Form and Functional Repair of Long Bone Using 3D Printed Bioactive Scaffolds
Injuries to the extremities often require resection of necrotic hard tissue. For large bone defects, autogenous bone grafting is ideal, but similar to all grafting procedures, is subject to limitations. Synthetic biomaterial driven engineered healing offers an alternative approach. This work focuses...
Saved in:
| Published in | Journal of tissue engineering and regenerative medicine |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
01.09.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-7005 1932-6254 1932-7005 |
| DOI | 10.1002/term.2733 |
Cover
| Abstract | Injuries to the extremities often require resection of necrotic hard tissue. For large bone defects, autogenous bone grafting is ideal, but similar to all grafting procedures, is subject to limitations. Synthetic biomaterial driven engineered healing offers an alternative approach. This work focuses on three-dimensional (3D) printing technology of solid-free form fabrication (SFF), more specifically robocasting/direct write. The research hypothesizes that a bioactive calcium-phosphate scaffold may successfully regenerate extensive bony defects in vivo and that newly regenerated bone will demonstrate mechanical properties similar to native bone as healing time elapses.
Robocasting technology was used in designing and printing customizable scaffolds, composed of 100% beta tri-calcium phosphate (β-TCP), which were used to repair critical sized long-bone defects. Following full thickness segmental defects (~11mm x full thickness) in the radial diaphysis in New Zealand White rabbits a custom 3D printed, 100% β-TCP, scaffold was implanted or left empty (negative control) and allowed to heal over 8, 12, and 24 weeks. Scaffolds and bone, en bloc, were subjected to micro-CT and histological analysis for quantification of bone and scaffold expressed as a function of percentage. Additionally, biomechanical testing at two different regions: i) bone in the scaffold (BiS) and ii) in native radial bone (control) was conducted to assess the newly regenerated bone for reduced elastic modulus (E
) and hardness (H) using nanoindentation.
Histological analysis showed no signs of any adverse immune response while revealing progressive remodeling of bone within the scaffold along with gradual decrease in 3D-scaffold volume over time. MicroCT images indicated directional bone ingrowth, with an increase in bone formation over time. Reduced elastic modulus (E
) data for the newly regenerated bone presented statistically homogenous values analogous to native bone at the three-time points, while hardness (H) values were equivalent to the native radial bone at 24 weeks. The negative control samples showed limited healing at 8 weeks.
Custom engineered β-TCP scaffolds are biocompatible, resorbable, and can directionally regenerate and remodel bone in a segmental long bone defect in a rabbit model. Custom designs and fabrication of β-TCP scaffolds for use in other bone defect models warrant further investigation. |
|---|---|
| AbstractList | Injuries to the extremities often require resection of necrotic hard tissue. For large bone defects, autogenous bone grafting is ideal, but similar to all grafting procedures, is subject to limitations. Synthetic biomaterial driven engineered healing offers an alternative approach. This work focuses on three-dimensional (3D) printing technology of solid-free form fabrication (SFF), more specifically robocasting/direct write. The research hypothesizes that a bioactive calcium-phosphate scaffold may successfully regenerate extensive bony defects in vivo and that newly regenerated bone will demonstrate mechanical properties similar to native bone as healing time elapses.
Robocasting technology was used in designing and printing customizable scaffolds, composed of 100% beta tri-calcium phosphate (β-TCP), which were used to repair critical sized long-bone defects. Following full thickness segmental defects (~11mm x full thickness) in the radial diaphysis in New Zealand White rabbits a custom 3D printed, 100% β-TCP, scaffold was implanted or left empty (negative control) and allowed to heal over 8, 12, and 24 weeks. Scaffolds and bone, en bloc, were subjected to micro-CT and histological analysis for quantification of bone and scaffold expressed as a function of percentage. Additionally, biomechanical testing at two different regions: i) bone in the scaffold (BiS) and ii) in native radial bone (control) was conducted to assess the newly regenerated bone for reduced elastic modulus (E
) and hardness (H) using nanoindentation.
Histological analysis showed no signs of any adverse immune response while revealing progressive remodeling of bone within the scaffold along with gradual decrease in 3D-scaffold volume over time. MicroCT images indicated directional bone ingrowth, with an increase in bone formation over time. Reduced elastic modulus (E
) data for the newly regenerated bone presented statistically homogenous values analogous to native bone at the three-time points, while hardness (H) values were equivalent to the native radial bone at 24 weeks. The negative control samples showed limited healing at 8 weeks.
Custom engineered β-TCP scaffolds are biocompatible, resorbable, and can directionally regenerate and remodel bone in a segmental long bone defect in a rabbit model. Custom designs and fabrication of β-TCP scaffolds for use in other bone defect models warrant further investigation. |
| Author | Tovar, Nick Cronstein, Bruce Witek, Lukasz Sobieraj, Michael Lopez, Christopher Bowers, Michelle Atria, Pablo Coelho, Paulo G |
| Author_xml | – sequence: 1 givenname: Nick surname: Tovar fullname: Tovar, Nick organization: New York University College of Dentistry, New York, NY, USA – sequence: 2 givenname: Lukasz orcidid: 0000-0003-1458-6527 surname: Witek fullname: Witek, Lukasz organization: Department of Biomaterials and Biomimetics, College of Dentistry New York University, New York, NY, USA – sequence: 3 givenname: Pablo surname: Atria fullname: Atria, Pablo organization: Biomaterials Department, Universidad de los Andes, Santiago, Chile – sequence: 4 givenname: Michael surname: Sobieraj fullname: Sobieraj, Michael organization: Department of Orthopaedic Surgery, University of Pennsylvania, Penn Presbyterian Medical Center, Philadelphia, PA, USA – sequence: 5 givenname: Michelle surname: Bowers fullname: Bowers, Michelle organization: New York University College of Dentistry, New York, NY, USA – sequence: 6 givenname: Christopher surname: Lopez fullname: Lopez, Christopher organization: Icahn School of Medicine at Mount Sinai, New York, NY, USA – sequence: 7 givenname: Bruce surname: Cronstein fullname: Cronstein, Bruce organization: Department of Medicine, New York University School of Medicine, New York, NY, USA – sequence: 8 givenname: Paulo G surname: Coelho fullname: Coelho, Paulo G organization: Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30044544$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkF1LwzAUQINM3Ic--Ackz0LnTdIky6PbrAoFRd1zyfIhlTYpbafs39sxFZ_ueTj3XjhTNAoxOIQuCcwJAL3pXVvPqWTsBE2IYjSRAHz0j8do2nUfA3DB2RkaM4A05Wk6QXkW2xrrYHG2C6YvY9AVfnGNLlscPc5jeMfL4RvedOWAbI2f2zL0zuJlGfWw8Onwq9Hex8p25-jU66pzFz9zhjbZ3dvqIcmf7h9Xt3liOCiWMEIVeAFEWEulBCssNQtQxCghtkYC90Ja4xeeUFDe6AXlKdWWS8rolhM2Q9fHu7vQ6P2Xrqqiactat_uCQHFIUhySFIckg3x1lJvdtnb2z_xtwL4Bba5cVQ |
| CitedBy_id | crossref_primary_10_1039_D2TA08922J crossref_primary_10_1002_jor_25388 crossref_primary_10_1002_jbm_b_35347 crossref_primary_10_1111_prd_12525 crossref_primary_10_3390_biomimetics9100636 crossref_primary_10_3233_BME_222524 crossref_primary_10_3389_fbioe_2022_825831 crossref_primary_10_1186_s13075_022_02961_0 crossref_primary_10_46519_ij3dptdi_1449545 crossref_primary_10_1089_ten_tec_2023_0082 crossref_primary_10_1016_j_hcl_2023_09_001 crossref_primary_10_34133_research_0239 crossref_primary_10_3390_biomimetics9110690 crossref_primary_10_1038_s41598_019_54726_6 crossref_primary_10_3390_molecules24234397 crossref_primary_10_1097_PRS_0000000000010258 crossref_primary_10_1002_jbm_b_34902 crossref_primary_10_1016_j_pbiomolbio_2022_05_010 crossref_primary_10_3390_bioengineering9110680 crossref_primary_10_1097_SCS_0000000000007146 crossref_primary_10_3390_polym16192686 crossref_primary_10_3846_mla_2021_14165 crossref_primary_10_1007_s00170_021_06634_1 crossref_primary_10_3390_ma14102524 crossref_primary_10_3390_jfb14020076 crossref_primary_10_1016_j_trsl_2019_08_010 crossref_primary_10_1089_ten_teb_2019_0047 crossref_primary_10_3390_polym15010031 crossref_primary_10_1097_SCS_0000000000009635 crossref_primary_10_1016_j_oooo_2022_06_002 crossref_primary_10_3389_fbioe_2022_920378 crossref_primary_10_1097_OI9_0000000000000164 crossref_primary_10_1177_09544089241281985 crossref_primary_10_3390_bioengineering11080777 crossref_primary_10_1177_03913988231218884 crossref_primary_10_1089_ten_tea_2020_0186 crossref_primary_10_1002_adma_202108855 crossref_primary_10_1016_j_stlm_2021_100024 crossref_primary_10_3233_BME_230214 crossref_primary_10_1002_jbm_b_34885 crossref_primary_10_1021_acsbiomaterials_4c01279 crossref_primary_10_1002_jor_24424 crossref_primary_10_1097_SCS_0000000000009593 crossref_primary_10_5435_JAAOS_D_18_00746 crossref_primary_10_1016_j_mser_2024_100841 crossref_primary_10_1016_j_jmbbm_2023_105867 crossref_primary_10_1186_s40824_019_0180_z crossref_primary_10_1016_j_joule_2019_06_010 crossref_primary_10_1016_j_recot_2025_02_001 crossref_primary_10_1002_term_3013 crossref_primary_10_3390_jfb15030060 crossref_primary_10_1016_j_msec_2021_112578 crossref_primary_10_1016_j_stlm_2022_100078 |
| ContentType | Journal Article |
| Copyright | This article is protected by copyright. All rights reserved. |
| Copyright_xml | – notice: This article is protected by copyright. All rights reserved. |
| DBID | NPM ADTOC UNPAY |
| DOI | 10.1002/term.2733 |
| DatabaseName | PubMed Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | PubMed |
| DatabaseTitleList | PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1932-7005 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:8483581 30044544 |
| Genre | Journal Article |
| GroupedDBID | --- 05W 0R~ 1OC 24P 33P 4.4 53G 5GY 8-1 8UM AAESR AAHHS AAJEY AASGY AAXRX AAZKR ABCUV ABJNI ABXGK ACAHQ ACCFJ ACCZN ACGFS ACIWK ACMXC ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AENEX AEQDE AFBPY AFGKR AFRAH AHMBA AIACR AIURR AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZVAB BHBCM BMXJE BRXPI CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F5P FUBAC G-S GODZA HZ~ KBYEO LATKE LAW LEEKS LITHE LOXES LUTES LYRES ML0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY. MY~ NPM O66 O9- OIG P2P P2W PQQKQ ROL SUPJJ SV3 WBKPD WHWMO WIH WIJ WIK WOHZO WVDHM XV2 ZZTAW 31~ 7X7 8FI 8FJ AAMMB AANHP ABUWG ACBWZ ACCMX ACRPL ACYXJ ADNMO ADTOC AEFGJ AFKRA AGQPQ AGXDD AIDQK AIDYY ASPBG AVWKF AZFZN BBNVY BDRZF BENPR BFHJK BHPHI CCPQU FEDTE FYUFA H13 HCIFZ HMCUK HVGLF LH4 LW6 M7P PHGZM PHGZT PIMPY PQGLB RNS RPM UKHRP UNPAY |
| ID | FETCH-LOGICAL-c5093-31290f6016dd2770d6d2c8091c966bc705f67dcf8f1209fca82542ad57232b513 |
| IEDL.DBID | UNPAY |
| ISSN | 1932-7005 1932-6254 |
| IngestDate | Sun Oct 26 03:59:21 EDT 2025 Thu Apr 03 07:04:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | In Vivo 3D Printing Regeneration Scaffolds Bioactive Ceramic Calcium Phosphate |
| Language | English |
| License | This article is protected by copyright. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5093-31290f6016dd2770d6d2c8091c966bc705f67dcf8f1209fca82542ad57232b513 |
| ORCID | 0000-0003-1458-6527 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8483581 |
| PMID | 30044544 |
| ParticipantIDs | unpaywall_primary_10_1002_term_2733 pubmed_primary_30044544 |
| PublicationCentury | 2000 |
| PublicationDate | September 2018 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of tissue engineering and regenerative medicine |
| PublicationTitleAlternate | J Tissue Eng Regen Med |
| PublicationYear | 2018 |
| SSID | ssj0055653 |
| Score | 2.4279978 |
| Snippet | Injuries to the extremities often require resection of necrotic hard tissue. For large bone defects, autogenous bone grafting is ideal, but similar to all... |
| SourceID | unpaywall pubmed |
| SourceType | Open Access Repository Index Database |
| Title | Form and Functional Repair of Long Bone Using 3D Printed Bioactive Scaffolds |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30044544 https://www.ncbi.nlm.nih.gov/pmc/articles/8483581 |
| UnpaywallVersion | submittedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20HtSD399aAnrdbZv9PopaRLAUsaCnkkySWlx3S20RPfkT_I3-Eifdbime9LaQHIYk5L2ZffMCcGaUCniIkcMpU3N8nXhOIqwIwJhGaLT2PLSlgdtWeN3xbx6ChwVolL0wE9E-yr6bpS9u1n-aaCsHL1grdWK12I-tZ9ciLIUB0e8KLHVa7fPH4u8xd4jP--V3REesdBOq85q961yCa28ObZbH2UC8v4k0nYOV5jrclQEVapJndzySLn788mr8V8QbsDYlmey8GNqEBZ1tweqc9eA2tJpEVpnIFLPIVhQE2ZCwqT9kuWFpnvWYzDPNrDC-x7zL788vWwMkgspkPxeTa5K9ojAmT9XrDnSaV_cX1870bQUHiSLYljqe1I31YlGKR1FdhYpjTOQBKf-RGNUDE0YKTWxsc61BYTNJLlQQEQWTQcPbhUpGUewDUxLts9VorLEPxySWWvuYCIkhZcCJPoC9YrW7g8JAo2tdvnyafACns-WfDRY-yrxrd6trd-vwT7OOYIW4TFzIv46hMhqO9QnxhZGswmKrfVudnpMfajvCHQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL1oXagL3-8HAd3OtM28l6KWIlhELOiqJDdJLU5nSh-IrvwEv9Ev8abTkeJKdwPJ4pKEnHPvnHsCcG6UCniIkcMpU3N8nXhOIqwIwJh6aLT2PLSlgdtW2Gz7N4_B4wLUy16YqWgfZc_N0r6b9Z6n2spBH6ulTqwa-7H17FqEpTAg-l2BpXbr7uKp-HvMHeLzfvkd0REr3YRqvGrvOpfg2ptDm-VJNhBvryJN52ClsQ73ZUCFmuTFnYyli--_vBr_FfEGrM1IJrsohjZhQWdbsDpnPbgNrQaRVSYyxSyyFQVBNiRs6g1ZbliaZ10m80wzK4zvMu_q6-PT1gCJoDLZy8X0mmQjFMbkqRrtQLtx_XDZdGZvKzhIFMG21PGkZqwXi1I8imoqVBxjIg9I-Y_EqBaYMFJoYmObaw0Km0lyoYKIKJgM6t4uVDKKYh-YkmifrUZjjX04JrHU2sdESAwpA070AewVq90ZFAYaHevy5dPkAzj7Wf6fwcJHmXfsbnXsbh3-adYRrBCXiQv51zFUxsOJPiG-MJansxPyDeKzwRE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Form+and+functional+repair+of+long+bone+using+3D%E2%80%90printed+bioactive+scaffolds&rft.jtitle=Journal+of+tissue+engineering+and+regenerative+medicine&rft.date=2018-09-01&rft.issn=1932-7005&rft_id=info:doi/10.1002%2Fterm.2733&rft.externalDocID=oai%3Apubmedcentral.nih.gov%3A8483581 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7005&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7005&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7005&client=summon |