Machine Learning-Based Boosted Regression Ensemble Combined with Hyperparameter Tuning for Optimal Adaptive Learning
Over the past couple of decades, many telecommunication industries have passed through the different facets of the digital revolution by integrating artificial intelligence (AI) techniques into the way they run and define their processes. Relevant data acquisition, analysis, harnessing, and mining a...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 10; p. 3776 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
16.05.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s22103776 |
Cover
Abstract | Over the past couple of decades, many telecommunication industries have passed through the different facets of the digital revolution by integrating artificial intelligence (AI) techniques into the way they run and define their processes. Relevant data acquisition, analysis, harnessing, and mining are now fully considered vital drivers for business growth in these industries. Machine learning, a subset of artificial intelligence (AI), can assist, particularly in learning patterns in big data chunks, intelligent extrapolative extraction of data and automatic decision-making in predictive learning. Firstly, in this paper, a detailed performance benchmarking of adaptive learning capacities of different key machine-learning-based regression models is provided for extrapolative analysis of throughput data acquired at the different user communication distances to the gNodeB transmitter in 5G new radio networks. Secondly, a random forest (RF)-based machine learning model combined with a least-squares boosting algorithm and Bayesian hyperparameter tuning method for further extrapolative analysis of the acquired throughput data is proposed. The proposed model is herein referred to as the RF-LS-BPT method. While the least-squares boosting algorithm is engaged to turn the possible RF weak learners to form stronger ones, resulting in a single strong prediction model, the Bayesian hyperparameter tuning automatically determines the best RF hyperparameter values, thereby enabling the proposed RF-LS-BPT model to obtain desired optimal prediction performance. The application of the proposed RF-LS-BPT method showed superior prediction accuracy over the ordinary random forest model and six other machine-learning-based regression models on the acquired throughput data. The coefficient of determination (Rsq) and mean absolute error (MAE) values obtained for the throughput prediction at different user locations using the proposed RF-LS-BPT method range from 0.9800 to 0.9999 and 0.42 to 4.24, respectively. The standard RF models attained 0.9644 to 0.9944 Rsq and 5.47 to 12.56 MAE values. The improved throughput prediction accuracy of the proposed RF-LS-BPT method demonstrates the significance of hyperparameter tuning/optimization in developing precise and reliable machine-learning-based regression models. The projected model would find valuable applications in throughput estimation and modeling in 5G and beyond 5G wireless communication systems. |
---|---|
AbstractList | Over the past couple of decades, many telecommunication industries have passed through the different facets of the digital revolution by integrating artificial intelligence (AI) techniques into the way they run and define their processes. Relevant data acquisition, analysis, harnessing, and mining are now fully considered vital drivers for business growth in these industries. Machine learning, a subset of artificial intelligence (AI), can assist, particularly in learning patterns in big data chunks, intelligent extrapolative extraction of data and automatic decision-making in predictive learning. Firstly, in this paper, a detailed performance benchmarking of adaptive learning capacities of different key machine-learning-based regression models is provided for extrapolative analysis of throughput data acquired at the different user communication distances to the gNodeB transmitter in 5G new radio networks. Secondly, a random forest (RF)-based machine learning model combined with a least-squares boosting algorithm and Bayesian hyperparameter tuning method for further extrapolative analysis of the acquired throughput data is proposed. The proposed model is herein referred to as the RF-LS-BPT method. While the least-squares boosting algorithm is engaged to turn the possible RF weak learners to form stronger ones, resulting in a single strong prediction model, the Bayesian hyperparameter tuning automatically determines the best RF hyperparameter values, thereby enabling the proposed RF-LS-BPT model to obtain desired optimal prediction performance. The application of the proposed RF-LS-BPT method showed superior prediction accuracy over the ordinary random forest model and six other machine-learning-based regression models on the acquired throughput data. The coefficient of determination (Rsq) and mean absolute error (MAE) values obtained for the throughput prediction at different user locations using the proposed RF-LS-BPT method range from 0.9800 to 0.9999 and 0.42 to 4.24, respectively. The standard RF models attained 0.9644 to 0.9944 Rsq and 5.47 to 12.56 MAE values. The improved throughput prediction accuracy of the proposed RF-LS-BPT method demonstrates the significance of hyperparameter tuning/optimization in developing precise and reliable machine-learning-based regression models. The projected model would find valuable applications in throughput estimation and modeling in 5G and beyond 5G wireless communication systems.Over the past couple of decades, many telecommunication industries have passed through the different facets of the digital revolution by integrating artificial intelligence (AI) techniques into the way they run and define their processes. Relevant data acquisition, analysis, harnessing, and mining are now fully considered vital drivers for business growth in these industries. Machine learning, a subset of artificial intelligence (AI), can assist, particularly in learning patterns in big data chunks, intelligent extrapolative extraction of data and automatic decision-making in predictive learning. Firstly, in this paper, a detailed performance benchmarking of adaptive learning capacities of different key machine-learning-based regression models is provided for extrapolative analysis of throughput data acquired at the different user communication distances to the gNodeB transmitter in 5G new radio networks. Secondly, a random forest (RF)-based machine learning model combined with a least-squares boosting algorithm and Bayesian hyperparameter tuning method for further extrapolative analysis of the acquired throughput data is proposed. The proposed model is herein referred to as the RF-LS-BPT method. While the least-squares boosting algorithm is engaged to turn the possible RF weak learners to form stronger ones, resulting in a single strong prediction model, the Bayesian hyperparameter tuning automatically determines the best RF hyperparameter values, thereby enabling the proposed RF-LS-BPT model to obtain desired optimal prediction performance. The application of the proposed RF-LS-BPT method showed superior prediction accuracy over the ordinary random forest model and six other machine-learning-based regression models on the acquired throughput data. The coefficient of determination (Rsq) and mean absolute error (MAE) values obtained for the throughput prediction at different user locations using the proposed RF-LS-BPT method range from 0.9800 to 0.9999 and 0.42 to 4.24, respectively. The standard RF models attained 0.9644 to 0.9944 Rsq and 5.47 to 12.56 MAE values. The improved throughput prediction accuracy of the proposed RF-LS-BPT method demonstrates the significance of hyperparameter tuning/optimization in developing precise and reliable machine-learning-based regression models. The projected model would find valuable applications in throughput estimation and modeling in 5G and beyond 5G wireless communication systems. Over the past couple of decades, many telecommunication industries have passed through the different facets of the digital revolution by integrating artificial intelligence (AI) techniques into the way they run and define their processes. Relevant data acquisition, analysis, harnessing, and mining are now fully considered vital drivers for business growth in these industries. Machine learning, a subset of artificial intelligence (AI), can assist, particularly in learning patterns in big data chunks, intelligent extrapolative extraction of data and automatic decision-making in predictive learning. Firstly, in this paper, a detailed performance benchmarking of adaptive learning capacities of different key machine-learning-based regression models is provided for extrapolative analysis of throughput data acquired at the different user communication distances to the gNodeB transmitter in 5G new radio networks. Secondly, a random forest (RF)-based machine learning model combined with a least-squares boosting algorithm and Bayesian hyperparameter tuning method for further extrapolative analysis of the acquired throughput data is proposed. The proposed model is herein referred to as the RF-LS-BPT method. While the least-squares boosting algorithm is engaged to turn the possible RF weak learners to form stronger ones, resulting in a single strong prediction model, the Bayesian hyperparameter tuning automatically determines the best RF hyperparameter values, thereby enabling the proposed RF-LS-BPT model to obtain desired optimal prediction performance. The application of the proposed RF-LS-BPT method showed superior prediction accuracy over the ordinary random forest model and six other machine-learning-based regression models on the acquired throughput data. The coefficient of determination (Rsq) and mean absolute error (MAE) values obtained for the throughput prediction at different user locations using the proposed RF-LS-BPT method range from 0.9800 to 0.9999 and 0.42 to 4.24, respectively. The standard RF models attained 0.9644 to 0.9944 Rsq and 5.47 to 12.56 MAE values. The improved throughput prediction accuracy of the proposed RF-LS-BPT method demonstrates the significance of hyperparameter tuning/optimization in developing precise and reliable machine-learning-based regression models. The projected model would find valuable applications in throughput estimation and modeling in 5G and beyond 5G wireless communication systems. |
Audience | Academic |
Author | Isabona, Joseph Kim, Yongsung Imoize, Agbotiname Lucky |
AuthorAffiliation | 2 Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos, Akoka, Lagos 100213, Nigeria; aimoize@unilag.edu.ng 3 Department of Electrical Engineering and Information Technology, Institute of Digital Communication, Ruhr University, 44801 Bochum, Germany 4 Department of Technology Education, Chungnam National University, Daejeon 34134, Korea 1 Department of Physics, Federal University Lokoja, P.M.B 1154, Lokoja 260101, Nigeria; joseph.isabona@fulokoja.edu.ng |
AuthorAffiliation_xml | – name: 1 Department of Physics, Federal University Lokoja, P.M.B 1154, Lokoja 260101, Nigeria; joseph.isabona@fulokoja.edu.ng – name: 3 Department of Electrical Engineering and Information Technology, Institute of Digital Communication, Ruhr University, 44801 Bochum, Germany – name: 2 Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos, Akoka, Lagos 100213, Nigeria; aimoize@unilag.edu.ng – name: 4 Department of Technology Education, Chungnam National University, Daejeon 34134, Korea |
Author_xml | – sequence: 1 givenname: Joseph orcidid: 0000-0002-2606-4315 surname: Isabona fullname: Isabona, Joseph – sequence: 2 givenname: Agbotiname Lucky orcidid: 0000-0001-8921-8353 surname: Imoize fullname: Imoize, Agbotiname Lucky – sequence: 3 givenname: Yongsung surname: Kim fullname: Kim, Yongsung |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35632184$$D View this record in MEDLINE/PubMed |
BookMark | eNplkktvEzEUhUeoiD5gwR9AI7GBRVq_5pENUhoVWimoEipr647nOnE0YwfbKeq_54a0pS3ywtb1Od_14xwXBz54LIr3nJ1KOWVnSQjOZNPUr4ojroSatEKwgyfrw-I4pTVjQkrZvikOZVVLwVt1VOTvYFbOY7lAiN755eQcEvbleQgp0_wDlxFTcsGXFz7h2A1YzsPYkaUvf7u8Ki_vNhg3EGHEjLG82e4opQ2xvN5kN8JQznqg1e2_Hm-L1xaGhO_u55Pi59eLm_nlZHH97Wo-W0xMxdo8sQ3WlkHXWgDB0QA3hvdM9VJCY2xXV4Z3jZEKRIWyV3VrWiNMjdgAVmDlSXG15_YB1noT6TTxTgdw-m8hxKWGmJ0ZULOuQvLanqiqY6qzopZUqSoBVW86Yn3ZszbbbsTeoM8RhmfQ5zverfQy3OopV7VUFQE-3QNi-LXFlPXoksFhAI9hm7SoGy4aodqGpB9fSNdhGz091U7FKt4oJUl1ulctgS7gvA3U19DocXSGEmId1WdNy8WUYiLI8OHpFR7P_pAGEpztBSaGlCJabVyGTJ9PZDdozvQub_oxb-T4_MLxAP1f-wcXgNcs |
CitedBy_id | crossref_primary_10_1093_sleep_zsad328 crossref_primary_10_2139_ssrn_4180768 crossref_primary_10_3390_app12147006 crossref_primary_10_1109_ACCESS_2024_3368070 crossref_primary_10_1016_j_measurement_2024_115676 crossref_primary_10_1038_s41598_023_43689_4 crossref_primary_10_1111_exsy_13379 crossref_primary_10_1016_j_sopen_2024_04_003 crossref_primary_10_1080_14765284_2023_2245277 crossref_primary_10_1016_j_ijpharm_2023_123414 crossref_primary_10_1007_s11277_024_11727_7 crossref_primary_10_3389_fchem_2024_1398984 crossref_primary_10_1109_ACCESS_2023_3281484 crossref_primary_10_1177_20597991241287118 crossref_primary_10_1021_acs_analchem_4c00741 crossref_primary_10_7717_peerj_cs_1894 crossref_primary_10_1016_j_est_2023_109145 crossref_primary_10_3390_inventions8010032 crossref_primary_10_1111_gcb_16620 crossref_primary_10_1039_D4YA00313F crossref_primary_10_3390_rs17010007 crossref_primary_10_3390_agriengineering6010015 crossref_primary_10_1016_j_scitotenv_2023_164072 crossref_primary_10_1021_acssuschemeng_4c01285 crossref_primary_10_1109_ACCESS_2022_3205587 crossref_primary_10_1016_j_eswa_2023_121380 crossref_primary_10_1016_j_procs_2024_05_063 crossref_primary_10_1038_s41598_024_60840_x crossref_primary_10_3390_atmos13111887 crossref_primary_10_3390_app12168271 crossref_primary_10_1016_j_jenvman_2025_124139 crossref_primary_10_3390_jmse11101925 crossref_primary_10_3390_stats6040062 crossref_primary_10_1371_journal_pone_0307654 crossref_primary_10_1038_s41598_024_81976_w crossref_primary_10_3390_su15021678 crossref_primary_10_1002_spy2_417 crossref_primary_10_1007_s11368_023_03652_2 crossref_primary_10_1016_j_apenergy_2024_123641 crossref_primary_10_1007_s13202_024_01900_w crossref_primary_10_3233_SJI_230033 crossref_primary_10_1080_07038992_2024_2407163 crossref_primary_10_3390_fi14120373 crossref_primary_10_3390_info14040223 crossref_primary_10_1007_s40243_023_00239_2 crossref_primary_10_3390_app14083313 crossref_primary_10_3390_f14071284 |
Cites_doi | 10.1007/3-540-45681-3_6 10.2202/1544-6115.1691 10.3390/app12010426 10.2298/CSIS200330012S 10.1007/978-3-642-02326-2_18 10.3390/e20040236 10.1214/21-EJS1958 10.1145/3366423.3380169 10.1007/978-3-642-31537-4_13 10.1155/2021/8838792 10.1109/ACCESS.2022.3187040 10.1016/j.ijleo.2021.168430 10.1109/JSAC.2012.120118 10.1007/s10994-020-05889-1 10.1007/s11227-021-04188-3 10.1007/s11004-021-09946-w 10.1007/s11277-021-08300-x 10.1155/2022/8928021 10.1023/A:1010933404324 10.1016/j.caeai.2021.100017 10.1155/2019/4140707 10.3390/app9050898 10.1016/j.ins.2022.01.010 10.1186/s44147-021-00035-7 10.1016/j.knosys.2021.106988 10.3390/s21134412 10.3390/app11083428 10.1007/s10994-017-5642-8 10.1007/s10489-020-01892-0 10.3390/app12083923 10.1016/j.dib.2020.105304 10.1214/aos/1024691352 10.3390/su12156250 10.1016/j.neucom.2017.05.094 10.1002/dac.4680 10.1007/978-3-030-87605-0_12 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s22103776 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Proquest Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central - New (Subscription) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_0b5ec2cfdb654b04bf263ec2552a5dcb PMC9146345 A781293392 35632184 10_3390_s22103776 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: German Academic Exchange Service grantid: 57473408 – fundername: National Research Foundation of Korea grantid: 2020R1G1A1099559 – fundername: Nigerian Petroleum Technology Development Fund (PTDF) grantid: 57473408 – fundername: National Research Foundation of Korea (NRF) grantid: 2020R1G1A1099559 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PUEGO PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c508t-f7e6f0ab8faa21eca1cc1d04d33a7cfb65c1b7c34a25e3d468c8c2c6ee7ae5af3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:23:35 EDT 2025 Thu Aug 21 14:11:18 EDT 2025 Fri Sep 05 10:13:20 EDT 2025 Fri Jul 25 20:27:05 EDT 2025 Tue Jun 10 21:15:32 EDT 2025 Wed Sep 03 05:52:00 EDT 2025 Tue Jul 01 02:41:55 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | optimization throughput data 5G performance measurement least-squares boosting random forest machine learning adaptive learning hyperparameter tuning |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-f7e6f0ab8faa21eca1cc1d04d33a7cfb65c1b7c34a25e3d468c8c2c6ee7ae5af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2606-4315 0000-0001-8921-8353 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22103776 |
PMID | 35632184 |
PQID | 2670517443 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0b5ec2cfdb654b04bf263ec2552a5dcb pubmedcentral_primary_oai_pubmedcentral_nih_gov_9146345 proquest_miscellaneous_2671272487 proquest_journals_2670517443 gale_infotracacademiconefile_A781293392 pubmed_primary_35632184 crossref_citationtrail_10_3390_s22103776 crossref_primary_10_3390_s22103776 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220516 |
PublicationDateYYYYMMDD | 2022-05-16 |
PublicationDate_xml | – month: 5 year: 2022 text: 20220516 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Khan (ref_28) 2011; 30 Rehman (ref_21) 2022; 78 ref_36 ref_13 Han (ref_9) 2020; 109 ref_33 ref_31 Talebi (ref_22) 2022; 54 Castillo (ref_27) 2008; 21 ref_30 Kumar (ref_17) 2022; 252 Ojo (ref_35) 2021; 34 ref_19 Yedida (ref_25) 2021; 51 Lan (ref_43) 2022; 2022 ref_18 ref_16 ref_38 ref_15 Kabudi (ref_24) 2021; 2 Du (ref_37) 2022; 591 Gomes (ref_12) 2017; 106 Kavitha (ref_20) 2022; 2022 Goldstein (ref_14) 2011; 10 Isabona (ref_39) 2021; 68 Imoize (ref_40) 2021; 2021 Bartlett (ref_41) 1998; 26 ref_45 ref_44 Malek (ref_11) 2018; 272 Isabona (ref_1) 2021; 119 Imoize (ref_2) 2020; 29 Peng (ref_23) 2022; 16 Gao (ref_10) 2019; 2019 Singh (ref_3) 2021; 18 Shin (ref_5) 2021; 26 ref_29 Isabona (ref_42) 2020; 10 ref_8 Probst (ref_7) 2017; 18 Moodi (ref_32) 2021; 222 Battiti (ref_26) 1989; 3 ref_4 Breiman (ref_34) 2001; 45 ref_6 |
References_xml | – ident: ref_44 doi: 10.1007/3-540-45681-3_6 – volume: 10 start-page: 32 year: 2011 ident: ref_14 article-title: Random forests for genetic association studies publication-title: Stat. Appl. Genet. Mol. Biol. doi: 10.2202/1544-6115.1691 – ident: ref_18 doi: 10.3390/app12010426 – volume: 18 start-page: 597 year: 2021 ident: ref_3 article-title: Machine learning based distributed big data analysis framework for next generation web in IoT publication-title: Comput. Sci. Inf. Syst. doi: 10.2298/CSIS200330012S – ident: ref_13 doi: 10.1007/978-3-642-02326-2_18 – ident: ref_30 doi: 10.3390/e20040236 – volume: 16 start-page: 232 year: 2022 ident: ref_23 article-title: Rates of convergence for random forests via generalized U-statistics publication-title: Electron. J. Stat. doi: 10.1214/21-EJS1958 – ident: ref_31 doi: 10.1145/3366423.3380169 – ident: ref_6 doi: 10.1007/978-3-642-31537-4_13 – volume: 2021 start-page: 36 year: 2021 ident: ref_40 article-title: Standard Propagation Channel Models for MIMO Communication Systems publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2021/8838792 – volume: 10 start-page: 3 year: 2020 ident: ref_42 article-title: Adaptation of Propagation Model Parameters toward Efficient Cellular Network Planning using Robust LAD Algorithm publication-title: Int. J. Wirel. Microw. Technol. – volume: 18 start-page: 6673 year: 2017 ident: ref_7 article-title: To tune or not to tune the number of trees in random forest publication-title: J. Mach. Learn. Res. – ident: ref_19 doi: 10.1109/ACCESS.2022.3187040 – volume: 252 start-page: 168430 year: 2022 ident: ref_17 article-title: Performance enhancement of FSO communication system using machine learning for 5G/6G and IoT applications publication-title: Optik doi: 10.1016/j.ijleo.2021.168430 – volume: 30 start-page: 198 year: 2011 ident: ref_28 article-title: Game dynamics and cost of learning in heterogeneous 4G networks publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2012.120118 – volume: 109 start-page: 1569 year: 2020 ident: ref_9 article-title: Double random forest publication-title: Mach. Learn. doi: 10.1007/s10994-020-05889-1 – volume: 78 start-page: 8890 year: 2022 ident: ref_21 article-title: Intrusion detection based on machine learning in the internet of things, attacks and counter measures publication-title: J. Supercomput. doi: 10.1007/s11227-021-04188-3 – volume: 54 start-page: 1 year: 2022 ident: ref_22 article-title: A truly spatial Random Forests algorithm for geoscience data analysis and modelling publication-title: Math. Geosci. doi: 10.1007/s11004-021-09946-w – volume: 119 start-page: 1661 year: 2021 ident: ref_1 article-title: Joint Statistical and Machine Learning Approach for Practical Data-Driven Assessment of User Throughput Quality in Microcellular Radio Networks publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-021-08300-x – volume: 2022 start-page: 8928021 year: 2022 ident: ref_20 article-title: On the Use of Wavelet Domain and Machine Learning for the Analysis of Epileptic Seizure Detection from EEG Signals publication-title: J. Healthc. Eng. doi: 10.1155/2022/8928021 – volume: 45 start-page: 5 year: 2001 ident: ref_34 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 26 start-page: 97 year: 2021 ident: ref_5 article-title: A Comparative Analysis of Ensemble Learning-Based Classification Models for Explainable Term Deposit Subscription Forecasting publication-title: J. Soc. e-Bus. Stud. – volume: 2 start-page: 100017 year: 2021 ident: ref_24 article-title: AI-enabled adaptive learning systems: A systematic mapping of the literature publication-title: Comput. Educ. Artif. Intell. doi: 10.1016/j.caeai.2021.100017 – volume: 2019 start-page: 4140707 year: 2019 ident: ref_10 article-title: An improved random forest algorithm for predicting employee turnover publication-title: Math. Probl. Eng. doi: 10.1155/2019/4140707 – volume: 21 start-page: 87 year: 2008 ident: ref_27 article-title: Adaptive learning algorithms for Bayesian network classifiers publication-title: Ai Commun. – ident: ref_15 doi: 10.3390/app9050898 – volume: 591 start-page: 155 year: 2022 ident: ref_37 article-title: Bayesian optimization based dynamic ensemble for time series forecasting publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.01.010 – volume: 68 start-page: 33 year: 2021 ident: ref_39 article-title: Terrain-based adaption of propagation model loss parameters using non-linear square regression publication-title: J. Eng. Appl. Sci. doi: 10.1186/s44147-021-00035-7 – volume: 222 start-page: 106988 year: 2021 ident: ref_32 article-title: A hybrid intelligent approach to detect android botnet using smart self-adaptive learning-based PSO-SVM publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106988 – ident: ref_29 – ident: ref_16 doi: 10.3390/s21134412 – ident: ref_8 doi: 10.3390/app11083428 – volume: 106 start-page: 1469 year: 2017 ident: ref_12 article-title: Adaptive random forests for evolving data stream classification publication-title: Mach. Learn. doi: 10.1007/s10994-017-5642-8 – volume: 51 start-page: 1460 year: 2021 ident: ref_25 article-title: Lipschitzlr: Using theoretically computed adaptive learning rates for fast convergence publication-title: Appl. Intell. doi: 10.1007/s10489-020-01892-0 – ident: ref_33 doi: 10.3390/app12083923 – volume: 29 start-page: 105304 year: 2020 ident: ref_2 article-title: Analysis of key performance indicators of a 4G LTE network based on experimental data obtained from a densely populated smart city publication-title: Data Brief doi: 10.1016/j.dib.2020.105304 – volume: 3 start-page: 331 year: 1989 ident: ref_26 article-title: Accelerated backpropagation learning: Two optimization methods publication-title: Complex Syst. – volume: 26 start-page: 1651 year: 1998 ident: ref_41 article-title: Boosting the margin: A new explanation for the effectiveness of voting methods publication-title: Ann. Stat. doi: 10.1214/aos/1024691352 – volume: 2022 start-page: 1 year: 2022 ident: ref_43 article-title: Conquering insufficient/imbalanced data learning for the Internet of Medical Things publication-title: Neural Comput. Appl. – ident: ref_4 doi: 10.3390/su12156250 – volume: 272 start-page: 55 year: 2018 ident: ref_11 article-title: Random forest and Self Organizing Maps application for analysis of pediatric fracture healing time of the lower limb publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.094 – ident: ref_38 – ident: ref_45 – volume: 34 start-page: e4680 year: 2021 ident: ref_35 article-title: Radial basis function neural network path loss prediction model for LTE networks in multitransmitter signal propagation environments publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.4680 – ident: ref_36 doi: 10.1007/978-3-030-87605-0_12 |
SSID | ssj0023338 |
Score | 2.5548038 |
Snippet | Over the past couple of decades, many telecommunication industries have passed through the different facets of the digital revolution by integrating artificial... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3776 |
SubjectTerms | 5G performance measurement Accuracy Adaptive learning Algorithms Analysis Artificial Intelligence Bayes Theorem Big data Communications industry Data analysis Data processing Datasets Decision making hyperparameter tuning Least-Squares Analysis Machine Learning Optimization random forest Random variables Regression analysis Support vector machines Telecommunications services industry throughput data |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kT_VBtH6lVllF0JfQZD8vjz1pOYQqSAt9W_Zjtgq9XOnd_f_OJLmQQ8EXX7PD7WZmdnZ-l5nfMvYR3QKC1gmjHyBAyfR9F2VL34CyWVchZ2pOvvxmFtfq642-mVz1RTVhPT1wr7jTKmiIIuYUjFahUiELI_GJ1sLrFANF36qpdmBqgFoSkVfPIyQR1J-uhaB-OCIWmZw-HUn_n6F4chbt10lODp6Lp-zJkDHys36lz9gjaI_Y4wmP4HO2uexKIoEPbKm35RwPp8Tnq66Fg_-A277cteXn7RqW4Q44BgIExThI_8TyBcLRB6IBX1J5DL_a0q9wTGj5d4wpS5o_-XsKjeMcL9j1xfnVl0U5XKdQRszCNmW2YHLlwyx7L2qIvo6xTpVKUnobM-o31sFGqbzQIJMyszhDzRsA60H7LF-yg3bVwmvGQzRJZR29aRBhmdjIKomA5sAZIDahYJ93anZx4BqnKy_uHGIOsogbLVKwD6PofU-w8TehOdlqFCBO7O4BeoobPMX9y1MK9oks7Wjn4mKiHxoQ8JWIA8ud2RklP5gwFuxk5wxu2NJrJ4ztaL2VLNj7cRg3I31h8S2stp1MLaxAEFiwV73vjGuW2kjC0wWze16191L7I-2vnx3hNyrZSKWP_4cW3rBDQR0cREBrTtjB5mELbzGv2oR33Rb6DeHKJ44 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9NAEB6V9AUeEDeGghaEBC9Wnb2cPCDUoFQRUgOqWqlv1p4pUmOHHP-fGV8kAvHqXdmzO8fOeGe-AfiAYhGsUh6tX8AAJdL9Ls5NzTjIPKrMxkjFyRdzPbuW327UzRHMu1oYSqvsbGJtqH3l6B_5Kdd5jaosxZfVr5S6RtHtatdCw7StFfznGmLsHhyjSVbZAI4n0_mPyz4EExiRNfhCAoP90w3nVCdHgCN7p1IN3v-3id47ow7zJ_cOpPNH8LD1JNlZw_rHcBTKJ_BgD1_wKWwv6lTJwFoU1UU6wUPLs0lVl3awy7Bo0mBLNi03YWnvAkMDgcEyDtIfWjbDMHVN8OBLSpthVzt6C0NHl31HW7Ok73uzIpPZf-MZXJ9Pr77O0rbNQurQO9umMQ86ZsaOojF8GJwZOjf0mfRCmNxFq5Ub2twJabgKwks9ciPHnQ4hN0GZKJ7DoKzK8BKYddrLqJzRY4y8tBuLzHOrcKN0DG5sE_jUbXPhWgxyaoVxV2AsQhwpeo4k8L6fumqAN_41aUK86icQVnb9oFovilb1isyqgPRGjyuRNpM2ci3wiVLcIGlI1EfidEEajcQ40xYm4JIIG6s4y0fkFKEjmcBJJwxFq-qb4o9gJvCuH0YlpZsXU4ZqV88Z8pxjcJjAi0Z2epqF0oLi7ATyA6k6WNThSPnztgYCx03WQqpX_yfrNdznVLNBkLP6BAbb9S68QU9qa9-26vEboHUkJw priority: 102 providerName: ProQuest |
Title | Machine Learning-Based Boosted Regression Ensemble Combined with Hyperparameter Tuning for Optimal Adaptive Learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35632184 https://www.proquest.com/docview/2670517443 https://www.proquest.com/docview/2671272487 https://pubmed.ncbi.nlm.nih.gov/PMC9146345 https://doaj.org/article/0b5ec2cfdb654b04bf263ec2552a5dcb |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7t4wIHxJvAUhmEBJdA6md7QGiLWiqkXdBqK_UW2Y5dkNp06UOCf89MmkaN2COXHuJRY3vG4_nimc8Ab9AsglOqQO8XEKBEOt9F2dT2gzRRZS5GKk6-uNTjifw6VdMj2N-xWU_g-lZoR_dJTVbz979__fmEC_4jIU6E7B_WnFO1m9HHcFodE1EGn2wOE7hAGLYjFWqLt7aiirH_X798sDG1kyYPdqHRfbhXh4_sfKfvB3AUyodw94BU8BFsLqr8yMBq6tRZOsCdqmCDZVXPwa7CbJf7WrJhuQ4LNw8MvQIiZGykz7JsjNh0RZzgC8qVYddb-heG0S37hg5mQe8v7A35yeYdj2EyGl5_Hqf13Qqpx5Bsk0YTdMys60VreTd42_W-W2SyEMIaH51WvuuMF9JyFUQhdc_3PPc6BGODslE8gZNyWYZnwJzXhYzKW91HuKV9X2QFdwonSsfg-y6Bd_tpzn1NPE73X8xzBCCkkbzRSAKvG9GbHdvGbUID0lUjQATZ1YPlapbX6y3PnArY31jgSKTLpItcC3yiFLfYNezUW9J0ToaFnfG2rkbAIREhVn5uehQJYfSYwNneGPK9eeZcm4rjW4oEXjXNuDLpuMWWYbmtZLrccESECTzd2U7TZ6G0IHCdgGlZVWtQ7Zby54-K_RsnWQupnv-PWXgBdziVcxAbrT6Dk81qG15ikLVxHTg2U4O_vdGXDpwOhpffrzrVB4tOtbj-AkhJMRk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEG8WChgEgsuqG782OVSogVQpbQKqUqm3xfbaAanZhDyE-HP8NmY2myURiFuva8s79ozHM_bMNwCvUCy8VSpH7efRQQn0vot9Y9P2Mg0qsSFQcnJ_oHvn8uOFutiBX-tcGAqrXOvEUlHnE0d35PtcpyWqshTvpt9jqhpFr6vrEhqmKq2QH5QQY1Vix4n_-QNduPnB8Qfk92vOj7rD9724qjIQOzROFnFIvQ6Jsa1gDG96Z5rONfNE5kKY1AWrlWva1AlpuPIil7rlWo477X1qvDJB4LjXYFfSBUoDdjvdweez2uUT6AGu8IyEaCf7c84pL48ATjZOwbJYwN9HwsaZuB2vuXEAHt2GW5Xlyg5XonYHdnxxF25u4Bneg0W_DM30rEJtHcUdPCRz1pmUqSTszI9WYbcF6xZzP7aXnqFCQuccG-lGmPXQLZ4RHPmYwnTYcEmjMDSs2SfUbWP6f26mpKLrf9yH8ytZ8AfQKCaFfwTMOp3LoJzRbfT0tGuLJOdW4ULp4F3bRvB2vcyZqzDPqfTGZYa-D3EkqzkSwcu663QF9PGvTh3iVd2BsLnLD5PZKKu2epZY5ZHekONMpE2kDVwL_KIUN0gaEvWGOJ2RBkFinKkSIXBKhMWVHaYtMsLQcI1gby0MWaVa5tmfjRDBi7oZlQK99JjCT5ZlnyZPOTqjETxcyU5Ns1BakF8fQbolVVuT2m4pvn0tgcdxkbWQ6vH_yXoO13vD_ml2ejw4eQI3OOWLENyt3oPGYrb0T9GKW9hn1VZh8OWqd-dvkgpkag |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkRAcEG8WChgEgssqGz-zB4Qa2iiltCDUSrktttdOKzWbkIcQf41fx8y-mgjErde1tTv2PDyznvmGkNcgFt5KmYP18xCgBLzfhbmxSb3QQSY2BCxOPjpWw1PxaSRHW-R3UwuDaZWNTSwNdT51-I-8w5QuUZUF74Q6LeLr3uDD7EeMHaTwprVpp1GJyKH_9RPCt8X7gz3g9RvGBvsnH4dx3WEgduCYLOOgvQqJsb1gDOt6Z7rOdfNE5Jwb7YJV0nWtdlwYJj3Pheq5nmNOea-NlyZweO81cl1zIbBthB5dBnscYr8KyYjzNOksGMOKPIQ2WTv_yjYBfx8Ga6fhZqbm2tE3uENu1z4r3a2E7C7Z8sU9cmsNyfA-WR6VSZme1nit47gPx2NO-9OyiIR-8-Mq4bag-8XCT-yFp2CKICyHQfwXTIcQEM8RiHyCCTr0ZIVvoeBS0y9g1Sb4_dzM0Di333hATq9kux-S7WJa-MeEWqdyEaQzKoUYT7mUJzmzEjZKBe9SG5F3zTZnrkY7x6YbFxlEPciRrOVIRF61U2cVxMe_JvWRV-0EROUuH0zn46xW8iyx0gO9IYeVCJsIG5ji8ERKZoA0IOotcjpD2wHEOFOXQMCSEIUr29U9dL_AZY3ITiMMWW1UFtmlCkTkZTsM5gDveEzhp6tyTpdpBmFoRB5VstPSzKXiGNFHRG9I1caiNkeK87MSchw2WXEhn_yfrBfkBuhk9vng-PApucmwUARxbtUO2V7OV_4ZuG9L-7zUE0q-X7Vi_gH_P2IG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Boosted+Regression+Ensemble+Combined+with+Hyperparameter+Tuning+for+Optimal+Adaptive+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Joseph+Isabona&rft.au=Agbotiname+Lucky+Imoize&rft.au=Yongsung+Kim&rft.date=2022-05-16&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=10&rft.spage=3776&rft_id=info:doi/10.3390%2Fs22103776&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0b5ec2cfdb654b04bf263ec2552a5dcb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |