Development of Arabidopsis whole‐genome microarrays and their application to the discovery of binding sites for the TGA2 transcription factor in salicylic acid‐treated plants

Summary We have developed two long‐oligonucleotide microarrays for the analysis of genome features in Arabidopsis thaliana, in particular for the high‐throughput identification of transcription factor‐binding sites. The first platform contains 190 000 probes representing the 2‐kb regions upstream of...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 47; no. 1; pp. 152 - 162
Main Authors Thibaud‐Nissen, Françoise, Wu, Hank, Richmond, Todd, Redman, Julia C., Johnson, Christopher, Green, Roland, Arias, Jonathan, Town, Christopher D.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.07.2006
Blackwell Science
Subjects
Online AccessGet full text
ISSN0960-7412
1365-313X
DOI10.1111/j.1365-313X.2006.02770.x

Cover

Abstract Summary We have developed two long‐oligonucleotide microarrays for the analysis of genome features in Arabidopsis thaliana, in particular for the high‐throughput identification of transcription factor‐binding sites. The first platform contains 190 000 probes representing the 2‐kb regions upstream of all annotated genes at a density of seven probes per promoter. The second platform is divided into three chips, each of over 390 000 features, and represents the entire Arabidopsis genome at a density of one probe per 90 bases. Protein–DNA complexes resulting from the formaldehyde fixation of leaves of plants 2 h after exposure to 1 mm salicylic acid (SA) were immunoprecipitated using antibodies against the TGA2 transcription factor. After reversal of the cross‐links and amplification, the resulting ChIP sample was hybridized to both platforms. High signal ratios of the ChIP sample versus raw chromatin for clusters of neighboring probes provided evidence for 51 putative binding sites for TGA2, including the only previously confirmed site in the promoter of PR‐1 (At2g14610). Enrichment of several regions was confirmed by quantitative real‐time PCR. Motif search revealed that the palindromic octamer TGACGTCA was found in 55% of the enriched regions. Interestingly, 15 of the putative binding sites for TGA2 lie outside the presumptive promoter regions. The effect of the 2‐h SA treatment on gene expression was measured using Affymetrix ATH1 arrays, and SA‐induced genes were found to be significantly over‐represented among genes neighboring putative TGA2‐binding sites.
AbstractList We have developed two long-oligonucleotide microarrays for the analysis of genome features in Arabidopsis thaliana, in particular for the high-throughput identification of transcription factor-binding sites. The first platform contains 190,000 probes representing the 2-kb regions upstream of all annotated genes at a density of seven probes per promoter. The second platform is divided into three chips, each of over 390,000 features, and represents the entire Arabidopsis genome at a density of one probe per 90 bases. Protein-DNA complexes resulting from the formaldehyde fixation of leaves of plants 2 h after exposure to 1 mm salicylic acid (SA) were immunoprecipitated using antibodies against the TGA2 transcription factor. After reversal of the cross-links and amplification, the resulting ChIP sample was hybridized to both platforms. High signal ratios of the ChIP sample versus raw chromatin for clusters of neighboring probes provided evidence for 51 putative binding sites for TGA2, including the only previously confirmed site in the promoter of PR-1 (At2g14610). Enrichment of several regions was confirmed by quantitative real-time PCR. Motif search revealed that the palindromic octamer TGACGTCA was found in 55% of the enriched regions. Interestingly, 15 of the putative binding sites for TGA2 lie outside the presumptive promoter regions. The effect of the 2-h SA treatment on gene expression was measured using Affymetrix ATH1 arrays, and SA-induced genes were found to be significantly over-represented among genes neighboring putative TGA2-binding sites.We have developed two long-oligonucleotide microarrays for the analysis of genome features in Arabidopsis thaliana, in particular for the high-throughput identification of transcription factor-binding sites. The first platform contains 190,000 probes representing the 2-kb regions upstream of all annotated genes at a density of seven probes per promoter. The second platform is divided into three chips, each of over 390,000 features, and represents the entire Arabidopsis genome at a density of one probe per 90 bases. Protein-DNA complexes resulting from the formaldehyde fixation of leaves of plants 2 h after exposure to 1 mm salicylic acid (SA) were immunoprecipitated using antibodies against the TGA2 transcription factor. After reversal of the cross-links and amplification, the resulting ChIP sample was hybridized to both platforms. High signal ratios of the ChIP sample versus raw chromatin for clusters of neighboring probes provided evidence for 51 putative binding sites for TGA2, including the only previously confirmed site in the promoter of PR-1 (At2g14610). Enrichment of several regions was confirmed by quantitative real-time PCR. Motif search revealed that the palindromic octamer TGACGTCA was found in 55% of the enriched regions. Interestingly, 15 of the putative binding sites for TGA2 lie outside the presumptive promoter regions. The effect of the 2-h SA treatment on gene expression was measured using Affymetrix ATH1 arrays, and SA-induced genes were found to be significantly over-represented among genes neighboring putative TGA2-binding sites.
We have developed two long-oligonucleotide microarrays for the analysis of genome features in Arabidopsis thaliana, in particular for the high-throughput identification of transcription factor-binding sites. The first platform contains 190 000 probes representing the 2-kb regions upstream of all annotated genes at a density of seven probes per promoter. The second platform is divided into three chips, each of over 390 000 features, and represents the entire Arabidopsis genome at a density of one probe per 90 bases. Protein-DNA complexes resulting from the formaldehyde fixation of leaves of plants 2 h after exposure to 1 mm salicylic acid (SA) were immunoprecipitated using antibodies against the TGA2 transcription factor. After reversal of the cross-links and amplification, the resulting ChIP sample was hybridized to both platforms. High signal ratios of the ChIP sample versus raw chromatin for clusters of neighboring probes provided evidence for 51 putative binding sites for TGA2, including the only previously confirmed site in the promoter of PR-1 (At2g14610). Enrichment of several regions was confirmed by quantitative real-time PCR. Motif search revealed that the palindromic octamer TGACGTCA was found in 55% of the enriched regions. Interestingly, 15 of the putative binding sites for TGA2 lie outside the presumptive promoter regions. The effect of the 2-h SA treatment on gene expression was measured using Affymetrix ATH1 arrays, and SA-induced genes were found to be significantly over-represented among genes neighboring putative TGA2-binding sites.
We have developed two long-oligonucleotide microarrays for the analysis of genome features in Arabidopsis thaliana, in particular for the high-throughput identification of transcription factor-binding sites. The first platform contains 190 000 probes representing the 2-kb regions upstream of all annotated genes at a density of seven probes per promoter. The second platform is divided into three chips, each of over 390 000 features, and represents the entire Arabidopsis genome at a density of one probe per 90 bases. Protein-DNA complexes resulting from the formaldehyde fixation of leaves of plants 2 h after exposure to 1 m [smallcapital m] salicylic acid (SA) were immunoprecipitated using antibodies against the TGA2 transcription factor. After reversal of the cross-links and amplification, the resulting ChIP sample was hybridized to both platforms. High signal ratios of the ChIP sample versus raw chromatin for clusters of neighboring probes provided evidence for 51 putative binding sites for TGA2, including the only previously confirmed site in the promoter of PR-1 (At2g14610). Enrichment of several regions was confirmed by quantitative real-time PCR. Motif search revealed that the palindromic octamer TGACGTCA was found in 55% of the enriched regions. Interestingly, 15 of the putative binding sites for TGA2 lie outside the presumptive promoter regions. The effect of the 2-h SA treatment on gene expression was measured using Affymetrix ATH1 arrays, and SA-induced genes were found to be significantly over-represented among genes neighboring putative TGA2-binding sites.
Summary We have developed two long‐oligonucleotide microarrays for the analysis of genome features in Arabidopsis thaliana, in particular for the high‐throughput identification of transcription factor‐binding sites. The first platform contains 190 000 probes representing the 2‐kb regions upstream of all annotated genes at a density of seven probes per promoter. The second platform is divided into three chips, each of over 390 000 features, and represents the entire Arabidopsis genome at a density of one probe per 90 bases. Protein–DNA complexes resulting from the formaldehyde fixation of leaves of plants 2 h after exposure to 1 mm salicylic acid (SA) were immunoprecipitated using antibodies against the TGA2 transcription factor. After reversal of the cross‐links and amplification, the resulting ChIP sample was hybridized to both platforms. High signal ratios of the ChIP sample versus raw chromatin for clusters of neighboring probes provided evidence for 51 putative binding sites for TGA2, including the only previously confirmed site in the promoter of PR‐1 (At2g14610). Enrichment of several regions was confirmed by quantitative real‐time PCR. Motif search revealed that the palindromic octamer TGACGTCA was found in 55% of the enriched regions. Interestingly, 15 of the putative binding sites for TGA2 lie outside the presumptive promoter regions. The effect of the 2‐h SA treatment on gene expression was measured using Affymetrix ATH1 arrays, and SA‐induced genes were found to be significantly over‐represented among genes neighboring putative TGA2‐binding sites.
We have developed two long‐oligonucleotide microarrays for the analysis of genome features in Arabidopsis thaliana , in particular for the high‐throughput identification of transcription factor‐binding sites. The first platform contains 190 000 probes representing the 2‐kb regions upstream of all annotated genes at a density of seven probes per promoter. The second platform is divided into three chips, each of over 390 000 features, and represents the entire Arabidopsis genome at a density of one probe per 90 bases. Protein–DNA complexes resulting from the formaldehyde fixation of leaves of plants 2 h after exposure to 1 m m salicylic acid (SA) were immunoprecipitated using antibodies against the TGA2 transcription factor. After reversal of the cross‐links and amplification, the resulting ChIP sample was hybridized to both platforms. High signal ratios of the ChIP sample versus raw chromatin for clusters of neighboring probes provided evidence for 51 putative binding sites for TGA2, including the only previously confirmed site in the promoter of PR‐1 (At2g14610). Enrichment of several regions was confirmed by quantitative real‐time PCR. Motif search revealed that the palindromic octamer TGACGTCA was found in 55% of the enriched regions. Interestingly, 15 of the putative binding sites for TGA2 lie outside the presumptive promoter regions. The effect of the 2‐h SA treatment on gene expression was measured using Affymetrix ATH1 arrays, and SA‐induced genes were found to be significantly over‐represented among genes neighboring putative TGA2‐binding sites.
Author Thibaud‐Nissen, Françoise
Wu, Hank
Johnson, Christopher
Richmond, Todd
Town, Christopher D.
Redman, Julia C.
Green, Roland
Arias, Jonathan
Author_xml – sequence: 1
  givenname: Françoise
  surname: Thibaud‐Nissen
  fullname: Thibaud‐Nissen, Françoise
– sequence: 2
  givenname: Hank
  surname: Wu
  fullname: Wu, Hank
– sequence: 3
  givenname: Todd
  surname: Richmond
  fullname: Richmond, Todd
– sequence: 4
  givenname: Julia C.
  surname: Redman
  fullname: Redman, Julia C.
– sequence: 5
  givenname: Christopher
  surname: Johnson
  fullname: Johnson, Christopher
– sequence: 6
  givenname: Roland
  surname: Green
  fullname: Green, Roland
– sequence: 7
  givenname: Jonathan
  surname: Arias
  fullname: Arias, Jonathan
– sequence: 8
  givenname: Christopher D.
  surname: Town
  fullname: Town, Christopher D.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17864586$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16824183$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuEzEUhkeoiKaFV0DewG6Cb3PJAqSoQAFVgkWQ2Fke-7h1NGMPttM2Ox6BZ-GReBI8SaASm9aSZcv-zu_jc_6T4sh5B0WBCJ6TPF6t54TVVckI-zanGNdzTJsGz28fFbN_F0fFDC9qXDac0OPiJMY1xqRhNX9SHJO6pZy0bFb8egvX0PtxAJeQN2gZZGe1H6ON6ObK9_D7x89LcH4ANFgVvAxBbiOSTqN0BTYgOY69VTJZ71Dy0yHSNip_DWE7CXbWaesuUbQJIjI-7JDV-ZKiFKSLKthxF2ykSvnWOhRlVtzmiaSyOieQAsgEGo29dCk-LR4b2Ud4dlhPi6_v363OPpQXn88_ni0vSlXhBS4V7RYdkFYbDB1lXBtDcKtYo6nGVHfKKClNWzWLjnSU8gpTUIx3lYKKc96w0-LlXncM_vsGYhJD_hj0OQnwmyjqtiZNLvG9IG9IrnVN7gXJguGK1DyDzw_gphtAizHYQYat-Nu3DLw4ADIq2ZtcSWXjHde0Na_aKbV2z-XWxRjA3CFYTFYSazE5RkyOEZOVxM5K4jaHvvkvVNm063Pum-0fIvB6L3Bje9g--GGx-vJp2rE_fk_ooQ
CitedBy_id crossref_primary_10_1016_j_semcdb_2016_05_002
crossref_primary_10_1093_pcp_pcv156
crossref_primary_10_1128_MCB_00841_08
crossref_primary_10_3390_ijms20102538
crossref_primary_10_1146_annurev_cellbio_24_110707_175408
crossref_primary_10_1016_j_devcel_2010_10_010
crossref_primary_10_1093_pcp_pcab150
crossref_primary_10_1016_j_jbiotec_2018_07_013
crossref_primary_10_1101_gr_086231_108
crossref_primary_10_1104_pp_107_098061
crossref_primary_10_1016_j_envexpbot_2019_103881
crossref_primary_10_1016_j_ijbiomac_2024_138821
crossref_primary_10_1016_j_copbio_2010_11_010
crossref_primary_10_1105_tpc_15_00496
crossref_primary_10_1093_pcp_pcn101
crossref_primary_10_1016_j_tplants_2009_02_003
crossref_primary_10_1016_j_pbi_2007_04_020
crossref_primary_10_1093_plphys_kiac300
crossref_primary_10_3389_fpls_2019_00698
crossref_primary_10_5661_bger_25_381
crossref_primary_10_1111_j_1365_313X_2007_03361_x
crossref_primary_10_1105_tpc_106_047688
crossref_primary_10_1186_1746_4811_6_18
crossref_primary_10_1186_s12870_014_0404_2
crossref_primary_10_1016_j_bbagrm_2012_02_016
crossref_primary_10_1042_EBC20210090
crossref_primary_10_1016_j_bbagrm_2011_09_005
crossref_primary_10_3389_fpls_2022_935819
crossref_primary_10_1093_nar_gks594
crossref_primary_10_1104_pp_109_138990
crossref_primary_10_7554_eLife_00675
crossref_primary_10_1104_pp_108_133595
crossref_primary_10_1093_mp_ssn011
crossref_primary_10_1111_tpj_14037
crossref_primary_10_1105_tpc_108_064691
crossref_primary_10_1007_s11103_012_9894_1
crossref_primary_10_1016_j_plaphy_2018_06_020
crossref_primary_10_1007_s00299_013_1440_3
crossref_primary_10_1093_plphys_kiac579
crossref_primary_10_1093_jxb_erz118
crossref_primary_10_1105_tpc_109_068890
crossref_primary_10_1093_jxb_ert295
crossref_primary_10_1104_pp_107_100842
crossref_primary_10_1186_s12870_023_04607_y
crossref_primary_10_1104_pp_112_195230
crossref_primary_10_3390_plants10071380
crossref_primary_10_4238_vol9_1gmr704
crossref_primary_10_1104_pp_109_150185
crossref_primary_10_1371_journal_pgen_1002040
crossref_primary_10_1104_pp_112_196725
crossref_primary_10_1016_j_plantsci_2018_04_015
crossref_primary_10_1038_s41598_023_33226_8
crossref_primary_10_1111_j_1365_313X_2007_03320_x
crossref_primary_10_1371_journal_pbio_1000090
crossref_primary_10_1111_pce_14572
crossref_primary_10_1093_plphys_kiae544
crossref_primary_10_1089_omi_2006_10_455
crossref_primary_10_1007_s11103_009_9458_1
crossref_primary_10_1104_pp_109_150433
crossref_primary_10_3389_fpls_2022_986940
crossref_primary_10_1105_tpc_109_070961
crossref_primary_10_1016_j_pbi_2019_02_006
crossref_primary_10_1371_journal_pone_0105823
crossref_primary_10_1007_s00018_012_1090_6
crossref_primary_10_1186_1471_2164_14_477
crossref_primary_10_1111_tpj_13920
crossref_primary_10_1016_j_jprot_2022_104635
crossref_primary_10_1038_ng1929
crossref_primary_10_3389_fpls_2020_570422
crossref_primary_10_1016_j_molp_2016_01_005
crossref_primary_10_1111_j_1365_313X_2008_03486_x
crossref_primary_10_3390_biotech11030043
crossref_primary_10_1007_s10142_011_0241_4
crossref_primary_10_1016_j_tplants_2007_05_002
crossref_primary_10_1104_pp_110_165563
Cites_doi 10.1073/pnas.242579699
10.1073/pnas.86.20.7890
10.2202/1544-6115.1027
10.1126/science.1075090
10.1186/gb-2002-3-9-research0048
10.1073/pnas.48.8.1390
10.1038/nature02651
10.1105/tpc.014894
10.1104/pp.124.4.1468
10.1007/BF02174184
10.1126/science.1088305
10.1104/pp.105.059477
10.1105/tpc.001628
10.1111/j.2517-6161.1995.tb02031.x
10.1093/nar/gkg071
10.1111/j.1365-313X.2004.02007.x
10.1038/340727a0
10.1101/gad.1198204
10.1101/gr.362402
10.1105/tpc.012211
10.1016/j.cell.2004.05.023
10.1104/pp.124.4.1472
10.1186/gb-2004-5-12-r101
10.1016/j.ygeno.2003.11.004
10.1126/science.290.5500.2306
10.1093/bioinformatics/btg405
10.1023/A:1020780022549
10.1046/j.1365-313X.2001.01147.x
10.1016/S0168-9525(00)02093-X
10.1104/pp.103.030437
10.1016/S0968-0004(99)01535-2
10.1111/j.1365-313X.2004.02061.x
10.1094/MPMI.2000.13.2.191
10.1038/35054095
10.1093/nar/23.18.3778
10.1016/S0092-8674(04)00127-8
10.1006/jmbi.1993.1230
10.1038/nature03877
10.1534/genetics.105.049353
10.1101/gr.552003
10.1073/pnas.0408203102
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright_xml – notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TM
8FD
FR3
P64
RC3
7S9
L.6
7X8
DOI 10.1111/j.1365-313X.2006.02770.x
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts
AGRICOLA

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 162
ExternalDocumentID 16824183
17864586
10_1111_j_1365_313X_2006_02770_x
TPJ2770
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
IQODW
24P
AEUQT
AFPWT
CGR
CUY
CVF
ECM
EIF
ESX
IPNFZ
NPM
WRC
7QO
7TM
8FD
FR3
P64
RC3
7S9
L.6
7X8
ID FETCH-LOGICAL-c5090-c2b9be18df0eb234dff108c37d2d02dbcfcaaf8579b1b224502ec34b5ce544473
IEDL.DBID DR2
ISSN 0960-7412
IngestDate Fri Jul 11 13:40:01 EDT 2025
Fri Jul 11 14:37:00 EDT 2025
Fri Jul 11 11:26:55 EDT 2025
Wed Feb 19 01:46:35 EST 2025
Mon Jul 21 09:15:30 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Tue Jul 01 03:56:55 EDT 2025
Tue Sep 09 05:09:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ChlP-chip
Salicylic acid
Plant leaf
Gene expression
TGA
Arabidopsis thaliana
microarray
Gene
Cruciferae
Dicotyledones
Angiospermae
immunoprecipitation
Development
Spermatophyta
Transcription factor
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5090-c2b9be18df0eb234dff108c37d2d02dbcfcaaf8579b1b224502ec34b5ce544473
Notes Present address: Cellular Neurophysiology Section, Cellular Neurobiology Research Branch, IPR/NIDA/NIH/DHHS, Baltimore, MD 21224, USA.
Present address: Center for Scientific Review, National Institutes of Health, Bethesda, MD 20892, USA.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-313X.2006.02770.x
PMID 16824183
PQID 19305164
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_68617096
proquest_miscellaneous_47118361
proquest_miscellaneous_19305164
pubmed_primary_16824183
pascalfrancis_primary_17864586
crossref_primary_10_1111_j_1365_313X_2006_02770_x
crossref_citationtrail_10_1111_j_1365_313X_2006_02770_x
wiley_primary_10_1111_j_1365_313X_2006_02770_x_TPJ2770
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2006
PublicationDateYYYYMMDD 2006-07-01
PublicationDate_xml – month: 07
  year: 2006
  text: July 2006
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2006
Publisher Blackwell Publishing Ltd
Blackwell Science
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Science
References 2002; 14
2004; 20
2004; 83
1989; 86
2000; 25
1995; 57
2002; 12
2002; 298
2005; 138
2005; 436
2002; 99
2003; 13
2004; 3
2003; 15
2002; 3
2004; 5
2001; 409
2001; 28
2006; 172
2003; 51
2003; 31
2003; 133
2000; 290
2004; 430
2004; 116
2000; 16
2004; 18
2000; 124
2000
2004; 38
2005; 102
2000; 13
2004; 37
1989; 340
1995; 23
1996; 250
1962; 48
2003; 302
2004; 117
1993; 230
1989
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
Rozen S. (e_1_2_6_32_1) 2000
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
Sambrook J. (e_1_2_6_33_1) 1989
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 116
  start-page: 499
  year: 2004
  end-page: 509
  article-title: Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs
  publication-title: Cell
– volume: 18
  start-page: 1263
  year: 2004
  end-page: 1271
  article-title: The histone modification pattern of active genes revealed through genome‐wide chromatin analysis of a higher eukaryote
  publication-title: Genes Dev.
– volume: 16
  start-page: 418
  year: 2000
  end-page: 420
  article-title: Repbase update: a database and an electronic journal of repetitive elements
  publication-title: Trends Genet.
– volume: 51
  start-page: 21
  year: 2003
  end-page: 37
  article-title: Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response
  publication-title: Plant Mol. Biol.
– volume: 133
  start-page: 1605
  year: 2003
  end-page: 1616
  article-title: Identification of promoter motifs involved in the network of phytochrome A‐regulated gene expression by combined analysis of genomic sequence and microarray data
  publication-title: Plant Physiol.
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. Roy. Stat. Soc. Series B
– volume: 230
  start-page: 1131
  year: 1993
  end-page: 1144
  article-title: Plant bZIP protein DNA binding specificity
  publication-title: J. Mol. Biol.
– volume: 124
  start-page: 1468
  year: 2000
  end-page: 1471
  article-title: Arabidopsis microarray service facilities
  publication-title: Plant Physiol.
– volume: 12
  start-page: 1749
  year: 2002
  end-page: 1755
  article-title: Gene expression analysis using oligonucleotide arrays produced by maskless photolithography
  publication-title: Genome Res.
– year: 1989
– volume: 13
  start-page: 191
  year: 2000
  end-page: 202
  article-title: NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR‐1 gene required for induction by salicylic acid
  publication-title: Mol. Plant Microbe Interact.
– volume: 20
  start-page: 307
  year: 2004
  end-page: 315
  article-title: affy – analysis of Affymetrix GeneChip data at the probe level
  publication-title: Bioinformatics
– volume: 48
  start-page: 1390
  year: 1962
  end-page: 1397
  article-title: A general method for the isolation of RNA complementary to DNA
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 138
  start-page: 624
  year: 2005
  end-page: 635
  article-title: Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression
  publication-title: Plant Physiol.
– volume: 250
  start-page: 237
  year: 1996
  end-page: 239
  article-title: Binding specificity and tissue‐specific expression pattern of the Arabidopsis bZIP transcription factor TGA2
  publication-title: Mol. Gen. Genet.
– volume: 28
  start-page: 237
  year: 2001
  end-page: 243
  article-title: target promoter‐binding activities of a xenobiotic stress‐activated TGA factor
  publication-title: Plant J.
– volume: 5
  start-page: R101
  year: 2004
  article-title: GOToolBox: functional analysis of gene datasets based on gene ontology
  publication-title: Genome Biol.
– volume: 298
  start-page: 799
  year: 2002
  end-page: 804
  article-title: Transcriptional regulatory networks in
  publication-title: Science
– volume: 38
  start-page: 545
  year: 2004
  end-page: 561
  article-title: Development and evaluation of an Arabidopsis whole genome Affymetrix probe array
  publication-title: Plant J.
– volume: 290
  start-page: 2306
  year: 2000
  end-page: 2309
  article-title: Genome‐wide location and function of DNA binding proteins
  publication-title: Science
– volume: 430
  start-page: 471
  year: 2004
  end-page: 476
  article-title: Role of transposable elements in heterochromatin and epigenetic control
  publication-title: Nature
– volume: 436
  start-page: 876
  year: 2005
  end-page: 880
  article-title: A high‐resolution map of active promoters in the human genome
  publication-title: Nature
– volume: 23
  start-page: 3778
  year: 1995
  end-page: 3785
  article-title: Binding site requirements and differential representation of TGA factors in nuclear ASF‐1 activity
  publication-title: Nucleic Acids Res.
– volume: 340
  start-page: 727
  year: 1989
  end-page: 730
  article-title: Two tobacco DNA‐binding proteins with homology to the nuclear factor CREB
  publication-title: Nature
– volume: 13
  start-page: 327
  year: 2003
  end-page: 340
  article-title: Gene expression analyses of Arabidopsis chromosome 2 using a genomic DNA amplicon microarray
  publication-title: Genome Res.
– volume: 37
  start-page: 789
  year: 2004
  end-page: 800
  article-title: Microarray analysis of chromatin‐immunoprecipitated DNA identifies specific regions of tobacco genes associated with acetylated histones
  publication-title: Plant J.
– volume: 409
  start-page: 533
  year: 2001
  end-page: 538
  article-title: Genomic binding sites of the yeast cell‐cycle transcription factors SBF and MBF
  publication-title: Nature
– volume: 15
  start-page: 1846
  year: 2003
  end-page: 1858
  article-title: Salicylic acid and NPR1 induce the recruitment of trans‐activating TGA factors to a defense gene promoter in Arabidopsis
  publication-title: Plant Cell
– volume: 3
  start-page: 3
  year: 2004
  article-title: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
  publication-title: Stat. Appl. Genet. Mol. Biol.
– volume: 102
  start-page: 4453
  year: 2005
  end-page: 4458
  article-title: Identification of transcribed sequences in by using high‐resolution genome tiling arrays
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 302
  start-page: 842
  year: 2003
  end-page: 846
  article-title: Empirical analysis of transcriptional activity in the Arabidopsis genome
  publication-title: Science
– volume: 25
  start-page: 99
  year: 2000
  end-page: 104
  article-title: Mapping chromosomal proteins by formaldehyde‐crosslinked‐chromatin immunoprecipitation
  publication-title: Trends Biochem. Sci.
– volume: 15
  start-page: 2647
  year: 2003
  end-page: 2653
  article-title: Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance
  publication-title: Plant Cell
– volume: 117
  start-page: 721
  year: 2004
  end-page: 733
  article-title: Mapping global histone acetylation patterns to gene expression
  publication-title: Cell
– volume: 99
  start-page: 15687
  year: 2002
  end-page: 15692
  article-title: Microarray‐based detection and genotyping of viral pathogens
  publication-title: Proc. Natl Acad. Sci. USA
– start-page: 365
  year: 2000
  end-page: 386
– volume: 83
  start-page: 349
  year: 2004
  end-page: 360
  article-title: ChIP‐chip: considerations for the design, analysis, and application of genome‐wide chromatin immunoprecipitation experiments
  publication-title: Genomics
– volume: 3
  start-page: 1
  year: 2002
  end-page: 16
  article-title: A new non‐linear normalization method for reducing variability in DNA microarray experiments
  publication-title: Genome Biol.
– volume: 124
  start-page: 1472
  year: 2000
  end-page: 1476
  article-title: Large‐scale profiling of the Arabidopsis transcriptome
  publication-title: Plant Physiol.
– volume: 31
  start-page: 156
  year: 2003
  end-page: 158
  article-title: CATMA: a complete Arabidopsis GST database
  publication-title: Nucleic Acids Res.
– volume: 86
  start-page: 7890
  year: 1989
  end-page: 7894
  article-title: Site‐specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 172
  start-page: 1179
  year: 2006
  end-page: 1189
  article-title: Genomic survey of gene expression diversity in
  publication-title: Genetics
– volume: 14
  start-page: 1377
  year: 2002
  end-page: 1389
  article-title: interaction between NPR1 and transcription factor TGA2 leads to salicylic acid‐mediated gene activation in Arabidopsis
  publication-title: Plant Cell
– ident: e_1_2_6_37_1
  doi: 10.1073/pnas.242579699
– ident: e_1_2_6_23_1
  doi: 10.1073/pnas.86.20.7890
– ident: e_1_2_6_35_1
  doi: 10.2202/1544-6115.1027
– ident: e_1_2_6_24_1
  doi: 10.1126/science.1075090
– ident: e_1_2_6_39_1
  doi: 10.1186/gb-2002-3-9-research0048
– ident: e_1_2_6_3_1
  doi: 10.1073/pnas.48.8.1390
– ident: e_1_2_6_25_1
  doi: 10.1038/nature02651
– ident: e_1_2_6_42_1
  doi: 10.1105/tpc.014894
– volume-title: Molecular Cloning: A Laboratory Manual
  year: 1989
  ident: e_1_2_6_33_1
– ident: e_1_2_6_38_1
  doi: 10.1104/pp.124.4.1468
– ident: e_1_2_6_29_1
  doi: 10.1007/BF02174184
– ident: e_1_2_6_40_1
  doi: 10.1126/science.1088305
– ident: e_1_2_6_41_1
  doi: 10.1104/pp.105.059477
– ident: e_1_2_6_9_1
  doi: 10.1105/tpc.001628
– ident: e_1_2_6_2_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_6_7_1
  doi: 10.1093/nar/gkg071
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1365-313X.2004.02007.x
– ident: e_1_2_6_17_1
  doi: 10.1038/340727a0
– ident: e_1_2_6_34_1
  doi: 10.1101/gad.1198204
– ident: e_1_2_6_27_1
  doi: 10.1101/gr.362402
– ident: e_1_2_6_15_1
  doi: 10.1105/tpc.012211
– ident: e_1_2_6_21_1
  doi: 10.1016/j.cell.2004.05.023
– ident: e_1_2_6_44_1
  doi: 10.1104/pp.124.4.1472
– ident: e_1_2_6_26_1
  doi: 10.1186/gb-2004-5-12-r101
– ident: e_1_2_6_4_1
  doi: 10.1016/j.ygeno.2003.11.004
– ident: e_1_2_6_31_1
  doi: 10.1126/science.290.5500.2306
– ident: e_1_2_6_10_1
  doi: 10.1093/bioinformatics/btg405
– ident: e_1_2_6_8_1
  doi: 10.1023/A:1020780022549
– ident: e_1_2_6_14_1
  doi: 10.1046/j.1365-313X.2001.01147.x
– ident: e_1_2_6_16_1
  doi: 10.1016/S0168-9525(00)02093-X
– ident: e_1_2_6_11_1
  doi: 10.1104/pp.103.030437
– ident: e_1_2_6_28_1
  doi: 10.1016/S0968-0004(99)01535-2
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1365-313X.2004.02061.x
– ident: e_1_2_6_43_1
  doi: 10.1094/MPMI.2000.13.2.191
– ident: e_1_2_6_12_1
  doi: 10.1038/35054095
– ident: e_1_2_6_22_1
  doi: 10.1093/nar/23.18.3778
– ident: e_1_2_6_5_1
  doi: 10.1016/S0092-8674(04)00127-8
– ident: e_1_2_6_13_1
  doi: 10.1006/jmbi.1993.1230
– ident: e_1_2_6_19_1
  doi: 10.1038/nature03877
– ident: e_1_2_6_20_1
  doi: 10.1534/genetics.105.049353
– ident: e_1_2_6_18_1
  doi: 10.1101/gr.552003
– start-page: 365
  volume-title: Bioinformatics Methods and Protocols: Methods in Molecular Biology
  year: 2000
  ident: e_1_2_6_32_1
– ident: e_1_2_6_36_1
  doi: 10.1073/pnas.0408203102
SSID ssj0017364
Score 2.1921027
Snippet Summary We have developed two long‐oligonucleotide microarrays for the analysis of genome features in Arabidopsis thaliana, in particular for the...
We have developed two long‐oligonucleotide microarrays for the analysis of genome features in Arabidopsis thaliana , in particular for the high‐throughput...
We have developed two long-oligonucleotide microarrays for the analysis of genome features in Arabidopsis thaliana, in particular for the high-throughput...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 152
SubjectTerms antibodies
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Basic-Leucine Zipper Transcription Factors
Basic-Leucine Zipper Transcription Factors - metabolism
binding sites
Biological and medical sciences
ChIP‐chip
chromatin
Chromatin Immunoprecipitation
formaldehyde
Fundamental and applied biological sciences. Psychology
gene expression
Gene Expression Profiling
genes
Genes, Plant
genetics
Genome, Plant
immunoprecipitation
leaves
metabolism
methods
microarray
microarray technology
Molecular and cellular biology
Molecular genetics
Nuclear Proteins
Nuclear Proteins - metabolism
Oligonucleotide Array Sequence Analysis
Oligonucleotide Array Sequence Analysis - methods
polymerase chain reaction
promoter regions
Promoter Regions, Genetic
Salicylic Acid
TGA
transcription factor
transcription factors
Transcription. Transcription factor. Splicing. Rna processing
Title Development of Arabidopsis whole‐genome microarrays and their application to the discovery of binding sites for the TGA2 transcription factor in salicylic acid‐treated plants
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2006.02770.x
https://www.ncbi.nlm.nih.gov/pubmed/16824183
https://www.proquest.com/docview/19305164
https://www.proquest.com/docview/47118361
https://www.proquest.com/docview/68617096
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3datswFBaj7GIw9r81--l0sVsHy5Yl-bJr15XCxhgp5M7oz2Da2iF22LKrPcKeZY-0J9k5lpMmpYUydhEwiWRH1tE5n30-fYeQdzoVpc-Yi1D7O-Lcu0gh15VrYZm3ShiHG4U_fRbHp_xkmk0H_hPuhQn6EOsXbrgyen-NC1ybdnuRI0MrZel0yCkkUsZjxJPwA8roH35dK0kxmQYlKQDsEQTRK6Sea0-0Fanuz3QLN60M1S6ug6Pb6LYPT0cPydlqYIGVcjZedGZsf1zRfPw_I39EHgwolu4Hs3tM7vj6Cbn7vgGkuXxKfm8wkWhTQjNtKtfM2qql37Ae75-fv1Ab9sLTC-QD6vlcL1uqa0f7vAXdyKrTrsEvKe4eRrbpEk9oqn4vDsXMd0sBdvdNJh_3E9ph7F15QhqqCdGqpq1G_WP4UG0rB3-gZ9h7R2fnyAR6Rk6PPkwOjqOhNkRkAeLEkU1MbjxTroy9SVLuypLFyqbSJS5OnLGl1bpUmcwNMwBTsjjxNuUmsz7jnMv0Odmpm9rvEppbFjuXQVxO8GEsUUbn0uRY60EIZfWIyJUdFHYQTsf6HefFxgMUTEiBE4JlPUXRT0jxfUTYuucsiIfcos_elqlddpRK8EyJEXm7sr0CXAHmd3Ttm0VbABYHFyv4zS0AiYALF-zmFkKhQn8OV3kRzPry-kIB2lPpiIjeOG89omLy5QSPXv5rx1fkXnjxhSTp12Snmy_8G4CCndnrF_lflNlVTw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBajG2wwdr9kl1YPe3WwbFmWH7uxLuvaMkYKeTO6GcxSO8QOW_a0n7Dfsp-0X7JzZCdNSgtl7CEQgmRb0dE5n3U-fYeQNyoWhUuYDVD7O-Dc2UAi15UrYZgzUmiLB4WPT8TolB9OkklfDgjPwnT6EOsNN1wZ3l_jAscN6e1VjhStmMWTPqkQpWk4BEB506frECF9WWtJsTTutKQAsgcQRi_Qei690lasujtTDfxtRVfv4jJAuo1vfYA6uE-mq6F1vJSvw0Wrh-bHBdXH_zT2B-ReD2Tpfmd5D8kNVz0it97WADaXj8nvDTISrQtopnRp61lTNvQbluT98_MXysOeOXqGlEA1n6tlQ1VlqU9d0I3EOm1r_JHiAWIknC7xgrr0x3EoJr8bCsjbNxl_2I9oi-F35QxpV1CIlhVtFEogw4cqU1p4AE-yd5bOpkgGekJOD96P342CvjxEYADlhIGJdKYdk7YInY5ibouChdLEqY1sGFltCqNUIZM000wDUknCyJmY68S4hHOexk_JTlVX7jmhmWGhtQmE5gjfxyKpVZbqDMs9CCGNGpB0ZQi56bXTsYTHNN94h4IJyXFCsLKnyP2E5N8HhK17zjr9kGv02d2ytfOOqQTDlmJA9lbGl4M3wBSPqly9aHKA4-BlBb-6BYAR8OKCXd1CSBTpz-Auzzq7Pr-_kAD4ZDwgwlvntUeUjz8f4rcX_9pxj9wejY-P8qOPJ59ekjvdPhhypl-RnXa-cK8BGbZ616_4v8vnWW0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3battAEF1KWkqh9J7WaZvsQ19ltNJqtXpML26atiEUB_wm9iYQSSRhybTuUz4h39JPypd0RpIdOyQQSh8MwuxKWu3szJHm7BlC3qlQZC5i1kPtb49zZz2JXFeuhGHOSKEtbhT-fiD2jvj-JJr0_CfcC9PpQyw_uOHKaP01LvDKZuuLHBlaIQsnfU4hiGN_CHjyLhcQNREg_VhKSbE47KSkALF7EEWvsHquPdNaqHpYqRqeWtaVu7gOj67D2zY-jR6T48XIOlrK8XDW6KH5fUX08f8M_Ql51MNYutvZ3VNyxxXPyL33JUDN-XPyZ4WKRMsMmimd27Kq85r-xIK8F2fnKA576ugpEgLVdKrmNVWFpW3igq6k1WlT4p8Utw8j3XSOJ9R5uxmHYuq7poC72ybjz7sBbTD4Llwh7coJ0bygtUIBZPhRZXILN9BS7J2l1QlSgV6Qo9Gn8Yc9ry8O4RnAOL5nAp1ox6TNfKeDkNssY740YWwD6wdWm8wolckoTjTTgFMiP3Am5DoyLuKcx-Em2SjKwr0iNDHMtzaCwBzg21ggtUpinWCxByGkUQMSL-wgNb1yOhbwOElX3qBgQlKcEKzrKdJ2QtJfA8KWPatOPeQWfbbXTO2yYywFj6QYkJ2F7aXgCzDBowpXzuoUwDj4WMFvbgFQBHy4YDe3EBIl-hO4ysvOrC-vLyTAPRkOiGiN89YjSseH-3i09a8dd8j9w4-j9NuXg6-vyYPuIxgSpt-QjWY6c28BFjZ6u13vfwF0e1gc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Arabidopsis+whole-genome+microarrays+and+their+application+to+the+discovery+of+binding+sites+for+the+TGA2+transcription+factor+in+salicylic+acid-treated+plants&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Thibaud-Nissen%2C+Fran%C3%A7oise&rft.au=Wu%2C+Hank&rft.au=Richmond%2C+Todd&rft.au=Redman%2C+Julia+C&rft.date=2006-07-01&rft.issn=0960-7412&rft.volume=47&rft.issue=1+p.152-162&rft.spage=152&rft.epage=162&rft_id=info:doi/10.1111%2Fj.1365-313X.2006.02770.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon