waking plasticity, to avoid runaway potentiation, decreased signal-to-noise ratio, and impaired learning due to saturation. In this review, we briefly discuss the rationale of the hypothesis and recent supportive ultrastructural evidence obtained in our laboratory. We then examine recent studies by other groups showing the causal role of cortical slow waves and hippocampal sharp waves/ripples in sleep-dependent down-selection of neural activity and synaptic strength. Finally, we discuss some of the molecular mechanisms that could mediate synaptic weakening during sleep. The synaptic homeostasis hypothesis (SHY) proposes that sleep is an essential process needed by the brain to maintain the total amount of synaptic strength under control. SHY predicts that by the end of a waking day the synaptic connections of many neural circuits undergo a net increase in synaptic strength due to ongoing learning, which is mainly mediated by synaptic potentiation. Stronger synapses require more energy and supplies and are prone to saturation, creating the need for synaptic renormalization. Such renormalization should mainly occur during sleep, when the brain is disconnected from the environment and neural circuits can be broadly reactivated off‐line to undergo a systematic but specific synaptic down‐selection. In short, according to SHY sleep is the price to pay for waking plasticity, to avoid runaway potentiation, decreased signal‐to‐noise ratio, and impaired learning due to saturation. In this review, we briefly discuss the rationale of the hypothesis and recent supportive ultrastructural evidence obtained in our laboratory. We then examine recent studies by other groups showing the causal role of cortical slow waves and hippocampal sharp waves/ripples in sleep‐dependent down‐selection of neural activity and synaptic strength. Finally, we discuss some of the molecular mechanisms that could mediate synaptic weakening during sleep. The synaptic homeostasis hypothesis (SHY) proposes that sleep is an essential process needed by the brain to maintain the total amount of synaptic strength under control. SHY predicts that by the end of a waking day the synaptic connections of many neural circuits undergo a net increase in synaptic strength due to ongoing learning, which is mainly mediated by synaptic potentiation. Stronger synapses require more energy and supplies and are prone to saturation, creating the need for synaptic renormalization. Such renormalization should mainly occur during sleep, when the brain is disconnected from the environment and neural circuits can be broadly reactivated off‐line to undergo a systematic but specific synaptic down‐selection. In short, according to SHY sleep is the price to pay for waking plasticity, to avoid runaway potentiation, decreased signal‐to‐noise ratio, and impaired learning due to saturation. In this review, we briefly discuss the rationale of the hypothesis and recent supportive ultrastructural evidence obtained in our laboratory. We then examine recent studies by other groups showing the causal role of cortical slow waves and hippocampal sharp waves/ripples in sleep‐dependent down‐selection of neural activity and synaptic strength. Finally, we discuss some of the molecular mechanisms that could mediate synaptic weakening during sleep. The synaptic homeostasis hypothesis (SHY): due to ongoing learning synaptic strength increases during wake in many brain circuits, leading to the strengthening of a majority of synapses. This net increase in synaptic strength is followed by synaptic down‐selection during sleep, when the brain is disconnected from the environment, allowing the weakening of the majority of synapses. Learning during waking occurs because the brain adapts to an ever‐changing environment, whether or not the subject is trained in a specific “task.” |
Author | Tononi, Giulio Cirelli, Chiara |
Author_xml | – sequence: 1 givenname: Giulio surname: Tononi fullname: Tononi, Giulio organization: University of Wisconsin‐Madison – sequence: 2 givenname: Chiara orcidid: 0000-0003-2563-677X surname: Cirelli fullname: Cirelli, Chiara email: ccirelli@wisc.edu organization: University of Wisconsin‐Madison |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30614089$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctKAzEUhoMotl4WvoAU3OhiNPfJbAQp9YboQgV3YZqcaso0qZOppTsfwWf0SYxWRQuazVmc7_w5__nX0LIPHhDaInifpHcAQ79POGNiCbUJlzgrhFTLqI0LwTJF5F0LrcU4xBgrycUqajEsCceqaKOd6wpg3Cm97cSZL8eNMx0bpv71-SVCBaZxwW-glUFZRdj8rOvo9rh30z3NLq5OzrpHF5kR6acMJMZ9ahVVfUsFN4owi3NjpIQitTAUA4UZodLQwlqTU8aUGFgpwPZFYSlbR4dz3fGkPwJrwDd1Welx7UZlPdOhdPp3x7sHfR-etJSECiaSwO6nQB0eJxAbPXLRQFWVHsIkakqSfZ7TnCd0ZwEdhkntkz1NGVdcYMLzRG3_3Oh7la_7JWBvDpg6xFjD4BshWL9no1M2-iObxB4ssMY15fuBkxlX_TcxdRXM_pbWvfPL-cQbyzeetA |
CitedBy_id | crossref_primary_10_2147_NSS_S272176 crossref_primary_10_1038_s41598_023_39984_9 crossref_primary_10_1523_JNEUROSCI_0373_20_2020 crossref_primary_10_1016_j_yebeh_2021_108341 crossref_primary_10_1016_j_nlm_2023_107866 crossref_primary_10_3389_fnetp_2021_830338 crossref_primary_10_3389_fnins_2020_610655 crossref_primary_10_1088_1742_6596_2890_1_012004 crossref_primary_10_2139_ssrn_4151510 crossref_primary_10_3389_fnins_2023_1175478 crossref_primary_10_6065_apem_2448076_038 crossref_primary_10_1111_ejn_14839 crossref_primary_10_1093_sleepadvances_zpab007 crossref_primary_10_1016_j_nlm_2021_107569 crossref_primary_10_1111_epi_16823 crossref_primary_10_1016_j_neuroscience_2022_03_002 crossref_primary_10_1111_jsr_70021 crossref_primary_10_1126_science_abk2734 crossref_primary_10_1016_j_bcp_2021_114533 crossref_primary_10_3389_fpsyt_2024_1456435 crossref_primary_10_1093_braincomms_fcae354 crossref_primary_10_1038_s41467_022_35577_8 crossref_primary_10_1038_s41539_025_00307_4 crossref_primary_10_1093_sleep_zsab006 crossref_primary_10_17116_jnevro2020120081127 crossref_primary_10_1093_sleep_zsaa038 crossref_primary_10_7554_eLife_48881 crossref_primary_10_1038_s41598_022_16478_8 crossref_primary_10_1371_journal_pbio_3002768 crossref_primary_10_1007_s41782_021_00148_2 crossref_primary_10_3389_fphys_2023_1243455 crossref_primary_10_15252_embj_2022111304 crossref_primary_10_1016_j_jsmc_2024_10_004 crossref_primary_10_1016_j_neubiorev_2022_104909 crossref_primary_10_1016_j_smrv_2021_101449 crossref_primary_10_1111_ejn_14560 crossref_primary_10_1111_ejn_16460 crossref_primary_10_1016_j_mhpa_2020_100365 crossref_primary_10_3389_fnins_2022_1013673 crossref_primary_10_1016_j_neubiorev_2024_105574 crossref_primary_10_1016_j_pharmthera_2020_107741 crossref_primary_10_1093_sleep_zsab093 crossref_primary_10_1523_JNEUROSCI_1957_20_2021 crossref_primary_10_3389_fncel_2025_1515922 crossref_primary_10_1152_physrev_00042_2018 crossref_primary_10_1161_STR_0000000000000453 crossref_primary_10_1002_ana_26217 crossref_primary_10_1093_sleep_zsaa143 crossref_primary_10_2183_pjab_101_008 crossref_primary_10_1016_j_bbi_2022_09_016 crossref_primary_10_1038_s41531_022_00391_y crossref_primary_10_1016_j_cels_2024_06_005 crossref_primary_10_1016_j_yebeh_2020_107513 crossref_primary_10_1371_journal_pcbi_1009045 crossref_primary_10_3390_ijms232012191 crossref_primary_10_1007_s40806_022_00330_3 crossref_primary_10_1016_j_cophys_2020_02_003 crossref_primary_10_1002_npr2_12311 crossref_primary_10_1016_j_tins_2021_09_003 crossref_primary_10_3390_jcm8101737 crossref_primary_10_1016_j_neuroimage_2022_119682 crossref_primary_10_1016_j_cub_2020_02_079 crossref_primary_10_1093_sleep_zsab026 crossref_primary_10_1101_lm_053683_122 crossref_primary_10_1111_ejn_14626 crossref_primary_10_1523_JNEUROSCI_0586_23_2023 crossref_primary_10_1523_ENEURO_0306_19_2019 crossref_primary_10_3390_brainsci11010073 crossref_primary_10_3389_fnins_2022_893015 crossref_primary_10_5664_jcsm_10008 crossref_primary_10_3389_fneur_2023_1272369 crossref_primary_10_1002_hipo_23381 crossref_primary_10_1093_sleep_zsz184 crossref_primary_10_7554_eLife_76384 crossref_primary_10_7554_eLife_63329 crossref_primary_10_1111_ejn_15561 crossref_primary_10_3390_ctn8010006 crossref_primary_10_1016_j_semcdb_2021_02_007 crossref_primary_10_1016_j_bbii_2023_100030 crossref_primary_10_3390_clockssleep2040033 crossref_primary_10_1016_j_cnp_2022_05_002 crossref_primary_10_1007_s43440_021_00232_4 crossref_primary_10_1016_j_isci_2024_110076 crossref_primary_10_1016_j_neuron_2024_04_011 crossref_primary_10_1093_sleep_zsz170 crossref_primary_10_1016_j_neubiorev_2024_105929 crossref_primary_10_1016_j_cub_2025_01_050 crossref_primary_10_1016_j_smrv_2022_101647 crossref_primary_10_1016_j_neuint_2020_104944 crossref_primary_10_1038_s41467_021_23156_2 crossref_primary_10_1093_sleep_zsac022 crossref_primary_10_1523_ENEURO_0184_21_2021 crossref_primary_10_1523_ENEURO_0077_21_2021 crossref_primary_10_3389_fnins_2021_633955 crossref_primary_10_1093_sleep_zsab034 crossref_primary_10_1016_j_sleep_2021_10_025 crossref_primary_10_1093_sleep_zsac246 crossref_primary_10_3389_fnmol_2021_767384 crossref_primary_10_1016_j_cophys_2020_03_005 crossref_primary_10_1016_j_ynstr_2024_100613 crossref_primary_10_1111_jsr_14271 crossref_primary_10_1083_jcb_202401041 crossref_primary_10_3758_s13421_024_01579_8 crossref_primary_10_1038_d41586_024_01559_7 crossref_primary_10_1016_j_patter_2023_100693 crossref_primary_10_1016_j_conb_2020_11_010 crossref_primary_10_3390_biology10100945 crossref_primary_10_1038_s41593_021_00920_7 crossref_primary_10_1073_pnas_2123428119 crossref_primary_10_1093_sleep_zsab160 |
Cites_doi | 10.1152/jn.2001.85.5.1969 10.1038/nn.2384 10.1016/j.neuron.2007.01.029 10.1038/ncomms15405 10.1152/jn.00593.2010 10.1016/j.conb.2017.03.016 10.1016/j.neuron.2018.01.026 10.1016/j.neuron.2013.12.025 10.1126/science.aah5982 10.1038/s41467-017-00748-5 10.1155/2011/203462 10.1016/j.neuron.2018.01.047 10.1038/nature12485 10.1016/j.brainresbull.2008.02.024 10.1126/science.aai8355 10.1016/S0896-6273(03)00814-6 10.1007/BF00288907 10.1038/s41593-018-0150-0 10.1152/physiolgenomics.00189.2007 10.3389/fpsyg.2016.01368 10.1038/nn.4601 10.3389/fncir.2017.00060 10.1016/0306-4522(89)90423-5 10.3389/fncir.2017.00065 10.1016/j.tins.2014.06.005 10.1007/BF00275687 10.1038/s41593-018-0080-x 10.1016/j.neuron.2007.10.030 10.1038/ncomms11828 10.3389/fncir.2017.00061 10.1016/j.neuron.2017.08.008 10.1126/science.aao0862 10.1016/j.neuron.2017.05.021 10.1038/nn2035 10.1523/JNEUROSCI.21-08-02610.2001 10.1016/j.cell.2012.02.062 10.1016/j.neuron.2017.05.029 10.1038/nature15257 10.1038/nature13294 10.1523/JNEUROSCI.20-24-09187.2000 10.1126/science.aao0702 10.1152/physrev.00032.2012 10.1073/pnas.0710131104 10.1523/JNEUROSCI.1813-15.2015 10.1093/cercor/bhs014 10.1073/pnas.1208093110 10.1016/j.smrv.2017.12.006 10.1038/ncomms12455 10.1016/j.celrep.2016.01.061 10.3389/fncir.2014.00009 10.1016/j.celrep.2016.12.085 10.1523/JNEUROSCI.0731-09.2009 10.3389/fneur.2013.00143 10.3389/fncom.2015.00089 10.1126/science.7761831 |
ContentType | Journal Article |
Copyright | 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. Copyright © 2020 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd – notice: 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: Copyright © 2020 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
DBID | AAYXX CITATION NPM 7QP 7QR 7TK 8FD FR3 P64 7X8 5PM |
DOI | 10.1111/ejn.14335 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Chemoreception Abstracts Engineering Research Database Technology Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Chemoreception Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 421 |
ExternalDocumentID | PMC6612535 30614089 10_1111_ejn_14335 EJN14335 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Institute of Neurological Disorders and Stroke funderid: 1P01NS083514 – fundername: National Institute of Mental Health funderid: 1R01MH091326; 1R01MH099231 – fundername: NIH Office of the Director funderid: DP 1OD579 – fundername: NIH Office of the Director grantid: DP 1OD579 – fundername: NIMH NIH HHS grantid: R01 MH091326 – fundername: NINDS NIH HHS grantid: P01 NS083514 – fundername: NIMH NIH HHS grantid: R01 MH099231 – fundername: NIGMS NIH HHS grantid: R01 GM075315 – fundername: NIH HHS grantid: DP1 OD000579 – fundername: NINDS NIH HHS grantid: 1P01NS083514 – fundername: NIMH NIH HHS grantid: 1R01MH091326 – fundername: NIMH NIH HHS grantid: 1R01MH099231 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION NPM 7QP 7QR 7TK 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c5095-e600b2d828bd254c813d07cc66e96000e9f803126c29ddc723385fd65edb59d23 |
IEDL.DBID | DR2 |
ISSN | 0953-816X 1460-9568 |
IngestDate | Tue Sep 30 16:46:57 EDT 2025 Fri Jul 11 02:32:07 EDT 2025 Fri Jul 25 10:04:55 EDT 2025 Thu Apr 03 07:10:06 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Wed Oct 01 03:43:58 EDT 2025 Wed Jan 22 16:34:46 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | sleep homeostasis synapse synaptic potentiation serial electron microscopy |
Language | English |
License | 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5095-e600b2d828bd254c813d07cc66e96000e9f803126c29ddc723385fd65edb59d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Authors’ contribution. Both authors wrote the paper. |
ORCID | 0000-0003-2563-677X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6612535 |
PMID | 30614089 |
PQID | 2348450147 |
PQPubID | 34057 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6612535 proquest_miscellaneous_2164547274 proquest_journals_2348450147 pubmed_primary_30614089 crossref_primary_10_1111_ejn_14335 crossref_citationtrail_10_1111_ejn_14335 wiley_primary_10_1111_ejn_14335_EJN14335 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | France |
PublicationPlace_xml | – name: France – name: Chichester |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 35 2007; 104 2004; 41 2017; 20 2017; 8 1982; 15 2013; 4 2018; 360 2013; 23 2017; 44 2013; 501 1973; 14 2010; 104 2000; 20 2013; 93 2008; 76 2008; 33 2008; 11 2015; 525 2007; 53 2015; 9 2018; 21 2017; 355 2012; 149 2007; 56 2016; 14 2014; 511 2001; 85 2009; 29 2001; 21 2009; 12 2017; 95 2011; 2011 2017; 96 2016; 7 2018; 39 2014; 81 1989; 31 2018; 359 2017; 11 2014; 37 1995; 268 2017; 18 2013; 110 2014; 8 2018; 97 e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_38_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_47_1 Hashmi A. (e_1_2_12_23_1) 2013; 4 e_1_2_12_28_1 e_1_2_12_49_1 e_1_2_12_31_1 e_1_2_12_52_1 e_1_2_12_33_1 e_1_2_12_54_1 e_1_2_12_35_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_58_1 e_1_2_12_14_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_50_1 e_1_2_12_3_1 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_16_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_46_1 e_1_2_12_25_1 e_1_2_12_48_1 Cid‐Pellitero E. (e_1_2_12_12_1) 2017; 11 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_36_1 e_1_2_12_15_1 e_1_2_12_13_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_9_1 |
References_xml | – volume: 104 start-page: 3476 year: 2010 end-page: 3493 article-title: Sleep and synaptic renormalization: A computational study publication-title: Journal of Neurophysiology – volume: 360 start-page: 1349 year: 2018 end-page: 1354 article-title: Locally coordinated synaptic plasticity of visual cortex neurons in vivo publication-title: Science – volume: 4 start-page: 144 year: 2013 article-title: Sleep dependent synaptic down‐selection (II): Single neuron level benefits for matching, selectivity, and specificity publication-title: Frontiers in Sleep and Chronobiology – volume: 29 start-page: 6840 year: 2009 end-page: 6850 article-title: Hippocampal place cell firing patterns can induce long‐term synaptic plasticity in vitro publication-title: Journal of Neuroscience – volume: 9 start-page: 89 year: 2015 article-title: Homeostatic role of heterosynaptic plasticity: Models and experiments publication-title: Frontiers in Computational Neuroscience – volume: 511 start-page: 348 year: 2014 end-page: 352 article-title: Engineering a memory with LTD and LTP publication-title: Nature – volume: 21 start-page: 843 year: 2018 end-page: 850 article-title: Two distinct mechanisms for experience‐dependent homeostasis publication-title: Nature Neuroscience – volume: 149 start-page: 886 year: 2012 end-page: 898 article-title: Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIbeta publication-title: Cell – volume: 14 start-page: 1916 year: 2016 end-page: 1929 article-title: Sharp‐wave ripples orchestrate the induction of synaptic plasticity during reactivation of place cell firing patterns in the hippocampus publication-title: Cell Reports – volume: 18 start-page: 905 year: 2017 end-page: 917 article-title: Coordinated acetylcholine release in prefrontal cortex and hippocampus is associated with arousal and reward on distinct timescales publication-title: Cell Reports – volume: 268 start-page: 1158 year: 1995 end-page: 1161 article-title: The “wake‐sleep” algorithm for unsupervised neural networks publication-title: Science – volume: 95 start-page: 259 year: 2017 end-page: 279 article-title: Memory takes time publication-title: Neuron – volume: 7 start-page: 1368 year: 2016 article-title: The limited capacity of sleep‐dependent memory consolidation publication-title: Frontiers in Psychology – volume: 12 start-page: 1222 year: 2009 end-page: 1223 article-title: Selective suppression of hippocampal ripples impairs spatial memory publication-title: Nature Neuroscience – volume: 21 start-page: 2610 year: 2001 end-page: 2621 article-title: The homeostatic regulation of sleep need is under genetic control publication-title: Journal of Neuroscience – volume: 39 start-page: 1 year: 2018 end-page: 2 article-title: Sleep and plasticity: Waking from a fevered dream publication-title: Sleep Medicine Reviews – volume: 11 start-page: 200 year: 2008 end-page: 208 article-title: Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep publication-title: Nature Neuroscience – volume: 31 start-page: 551 year: 1989 end-page: 570 article-title: Two‐stage model of memory trace formation: A role for “noisy” brain states publication-title: Neuroscience – volume: 355 start-page: 507 year: 2017 end-page: 510 article-title: Ultrastructural evidence for synaptic scaling across the wake/sleep cycle publication-title: Science – volume: 56 start-page: 582 year: 2007 end-page: 592 article-title: Ubiquitous plasticity and memory storage publication-title: Neuron – volume: 11 start-page: 65 year: 2017 article-title: Plasticity during sleep is linked to specific regulation of cortical circuit activity publication-title: Frontiers in Neural Circuits – volume: 97 start-page: 1244 year: 2018 end-page: 1252 article-title: Activity‐dependent downscaling of subthreshold synaptic inputs during slow‐wave‐sleep‐like activity in vivo publication-title: Neuron – volume: 76 start-page: 605 year: 2008 end-page: 611 article-title: Sleep improves the variability of motor performance publication-title: Brain Research Bulletin – volume: 11 start-page: 61 year: 2017 article-title: Linking network activity to synaptic plasticity during sleep: Hypotheses and recent data publication-title: Frontiers in Neural Circuits – volume: 53 start-page: 703 year: 2007 end-page: 717 article-title: LTP inhibits LTD in the hippocampus via regulation of GSK3beta publication-title: Neuron – volume: 20 start-page: 1277 year: 2017 end-page: 1284 article-title: Neural reactivations during sleep determine network credit assignment publication-title: Nature Neuroscience – volume: 8 start-page: 665 year: 2017 article-title: Cortical Up states induce the selective weakening of subthreshold synaptic inputs publication-title: Nature Communications – volume: 7 start-page: 11828 year: 2016 article-title: Circadian regulation of human cortical excitability publication-title: Nature Communications – volume: 85 start-page: 1969 year: 2001 end-page: 1985 article-title: Natural waking and sleep states: A view from inside neocortical neurons publication-title: Journal of Neurophysiology – volume: 23 start-page: 332 year: 2013 end-page: 338 article-title: Human cortical excitability increases with time awake publication-title: Cerebral Cortex – volume: 81 start-page: 12 year: 2014 end-page: 34 article-title: Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration publication-title: Neuron – volume: 14 start-page: 85 year: 1973 end-page: 100 article-title: Self‐organization of orientation sensitive cells in the striate cortex publication-title: Kybernetik – volume: 93 start-page: 681 year: 2013 end-page: 766 article-title: About sleep's role in memory publication-title: Physiological Reviews – volume: 8 start-page: 9 year: 2014 article-title: Constancy and trade‐offs in the neuroanatomical and metabolic design of the cerebral cortex publication-title: Frontiers in Neural Circuits – volume: 501 start-page: 543 year: 2013 end-page: 546 article-title: A disinhibitory microcircuit initiates critical‐period plasticity in the visual cortex publication-title: Nature – volume: 21 start-page: 463 year: 2018 end-page: 473 article-title: Imbalance between firing homeostasis and synaptic plasticity drives early‐phase Alzheimer's disease publication-title: Nature Neuroscience – volume: 37 start-page: 491 year: 2014 end-page: 501 article-title: Sleep, clocks, and synaptic plasticity publication-title: Trends in Neurosciences – volume: 33 start-page: 91 year: 2008 end-page: 99 article-title: Analysis of the QTL for sleep homeostasis in mice: Homer1a is a likely candidate publication-title: Physiological Genomics – volume: 96 start-page: 43 year: 2017 end-page: 55 article-title: Spine dynamics: Are they all the same? publication-title: Neuron – volume: 11 start-page: 17 year: 2017 article-title: Homeostatic changes in GABA and glutamate receptors on excitatory cortical neurons during sleep deprivation and recovery publication-title: Frontiers in Systems Neuroscience – volume: 104 start-page: 20090 year: 2007 end-page: 20095 article-title: Homer1a is a core brain molecular correlate of sleep loss publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 97 start-page: 1137 year: 2018 end-page: 1152 article-title: Npas4 Is a critical regulator of learning‐induced plasticity at mossy fiber‐CA3 synapses during contextual memory formation publication-title: Neuron – volume: 2011 start-page: 203462 year: 2011 article-title: Reactivation, replay, and preplay: How it might all fit together publication-title: Neural Plasticity – volume: 359 start-page: 1524 year: 2018 end-page: 1527 article-title: Hippocampal ripples down‐regulate synapses publication-title: Science – volume: 8 start-page: 15405 year: 2017 article-title: Deep sleep maintains learning efficiency of the human brain publication-title: Nature Communications – volume: 110 start-page: 3101 year: 2013 end-page: 3106 article-title: Visual experience and subsequent sleep induce sequential plastic changes in putative inhibitory and excitatory cortical neurons publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 15 start-page: 267 year: 1982 end-page: 273 article-title: A simplified neuron model as a principal component analyzer publication-title: Journal of Mathematical Biology – volume: 525 start-page: 333 year: 2015 end-page: 338 article-title: Labelling and optical erasure of synaptic memory traces in the motor cortex publication-title: Nature – volume: 7 start-page: 12455 year: 2016 article-title: Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex publication-title: Nature Communications – volume: 44 start-page: 72 year: 2017 end-page: 79 article-title: Sleep, synaptic homeostasis and neuronal firing rates publication-title: Current Opinion in Neurobiology – volume: 11 start-page: 60 year: 2017 article-title: Higher arc nucleus‐to‐cytoplasm ratio during sleep in the superficial layers of the mouse cortex publication-title: Frontiers in Neural Circuits – volume: 20 start-page: 9187 year: 2000 end-page: 9194 article-title: Differential expression of plasticity‐related genes in waking and sleep and their regulation by the noradrenergic system publication-title: Journal of Neuroscience – volume: 35 start-page: 15916 year: 2015 end-page: 15920 article-title: Brief dark exposure reduces tonic inhibition in visual cortex publication-title: Journal of Neuroscience – volume: 355 start-page: 511 year: 2017 end-page: 515 article-title: Homer1a drives homeostatic scaling‐down of excitatory synapses during sleep publication-title: Science – volume: 41 start-page: 35 year: 2004 end-page: 43 article-title: Extensive and divergent effects of sleep and wakefulness on brain gene expression publication-title: Neuron – volume: 4 start-page: 143 year: 2013 article-title: Sleep‐dependent synaptic down‐selection (I): Modeling the benefits of sleep on memory consolidation and integration publication-title: Frontiers in Neurology – volume: 95 start-page: 19 year: 2017 end-page: 32 article-title: Toward a neurocentric view of learning publication-title: Neuron – ident: e_1_2_12_51_1 doi: 10.1152/jn.2001.85.5.1969 – volume: 11 start-page: 17 year: 2017 ident: e_1_2_12_12_1 article-title: Homeostatic changes in GABA and glutamate receptors on excitatory cortical neurons during sleep deprivation and recovery publication-title: Frontiers in Systems Neuroscience – ident: e_1_2_12_20_1 doi: 10.1038/nn.2384 – ident: e_1_2_12_47_1 doi: 10.1016/j.neuron.2007.01.029 – ident: e_1_2_12_15_1 doi: 10.1038/ncomms15405 – ident: e_1_2_12_46_1 doi: 10.1152/jn.00593.2010 – ident: e_1_2_12_9_1 doi: 10.1016/j.conb.2017.03.016 – ident: e_1_2_12_58_1 doi: 10.1016/j.neuron.2018.01.026 – ident: e_1_2_12_55_1 doi: 10.1016/j.neuron.2013.12.025 – ident: e_1_2_12_56_1 doi: 10.1126/science.aah5982 – ident: e_1_2_12_3_1 doi: 10.1038/s41467-017-00748-5 – ident: e_1_2_12_6_1 doi: 10.1155/2011/203462 – ident: e_1_2_12_21_1 doi: 10.1016/j.neuron.2018.01.047 – ident: e_1_2_12_33_1 doi: 10.1038/nature12485 – ident: e_1_2_12_25_1 doi: 10.1016/j.brainresbull.2008.02.024 – ident: e_1_2_12_13_1 doi: 10.1126/science.aai8355 – ident: e_1_2_12_10_1 doi: 10.1016/S0896-6273(03)00814-6 – ident: e_1_2_12_38_1 doi: 10.1007/BF00288907 – ident: e_1_2_12_5_1 doi: 10.1038/s41593-018-0150-0 – ident: e_1_2_12_37_1 doi: 10.1152/physiolgenomics.00189.2007 – ident: e_1_2_12_16_1 doi: 10.3389/fpsyg.2016.01368 – ident: e_1_2_12_22_1 doi: 10.1038/nn.4601 – ident: e_1_2_12_27_1 doi: 10.3389/fncir.2017.00060 – ident: e_1_2_12_7_1 doi: 10.1016/0306-4522(89)90423-5 – ident: e_1_2_12_42_1 doi: 10.3389/fncir.2017.00065 – ident: e_1_2_12_17_1 doi: 10.1016/j.tins.2014.06.005 – volume: 4 start-page: 144 year: 2013 ident: e_1_2_12_23_1 article-title: Sleep dependent synaptic down‐selection (II): Single neuron level benefits for matching, selectivity, and specificity publication-title: Frontiers in Sleep and Chronobiology – ident: e_1_2_12_44_1 doi: 10.1007/BF00275687 – ident: e_1_2_12_52_1 doi: 10.1038/s41593-018-0080-x – ident: e_1_2_12_32_1 doi: 10.1016/j.neuron.2007.10.030 – ident: e_1_2_12_36_1 doi: 10.1038/ncomms11828 – ident: e_1_2_12_48_1 doi: 10.3389/fncir.2017.00061 – ident: e_1_2_12_4_1 doi: 10.1016/j.neuron.2017.08.008 – ident: e_1_2_12_14_1 doi: 10.1126/science.aao0862 – ident: e_1_2_12_54_1 doi: 10.1016/j.neuron.2017.05.021 – ident: e_1_2_12_57_1 doi: 10.1038/nn2035 – ident: e_1_2_12_19_1 doi: 10.1523/JNEUROSCI.21-08-02610.2001 – ident: e_1_2_12_45_1 doi: 10.1016/j.cell.2012.02.062 – ident: e_1_2_12_35_1 doi: 10.1016/j.neuron.2017.05.029 – ident: e_1_2_12_24_1 doi: 10.1038/nature15257 – ident: e_1_2_12_40_1 doi: 10.1038/nature13294 – ident: e_1_2_12_11_1 doi: 10.1523/JNEUROSCI.20-24-09187.2000 – ident: e_1_2_12_43_1 doi: 10.1126/science.aao0702 – ident: e_1_2_12_49_1 doi: 10.1152/physrev.00032.2012 – ident: e_1_2_12_39_1 doi: 10.1073/pnas.0710131104 – ident: e_1_2_12_28_1 doi: 10.1523/JNEUROSCI.1813-15.2015 – ident: e_1_2_12_29_1 doi: 10.1093/cercor/bhs014 – ident: e_1_2_12_2_1 doi: 10.1073/pnas.1208093110 – ident: e_1_2_12_18_1 doi: 10.1016/j.smrv.2017.12.006 – ident: e_1_2_12_34_1 doi: 10.1038/ncomms12455 – ident: e_1_2_12_50_1 doi: 10.1016/j.celrep.2016.01.061 – ident: e_1_2_12_31_1 doi: 10.3389/fncir.2014.00009 – ident: e_1_2_12_53_1 doi: 10.1016/j.celrep.2016.12.085 – ident: e_1_2_12_30_1 doi: 10.1523/JNEUROSCI.0731-09.2009 – ident: e_1_2_12_41_1 doi: 10.3389/fneur.2013.00143 – ident: e_1_2_12_8_1 doi: 10.3389/fncom.2015.00089 – ident: e_1_2_12_26_1 doi: 10.1126/science.7761831 |
SSID | ssj0008645 |
Score | 2.6124573 |
SecondaryResourceType | review_article |
Snippet | The synaptic homeostasis hypothesis (SHY) proposes that sleep is an essential process needed by the brain to maintain the total amount of synaptic strength... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 413 |
SubjectTerms | Cerebral cortex Circuits Hippocampus Homeostasis Hypotheses Molecular modelling Neural networks Potentiation serial electron microscopy Sleep synapse Synapses synaptic potentiation Synaptic strength |
Title | Sleep and synaptic down‐selection |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.14335 https://www.ncbi.nlm.nih.gov/pubmed/30614089 https://www.proquest.com/docview/2348450147 https://www.proquest.com/docview/2164547274 https://pubmed.ncbi.nlm.nih.gov/PMC6612535 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1460-9568 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0008645 issn: 0953-816X databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0953-816X databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1460-9568 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008645 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6hvZQLbVmgaQGFh9BeskqcxEnECSEQQoIDD2kPSFFsT0RbalCze4ATP6G_sb-EsfPobhekqrdIniiOx2PPNx5_A7BbIsOYq9Tjhg8xKhPlFYIwT1IG1ORHiNLEIc_O-cl1dDqKRwuw396FqfkhuoCbsQy7XhsDL0Q1ZeT4TZOZh6G5YB6EsT2ivfhDHZVyW6DY0Kl5acBHDauQyeLp3pzdi-YczPk8yWn_1W5Ax-_hpu16nXfyfTgZi6F8-ovV8T__7QMsNY6pe1DPpI-wgHoZ-geaQPmPR3fPtamiNga_DO8O2zJxfdi5vEN8cAut3OpRF7QCSVcRtP_9_KuyNXZI8StwfXx0dXjiNZUXPEkOROwhuUGCKUJjQhGClGkQKj-RknMkxOP7mJUprQaMS5YpJRNGQDcuFY9RiThTLFyFnr7X-AlczlCSW6kyvxSRUoXwA4z8MGUFloUU3IFBq4NcNrTkpjrGXd7CExqM3A6GA9ud6EPNxfGa0HqryLwxxypnYZRG5gQ1cWCra6aBMqcjhcb7CckEltyMULoDa7Xeu6-EBjf7aeZAMjMjOgFD0j3bor_eWrJublxI062BVfjbHc-PTs_tw-d_F_0Ci8zgfxsSWofe-OcEN8hJGotNaw0vqQEOIg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigXHn0RKBBoVfWSKnESJ5G4VKXVUto99CHtpYpieyIexa3Y3UM58RP4jfwSZpwHXQoS4hbJE8XxeJzvGzvfAGzUKDCVJg8k6yEmdWaCShHnyeqImsIEUXMe8mgoB2fJwSgdzcHr7l-YRh-iT7hxZLj1mgOcE9I3ohw_WorzOE7vwF3en-OwfHP8Szwql65EMQuqBXkkR62uEJ_j6W-d_Rrdgpi3T0reRLDuE7T_AM67zjcnTz5tTydqW3_9Tdfxf9_uIdxvsam_00ymRzCHdhGWdizx8s_X_qbvTou6NPwiLOx2leKWYP3kAvHKr6zxx9e2okVI-4bY_Y9v38euzA75fhnO9vdOdwdBW3wh0IQh0gAJCSlhiJApQyRS51FswkxrKZFITxhiUee0IAipRWGMzgRx3bQ2MkWj0sKIeAXm7aXFx-BLgZqQpSnCWiXGVCqMMAnjXFRYV1pJD7Y6J5S6VSbnAhkXZcdQaDBKNxgevOpNrxo5jj8ZrXWeLNuIHJciTvKEN1EzD172zTRQvEFSWbyckk3k9M2IqHuw2ji-f0rM1DnMCw-ymSnRG7BO92yL_fDe6XVLRpHcrS3n8b93vNw7GLqLJ_9u-gIWBqdHh-Xh2-G7p3BPcDrAZYjWYH7yZYrPCDNN1HMXGj8BeM4SPg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BlQqXUqBACoX0oYpLUOIkTiJOiLKiQFdVW6Q9IEWxPRGvmlV39wAnfgK_kV_C2HnAllaqeovkieJ4PM73jZ1vAD6UyDDmKvW40UOMykR5hSDOk5QBNfkRojR5yC9dvncU7ffi3gRsNf_CVPoQbcLNRIZdr02A91X5KMjxTFOYh2E8Cc8iTuzKIKJvD9pRKbcVio2empcGvFfLCpljPO2t4x-jJwjz6UHJxwDWfoE6s3Dc9L06eHK-ORqKTXn9m6zjf77cS3hRI1N3u5pKczCBeh4WtjWx8p9X7kfXnhW1Sfh5mN5p6sQtwPvvF4h9t9DKHVzpgpYg6Sri9nc3twNbZIc8_wqOOrs_dva8uvSCJwlBxB4SDhJMER0TiiikTINQ-YmUnCNRHt_HrExpOWBcskwpmTBiunGpeIxKxJli4SJM6UuNy-ByhpJwpcr8UkRKFcIPMPLDlBVYFlJwBzYaH-Sy1iU35TEu8oaf0GDkdjAceNea9isxjj8ZrTaOzOt4HOQsjNLIbKEmDrxtm2mgzPZIofFyRDaBVTcjmu7AUuX39imhIc5-mjmQjM2I1sCodI-36NMTq9bNDYY03dqwDv97x_Pd_a69eP3vpuvw_OunTn74uXuwAjPM5AJsemgVpoa_RviGANNQrNnAuAc78xDt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sleep+and+synaptic+down%E2%80%90selection&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Tononi%2C+Giulio&rft.au=Cirelli%2C+Chiara&rft.date=2020-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=51&rft.issue=1&rft.spage=413&rft.epage=421&rft_id=info:doi/10.1111%2Fejn.14335&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |