Machine Learning-Based Boosted Regression Ensemble Combined with Hyperparameter Tuning for Optimal Adaptive Learning

Over the past couple of decades, many telecommunication industries have passed through the different facets of the digital revolution by integrating artificial intelligence (AI) techniques into the way they run and define their processes. Relevant data acquisition, analysis, harnessing, and mining a...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 10; p. 3776
Main Authors Isabona, Joseph, Imoize, Agbotiname Lucky, Kim, Yongsung
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 16.05.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22103776

Cover

Abstract Over the past couple of decades, many telecommunication industries have passed through the different facets of the digital revolution by integrating artificial intelligence (AI) techniques into the way they run and define their processes. Relevant data acquisition, analysis, harnessing, and mining are now fully considered vital drivers for business growth in these industries. Machine learning, a subset of artificial intelligence (AI), can assist, particularly in learning patterns in big data chunks, intelligent extrapolative extraction of data and automatic decision-making in predictive learning. Firstly, in this paper, a detailed performance benchmarking of adaptive learning capacities of different key machine-learning-based regression models is provided for extrapolative analysis of throughput data acquired at the different user communication distances to the gNodeB transmitter in 5G new radio networks. Secondly, a random forest (RF)-based machine learning model combined with a least-squares boosting algorithm and Bayesian hyperparameter tuning method for further extrapolative analysis of the acquired throughput data is proposed. The proposed model is herein referred to as the RF-LS-BPT method. While the least-squares boosting algorithm is engaged to turn the possible RF weak learners to form stronger ones, resulting in a single strong prediction model, the Bayesian hyperparameter tuning automatically determines the best RF hyperparameter values, thereby enabling the proposed RF-LS-BPT model to obtain desired optimal prediction performance. The application of the proposed RF-LS-BPT method showed superior prediction accuracy over the ordinary random forest model and six other machine-learning-based regression models on the acquired throughput data. The coefficient of determination (Rsq) and mean absolute error (MAE) values obtained for the throughput prediction at different user locations using the proposed RF-LS-BPT method range from 0.9800 to 0.9999 and 0.42 to 4.24, respectively. The standard RF models attained 0.9644 to 0.9944 Rsq and 5.47 to 12.56 MAE values. The improved throughput prediction accuracy of the proposed RF-LS-BPT method demonstrates the significance of hyperparameter tuning/optimization in developing precise and reliable machine-learning-based regression models. The projected model would find valuable applications in throughput estimation and modeling in 5G and beyond 5G wireless communication systems.
AbstractList Over the past couple of decades, many telecommunication industries have passed through the different facets of the digital revolution by integrating artificial intelligence (AI) techniques into the way they run and define their processes. Relevant data acquisition, analysis, harnessing, and mining are now fully considered vital drivers for business growth in these industries. Machine learning, a subset of artificial intelligence (AI), can assist, particularly in learning patterns in big data chunks, intelligent extrapolative extraction of data and automatic decision-making in predictive learning. Firstly, in this paper, a detailed performance benchmarking of adaptive learning capacities of different key machine-learning-based regression models is provided for extrapolative analysis of throughput data acquired at the different user communication distances to the gNodeB transmitter in 5G new radio networks. Secondly, a random forest (RF)-based machine learning model combined with a least-squares boosting algorithm and Bayesian hyperparameter tuning method for further extrapolative analysis of the acquired throughput data is proposed. The proposed model is herein referred to as the RF-LS-BPT method. While the least-squares boosting algorithm is engaged to turn the possible RF weak learners to form stronger ones, resulting in a single strong prediction model, the Bayesian hyperparameter tuning automatically determines the best RF hyperparameter values, thereby enabling the proposed RF-LS-BPT model to obtain desired optimal prediction performance. The application of the proposed RF-LS-BPT method showed superior prediction accuracy over the ordinary random forest model and six other machine-learning-based regression models on the acquired throughput data. The coefficient of determination (Rsq) and mean absolute error (MAE) values obtained for the throughput prediction at different user locations using the proposed RF-LS-BPT method range from 0.9800 to 0.9999 and 0.42 to 4.24, respectively. The standard RF models attained 0.9644 to 0.9944 Rsq and 5.47 to 12.56 MAE values. The improved throughput prediction accuracy of the proposed RF-LS-BPT method demonstrates the significance of hyperparameter tuning/optimization in developing precise and reliable machine-learning-based regression models. The projected model would find valuable applications in throughput estimation and modeling in 5G and beyond 5G wireless communication systems.Over the past couple of decades, many telecommunication industries have passed through the different facets of the digital revolution by integrating artificial intelligence (AI) techniques into the way they run and define their processes. Relevant data acquisition, analysis, harnessing, and mining are now fully considered vital drivers for business growth in these industries. Machine learning, a subset of artificial intelligence (AI), can assist, particularly in learning patterns in big data chunks, intelligent extrapolative extraction of data and automatic decision-making in predictive learning. Firstly, in this paper, a detailed performance benchmarking of adaptive learning capacities of different key machine-learning-based regression models is provided for extrapolative analysis of throughput data acquired at the different user communication distances to the gNodeB transmitter in 5G new radio networks. Secondly, a random forest (RF)-based machine learning model combined with a least-squares boosting algorithm and Bayesian hyperparameter tuning method for further extrapolative analysis of the acquired throughput data is proposed. The proposed model is herein referred to as the RF-LS-BPT method. While the least-squares boosting algorithm is engaged to turn the possible RF weak learners to form stronger ones, resulting in a single strong prediction model, the Bayesian hyperparameter tuning automatically determines the best RF hyperparameter values, thereby enabling the proposed RF-LS-BPT model to obtain desired optimal prediction performance. The application of the proposed RF-LS-BPT method showed superior prediction accuracy over the ordinary random forest model and six other machine-learning-based regression models on the acquired throughput data. The coefficient of determination (Rsq) and mean absolute error (MAE) values obtained for the throughput prediction at different user locations using the proposed RF-LS-BPT method range from 0.9800 to 0.9999 and 0.42 to 4.24, respectively. The standard RF models attained 0.9644 to 0.9944 Rsq and 5.47 to 12.56 MAE values. The improved throughput prediction accuracy of the proposed RF-LS-BPT method demonstrates the significance of hyperparameter tuning/optimization in developing precise and reliable machine-learning-based regression models. The projected model would find valuable applications in throughput estimation and modeling in 5G and beyond 5G wireless communication systems.
Over the past couple of decades, many telecommunication industries have passed through the different facets of the digital revolution by integrating artificial intelligence (AI) techniques into the way they run and define their processes. Relevant data acquisition, analysis, harnessing, and mining are now fully considered vital drivers for business growth in these industries. Machine learning, a subset of artificial intelligence (AI), can assist, particularly in learning patterns in big data chunks, intelligent extrapolative extraction of data and automatic decision-making in predictive learning. Firstly, in this paper, a detailed performance benchmarking of adaptive learning capacities of different key machine-learning-based regression models is provided for extrapolative analysis of throughput data acquired at the different user communication distances to the gNodeB transmitter in 5G new radio networks. Secondly, a random forest (RF)-based machine learning model combined with a least-squares boosting algorithm and Bayesian hyperparameter tuning method for further extrapolative analysis of the acquired throughput data is proposed. The proposed model is herein referred to as the RF-LS-BPT method. While the least-squares boosting algorithm is engaged to turn the possible RF weak learners to form stronger ones, resulting in a single strong prediction model, the Bayesian hyperparameter tuning automatically determines the best RF hyperparameter values, thereby enabling the proposed RF-LS-BPT model to obtain desired optimal prediction performance. The application of the proposed RF-LS-BPT method showed superior prediction accuracy over the ordinary random forest model and six other machine-learning-based regression models on the acquired throughput data. The coefficient of determination (Rsq) and mean absolute error (MAE) values obtained for the throughput prediction at different user locations using the proposed RF-LS-BPT method range from 0.9800 to 0.9999 and 0.42 to 4.24, respectively. The standard RF models attained 0.9644 to 0.9944 Rsq and 5.47 to 12.56 MAE values. The improved throughput prediction accuracy of the proposed RF-LS-BPT method demonstrates the significance of hyperparameter tuning/optimization in developing precise and reliable machine-learning-based regression models. The projected model would find valuable applications in throughput estimation and modeling in 5G and beyond 5G wireless communication systems.
Audience Academic
Author Isabona, Joseph
Kim, Yongsung
Imoize, Agbotiname Lucky
AuthorAffiliation 2 Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos, Akoka, Lagos 100213, Nigeria; aimoize@unilag.edu.ng
3 Department of Electrical Engineering and Information Technology, Institute of Digital Communication, Ruhr University, 44801 Bochum, Germany
4 Department of Technology Education, Chungnam National University, Daejeon 34134, Korea
1 Department of Physics, Federal University Lokoja, P.M.B 1154, Lokoja 260101, Nigeria; joseph.isabona@fulokoja.edu.ng
AuthorAffiliation_xml – name: 1 Department of Physics, Federal University Lokoja, P.M.B 1154, Lokoja 260101, Nigeria; joseph.isabona@fulokoja.edu.ng
– name: 3 Department of Electrical Engineering and Information Technology, Institute of Digital Communication, Ruhr University, 44801 Bochum, Germany
– name: 2 Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos, Akoka, Lagos 100213, Nigeria; aimoize@unilag.edu.ng
– name: 4 Department of Technology Education, Chungnam National University, Daejeon 34134, Korea
Author_xml – sequence: 1
  givenname: Joseph
  orcidid: 0000-0002-2606-4315
  surname: Isabona
  fullname: Isabona, Joseph
– sequence: 2
  givenname: Agbotiname Lucky
  orcidid: 0000-0001-8921-8353
  surname: Imoize
  fullname: Imoize, Agbotiname Lucky
– sequence: 3
  givenname: Yongsung
  surname: Kim
  fullname: Kim, Yongsung
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35632184$$D View this record in MEDLINE/PubMed
BookMark eNplkktvEzEUhUeoiD5gwR9AI7GBRVq_5pENUhoVWimoEipr647nOnE0YwfbKeq_54a0pS3ywtb1Od_14xwXBz54LIr3nJ1KOWVnSQjOZNPUr4ojroSatEKwgyfrw-I4pTVjQkrZvikOZVVLwVt1VOTvYFbOY7lAiN755eQcEvbleQgp0_wDlxFTcsGXFz7h2A1YzsPYkaUvf7u8Ki_vNhg3EGHEjLG82e4opQ2xvN5kN8JQznqg1e2_Hm-L1xaGhO_u55Pi59eLm_nlZHH97Wo-W0xMxdo8sQ3WlkHXWgDB0QA3hvdM9VJCY2xXV4Z3jZEKRIWyV3VrWiNMjdgAVmDlSXG15_YB1noT6TTxTgdw-m8hxKWGmJ0ZULOuQvLanqiqY6qzopZUqSoBVW86Yn3ZszbbbsTeoM8RhmfQ5zverfQy3OopV7VUFQE-3QNi-LXFlPXoksFhAI9hm7SoGy4aodqGpB9fSNdhGz091U7FKt4oJUl1ulctgS7gvA3U19DocXSGEmId1WdNy8WUYiLI8OHpFR7P_pAGEpztBSaGlCJabVyGTJ9PZDdozvQub_oxb-T4_MLxAP1f-wcXgNcs
CitedBy_id crossref_primary_10_1093_sleep_zsad328
crossref_primary_10_2139_ssrn_4180768
crossref_primary_10_3390_app12147006
crossref_primary_10_1109_ACCESS_2024_3368070
crossref_primary_10_1016_j_measurement_2024_115676
crossref_primary_10_1038_s41598_023_43689_4
crossref_primary_10_1111_exsy_13379
crossref_primary_10_1016_j_sopen_2024_04_003
crossref_primary_10_1080_14765284_2023_2245277
crossref_primary_10_1016_j_ijpharm_2023_123414
crossref_primary_10_1007_s11277_024_11727_7
crossref_primary_10_3389_fchem_2024_1398984
crossref_primary_10_1109_ACCESS_2023_3281484
crossref_primary_10_1177_20597991241287118
crossref_primary_10_1021_acs_analchem_4c00741
crossref_primary_10_7717_peerj_cs_1894
crossref_primary_10_1016_j_est_2023_109145
crossref_primary_10_3390_inventions8010032
crossref_primary_10_1111_gcb_16620
crossref_primary_10_1039_D4YA00313F
crossref_primary_10_3390_rs17010007
crossref_primary_10_3390_agriengineering6010015
crossref_primary_10_1016_j_scitotenv_2023_164072
crossref_primary_10_1021_acssuschemeng_4c01285
crossref_primary_10_1109_ACCESS_2022_3205587
crossref_primary_10_1016_j_eswa_2023_121380
crossref_primary_10_1016_j_procs_2024_05_063
crossref_primary_10_1038_s41598_024_60840_x
crossref_primary_10_3390_atmos13111887
crossref_primary_10_3390_app12168271
crossref_primary_10_1016_j_jenvman_2025_124139
crossref_primary_10_3390_jmse11101925
crossref_primary_10_3390_stats6040062
crossref_primary_10_1371_journal_pone_0307654
crossref_primary_10_1038_s41598_024_81976_w
crossref_primary_10_3390_su15021678
crossref_primary_10_1002_spy2_417
crossref_primary_10_1007_s11368_023_03652_2
crossref_primary_10_1016_j_apenergy_2024_123641
crossref_primary_10_1007_s13202_024_01900_w
crossref_primary_10_3233_SJI_230033
crossref_primary_10_1080_07038992_2024_2407163
crossref_primary_10_3390_fi14120373
crossref_primary_10_3390_info14040223
crossref_primary_10_1007_s40243_023_00239_2
crossref_primary_10_3390_app14083313
crossref_primary_10_3390_f14071284
Cites_doi 10.1007/3-540-45681-3_6
10.2202/1544-6115.1691
10.3390/app12010426
10.2298/CSIS200330012S
10.1007/978-3-642-02326-2_18
10.3390/e20040236
10.1214/21-EJS1958
10.1145/3366423.3380169
10.1007/978-3-642-31537-4_13
10.1155/2021/8838792
10.1109/ACCESS.2022.3187040
10.1016/j.ijleo.2021.168430
10.1109/JSAC.2012.120118
10.1007/s10994-020-05889-1
10.1007/s11227-021-04188-3
10.1007/s11004-021-09946-w
10.1007/s11277-021-08300-x
10.1155/2022/8928021
10.1023/A:1010933404324
10.1016/j.caeai.2021.100017
10.1155/2019/4140707
10.3390/app9050898
10.1016/j.ins.2022.01.010
10.1186/s44147-021-00035-7
10.1016/j.knosys.2021.106988
10.3390/s21134412
10.3390/app11083428
10.1007/s10994-017-5642-8
10.1007/s10489-020-01892-0
10.3390/app12083923
10.1016/j.dib.2020.105304
10.1214/aos/1024691352
10.3390/su12156250
10.1016/j.neucom.2017.05.094
10.1002/dac.4680
10.1007/978-3-030-87605-0_12
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s22103776
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Proquest Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef


MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_0b5ec2cfdb654b04bf263ec2552a5dcb
PMC9146345
A781293392
35632184
10_3390_s22103776
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: German Academic Exchange Service
  grantid: 57473408
– fundername: National Research Foundation of Korea
  grantid: 2020R1G1A1099559
– fundername: Nigerian Petroleum Technology Development Fund (PTDF)
  grantid: 57473408
– fundername: National Research Foundation of Korea (NRF)
  grantid: 2020R1G1A1099559
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PUEGO
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c508t-f7e6f0ab8faa21eca1cc1d04d33a7cfb65c1b7c34a25e3d468c8c2c6ee7ae5af3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:23:35 EDT 2025
Thu Aug 21 14:11:18 EDT 2025
Fri Sep 05 10:13:20 EDT 2025
Fri Jul 25 20:27:05 EDT 2025
Tue Jun 10 21:15:32 EDT 2025
Wed Sep 03 05:52:00 EDT 2025
Tue Jul 01 02:41:55 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords optimization
throughput data
5G performance measurement
least-squares boosting
random forest
machine learning
adaptive learning
hyperparameter tuning
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-f7e6f0ab8faa21eca1cc1d04d33a7cfb65c1b7c34a25e3d468c8c2c6ee7ae5af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2606-4315
0000-0001-8921-8353
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22103776
PMID 35632184
PQID 2670517443
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_0b5ec2cfdb654b04bf263ec2552a5dcb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9146345
proquest_miscellaneous_2671272487
proquest_journals_2670517443
gale_infotracacademiconefile_A781293392
pubmed_primary_35632184
crossref_citationtrail_10_3390_s22103776
crossref_primary_10_3390_s22103776
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220516
PublicationDateYYYYMMDD 2022-05-16
PublicationDate_xml – month: 5
  year: 2022
  text: 20220516
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Khan (ref_28) 2011; 30
Rehman (ref_21) 2022; 78
ref_36
ref_13
Han (ref_9) 2020; 109
ref_33
ref_31
Talebi (ref_22) 2022; 54
Castillo (ref_27) 2008; 21
ref_30
Kumar (ref_17) 2022; 252
Ojo (ref_35) 2021; 34
ref_19
Yedida (ref_25) 2021; 51
Lan (ref_43) 2022; 2022
ref_18
ref_16
ref_38
ref_15
Kabudi (ref_24) 2021; 2
Du (ref_37) 2022; 591
Gomes (ref_12) 2017; 106
Kavitha (ref_20) 2022; 2022
Goldstein (ref_14) 2011; 10
Isabona (ref_39) 2021; 68
Imoize (ref_40) 2021; 2021
Bartlett (ref_41) 1998; 26
ref_45
ref_44
Malek (ref_11) 2018; 272
Isabona (ref_1) 2021; 119
Imoize (ref_2) 2020; 29
Peng (ref_23) 2022; 16
Gao (ref_10) 2019; 2019
Singh (ref_3) 2021; 18
Shin (ref_5) 2021; 26
ref_29
Isabona (ref_42) 2020; 10
ref_8
Probst (ref_7) 2017; 18
Moodi (ref_32) 2021; 222
Battiti (ref_26) 1989; 3
ref_4
Breiman (ref_34) 2001; 45
ref_6
References_xml – ident: ref_44
  doi: 10.1007/3-540-45681-3_6
– volume: 10
  start-page: 32
  year: 2011
  ident: ref_14
  article-title: Random forests for genetic association studies
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1691
– ident: ref_18
  doi: 10.3390/app12010426
– volume: 18
  start-page: 597
  year: 2021
  ident: ref_3
  article-title: Machine learning based distributed big data analysis framework for next generation web in IoT
  publication-title: Comput. Sci. Inf. Syst.
  doi: 10.2298/CSIS200330012S
– ident: ref_13
  doi: 10.1007/978-3-642-02326-2_18
– ident: ref_30
  doi: 10.3390/e20040236
– volume: 16
  start-page: 232
  year: 2022
  ident: ref_23
  article-title: Rates of convergence for random forests via generalized U-statistics
  publication-title: Electron. J. Stat.
  doi: 10.1214/21-EJS1958
– ident: ref_31
  doi: 10.1145/3366423.3380169
– ident: ref_6
  doi: 10.1007/978-3-642-31537-4_13
– volume: 2021
  start-page: 36
  year: 2021
  ident: ref_40
  article-title: Standard Propagation Channel Models for MIMO Communication Systems
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2021/8838792
– volume: 10
  start-page: 3
  year: 2020
  ident: ref_42
  article-title: Adaptation of Propagation Model Parameters toward Efficient Cellular Network Planning using Robust LAD Algorithm
  publication-title: Int. J. Wirel. Microw. Technol.
– volume: 18
  start-page: 6673
  year: 2017
  ident: ref_7
  article-title: To tune or not to tune the number of trees in random forest
  publication-title: J. Mach. Learn. Res.
– ident: ref_19
  doi: 10.1109/ACCESS.2022.3187040
– volume: 252
  start-page: 168430
  year: 2022
  ident: ref_17
  article-title: Performance enhancement of FSO communication system using machine learning for 5G/6G and IoT applications
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.168430
– volume: 30
  start-page: 198
  year: 2011
  ident: ref_28
  article-title: Game dynamics and cost of learning in heterogeneous 4G networks
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2012.120118
– volume: 109
  start-page: 1569
  year: 2020
  ident: ref_9
  article-title: Double random forest
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-020-05889-1
– volume: 78
  start-page: 8890
  year: 2022
  ident: ref_21
  article-title: Intrusion detection based on machine learning in the internet of things, attacks and counter measures
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-04188-3
– volume: 54
  start-page: 1
  year: 2022
  ident: ref_22
  article-title: A truly spatial Random Forests algorithm for geoscience data analysis and modelling
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-021-09946-w
– volume: 119
  start-page: 1661
  year: 2021
  ident: ref_1
  article-title: Joint Statistical and Machine Learning Approach for Practical Data-Driven Assessment of User Throughput Quality in Microcellular Radio Networks
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-021-08300-x
– volume: 2022
  start-page: 8928021
  year: 2022
  ident: ref_20
  article-title: On the Use of Wavelet Domain and Machine Learning for the Analysis of Epileptic Seizure Detection from EEG Signals
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2022/8928021
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_34
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 26
  start-page: 97
  year: 2021
  ident: ref_5
  article-title: A Comparative Analysis of Ensemble Learning-Based Classification Models for Explainable Term Deposit Subscription Forecasting
  publication-title: J. Soc. e-Bus. Stud.
– volume: 2
  start-page: 100017
  year: 2021
  ident: ref_24
  article-title: AI-enabled adaptive learning systems: A systematic mapping of the literature
  publication-title: Comput. Educ. Artif. Intell.
  doi: 10.1016/j.caeai.2021.100017
– volume: 2019
  start-page: 4140707
  year: 2019
  ident: ref_10
  article-title: An improved random forest algorithm for predicting employee turnover
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2019/4140707
– volume: 21
  start-page: 87
  year: 2008
  ident: ref_27
  article-title: Adaptive learning algorithms for Bayesian network classifiers
  publication-title: Ai Commun.
– ident: ref_15
  doi: 10.3390/app9050898
– volume: 591
  start-page: 155
  year: 2022
  ident: ref_37
  article-title: Bayesian optimization based dynamic ensemble for time series forecasting
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.01.010
– volume: 68
  start-page: 33
  year: 2021
  ident: ref_39
  article-title: Terrain-based adaption of propagation model loss parameters using non-linear square regression
  publication-title: J. Eng. Appl. Sci.
  doi: 10.1186/s44147-021-00035-7
– volume: 222
  start-page: 106988
  year: 2021
  ident: ref_32
  article-title: A hybrid intelligent approach to detect android botnet using smart self-adaptive learning-based PSO-SVM
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106988
– ident: ref_29
– ident: ref_16
  doi: 10.3390/s21134412
– ident: ref_8
  doi: 10.3390/app11083428
– volume: 106
  start-page: 1469
  year: 2017
  ident: ref_12
  article-title: Adaptive random forests for evolving data stream classification
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-017-5642-8
– volume: 51
  start-page: 1460
  year: 2021
  ident: ref_25
  article-title: Lipschitzlr: Using theoretically computed adaptive learning rates for fast convergence
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01892-0
– ident: ref_33
  doi: 10.3390/app12083923
– volume: 29
  start-page: 105304
  year: 2020
  ident: ref_2
  article-title: Analysis of key performance indicators of a 4G LTE network based on experimental data obtained from a densely populated smart city
  publication-title: Data Brief
  doi: 10.1016/j.dib.2020.105304
– volume: 3
  start-page: 331
  year: 1989
  ident: ref_26
  article-title: Accelerated backpropagation learning: Two optimization methods
  publication-title: Complex Syst.
– volume: 26
  start-page: 1651
  year: 1998
  ident: ref_41
  article-title: Boosting the margin: A new explanation for the effectiveness of voting methods
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1024691352
– volume: 2022
  start-page: 1
  year: 2022
  ident: ref_43
  article-title: Conquering insufficient/imbalanced data learning for the Internet of Medical Things
  publication-title: Neural Comput. Appl.
– ident: ref_4
  doi: 10.3390/su12156250
– volume: 272
  start-page: 55
  year: 2018
  ident: ref_11
  article-title: Random forest and Self Organizing Maps application for analysis of pediatric fracture healing time of the lower limb
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.094
– ident: ref_38
– ident: ref_45
– volume: 34
  start-page: e4680
  year: 2021
  ident: ref_35
  article-title: Radial basis function neural network path loss prediction model for LTE networks in multitransmitter signal propagation environments
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.4680
– ident: ref_36
  doi: 10.1007/978-3-030-87605-0_12
SSID ssj0023338
Score 2.5548038
Snippet Over the past couple of decades, many telecommunication industries have passed through the different facets of the digital revolution by integrating artificial...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3776
SubjectTerms 5G performance measurement
Accuracy
Adaptive learning
Algorithms
Analysis
Artificial Intelligence
Bayes Theorem
Big data
Communications industry
Data analysis
Data processing
Datasets
Decision making
hyperparameter tuning
Least-Squares Analysis
Machine Learning
Optimization
random forest
Random variables
Regression analysis
Support vector machines
Telecommunications services industry
throughput data
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kT_VBtH6lVllF0JfQZD8vjz1pOYQqSAt9W_Zjtgq9XOnd_f_OJLmQQ8EXX7PD7WZmdnZ-l5nfMvYR3QKC1gmjHyBAyfR9F2VL34CyWVchZ2pOvvxmFtfq642-mVz1RTVhPT1wr7jTKmiIIuYUjFahUiELI_GJ1sLrFANF36qpdmBqgFoSkVfPIyQR1J-uhaB-OCIWmZw-HUn_n6F4chbt10lODp6Lp-zJkDHys36lz9gjaI_Y4wmP4HO2uexKIoEPbKm35RwPp8Tnq66Fg_-A277cteXn7RqW4Q44BgIExThI_8TyBcLRB6IBX1J5DL_a0q9wTGj5d4wpS5o_-XsKjeMcL9j1xfnVl0U5XKdQRszCNmW2YHLlwyx7L2qIvo6xTpVKUnobM-o31sFGqbzQIJMyszhDzRsA60H7LF-yg3bVwmvGQzRJZR29aRBhmdjIKomA5sAZIDahYJ93anZx4BqnKy_uHGIOsogbLVKwD6PofU-w8TehOdlqFCBO7O4BeoobPMX9y1MK9oks7Wjn4mKiHxoQ8JWIA8ud2RklP5gwFuxk5wxu2NJrJ4ztaL2VLNj7cRg3I31h8S2stp1MLaxAEFiwV73vjGuW2kjC0wWze16191L7I-2vnx3hNyrZSKWP_4cW3rBDQR0cREBrTtjB5mELbzGv2oR33Rb6DeHKJ44
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9NAEB6V9AUeEDeGghaEBC9Wnb2cPCDUoFQRUgOqWqlv1p4pUmOHHP-fGV8kAvHqXdmzO8fOeGe-AfiAYhGsUh6tX8AAJdL9Ls5NzTjIPKrMxkjFyRdzPbuW327UzRHMu1oYSqvsbGJtqH3l6B_5Kdd5jaosxZfVr5S6RtHtatdCw7StFfznGmLsHhyjSVbZAI4n0_mPyz4EExiRNfhCAoP90w3nVCdHgCN7p1IN3v-3id47ow7zJ_cOpPNH8LD1JNlZw_rHcBTKJ_BgD1_wKWwv6lTJwFoU1UU6wUPLs0lVl3awy7Bo0mBLNi03YWnvAkMDgcEyDtIfWjbDMHVN8OBLSpthVzt6C0NHl31HW7Ok73uzIpPZf-MZXJ9Pr77O0rbNQurQO9umMQ86ZsaOojF8GJwZOjf0mfRCmNxFq5Ub2twJabgKwks9ciPHnQ4hN0GZKJ7DoKzK8BKYddrLqJzRY4y8tBuLzHOrcKN0DG5sE_jUbXPhWgxyaoVxV2AsQhwpeo4k8L6fumqAN_41aUK86icQVnb9oFovilb1isyqgPRGjyuRNpM2ci3wiVLcIGlI1EfidEEajcQ40xYm4JIIG6s4y0fkFKEjmcBJJwxFq-qb4o9gJvCuH0YlpZsXU4ZqV88Z8pxjcJjAi0Z2epqF0oLi7ATyA6k6WNThSPnztgYCx03WQqpX_yfrNdznVLNBkLP6BAbb9S68QU9qa9-26vEboHUkJw
  priority: 102
  providerName: ProQuest
Title Machine Learning-Based Boosted Regression Ensemble Combined with Hyperparameter Tuning for Optimal Adaptive Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/35632184
https://www.proquest.com/docview/2670517443
https://www.proquest.com/docview/2671272487
https://pubmed.ncbi.nlm.nih.gov/PMC9146345
https://doaj.org/article/0b5ec2cfdb654b04bf263ec2552a5dcb
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7t4wIHxJvAUhmEBJdA6md7QGiLWiqkXdBqK_UW2Y5dkNp06UOCf89MmkaN2COXHuJRY3vG4_nimc8Ab9AsglOqQO8XEKBEOt9F2dT2gzRRZS5GKk6-uNTjifw6VdMj2N-xWU_g-lZoR_dJTVbz979__fmEC_4jIU6E7B_WnFO1m9HHcFodE1EGn2wOE7hAGLYjFWqLt7aiirH_X798sDG1kyYPdqHRfbhXh4_sfKfvB3AUyodw94BU8BFsLqr8yMBq6tRZOsCdqmCDZVXPwa7CbJf7WrJhuQ4LNw8MvQIiZGykz7JsjNh0RZzgC8qVYddb-heG0S37hg5mQe8v7A35yeYdj2EyGl5_Hqf13Qqpx5Bsk0YTdMys60VreTd42_W-W2SyEMIaH51WvuuMF9JyFUQhdc_3PPc6BGODslE8gZNyWYZnwJzXhYzKW91HuKV9X2QFdwonSsfg-y6Bd_tpzn1NPE73X8xzBCCkkbzRSAKvG9GbHdvGbUID0lUjQATZ1YPlapbX6y3PnArY31jgSKTLpItcC3yiFLfYNezUW9J0ToaFnfG2rkbAIREhVn5uehQJYfSYwNneGPK9eeZcm4rjW4oEXjXNuDLpuMWWYbmtZLrccESECTzd2U7TZ6G0IHCdgGlZVWtQ7Zby54-K_RsnWQupnv-PWXgBdziVcxAbrT6Dk81qG15ikLVxHTg2U4O_vdGXDpwOhpffrzrVB4tOtbj-AkhJMRk
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEG8WChgEgsuqG782OVSogVQpbQKqUqm3xfbaAanZhDyE-HP8NmY2myURiFuva8s79ozHM_bMNwCvUCy8VSpH7efRQQn0vot9Y9P2Mg0qsSFQcnJ_oHvn8uOFutiBX-tcGAqrXOvEUlHnE0d35PtcpyWqshTvpt9jqhpFr6vrEhqmKq2QH5QQY1Vix4n_-QNduPnB8Qfk92vOj7rD9724qjIQOzROFnFIvQ6Jsa1gDG96Z5rONfNE5kKY1AWrlWva1AlpuPIil7rlWo477X1qvDJB4LjXYFfSBUoDdjvdweez2uUT6AGu8IyEaCf7c84pL48ATjZOwbJYwN9HwsaZuB2vuXEAHt2GW5Xlyg5XonYHdnxxF25u4Bneg0W_DM30rEJtHcUdPCRz1pmUqSTszI9WYbcF6xZzP7aXnqFCQuccG-lGmPXQLZ4RHPmYwnTYcEmjMDSs2SfUbWP6f26mpKLrf9yH8ytZ8AfQKCaFfwTMOp3LoJzRbfT0tGuLJOdW4ULp4F3bRvB2vcyZqzDPqfTGZYa-D3EkqzkSwcu663QF9PGvTh3iVd2BsLnLD5PZKKu2epZY5ZHekONMpE2kDVwL_KIUN0gaEvWGOJ2RBkFinKkSIXBKhMWVHaYtMsLQcI1gby0MWaVa5tmfjRDBi7oZlQK99JjCT5ZlnyZPOTqjETxcyU5Ns1BakF8fQbolVVuT2m4pvn0tgcdxkbWQ6vH_yXoO13vD_ml2ejw4eQI3OOWLENyt3oPGYrb0T9GKW9hn1VZh8OWqd-dvkgpkag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkRAcEG8WChgEgssqGz-zB4Qa2iiltCDUSrktttdOKzWbkIcQf41fx8y-mgjErde1tTv2PDyznvmGkNcgFt5KmYP18xCgBLzfhbmxSb3QQSY2BCxOPjpWw1PxaSRHW-R3UwuDaZWNTSwNdT51-I-8w5QuUZUF74Q6LeLr3uDD7EeMHaTwprVpp1GJyKH_9RPCt8X7gz3g9RvGBvsnH4dx3WEgduCYLOOgvQqJsb1gDOt6Z7rOdfNE5Jwb7YJV0nWtdlwYJj3Pheq5nmNOea-NlyZweO81cl1zIbBthB5dBnscYr8KyYjzNOksGMOKPIQ2WTv_yjYBfx8Ga6fhZqbm2tE3uENu1z4r3a2E7C7Z8sU9cmsNyfA-WR6VSZme1nit47gPx2NO-9OyiIR-8-Mq4bag-8XCT-yFp2CKICyHQfwXTIcQEM8RiHyCCTr0ZIVvoeBS0y9g1Sb4_dzM0Di333hATq9kux-S7WJa-MeEWqdyEaQzKoUYT7mUJzmzEjZKBe9SG5F3zTZnrkY7x6YbFxlEPciRrOVIRF61U2cVxMe_JvWRV-0EROUuH0zn46xW8iyx0gO9IYeVCJsIG5ji8ERKZoA0IOotcjpD2wHEOFOXQMCSEIUr29U9dL_AZY3ITiMMWW1UFtmlCkTkZTsM5gDveEzhp6tyTpdpBmFoRB5VstPSzKXiGNFHRG9I1caiNkeK87MSchw2WXEhn_yfrBfkBuhk9vng-PApucmwUARxbtUO2V7OV_4ZuG9L-7zUE0q-X7Vi_gH_P2IG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Boosted+Regression+Ensemble+Combined+with+Hyperparameter+Tuning+for+Optimal+Adaptive+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Joseph+Isabona&rft.au=Agbotiname+Lucky+Imoize&rft.au=Yongsung+Kim&rft.date=2022-05-16&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=10&rft.spage=3776&rft_id=info:doi/10.3390%2Fs22103776&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0b5ec2cfdb654b04bf263ec2552a5dcb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon