BraNet: a mobil application for breast image classification based on deep learning algorithms

Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named “BraNet” for 2D breast imaging segmentation and classification...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 62; no. 9; pp. 2737 - 2756
Main Authors Jiménez-Gaona, Yuliana, Álvarez, María José Rodríguez, Castillo-Malla, Darwin, García-Jaen, Santiago, Carrión-Figueroa, Diana, Corral-Domínguez, Patricio, Lakshminarayanan, Vasudevan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0140-0118
1741-0444
1741-0444
DOI10.1007/s11517-024-03084-1

Cover

Abstract Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named “BraNet” for 2D breast imaging segmentation and classification using deep learning algorithms. During the phase off-line, an SNGAN model was previously trained for synthetic image generation, and subsequently, these images were used to pre-trained SAM and ResNet18 segmentation and classification models. During phase online, the BraNet app was developed using the react native framework, offering a modular deep-learning pipeline for mammography (DM) and ultrasound (US) breast imaging classification. This application operates on a client–server architecture and was implemented in Python for iOS and Android devices. Then, two diagnostic radiologists were given a reading test of 290 total original RoI images to assign the perceived breast tissue type. The reader’s agreement was assessed using the kappa coefficient. The BraNet App Mobil exhibited the highest accuracy in benign and malignant US images (94.7%/93.6%) classification compared to DM during training I (80.9%/76.9%) and training II (73.7/72.3%). The information contrasts with radiological experts’ accuracy, with DM classification being 29%, concerning US 70% for both readers, because they achieved a higher accuracy in US ROI classification than DM images. The kappa value indicates a fair agreement (0.3) for DM images and moderate agreement (0.4) for US images in both readers. It means that not only the amount of data is essential in training deep learning algorithms. Also, it is vital to consider the variety of abnormalities, especially in the mammography data, where several BI-RADS categories are present (microcalcifications, nodules, mass, asymmetry, and dense breasts) and can affect the API accuracy model. Graphical abstract
AbstractList Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named “BraNet” for 2D breast imaging segmentation and classification using deep learning algorithms. During the phase off-line, an SNGAN model was previously trained for synthetic image generation, and subsequently, these images were used to pre-trained SAM and ResNet18 segmentation and classification models. During phase online, the BraNet app was developed using the react native framework, offering a modular deep-learning pipeline for mammography (DM) and ultrasound (US) breast imaging classification. This application operates on a client–server architecture and was implemented in Python for iOS and Android devices. Then, two diagnostic radiologists were given a reading test of 290 total original RoI images to assign the perceived breast tissue type. The reader’s agreement was assessed using the kappa coefficient. The BraNet App Mobil exhibited the highest accuracy in benign and malignant US images (94.7%/93.6%) classification compared to DM during training I (80.9%/76.9%) and training II (73.7/72.3%). The information contrasts with radiological experts’ accuracy, with DM classification being 29%, concerning US 70% for both readers, because they achieved a higher accuracy in US ROI classification than DM images. The kappa value indicates a fair agreement (0.3) for DM images and moderate agreement (0.4) for US images in both readers. It means that not only the amount of data is essential in training deep learning algorithms. Also, it is vital to consider the variety of abnormalities, especially in the mammography data, where several BI-RADS categories are present (microcalcifications, nodules, mass, asymmetry, and dense breasts) and can affect the API accuracy model.
Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named “BraNet” for 2D breast imaging segmentation and classification using deep learning algorithms. During the phase off-line, an SNGAN model was previously trained for synthetic image generation, and subsequently, these images were used to pre-trained SAM and ResNet18 segmentation and classification models. During phase online, the BraNet app was developed using the react native framework, offering a modular deep-learning pipeline for mammography (DM) and ultrasound (US) breast imaging classification. This application operates on a client–server architecture and was implemented in Python for iOS and Android devices. Then, two diagnostic radiologists were given a reading test of 290 total original RoI images to assign the perceived breast tissue type. The reader’s agreement was assessed using the kappa coefficient. The BraNet App Mobil exhibited the highest accuracy in benign and malignant US images (94.7%/93.6%) classification compared to DM during training I (80.9%/76.9%) and training II (73.7/72.3%). The information contrasts with radiological experts’ accuracy, with DM classification being 29%, concerning US 70% for both readers, because they achieved a higher accuracy in US ROI classification than DM images. The kappa value indicates a fair agreement (0.3) for DM images and moderate agreement (0.4) for US images in both readers. It means that not only the amount of data is essential in training deep learning algorithms. Also, it is vital to consider the variety of abnormalities, especially in the mammography data, where several BI-RADS categories are present (microcalcifications, nodules, mass, asymmetry, and dense breasts) and can affect the API accuracy model. Graphical abstract
Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named "BraNet" for 2D breast imaging segmentation and classification using deep learning algorithms. During the phase off-line, an SNGAN model was previously trained for synthetic image generation, and subsequently, these images were used to pre-trained SAM and ResNet18 segmentation and classification models. During phase online, the BraNet app was developed using the react native framework, offering a modular deep-learning pipeline for mammography (DM) and ultrasound (US) breast imaging classification. This application operates on a client-server architecture and was implemented in Python for iOS and Android devices. Then, two diagnostic radiologists were given a reading test of 290 total original RoI images to assign the perceived breast tissue type. The reader's agreement was assessed using the kappa coefficient. The BraNet App Mobil exhibited the highest accuracy in benign and malignant US images (94.7%/93.6%) classification compared to DM during training I (80.9%/76.9%) and training II (73.7/72.3%). The information contrasts with radiological experts' accuracy, with DM classification being 29%, concerning US 70% for both readers, because they achieved a higher accuracy in US ROI classification than DM images. The kappa value indicates a fair agreement (0.3) for DM images and moderate agreement (0.4) for US images in both readers. It means that not only the amount of data is essential in training deep learning algorithms. Also, it is vital to consider the variety of abnormalities, especially in the mammography data, where several BI-RADS categories are present (microcalcifications, nodules, mass, asymmetry, and dense breasts) and can affect the API accuracy model.Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named "BraNet" for 2D breast imaging segmentation and classification using deep learning algorithms. During the phase off-line, an SNGAN model was previously trained for synthetic image generation, and subsequently, these images were used to pre-trained SAM and ResNet18 segmentation and classification models. During phase online, the BraNet app was developed using the react native framework, offering a modular deep-learning pipeline for mammography (DM) and ultrasound (US) breast imaging classification. This application operates on a client-server architecture and was implemented in Python for iOS and Android devices. Then, two diagnostic radiologists were given a reading test of 290 total original RoI images to assign the perceived breast tissue type. The reader's agreement was assessed using the kappa coefficient. The BraNet App Mobil exhibited the highest accuracy in benign and malignant US images (94.7%/93.6%) classification compared to DM during training I (80.9%/76.9%) and training II (73.7/72.3%). The information contrasts with radiological experts' accuracy, with DM classification being 29%, concerning US 70% for both readers, because they achieved a higher accuracy in US ROI classification than DM images. The kappa value indicates a fair agreement (0.3) for DM images and moderate agreement (0.4) for US images in both readers. It means that not only the amount of data is essential in training deep learning algorithms. Also, it is vital to consider the variety of abnormalities, especially in the mammography data, where several BI-RADS categories are present (microcalcifications, nodules, mass, asymmetry, and dense breasts) and can affect the API accuracy model.
Author Castillo-Malla, Darwin
García-Jaen, Santiago
Álvarez, María José Rodríguez
Corral-Domínguez, Patricio
Jiménez-Gaona, Yuliana
Lakshminarayanan, Vasudevan
Carrión-Figueroa, Diana
Author_xml – sequence: 1
  givenname: Yuliana
  surname: Jiménez-Gaona
  fullname: Jiménez-Gaona, Yuliana
  email: ydjimenez@utpl.edu.ec
  organization: Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Instituto de Instrumentación para la Imagen Molecular I3M, Universitat Politécnica de Valencia, Theoretical and Experimental Epistemology Lab, School of Opto ΩN2L3G1
– sequence: 2
  givenname: María José Rodríguez
  surname: Álvarez
  fullname: Álvarez, María José Rodríguez
  organization: Instituto de Instrumentación para la Imagen Molecular I3M, Universitat Politécnica de Valencia
– sequence: 3
  givenname: Darwin
  surname: Castillo-Malla
  fullname: Castillo-Malla, Darwin
  organization: Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Instituto de Instrumentación para la Imagen Molecular I3M, Universitat Politécnica de Valencia, Theoretical and Experimental Epistemology Lab, School of Opto ΩN2L3G1
– sequence: 4
  givenname: Santiago
  surname: García-Jaen
  fullname: García-Jaen, Santiago
  organization: Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja
– sequence: 5
  givenname: Diana
  surname: Carrión-Figueroa
  fullname: Carrión-Figueroa, Diana
  organization: Hospital-IESS del Sur de Quito
– sequence: 6
  givenname: Patricio
  surname: Corral-Domínguez
  fullname: Corral-Domínguez, Patricio
  organization: Corporación Médica Monte Sinaí-CIPAM (Centro Integral de Patología Mamaria) Cuenca-Ecuador, Facultad de Ciencias Médicas, Universidad de Cuenca
– sequence: 7
  givenname: Vasudevan
  surname: Lakshminarayanan
  fullname: Lakshminarayanan, Vasudevan
  organization: Department of Systems Design Engineering, Physics, and Electrical and Computer Engineering, University of Waterloo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38693328$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1TAQhS1URG8Lf4AFisSGTWDGjzhhg6DiJVWwgSWyHMdJXfnawU5A_fe4vbcUuiisbMnnHJ_55ogchBgsIY8RniOAfJERBcoaKK-BQctrvEc2KDnWwDk_IBtADjUgtofkKOdzAIqC8gfkkLVNxxhtN-Tbm6Q_2eVlpatt7J2v9Dx7Z_TiYqjGmKo-WZ2Xym31ZCvjdc5uvH7vdbZDVS6DtXPlrU7BhanSforJLWfb_JDcH7XP9tH-PCZf3739cvKhPv38_uPJ69PaCGiXepB9KzrT2JY1vaQUOio67AdJtWQj7bvG9q0FyShtjDC6QzmUWTSHcdBCMHZM2C53DbO--Km9V3MqldOFQlCXsNQOliqw1BUshcX1auea135rB2PDkvSNM2qn_n4J7kxN8YdCZAw40JLwbJ-Q4vfV5kVtXTbWex1sXLNiKJgs40jxbykIQNmIBor06S3peVxTKACLqmOdkCguA5_82f537evdFgHdCUyKOSc7_h-T9pbJuOVq24WA83db90vI5Z8w2XRT-w7XL2Q31tA
CitedBy_id crossref_primary_10_3390_app15052830
Cites_doi 10.1007/s11831-023-09968-z
10.1109/JBHI.2017.2731873
10.3390/s22030832
10.1016/j.cviu.2018.10.009
10.1259/bjr.20220934
10.1016/j.patrec.2019.03.022
10.1016/j.crad.2019.02.006
10.3390/tomography8020073
10.3390/diagnostics12071694
10.1016/j.cmpb.2021.106018
10.1038/s41598-022-13658-4
10.1155/2021/4428964
10.1109/JSAC.2020.3020598
10.1016/j.compind.2019.01.001
10.1038/nrclinonc.2017.141
10.1007/s11548-020-02203-1
10.1038/s41598-022-09929-9
10.3389/fonc.2023.1102254
10.1016/j.ijmedinf.2022.104779
10.1016/j.jpse.2022.100091
10.3390/diagnostics13122041
10.3390/app10228298
10.1109/ACCESS.2019.2908991
10.1016/j.eswa.2015.02.005
10.3390/app13126894
10.1186/s12911-019-0997-3
10.3390/cancers15123139
10.1186/s12880-020-00543-7
10.1016/j.cmpb.2022.106951
10.3390/app13074272
10.1109/ACCESS.2019.2898044
10.1186/1751-0473-8-20
10.1155/2022/1744969
10.1186/s12874-022-01583-z
10.1016/j.nic.2020.08.001
10.4103/2153-3539.97788
10.1080/09500340.2024.2313724
10.1016/j.acra.2011.09.014
10.3390/app12094616
10.5121/acij.2019.10501
10.1016/j.cmpb.2018.01.025
10.1109/ICCV.2017.322
10.1109/cvpr52688.2022.01112
10.1109/ICBK50248.2020.00041
10.1016/j.compbiomed.2020.103698
10.1609/aaai.v35i18.17895
10.3389/fonc.2023.1179025
10.1007/s10278-019-00232-0
10.1109/ISBIWorkshops50223.2020.9153436
10.3390/medicina60010014
10.1109/CVPR42600.2020.01331
10.1109/ICDM.2019.00083
10.1016/B978-0-12-810408-8.00023-7
10.1117/12.2515588
10.1109/CVPR.2016.308
10.1515/biol-2022-0517
10.1109/TMI.2019.2945514
10.1016/j.neucom.2021.11.047
10.1109/SSCI47803.2020.9308512
10.2967/jnumed.123.266080
10.1007/s11604-023-01474-3
10.32604/iasc.2021.0186
10.1109/ICCV51070.2023.00371
10.1109/ICASID.2019.8925267
10.1007/978-981-13-9042-5_56
10.1186/s12938-019-0626-5
10.1016/j.ejmp.2021.02.006
10.1109/ic-ETITE47903.2020.36
10.1007/s10462-019-09716-5
10.17632/jh9trvbjbv
10.1101/2022.03.07.22272009
10.1109/CVPR.2016.91
10.1007/978-981-13-6837-0_7
10.1186/s13244-020-00887-2
10.17632/wmy84gzngw.1
10.1016/j.ejmp.2021.03.009
10.2967/jnumed.123.266110
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1007/s11517-024-03084-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Proquest Health and Medical Complete
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
Proquest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed

ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 2756
ExternalDocumentID 10.1007/s11517-024-03084-1
PMC11330402
38693328
10_1007_s11517_024_03084_1
Genre Journal Article
GrantInformation_xml – fundername: Universitat Politècnica de València
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7SC
7TB
7TS
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c508t-d7b859c6e836b722092591bd72a73f2b96eb8e073226c5ca917d021a40fda5533
IEDL.DBID C6C
ISSN 0140-0118
1741-0444
IngestDate Sun Oct 26 03:18:08 EDT 2025
Tue Sep 30 17:08:11 EDT 2025
Sun Sep 28 08:09:12 EDT 2025
Thu Oct 02 06:45:42 EDT 2025
Tue Oct 07 05:41:50 EDT 2025
Mon Jul 21 05:55:40 EDT 2025
Wed Oct 01 03:38:03 EDT 2025
Thu Apr 24 23:01:58 EDT 2025
Fri Feb 21 02:38:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Deep learning
Breast cancer
Mammography
Mobil app
Ultrasound
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-d7b859c6e836b722092591bd72a73f2b96eb8e073226c5ca917d021a40fda5533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1007/s11517-024-03084-1
PMID 38693328
PQID 3093957155
PQPubID 54161
PageCount 20
ParticipantIDs unpaywall_primary_10_1007_s11517_024_03084_1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11330402
proquest_miscellaneous_3153720975
proquest_miscellaneous_3050176560
proquest_journals_3093957155
pubmed_primary_38693328
crossref_primary_10_1007_s11517_024_03084_1
crossref_citationtrail_10_1007_s11517_024_03084_1
springer_journals_10_1007_s11517_024_03084_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Drabiak, Kyzer, Nemov, El Naqa (CR84) 2023; 96
Weng, Zhou, Li, Qiu (CR42) 2019; 7
Wang, Deng, Liu, Hu, Liang, Fan (CR32) 2020; 22
CR39
CR38
CR34
CR31
Shao, Wang, Yan (CR62) 2019; 106
CR74
Wollny, Kellman, Ledesma-Carbayo, Skinner, Hublin, Hierl (CR4) 2013; 8
Ibrokhimov, Kang (CR61) 2022; 12
CR70
Lee, Chen (CR21) 2015; 42
Heath, Bowyer, Kopans, Kegelmeyer, Moore, Chang (CR56) 1998
Jiménez-Gaona, Rodríguez-Álvarez, Lakshminarayanan (CR23) 2020; 10
Pang, Wong, Ng, Chan (CR71) 2021; 203
Jiménez Gaona, Castillo Malla, Vega Crespo, Vicuña, Neira, Dávila, Verhoeven (CR72) 2022; 12
CR2
van Timmeren, Cester, Tanadini-Lang, Alkadhi, Baessler (CR53) 2020; 11
CR3
CR6
CR5
Bargsten, Schlaefer (CR12) 2020; 15
Khan, Islam, Jan, Din, Rodrigues (CR51) 2019; 125
CR9
CR49
CR46
CR45
CR44
CR41
Al-Dhabyani, Gomaa, Khaled, Aly (CR43) 2019; 10
Moreira, Amaral, Domingues, Cardoso, Cardoso, Cardoso (CR59) 2012; 19
CR85
CR40
Taylor, Monga, Johnson, Hawley, Patel (CR75) 2023; 13
Le, Wang, Huang, Hickman, Gilbert (CR76) 2019; 74
CR83
Papademetris, Jackowski, Rajeevan, DiStasio, Okuda, Constable, Staib (CR7) 2006; 2006
CR82
Jiménez-Gaona, Rodríguez-Álvarez, Carrión-Figueroa, Castillo-Malla, Lakshminarayanan (CR52) 2024
CR81
Abhisheka, Biswas, Purkayastha (CR47) 2023; 30
Dourado, da Silva, da Nobrega, Rebouças Filho, Muhammad, de Albuquerque (CR20) 2021; 39
Yap, Pons, Marti (CR55) 2018; 22
Afrin, Larson, Fatemi, Alizad (CR78) 2023; 15
Luo, Chong (CR33) 2020; 30
Zhang, Hu, Philbrick, Conte, Sobek, Rouzrokh, Erickson (CR10) 2022; 8
Prodan, Paraschiv, Stanciu (CR79) 2023; 13
CR19
Li, Hatanaka, Fujita, Hara, Endo (CR58) 1999; 17
CR17
Ahmad, Ali, Shah (CR11) 2022; 12
Borji (CR69) 2019; 179
CR15
CR14
CR13
Jiménez Gaona, Castillo Malla, Vega Crespo, Vicuña, Neira, Dávila, Verhoeven (CR18) 2022; 12
CR57
Chen, Hao, Zou, Hollander, Ng, Isaac (CR36) 2022; 22
Li, Wu, Wu (CR48) 2019; 7
CR54
Aljuaid, Alturki, Alsubaie, Cavallaro, Liotta (CR66) 2022; 223
Gao, Song, Wang, Liu, Mandelis, Qi (CR65) 2021; 2021
CR50
Liu, Liu, Han, Zhang, Wang (CR37) 2019; 19
Zhang, Dai, Sang (CR8) 2022; 20
Linna, Kahn (CR30) 2022; 163
Buckley, Coopey, Sharko, Polubriaginof, Drohan (CR35) 2012; 3
Chowdhury, Das, Dey, Sarkar, Dwivedi, Rao Mukkamala, Murmu (CR22) 2022; 22
Müller, Kramer (CR16) 2021; 21
Huynh, Tran, Tran (CR77) 2023; 13
CR29
CR28
Lambin, Leijenaar, Deist, Peerlings, De Jong, Van Timmeren, Walsh (CR1) 2017; 14
CR27
CR26
CR25
CR24
CR68
CR67
CR64
Dihge, Bendahl, Skarping, Hjärtström, Ohlsson, Rydén (CR73) 2023; 13
Woldesellasse, Tesfamariam (CR63) 2023; 3
CR60
Oyelade, Ezugwu, Almutairi, Saha, Abualigah, Chiroma (CR80) 2022; 12
Y Liu (3084_CR37) 2019; 19
3084_CR60
JE van Timmeren (3084_CR53) 2020; 11
W Ahmad (3084_CR11) 2022; 12
3084_CR29
A Borji (3084_CR69) 2019; 179
3084_CR26
S Khan (3084_CR51) 2019; 125
L Zhang (3084_CR8) 2022; 20
3084_CR25
J Wang (3084_CR32) 2020; 22
HN Huynh (3084_CR77) 2023; 13
3084_CR28
3084_CR27
IC Moreira (3084_CR59) 2012; 19
K Zhang (3084_CR10) 2022; 8
M Heath (3084_CR56) 1998
S Shao (3084_CR62) 2019; 106
ON Oyelade (3084_CR80) 2022; 12
3084_CR24
3084_CR68
3084_CR9
3084_CR67
T Pang (3084_CR71) 2021; 203
3084_CR6
3084_CR64
3084_CR5
L Bargsten (3084_CR12) 2020; 15
3084_CR70
H Woldesellasse (3084_CR63) 2023; 3
D Müller (3084_CR16) 2021; 21
N Linna (3084_CR30) 2022; 163
S Li (3084_CR58) 1999; 17
B Ibrokhimov (3084_CR61) 2022; 12
JW Luo (3084_CR33) 2020; 30
3084_CR39
3084_CR38
L Dihge (3084_CR73) 2023; 13
H Afrin (3084_CR78) 2023; 15
3084_CR34
P Lambin (3084_CR1) 2017; 14
3084_CR31
3084_CR74
H Lee (3084_CR21) 2015; 42
3084_CR82
3084_CR81
M Gao (3084_CR65) 2021; 2021
CMJM Dourado (3084_CR20) 2021; 39
Y Jiménez-Gaona (3084_CR23) 2020; 10
Y Chen (3084_CR36) 2022; 22
Y Jiménez-Gaona (3084_CR52) 2024
X Papademetris (3084_CR7) 2006; 2006
W Al-Dhabyani (3084_CR43) 2019; 10
3084_CR49
3084_CR44
3084_CR46
3084_CR45
3084_CR40
Y Weng (3084_CR42) 2019; 7
B Abhisheka (3084_CR47) 2023; 30
3084_CR83
CR Taylor (3084_CR75) 2023; 13
3084_CR41
H Aljuaid (3084_CR66) 2022; 223
K Drabiak (3084_CR84) 2023; 96
3084_CR85
3084_CR3
3084_CR2
G Wollny (3084_CR4) 2013; 8
EPV Le (3084_CR76) 2019; 74
D Chowdhury (3084_CR22) 2022; 22
3084_CR19
Y Li (3084_CR48) 2019; 7
JM Buckley (3084_CR35) 2012; 3
3084_CR15
3084_CR14
Y Jiménez Gaona (3084_CR18) 2022; 12
3084_CR17
3084_CR54
3084_CR13
3084_CR57
Y Jiménez Gaona (3084_CR72) 2022; 12
3084_CR50
MH Yap (3084_CR55) 2018; 22
M Prodan (3084_CR79) 2023; 13
References_xml – ident: CR45
– ident: CR70
– volume: 30
  start-page: 5023
  issue: 8
  year: 2023
  end-page: 5052
  ident: CR47
  article-title: A comprehensive review on breast cancer detection, classification and segmentation using deep learning
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-023-09968-z
– volume: 22
  start-page: 1218
  issue: 4
  year: 2018
  end-page: 1226
  ident: CR55
  article-title: Automated breast ultrasound lesions detection using convolutional neural networks
  publication-title: IEEE J Biomed Heal Informatics
  doi: 10.1109/JBHI.2017.2731873
– ident: CR49
– ident: CR68
– ident: CR74
– volume: 22
  start-page: 832
  issue: 3
  year: 2022
  ident: CR22
  article-title: ABCanDroid: a cloud integrated android app for noninvasive early breast cancer detection using transfer learning
  publication-title: Sensors
  doi: 10.3390/s22030832
– ident: CR39
– year: 1998
  ident: CR56
  publication-title: Current status of the digital database for screening mammography. En Digital mammography
– volume: 179
  start-page: 41
  year: 2019
  end-page: 65
  ident: CR69
  article-title: Pros and cons of GAN evaluation measures
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2018.10.009
– volume: 96
  start-page: 20220934
  year: 2023
  ident: CR84
  article-title: AI and machine learning ethics, law, diversity, and global impact
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20220934
– volume: 125
  start-page: 1
  year: 2019
  end-page: 6
  ident: CR51
  article-title: A novel deep learning based framework for the detection and classification of breast cancer using transfer learning
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.03.022
– volume: 74
  start-page: 357
  issue: 5
  year: 2019
  end-page: 366
  ident: CR76
  article-title: Artificial intelligence in breast imaging
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2019.02.006
– volume: 8
  start-page: 905
  year: 2022
  end-page: 919
  ident: CR10
  article-title: SOUP-GAN: su-per-resolution MRI using generative adversarial networks
  publication-title: Tomography
  doi: 10.3390/tomography8020073
– ident: CR29
– ident: CR54
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  end-page: 16
  ident: CR53
  article-title: Radiomics in medical imaging “how-to” guide and critical reflection
  publication-title: Insights Imaging
– volume: 12
  start-page: 1694
  year: 2022
  ident: CR18
  article-title: Ra-diomics diagnostic tool based on deep learning for col-poscopy image classification
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12071694
– ident: CR25
– volume: 203
  year: 2021
  ident: CR71
  article-title: Semi-supervised GAN-based radiomics model for data augmentation in breast ultrasound mass classification
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.106018
– volume: 10
  start-page: 1
  issue: 5
  year: 2019
  end-page: 11
  ident: CR43
  article-title: Deep learning ap-proaches for data augmentation and classification of breast masses using ultrasound images
  publication-title: Int J Adv Comput Sci Appl
– ident: CR46
– ident: CR19
– volume: 12
  start-page: 9533
  year: 2022
  ident: CR11
  article-title: A new generative adversarial network for medical images super resolution
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-13658-4
– ident: CR67
– ident: CR15
– ident: CR50
– ident: CR9
– ident: CR57
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 16
  ident: CR65
  article-title: A novel deep convolutional neural network based on ResNet-18 and transfer learning for detection of wood knot defects
  publication-title: Journal of Sensors
  doi: 10.1155/2021/4428964
– ident: CR60
– ident: CR85
– ident: CR5
– ident: CR81
– volume: 39
  start-page: 541
  issue: 2
  year: 2021
  end-page: 548
  ident: CR20
  article-title: An open IoHT-based deep learning framework for online medical image recognition
  publication-title: IEEE J Select Areas Commun
  doi: 10.1109/JSAC.2020.3020598
– volume: 106
  start-page: 85
  year: 2019
  end-page: 93
  ident: CR62
  article-title: Generative adversarial networks for data augmentation in machine fault diagnosis
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2019.01.001
– ident: CR64
– ident: CR26
– volume: 14
  start-page: 749
  issue: 12
  year: 2017
  end-page: 762
  ident: CR1
  article-title: Radiomics: the bridge between medical imaging and person-alized medicine
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2017.141
– volume: 15
  start-page: 1427
  year: 2020
  end-page: 1436
  ident: CR12
  article-title: SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing
  publication-title: Int J CARS
  doi: 10.1007/s11548-020-02203-1
– volume: 2006
  start-page: 209
  year: 2006
  ident: CR7
  article-title: BioImage Suite: an integrated medical image analysis suite: an update
  publication-title: Insight J
– volume: 12
  start-page: 6166
  issue: 1
  year: 2022
  ident: CR80
  article-title: A generative adversarial network for synthetization of regions of interest based on digital mammograms
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-09929-9
– volume: 22
  start-page: e16816
  issue: 1
  year: 2020
  ident: CR32
  article-title: Systematic evaluation of research progress on natural language processing in medicine over the past 20 years: bibliometric study on PubMed
  publication-title: J Med Int Res
– volume: 13
  start-page: 1102254
  year: 2023
  ident: CR73
  article-title: The implementation of NILS: a web-based artificial neural network decision support tool for noninvasive lymph node staging in breast cancer
  publication-title: Front Oncol
  doi: 10.3389/fonc.2023.1102254
– volume: 163
  year: 2022
  ident: CR30
  article-title: Applications of natural language processing in radiology: a systematic review
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2022.104779
– volume: 3
  issue: 1
  year: 2023
  ident: CR63
  article-title: Data augmentation using conditional generative adversarial network (cGAN): application for prediction of corrosion pit depth and testing using neural network
  publication-title: J Pipeline Sci Eng
  doi: 10.1016/j.jpse.2022.100091
– ident: CR14
– volume: 13
  start-page: 2041
  issue: 12
  year: 2023
  ident: CR75
  article-title: Artificial intelligence applications in breast imaging: current status and future directions
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13122041
– ident: CR2
– volume: 10
  start-page: 8298
  issue: 22
  year: 2020
  ident: CR23
  article-title: Deep-learning-based computer-aided systems for breast cancer imaging: a critical review
  publication-title: Appl Sci
  doi: 10.3390/app10228298
– volume: 7
  start-page: 44247
  year: 2019
  end-page: 44257
  ident: CR42
  article-title: Nas-unet: neural architecture search for medical image seg-men-tation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2908991
– volume: 42
  start-page: 5356
  issue: 12
  year: 2015
  end-page: 5365
  ident: CR21
  article-title: Image based computer aided diagnosis system for cancer detection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.02.005
– ident: CR82
– volume: 13
  start-page: 6894
  issue: 12
  year: 2023
  ident: CR77
  article-title: Region-of-interest optimization for deep-learning-based breast cancer detection in mammograms
  publication-title: Appl Sci
  doi: 10.3390/app13126894
– ident: CR6
– volume: 19
  start-page: 1
  issue: 1
  year: 2019
  end-page: 10
  ident: CR37
  article-title: The implementation of natural language processing to extract index lesions from breast magnetic resonance imaging reports
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-019-0997-3
– volume: 12
  start-page: 1694
  year: 2022
  ident: CR72
  article-title: Radiomics diagnostic tool based on deep learning for colposcopy image classification
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12071694
– ident: CR40
– ident: CR27
– volume: 15
  start-page: 3139
  issue: 12
  year: 2023
  ident: CR78
  article-title: Deep learning in different ultrasound methods for breast cancer, from diagnosis to prognosis: current trends, challenges, and an analysis
  publication-title: Cancers
  doi: 10.3390/cancers15123139
– ident: CR44
– ident: CR3
– ident: CR38
– volume: 21
  start-page: 12
  year: 2021
  ident: CR16
  article-title: MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-020-00543-7
– ident: CR17
– ident: CR31
– volume: 17
  start-page: 427
  year: 1999
  end-page: 428
  ident: CR58
  article-title: Automated detection of mammographic masses in MIAS Database
  publication-title: Med Imaging Technol
– ident: CR13
– volume: 223
  year: 2022
  ident: CR66
  article-title: Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.106951
– ident: CR34
– volume: 13
  start-page: 4272
  issue: 7
  year: 2023
  ident: CR79
  article-title: Applying deep learning methods for mammography analysis and breast cancer detection
  publication-title: Appl Sci
  doi: 10.3390/app13074272
– volume: 7
  start-page: 21400
  year: 2019
  end-page: 21408
  ident: CR48
  article-title: Classification of breast cancer histology images using multi-size and discriminative patches based on deep learning
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2898044
– volume: 8
  start-page: 1
  issue: 1
  year: 2013
  end-page: 20
  ident: CR4
  article-title: MIA-A free and open source software for gray scale medical image analysis
  publication-title: Source Code Biol Med
  doi: 10.1186/1751-0473-8-20
– volume: 20
  start-page: 1744969
  issue: 2022
  year: 2022
  ident: CR8
  article-title: Med-SRNet: GAN-based medical image super-resolution via high-resolution repre-sentation learning
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/1744969
– volume: 22
  start-page: 136
  issue: 1
  year: 2022
  ident: CR36
  article-title: Automated medical chart review for breast cancer outcomes research: a novel natural language processing extraction system
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-022-01583-z
– ident: CR83
– ident: CR28
– ident: CR41
– volume: 30
  start-page: 447
  issue: 4
  year: 2020
  end-page: 458
  ident: CR33
  article-title: Review of natural language processing in radiology
  publication-title: Neuroimaging Clinics
  doi: 10.1016/j.nic.2020.08.001
– ident: CR24
– volume: 3
  start-page: 23
  issue: 1
  year: 2012
  ident: CR35
  article-title: The feasibility of using natural language processing to extract clinical information from breast pathology reports
  publication-title: J Pathol Inform
  doi: 10.4103/2153-3539.97788
– year: 2024
  ident: CR52
  article-title: Breast mass regions classification from mammograms using convolutional neural networks and transfer learning
  publication-title: J Modern Optics TMOP
  doi: 10.1080/09500340.2024.2313724
– volume: 19
  start-page: 236
  issue: 2
  year: 2012
  end-page: 248
  ident: CR59
  article-title: INbreast
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2011.09.014
– volume: 12
  start-page: 4616
  issue: 9
  year: 2022
  ident: CR61
  article-title: Two-stage deep learning method for breast cancer detection using high-resolution mammogram images
  publication-title: Appl Sci
  doi: 10.3390/app12094616
– volume: 20
  start-page: 1744969
  issue: 2022
  year: 2022
  ident: 3084_CR8
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/1744969
– volume: 96
  start-page: 20220934
  year: 2023
  ident: 3084_CR84
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20220934
– volume: 12
  start-page: 1694
  year: 2022
  ident: 3084_CR18
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12071694
– volume: 2006
  start-page: 209
  year: 2006
  ident: 3084_CR7
  publication-title: Insight J
– volume: 12
  start-page: 9533
  year: 2022
  ident: 3084_CR11
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-13658-4
– volume: 125
  start-page: 1
  year: 2019
  ident: 3084_CR51
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.03.022
– volume: 10
  start-page: 1
  issue: 5
  year: 2019
  ident: 3084_CR43
  publication-title: Int J Adv Comput Sci Appl
  doi: 10.5121/acij.2019.10501
– volume-title: Current status of the digital database for screening mammography. En Digital mammography
  year: 1998
  ident: 3084_CR56
– volume: 13
  start-page: 4272
  issue: 7
  year: 2023
  ident: 3084_CR79
  publication-title: Appl Sci
  doi: 10.3390/app13074272
– ident: 3084_CR6
  doi: 10.1016/j.cmpb.2018.01.025
– ident: 3084_CR26
  doi: 10.1109/ICCV.2017.322
– volume: 7
  start-page: 44247
  year: 2019
  ident: 3084_CR42
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2908991
– ident: 3084_CR64
  doi: 10.1109/cvpr52688.2022.01112
– ident: 3084_CR14
  doi: 10.1109/ICBK50248.2020.00041
– ident: 3084_CR17
– volume: 17
  start-page: 427
  year: 1999
  ident: 3084_CR58
  publication-title: Med Imaging Technol
– ident: 3084_CR50
  doi: 10.1016/j.compbiomed.2020.103698
– ident: 3084_CR13
  doi: 10.1609/aaai.v35i18.17895
– volume: 30
  start-page: 447
  issue: 4
  year: 2020
  ident: 3084_CR33
  publication-title: Neuroimaging Clinics
  doi: 10.1016/j.nic.2020.08.001
– ident: 3084_CR74
  doi: 10.3389/fonc.2023.1179025
– ident: 3084_CR5
  doi: 10.1007/s10278-019-00232-0
– ident: 3084_CR9
  doi: 10.1109/ISBIWorkshops50223.2020.9153436
– volume: 13
  start-page: 6894
  issue: 12
  year: 2023
  ident: 3084_CR77
  publication-title: Appl Sci
  doi: 10.3390/app13126894
– volume: 7
  start-page: 21400
  year: 2019
  ident: 3084_CR48
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2898044
– volume: 22
  start-page: 1218
  issue: 4
  year: 2018
  ident: 3084_CR55
  publication-title: IEEE J Biomed Heal Informatics
  doi: 10.1109/JBHI.2017.2731873
– ident: 3084_CR70
  doi: 10.3390/medicina60010014
– volume: 19
  start-page: 1
  issue: 1
  year: 2019
  ident: 3084_CR37
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-019-0997-3
– ident: 3084_CR39
  doi: 10.1109/CVPR42600.2020.01331
– ident: 3084_CR31
  doi: 10.1109/ICDM.2019.00083
– ident: 3084_CR28
  doi: 10.1016/B978-0-12-810408-8.00023-7
– volume: 3
  start-page: 23
  issue: 1
  year: 2012
  ident: 3084_CR35
  publication-title: J Pathol Inform
  doi: 10.4103/2153-3539.97788
– volume: 21
  start-page: 12
  year: 2021
  ident: 3084_CR16
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-020-00543-7
– ident: 3084_CR67
  doi: 10.1117/12.2515588
– volume: 39
  start-page: 541
  issue: 2
  year: 2021
  ident: 3084_CR20
  publication-title: IEEE J Select Areas Commun
  doi: 10.1109/JSAC.2020.3020598
– ident: 3084_CR44
– ident: 3084_CR46
  doi: 10.1109/CVPR.2016.308
– ident: 3084_CR24
  doi: 10.1515/biol-2022-0517
– volume: 22
  start-page: 136
  issue: 1
  year: 2022
  ident: 3084_CR36
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-022-01583-z
– volume: 19
  start-page: 236
  issue: 2
  year: 2012
  ident: 3084_CR59
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2011.09.014
– ident: 3084_CR40
  doi: 10.1109/TMI.2019.2945514
– volume: 3
  issue: 1
  year: 2023
  ident: 3084_CR63
  publication-title: J Pipeline Sci Eng
  doi: 10.1016/j.jpse.2022.100091
– ident: 3084_CR29
  doi: 10.1016/j.neucom.2021.11.047
– volume: 13
  start-page: 2041
  issue: 12
  year: 2023
  ident: 3084_CR75
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13122041
– ident: 3084_CR15
  doi: 10.1109/SSCI47803.2020.9308512
– ident: 3084_CR81
  doi: 10.2967/jnumed.123.266080
– ident: 3084_CR83
  doi: 10.1007/s11604-023-01474-3
– ident: 3084_CR45
  doi: 10.32604/iasc.2021.0186
– volume: 12
  start-page: 6166
  issue: 1
  year: 2022
  ident: 3084_CR80
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-09929-9
– volume: 13
  start-page: 1102254
  year: 2023
  ident: 3084_CR73
  publication-title: Front Oncol
  doi: 10.3389/fonc.2023.1102254
– volume: 8
  start-page: 1
  issue: 1
  year: 2013
  ident: 3084_CR4
  publication-title: Source Code Biol Med
  doi: 10.1186/1751-0473-8-20
– volume: 15
  start-page: 1427
  year: 2020
  ident: 3084_CR12
  publication-title: Int J CARS
  doi: 10.1007/s11548-020-02203-1
– ident: 3084_CR38
  doi: 10.1109/ICCV51070.2023.00371
– ident: 3084_CR68
  doi: 10.1109/ICASID.2019.8925267
– volume: 22
  start-page: 832
  issue: 3
  year: 2022
  ident: 3084_CR22
  publication-title: Sensors
  doi: 10.3390/s22030832
– volume: 203
  year: 2021
  ident: 3084_CR71
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.106018
– volume: 179
  start-page: 41
  year: 2019
  ident: 3084_CR69
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2018.10.009
– ident: 3084_CR27
  doi: 10.1007/978-981-13-9042-5_56
– volume: 42
  start-page: 5356
  issue: 12
  year: 2015
  ident: 3084_CR21
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.02.005
– volume: 106
  start-page: 85
  year: 2019
  ident: 3084_CR62
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2019.01.001
– ident: 3084_CR41
  doi: 10.1186/s12938-019-0626-5
– volume: 163
  year: 2022
  ident: 3084_CR30
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2022.104779
– volume: 12
  start-page: 4616
  issue: 9
  year: 2022
  ident: 3084_CR61
  publication-title: Appl Sci
  doi: 10.3390/app12094616
– ident: 3084_CR3
  doi: 10.1016/j.ejmp.2021.02.006
– ident: 3084_CR34
  doi: 10.1109/ic-ETITE47903.2020.36
– ident: 3084_CR57
– ident: 3084_CR49
  doi: 10.1007/s10462-019-09716-5
– year: 2024
  ident: 3084_CR52
  publication-title: J Modern Optics TMOP
  doi: 10.1080/09500340.2024.2313724
– volume: 22
  start-page: e16816
  issue: 1
  year: 2020
  ident: 3084_CR32
  publication-title: J Med Int Res
– volume: 12
  start-page: 1694
  year: 2022
  ident: 3084_CR72
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12071694
– ident: 3084_CR85
  doi: 10.17632/jh9trvbjbv
– volume: 2021
  start-page: 1
  year: 2021
  ident: 3084_CR65
  publication-title: Journal of Sensors
  doi: 10.1155/2021/4428964
– ident: 3084_CR60
  doi: 10.1101/2022.03.07.22272009
– ident: 3084_CR25
  doi: 10.1109/CVPR.2016.91
– volume: 14
  start-page: 749
  issue: 12
  year: 2017
  ident: 3084_CR1
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2017.141
– ident: 3084_CR19
  doi: 10.1007/978-981-13-6837-0_7
– volume: 223
  year: 2022
  ident: 3084_CR66
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.106951
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 3084_CR53
  publication-title: Insights Imaging
  doi: 10.1186/s13244-020-00887-2
– volume: 74
  start-page: 357
  issue: 5
  year: 2019
  ident: 3084_CR76
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2019.02.006
– ident: 3084_CR54
  doi: 10.17632/wmy84gzngw.1
– ident: 3084_CR2
  doi: 10.1016/j.ejmp.2021.03.009
– volume: 15
  start-page: 3139
  issue: 12
  year: 2023
  ident: 3084_CR78
  publication-title: Cancers
  doi: 10.3390/cancers15123139
– volume: 8
  start-page: 905
  year: 2022
  ident: 3084_CR10
  publication-title: Tomography
  doi: 10.3390/tomography8020073
– volume: 10
  start-page: 8298
  issue: 22
  year: 2020
  ident: 3084_CR23
  publication-title: Appl Sci
  doi: 10.3390/app10228298
– ident: 3084_CR82
  doi: 10.2967/jnumed.123.266110
– volume: 30
  start-page: 5023
  issue: 8
  year: 2023
  ident: 3084_CR47
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-023-09968-z
SSID ssj0021524
Score 2.4416215
Snippet Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2737
SubjectTerms Abnormalities
Accuracy
Algorithms
Applications programs
Artificial intelligence
asymmetry
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Breast cancer
breast neoplasms
Breasts
Classification
Computer Applications
Deep learning
Human Physiology
image analysis
Image classification
Image processing
Image segmentation
Imaging
Learning algorithms
Machine learning
Mammography
Medical imaging
Mobile computing
Modular equipment
Nodules
Original
Original Article
Radiology
Segmentation
Synthetic data
telemedicine
ultrasonics
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB_qFXx8EF_VaJUV_GYX89hkE0HESksReohY6BcJ-0p7kMudbQ7xv3cm2eR6FA6_BXYTkpnZmd9mZn8D8E6mFRGHp7yqRMaFKiTXudBcSIMGIiJdRHQ4-XSanZyJb-fp-Q5Mh7MwVFY5-MTOUduFoX_kHyhjV6QSw9_n5W9OXaMouzq00FC-tYL91FGM3YHdmJixJrB7eDT9_mPcgmG0EmNRI2Jrf4ymP0yHwU9yjFmcOFwEjzZD1S38ebuMcsylPoB7q2ap_v5RdX0jXB0_goceZ7IvvWE8hh3XPIG7pz6T_hR-HV6pqWs_MsXmCz2r2Y1MNkMgyzRVq7dsNkeHwwxhbCoq6scp9FmGF9a5JfONJy6Yqi9QYu3l_PoZnB0f_fx6wn2rBW4QobXcSp2nhclcnmRaxnFY4LYo0lbGSiZVrIvM6dyhO0C0ZlKjcJNnUZpKhJVVKULGPZg0i8a9ACYyFRaqqmxhrcD9pTIIgkyodCh1lIgqgGiQamk8Dzm1w6jLNYMyaaJETZSdJsoogPfjPcuehWPr7P1BWaVfkdfl2n4CeDsO41qiBIlq3GJFc1J0UERHtGUOhgiJ8pH4nOe9_sdXSvKsSJI4DyDfsIxxAnF5b440s8uO0zuK6MdSGAdwMBjR-t23ferBaGj_IZmX2yXzCu7Hnf1TCd0-TNqrlXuNmKvVb_xC-gccLSUT
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBcjhX08rPue125osLdVrWVLlrW3tqyUQcMeFugehtGX2zDHCYnD2P76nWzFbdoRujeDzkY6n3S_051-QuiD4KUnDuekLFlGmJKC6JxpwoQBA2FUS-oPJ58Ns9MR-3LOzwNNjj8LcyN_f7AAxALrKHgS4plVGIFIZyvjgLsHaGs0_Hr4va9RpO1mHiBsiI8ZY-GEzL8_su6FbkHL2xWSfZr0EXqwrGfq9y9VVdc80cl2d6XRoiUw9AUoP_eXjd43f27QO95tkE_Q4wBI8WFnQU_RPVc_Q_fPQsr9OfpxNFdD13zCCk-melzhaylvDIgXa1_W3uDxBFYmbDwY99VHXbv3kRbDg3VuhsMNFRdYVRfT-bi5nCxeoNHJ52_HpyTcyUAMQLmGWKFzLk3m8jTTIkliCfET1VYkSqRlomXmdO5g3QBYZ7hREA1aMAbF4tIqDtjyJRrU09q9RphlKpaqLK20lkEgqgygJRMrHQtNU1ZGiK7-UWECYbm_N6MqrqiWvd4K0FvR6q2gEfrYvzPr6Do2Su-ufn0Rpu6i8KlhyQXgrAi975th0vlMiqrddOllOKxknrdogwz4EgH6EfCdV5019V1K80ymaZJHKF-zs17Ak36vt9Tjy5b8m1K_AxUnEdpbmeRV3zcNda832zto5s3_ie-gh0lrvb72bhcNmvnSvQWw1uh3YZb-BawAL5Y
  priority: 102
  providerName: Unpaywall
Title BraNet: a mobil application for breast image classification based on deep learning algorithms
URI https://link.springer.com/article/10.1007/s11517-024-03084-1
https://www.ncbi.nlm.nih.gov/pubmed/38693328
https://www.proquest.com/docview/3093957155
https://www.proquest.com/docview/3050176560
https://www.proquest.com/docview/3153720975
https://pubmed.ncbi.nlm.nih.gov/PMC11330402
https://doi.org/10.1007/s11517-024-03084-1
UnpaywallVersion publishedVersion
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1741-0444
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: ADMLS
  dateStart: 19770101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1741-0444
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-2FvbxUPbVzWsXNNjbKuYP2bL6lpakZaOhjAXSh2H05TbgOCFxGPvvd3Ict2lH2F5sY8nC1ul0v_OdfgL4xOPcEYfHNM9ZQpkUnKqUKcq4xgHCAiUCtzj5YpCcD9nXUTxqaHLcWph78fsvC0QsOI-iJaGOWYVR9HR20UgldWA2OW2dK7RDrE1XRNTcLJD5exubRugBsnyYINlGSZ_D02U5k79_yaK4Y4j6L2CvQZCkuxL5S3hky1fw5KKJkb-GnydzObDVMZFkMlXjgtyJUROEqES5PPSKjCc4lRDt0LNLF1qVO6NmCF4Ya2ek2VLimsjiejofVzeTxRsY9ns_Ts9ps4kC1Yi9Kmq4SmOhE5tGieJh6At0eAJleCh5lIdKJFalFhUdcZiOtUT3zWBvSubnRsYIBvdhp5yW9h0QlkhfyDw3whiGnqPUCG-0L5XPVRCx3INg3auZbhjG3UYXRXbLjewkkaEksloSWeDB5_aZ2YpfY2vtw7WwskbXFpmL5YqYIzDy4GNbjFriQh-ytNOlqxPj1OOIhrbUwcmfY_9wbOftSv7tK0VpIqIoTD1IN0ZGW8GxdG-WlOObmq07CNwvIz_04Gg9iG7ffdunHrUD7R965v3_tX4Az8JaH1yy3CHsVPOl_YDoqlIdeMxHHI9p_6wDu92zq289PJ_0BpffO7XK4XEYdvHecHDZvfoD5H4ezQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRAdCgtWH0Q70arjqBPdjCXSSYjFLHasrXdRaSFvkicyUzahWx27WYp_Tm_zXM2k2yXwuJL3wIzCZNzP3NuhLwTcYGNw2NWFDxhXEnBdMo14yIHAuGBlgEWJ_cHSe-Efz-NT9fI37YWBtMqW5k4F9RmnOMd-UeM2MlYgPr7PPnDcGoURlfbERrKjVYwO_MWY66w49BeXYILN905-Ab4fh-G-3vHX3vMTRlgORgnNTNCp7HME5tGiRZh6EvwCAJtRKhEVIRaJlanFjgBDJU8zhX4NwZ-T3G_MCqO8UIUVMAGj7gE529jd2_w42fn8oF25F0SJdjyrmynKd4DZSsY6EiGPWM4C5ZV4w1792baZhe7vUc2Z9VEXV2qsrymHvcfkPvOrqVfGkJ8SNZs9Yjc6bvI_WPya_dCDWz9iSo6GuthSa9FzikYzlRjdnxNhyMQcDRHmx6TmJp1VLWGwoOxdkLdoIszqsozwFB9Ppo-ISe3AvSnZL0aV_Y5oTxRvlRFYaQxHPxZlYPRlftK-0IHES88ErRQzXLX9xzHb5TZomMzYiIDTGRzTGSBRz5070yarh8rd2-1yMqcBJhmC3r1yNtuGXgXAzKqsuMZ7olBIGL7oxV7QCUJgI-A7zxr8N8dKUoTGUVh6pF0iTK6Ddg7fHmlGp7Pe4gHAV5k-aFHtlsiWpx91a9ud4T2H5B5sRoyb8hm77h_lB0dDA5fkrvhnBcwfW-LrNcXM_sK7L1av3ZMRcnv2-bjfydMYLM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRA9FAqVH0Q70arjqBPdmguk0wiiKh1aa1dfLCwL5LOZCbtQja7drOU_ppf5zm5bZfC4kvfAjMJk3M_c24Ab2WYU-PwkOe5iLhQieQ6FpoLmSGBCE8nHhUnHw2j_WPxfRSONuBvVwtDaZWdTKwFtZlmdEe-SxG7JJSo_nbzNi3i597g0-wPpwlSFGntxmk0JHJoLy_QfZt_PNhDXL_z_cG3X1_3eTthgGdomFTcSB2HSRbZOIi09H03QW_A00b6Sga5r5PI6tgiF6CRkoWZQt_G4K8p4eZGhSFdhqL4vyUDPBrykhwtnT3Ui6JPn0Qrvi3Yacr2UM1KjtqRU7cYwb1VpXjN0r2esNlHbe_C7UU5U5cXqiiuKMbBfbjXWrTsc0OCD2DDlg9h66iN2T-C31_O1dBWH5hik6keF-xKzJyhycw05cVXbDxB0cYysuYpfalZJyVrGD4Ya2esHXFxylRxiviozibzx3B8IyB_ApvltLTPgIlIuYnKc5MYI9CTVRmaW5mrtCu1F4jcAa-Dapq1Hc9p8EaRLns1EyZSxERaYyL1HHjfvzNr-n2s3b3dIStteX-eLinVgTf9MnIthWJUaacL2hOiKKTGR2v2oDKSCB-J33na4L8_UhBHSRD4sQPxCmX0G6hr-OpKOT6ru4d7Hl1hub4DOx0RLc--7ld3ekL7D8g8Xw-Z17CF3Jv-OBgevoA7fs0KlLe3DZvV-cK-REOv0q9qjmJwctMs_A9kRV5N
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBcjhX08rPue125osLdVrWVLlrW3tqyUQcMeFugehtGX2zDHCYnD2P76nWzFbdoRujeDzkY6n3S_051-QuiD4KUnDuekLFlGmJKC6JxpwoQBA2FUS-oPJ58Ns9MR-3LOzwNNjj8LcyN_f7AAxALrKHgS4plVGIFIZyvjgLsHaGs0_Hr4va9RpO1mHiBsiI8ZY-GEzL8_su6FbkHL2xWSfZr0EXqwrGfq9y9VVdc80cl2d6XRoiUw9AUoP_eXjd43f27QO95tkE_Q4wBI8WFnQU_RPVc_Q_fPQsr9OfpxNFdD13zCCk-melzhaylvDIgXa1_W3uDxBFYmbDwY99VHXbv3kRbDg3VuhsMNFRdYVRfT-bi5nCxeoNHJ52_HpyTcyUAMQLmGWKFzLk3m8jTTIkliCfET1VYkSqRlomXmdO5g3QBYZ7hREA1aMAbF4tIqDtjyJRrU09q9RphlKpaqLK20lkEgqgygJRMrHQtNU1ZGiK7-UWECYbm_N6MqrqiWvd4K0FvR6q2gEfrYvzPr6Do2Su-ufn0Rpu6i8KlhyQXgrAi975th0vlMiqrddOllOKxknrdogwz4EgH6EfCdV5019V1K80ymaZJHKF-zs17Ak36vt9Tjy5b8m1K_AxUnEdpbmeRV3zcNda832zto5s3_ie-gh0lrvb72bhcNmvnSvQWw1uh3YZb-BawAL5Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BraNet%3A+a+mobil+application+for+breast+image+classification+based+on+deep+learning+algorithms&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Jim%C3%A9nez-Gaona%2C+Yuliana&rft.au=%C3%81lvarez%2C+Mar%C3%ADa+Jos%C3%A9+Rodr%C3%ADguez&rft.au=Castillo-Malla%2C+Darwin&rft.au=Garc%C3%ADa-Jaen%2C+Santiago&rft.date=2024-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=62&rft.issue=9&rft.spage=2737&rft.epage=2756&rft_id=info:doi/10.1007%2Fs11517-024-03084-1&rft.externalDocID=10_1007_s11517_024_03084_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon