Form and Functional Repair of Long Bone Using 3D Printed Bioactive Scaffolds

Injuries to the extremities often require resection of necrotic hard tissue. For large bone defects, autogenous bone grafting is ideal, but similar to all grafting procedures, is subject to limitations. Synthetic biomaterial driven engineered healing offers an alternative approach. This work focuses...

Full description

Saved in:
Bibliographic Details
Published inJournal of tissue engineering and regenerative medicine
Main Authors Tovar, Nick, Witek, Lukasz, Atria, Pablo, Sobieraj, Michael, Bowers, Michelle, Lopez, Christopher, Cronstein, Bruce, Coelho, Paulo G
Format Journal Article
LanguageEnglish
Published England 01.09.2018
Subjects
Online AccessGet full text
ISSN1932-7005
1932-6254
1932-7005
DOI10.1002/term.2733

Cover

Abstract Injuries to the extremities often require resection of necrotic hard tissue. For large bone defects, autogenous bone grafting is ideal, but similar to all grafting procedures, is subject to limitations. Synthetic biomaterial driven engineered healing offers an alternative approach. This work focuses on three-dimensional (3D) printing technology of solid-free form fabrication (SFF), more specifically robocasting/direct write. The research hypothesizes that a bioactive calcium-phosphate scaffold may successfully regenerate extensive bony defects in vivo and that newly regenerated bone will demonstrate mechanical properties similar to native bone as healing time elapses. Robocasting technology was used in designing and printing customizable scaffolds, composed of 100% beta tri-calcium phosphate (β-TCP), which were used to repair critical sized long-bone defects. Following full thickness segmental defects (~11mm x full thickness) in the radial diaphysis in New Zealand White rabbits a custom 3D printed, 100% β-TCP, scaffold was implanted or left empty (negative control) and allowed to heal over 8, 12, and 24 weeks. Scaffolds and bone, en bloc, were subjected to micro-CT and histological analysis for quantification of bone and scaffold expressed as a function of percentage. Additionally, biomechanical testing at two different regions: i) bone in the scaffold (BiS) and ii) in native radial bone (control) was conducted to assess the newly regenerated bone for reduced elastic modulus (E ) and hardness (H) using nanoindentation. Histological analysis showed no signs of any adverse immune response while revealing progressive remodeling of bone within the scaffold along with gradual decrease in 3D-scaffold volume over time. MicroCT images indicated directional bone ingrowth, with an increase in bone formation over time. Reduced elastic modulus (E ) data for the newly regenerated bone presented statistically homogenous values analogous to native bone at the three-time points, while hardness (H) values were equivalent to the native radial bone at 24 weeks. The negative control samples showed limited healing at 8 weeks. Custom engineered β-TCP scaffolds are biocompatible, resorbable, and can directionally regenerate and remodel bone in a segmental long bone defect in a rabbit model. Custom designs and fabrication of β-TCP scaffolds for use in other bone defect models warrant further investigation.
AbstractList Injuries to the extremities often require resection of necrotic hard tissue. For large bone defects, autogenous bone grafting is ideal, but similar to all grafting procedures, is subject to limitations. Synthetic biomaterial driven engineered healing offers an alternative approach. This work focuses on three-dimensional (3D) printing technology of solid-free form fabrication (SFF), more specifically robocasting/direct write. The research hypothesizes that a bioactive calcium-phosphate scaffold may successfully regenerate extensive bony defects in vivo and that newly regenerated bone will demonstrate mechanical properties similar to native bone as healing time elapses. Robocasting technology was used in designing and printing customizable scaffolds, composed of 100% beta tri-calcium phosphate (β-TCP), which were used to repair critical sized long-bone defects. Following full thickness segmental defects (~11mm x full thickness) in the radial diaphysis in New Zealand White rabbits a custom 3D printed, 100% β-TCP, scaffold was implanted or left empty (negative control) and allowed to heal over 8, 12, and 24 weeks. Scaffolds and bone, en bloc, were subjected to micro-CT and histological analysis for quantification of bone and scaffold expressed as a function of percentage. Additionally, biomechanical testing at two different regions: i) bone in the scaffold (BiS) and ii) in native radial bone (control) was conducted to assess the newly regenerated bone for reduced elastic modulus (E ) and hardness (H) using nanoindentation. Histological analysis showed no signs of any adverse immune response while revealing progressive remodeling of bone within the scaffold along with gradual decrease in 3D-scaffold volume over time. MicroCT images indicated directional bone ingrowth, with an increase in bone formation over time. Reduced elastic modulus (E ) data for the newly regenerated bone presented statistically homogenous values analogous to native bone at the three-time points, while hardness (H) values were equivalent to the native radial bone at 24 weeks. The negative control samples showed limited healing at 8 weeks. Custom engineered β-TCP scaffolds are biocompatible, resorbable, and can directionally regenerate and remodel bone in a segmental long bone defect in a rabbit model. Custom designs and fabrication of β-TCP scaffolds for use in other bone defect models warrant further investigation.
Author Tovar, Nick
Cronstein, Bruce
Witek, Lukasz
Sobieraj, Michael
Lopez, Christopher
Bowers, Michelle
Atria, Pablo
Coelho, Paulo G
Author_xml – sequence: 1
  givenname: Nick
  surname: Tovar
  fullname: Tovar, Nick
  organization: New York University College of Dentistry, New York, NY, USA
– sequence: 2
  givenname: Lukasz
  orcidid: 0000-0003-1458-6527
  surname: Witek
  fullname: Witek, Lukasz
  organization: Department of Biomaterials and Biomimetics, College of Dentistry New York University, New York, NY, USA
– sequence: 3
  givenname: Pablo
  surname: Atria
  fullname: Atria, Pablo
  organization: Biomaterials Department, Universidad de los Andes, Santiago, Chile
– sequence: 4
  givenname: Michael
  surname: Sobieraj
  fullname: Sobieraj, Michael
  organization: Department of Orthopaedic Surgery, University of Pennsylvania, Penn Presbyterian Medical Center, Philadelphia, PA, USA
– sequence: 5
  givenname: Michelle
  surname: Bowers
  fullname: Bowers, Michelle
  organization: New York University College of Dentistry, New York, NY, USA
– sequence: 6
  givenname: Christopher
  surname: Lopez
  fullname: Lopez, Christopher
  organization: Icahn School of Medicine at Mount Sinai, New York, NY, USA
– sequence: 7
  givenname: Bruce
  surname: Cronstein
  fullname: Cronstein, Bruce
  organization: Department of Medicine, New York University School of Medicine, New York, NY, USA
– sequence: 8
  givenname: Paulo G
  surname: Coelho
  fullname: Coelho, Paulo G
  organization: Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30044544$$D View this record in MEDLINE/PubMed
BookMark eNpNkF1LwzAUQINM3Ic--Ackz0LnTdIky6PbrAoFRd1zyfIhlTYpbafs39sxFZ_ueTj3XjhTNAoxOIQuCcwJAL3pXVvPqWTsBE2IYjSRAHz0j8do2nUfA3DB2RkaM4A05Wk6QXkW2xrrYHG2C6YvY9AVfnGNLlscPc5jeMfL4RvedOWAbI2f2zL0zuJlGfWw8Onwq9Hex8p25-jU66pzFz9zhjbZ3dvqIcmf7h9Xt3liOCiWMEIVeAFEWEulBCssNQtQxCghtkYC90Ja4xeeUFDe6AXlKdWWS8rolhM2Q9fHu7vQ6P2Xrqqiactat_uCQHFIUhySFIckg3x1lJvdtnb2z_xtwL4Bba5cVQ
CitedBy_id crossref_primary_10_1039_D2TA08922J
crossref_primary_10_1002_jor_25388
crossref_primary_10_1002_jbm_b_35347
crossref_primary_10_1111_prd_12525
crossref_primary_10_3390_biomimetics9100636
crossref_primary_10_3233_BME_222524
crossref_primary_10_3389_fbioe_2022_825831
crossref_primary_10_1186_s13075_022_02961_0
crossref_primary_10_46519_ij3dptdi_1449545
crossref_primary_10_1089_ten_tec_2023_0082
crossref_primary_10_1016_j_hcl_2023_09_001
crossref_primary_10_34133_research_0239
crossref_primary_10_3390_biomimetics9110690
crossref_primary_10_1038_s41598_019_54726_6
crossref_primary_10_3390_molecules24234397
crossref_primary_10_1097_PRS_0000000000010258
crossref_primary_10_1002_jbm_b_34902
crossref_primary_10_1016_j_pbiomolbio_2022_05_010
crossref_primary_10_3390_bioengineering9110680
crossref_primary_10_1097_SCS_0000000000007146
crossref_primary_10_3390_polym16192686
crossref_primary_10_3846_mla_2021_14165
crossref_primary_10_1007_s00170_021_06634_1
crossref_primary_10_3390_ma14102524
crossref_primary_10_3390_jfb14020076
crossref_primary_10_1016_j_trsl_2019_08_010
crossref_primary_10_1089_ten_teb_2019_0047
crossref_primary_10_3390_polym15010031
crossref_primary_10_1097_SCS_0000000000009635
crossref_primary_10_1016_j_oooo_2022_06_002
crossref_primary_10_3389_fbioe_2022_920378
crossref_primary_10_1097_OI9_0000000000000164
crossref_primary_10_1177_09544089241281985
crossref_primary_10_3390_bioengineering11080777
crossref_primary_10_1177_03913988231218884
crossref_primary_10_1089_ten_tea_2020_0186
crossref_primary_10_1002_adma_202108855
crossref_primary_10_1016_j_stlm_2021_100024
crossref_primary_10_3233_BME_230214
crossref_primary_10_1002_jbm_b_34885
crossref_primary_10_1021_acsbiomaterials_4c01279
crossref_primary_10_1002_jor_24424
crossref_primary_10_1097_SCS_0000000000009593
crossref_primary_10_5435_JAAOS_D_18_00746
crossref_primary_10_1016_j_mser_2024_100841
crossref_primary_10_1016_j_jmbbm_2023_105867
crossref_primary_10_1186_s40824_019_0180_z
crossref_primary_10_1016_j_joule_2019_06_010
crossref_primary_10_1016_j_recot_2025_02_001
crossref_primary_10_1002_term_3013
crossref_primary_10_3390_jfb15030060
crossref_primary_10_1016_j_msec_2021_112578
crossref_primary_10_1016_j_stlm_2022_100078
ContentType Journal Article
Copyright This article is protected by copyright. All rights reserved.
Copyright_xml – notice: This article is protected by copyright. All rights reserved.
DBID NPM
ADTOC
UNPAY
DOI 10.1002/term.2733
DatabaseName PubMed
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1932-7005
ExternalDocumentID oai:pubmedcentral.nih.gov:8483581
30044544
Genre Journal Article
GroupedDBID ---
05W
0R~
1OC
24P
33P
4.4
53G
5GY
8-1
8UM
AAESR
AAHHS
AAJEY
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AENEX
AEQDE
AFBPY
AFGKR
AFRAH
AHMBA
AIACR
AIURR
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BHBCM
BMXJE
BRXPI
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FUBAC
G-S
GODZA
HZ~
KBYEO
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
ML0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY.
MY~
NPM
O66
O9-
OIG
P2P
P2W
PQQKQ
ROL
SUPJJ
SV3
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WVDHM
XV2
ZZTAW
31~
7X7
8FI
8FJ
AAMMB
AANHP
ABUWG
ACBWZ
ACCMX
ACRPL
ACYXJ
ADNMO
ADTOC
AEFGJ
AFKRA
AGQPQ
AGXDD
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
CCPQU
FEDTE
FYUFA
H13
HCIFZ
HMCUK
HVGLF
LH4
LW6
M7P
PHGZM
PHGZT
PIMPY
PQGLB
RNS
RPM
UKHRP
UNPAY
ID FETCH-LOGICAL-c5093-31290f6016dd2770d6d2c8091c966bc705f67dcf8f1209fca82542ad57232b513
IEDL.DBID UNPAY
ISSN 1932-7005
1932-6254
IngestDate Sun Oct 26 03:59:21 EDT 2025
Thu Apr 03 07:04:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords In Vivo
3D Printing
Regeneration
Scaffolds
Bioactive Ceramic
Calcium Phosphate
Language English
License This article is protected by copyright. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5093-31290f6016dd2770d6d2c8091c966bc705f67dcf8f1209fca82542ad57232b513
ORCID 0000-0003-1458-6527
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8483581
PMID 30044544
ParticipantIDs unpaywall_primary_10_1002_term_2733
pubmed_primary_30044544
PublicationCentury 2000
PublicationDate September 2018
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of tissue engineering and regenerative medicine
PublicationTitleAlternate J Tissue Eng Regen Med
PublicationYear 2018
SSID ssj0055653
Score 2.4279978
Snippet Injuries to the extremities often require resection of necrotic hard tissue. For large bone defects, autogenous bone grafting is ideal, but similar to all...
SourceID unpaywall
pubmed
SourceType Open Access Repository
Index Database
Title Form and Functional Repair of Long Bone Using 3D Printed Bioactive Scaffolds
URI https://www.ncbi.nlm.nih.gov/pubmed/30044544
https://www.ncbi.nlm.nih.gov/pmc/articles/8483581
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20HtSD399aAnrdbZv9PopaRLAUsaCnkkySWlx3S20RPfkT_I3-Eifdbime9LaQHIYk5L2ZffMCcGaUCniIkcMpU3N8nXhOIqwIwJhGaLT2PLSlgdtWeN3xbx6ChwVolL0wE9E-yr6bpS9u1n-aaCsHL1grdWK12I-tZ9ciLIUB0e8KLHVa7fPH4u8xd4jP--V3REesdBOq85q961yCa28ObZbH2UC8v4k0nYOV5jrclQEVapJndzySLn788mr8V8QbsDYlmey8GNqEBZ1tweqc9eA2tJpEVpnIFLPIVhQE2ZCwqT9kuWFpnvWYzDPNrDC-x7zL788vWwMkgspkPxeTa5K9ojAmT9XrDnSaV_cX1870bQUHiSLYljqe1I31YlGKR1FdhYpjTOQBKf-RGNUDE0YKTWxsc61BYTNJLlQQEQWTQcPbhUpGUewDUxLts9VorLEPxySWWvuYCIkhZcCJPoC9YrW7g8JAo2tdvnyafACns-WfDRY-yrxrd6trd-vwT7OOYIW4TFzIv46hMhqO9QnxhZGswmKrfVudnpMfajvCHQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL1oXagL3-8HAd3OtM28l6KWIlhELOiqJDdJLU5nSh-IrvwEv9Ev8abTkeJKdwPJ4pKEnHPvnHsCcG6UCniIkcMpU3N8nXhOIqwIwJh6aLT2PLSlgdtW2Gz7N4_B4wLUy16YqWgfZc_N0r6b9Z6n2spBH6ulTqwa-7H17FqEpTAg-l2BpXbr7uKp-HvMHeLzfvkd0REr3YRqvGrvOpfg2ptDm-VJNhBvryJN52ClsQ73ZUCFmuTFnYyli--_vBr_FfEGrM1IJrsohjZhQWdbsDpnPbgNrQaRVSYyxSyyFQVBNiRs6g1ZbliaZ10m80wzK4zvMu_q6-PT1gCJoDLZy8X0mmQjFMbkqRrtQLtx_XDZdGZvKzhIFMG21PGkZqwXi1I8imoqVBxjIg9I-Y_EqBaYMFJoYmObaw0Km0lyoYKIKJgM6t4uVDKKYh-YkmifrUZjjX04JrHU2sdESAwpA070AewVq90ZFAYaHevy5dPkAzj7Wf6fwcJHmXfsbnXsbh3-adYRrBCXiQv51zFUxsOJPiG-MJansxPyDeKzwRE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Form+and+functional+repair+of+long+bone+using+3D%E2%80%90printed+bioactive+scaffolds&rft.jtitle=Journal+of+tissue+engineering+and+regenerative+medicine&rft.date=2018-09-01&rft.issn=1932-7005&rft_id=info:doi/10.1002%2Fterm.2733&rft.externalDocID=oai%3Apubmedcentral.nih.gov%3A8483581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7005&client=summon