BraNet: a mobil application for breast image classification based on deep learning algorithms
Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named “BraNet” for 2D breast imaging segmentation and classification...
Saved in:
| Published in | Medical & biological engineering & computing Vol. 62; no. 9; pp. 2737 - 2756 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0140-0118 1741-0444 1741-0444 |
| DOI | 10.1007/s11517-024-03084-1 |
Cover
| Abstract | Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named “BraNet” for 2D breast imaging segmentation and classification using deep learning algorithms. During the phase off-line, an SNGAN model was previously trained for synthetic image generation, and subsequently, these images were used to pre-trained SAM and ResNet18 segmentation and classification models. During phase online, the BraNet app was developed using the react native framework, offering a modular deep-learning pipeline for mammography (DM) and ultrasound (US) breast imaging classification. This application operates on a client–server architecture and was implemented in Python for iOS and Android devices. Then, two diagnostic radiologists were given a reading test of 290 total original RoI images to assign the perceived breast tissue type. The reader’s agreement was assessed using the kappa coefficient. The BraNet App Mobil exhibited the highest accuracy in benign and malignant US images (94.7%/93.6%) classification compared to DM during training I (80.9%/76.9%) and training II (73.7/72.3%). The information contrasts with radiological experts’ accuracy, with DM classification being 29%, concerning US 70% for both readers, because they achieved a higher accuracy in US ROI classification than DM images. The kappa value indicates a fair agreement (0.3) for DM images and moderate agreement (0.4) for US images in both readers. It means that not only the amount of data is essential in training deep learning algorithms. Also, it is vital to consider the variety of abnormalities, especially in the mammography data, where several BI-RADS categories are present (microcalcifications, nodules, mass, asymmetry, and dense breasts) and can affect the API accuracy model.
Graphical abstract |
|---|---|
| AbstractList | Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named “BraNet” for 2D breast imaging segmentation and classification using deep learning algorithms. During the phase off-line, an SNGAN model was previously trained for synthetic image generation, and subsequently, these images were used to pre-trained SAM and ResNet18 segmentation and classification models. During phase online, the BraNet app was developed using the react native framework, offering a modular deep-learning pipeline for mammography (DM) and ultrasound (US) breast imaging classification. This application operates on a client–server architecture and was implemented in Python for iOS and Android devices. Then, two diagnostic radiologists were given a reading test of 290 total original RoI images to assign the perceived breast tissue type. The reader’s agreement was assessed using the kappa coefficient. The BraNet App Mobil exhibited the highest accuracy in benign and malignant US images (94.7%/93.6%) classification compared to DM during training I (80.9%/76.9%) and training II (73.7/72.3%). The information contrasts with radiological experts’ accuracy, with DM classification being 29%, concerning US 70% for both readers, because they achieved a higher accuracy in US ROI classification than DM images. The kappa value indicates a fair agreement (0.3) for DM images and moderate agreement (0.4) for US images in both readers. It means that not only the amount of data is essential in training deep learning algorithms. Also, it is vital to consider the variety of abnormalities, especially in the mammography data, where several BI-RADS categories are present (microcalcifications, nodules, mass, asymmetry, and dense breasts) and can affect the API accuracy model. Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named “BraNet” for 2D breast imaging segmentation and classification using deep learning algorithms. During the phase off-line, an SNGAN model was previously trained for synthetic image generation, and subsequently, these images were used to pre-trained SAM and ResNet18 segmentation and classification models. During phase online, the BraNet app was developed using the react native framework, offering a modular deep-learning pipeline for mammography (DM) and ultrasound (US) breast imaging classification. This application operates on a client–server architecture and was implemented in Python for iOS and Android devices. Then, two diagnostic radiologists were given a reading test of 290 total original RoI images to assign the perceived breast tissue type. The reader’s agreement was assessed using the kappa coefficient. The BraNet App Mobil exhibited the highest accuracy in benign and malignant US images (94.7%/93.6%) classification compared to DM during training I (80.9%/76.9%) and training II (73.7/72.3%). The information contrasts with radiological experts’ accuracy, with DM classification being 29%, concerning US 70% for both readers, because they achieved a higher accuracy in US ROI classification than DM images. The kappa value indicates a fair agreement (0.3) for DM images and moderate agreement (0.4) for US images in both readers. It means that not only the amount of data is essential in training deep learning algorithms. Also, it is vital to consider the variety of abnormalities, especially in the mammography data, where several BI-RADS categories are present (microcalcifications, nodules, mass, asymmetry, and dense breasts) and can affect the API accuracy model. Graphical abstract Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named "BraNet" for 2D breast imaging segmentation and classification using deep learning algorithms. During the phase off-line, an SNGAN model was previously trained for synthetic image generation, and subsequently, these images were used to pre-trained SAM and ResNet18 segmentation and classification models. During phase online, the BraNet app was developed using the react native framework, offering a modular deep-learning pipeline for mammography (DM) and ultrasound (US) breast imaging classification. This application operates on a client-server architecture and was implemented in Python for iOS and Android devices. Then, two diagnostic radiologists were given a reading test of 290 total original RoI images to assign the perceived breast tissue type. The reader's agreement was assessed using the kappa coefficient. The BraNet App Mobil exhibited the highest accuracy in benign and malignant US images (94.7%/93.6%) classification compared to DM during training I (80.9%/76.9%) and training II (73.7/72.3%). The information contrasts with radiological experts' accuracy, with DM classification being 29%, concerning US 70% for both readers, because they achieved a higher accuracy in US ROI classification than DM images. The kappa value indicates a fair agreement (0.3) for DM images and moderate agreement (0.4) for US images in both readers. It means that not only the amount of data is essential in training deep learning algorithms. Also, it is vital to consider the variety of abnormalities, especially in the mammography data, where several BI-RADS categories are present (microcalcifications, nodules, mass, asymmetry, and dense breasts) and can affect the API accuracy model.Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named "BraNet" for 2D breast imaging segmentation and classification using deep learning algorithms. During the phase off-line, an SNGAN model was previously trained for synthetic image generation, and subsequently, these images were used to pre-trained SAM and ResNet18 segmentation and classification models. During phase online, the BraNet app was developed using the react native framework, offering a modular deep-learning pipeline for mammography (DM) and ultrasound (US) breast imaging classification. This application operates on a client-server architecture and was implemented in Python for iOS and Android devices. Then, two diagnostic radiologists were given a reading test of 290 total original RoI images to assign the perceived breast tissue type. The reader's agreement was assessed using the kappa coefficient. The BraNet App Mobil exhibited the highest accuracy in benign and malignant US images (94.7%/93.6%) classification compared to DM during training I (80.9%/76.9%) and training II (73.7/72.3%). The information contrasts with radiological experts' accuracy, with DM classification being 29%, concerning US 70% for both readers, because they achieved a higher accuracy in US ROI classification than DM images. The kappa value indicates a fair agreement (0.3) for DM images and moderate agreement (0.4) for US images in both readers. It means that not only the amount of data is essential in training deep learning algorithms. Also, it is vital to consider the variety of abnormalities, especially in the mammography data, where several BI-RADS categories are present (microcalcifications, nodules, mass, asymmetry, and dense breasts) and can affect the API accuracy model. |
| Author | Castillo-Malla, Darwin García-Jaen, Santiago Álvarez, María José Rodríguez Corral-Domínguez, Patricio Jiménez-Gaona, Yuliana Lakshminarayanan, Vasudevan Carrión-Figueroa, Diana |
| Author_xml | – sequence: 1 givenname: Yuliana surname: Jiménez-Gaona fullname: Jiménez-Gaona, Yuliana email: ydjimenez@utpl.edu.ec organization: Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Instituto de Instrumentación para la Imagen Molecular I3M, Universitat Politécnica de Valencia, Theoretical and Experimental Epistemology Lab, School of Opto ΩN2L3G1 – sequence: 2 givenname: María José Rodríguez surname: Álvarez fullname: Álvarez, María José Rodríguez organization: Instituto de Instrumentación para la Imagen Molecular I3M, Universitat Politécnica de Valencia – sequence: 3 givenname: Darwin surname: Castillo-Malla fullname: Castillo-Malla, Darwin organization: Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Instituto de Instrumentación para la Imagen Molecular I3M, Universitat Politécnica de Valencia, Theoretical and Experimental Epistemology Lab, School of Opto ΩN2L3G1 – sequence: 4 givenname: Santiago surname: García-Jaen fullname: García-Jaen, Santiago organization: Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja – sequence: 5 givenname: Diana surname: Carrión-Figueroa fullname: Carrión-Figueroa, Diana organization: Hospital-IESS del Sur de Quito – sequence: 6 givenname: Patricio surname: Corral-Domínguez fullname: Corral-Domínguez, Patricio organization: Corporación Médica Monte Sinaí-CIPAM (Centro Integral de Patología Mamaria) Cuenca-Ecuador, Facultad de Ciencias Médicas, Universidad de Cuenca – sequence: 7 givenname: Vasudevan surname: Lakshminarayanan fullname: Lakshminarayanan, Vasudevan organization: Department of Systems Design Engineering, Physics, and Electrical and Computer Engineering, University of Waterloo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38693328$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1TAQhS1URG8Lf4AFisSGTWDGjzhhg6DiJVWwgSWyHMdJXfnawU5A_fe4vbcUuiisbMnnHJ_55ogchBgsIY8RniOAfJERBcoaKK-BQctrvEc2KDnWwDk_IBtADjUgtofkKOdzAIqC8gfkkLVNxxhtN-Tbm6Q_2eVlpatt7J2v9Dx7Z_TiYqjGmKo-WZ2Xym31ZCvjdc5uvH7vdbZDVS6DtXPlrU7BhanSforJLWfb_JDcH7XP9tH-PCZf3739cvKhPv38_uPJ69PaCGiXepB9KzrT2JY1vaQUOio67AdJtWQj7bvG9q0FyShtjDC6QzmUWTSHcdBCMHZM2C53DbO--Km9V3MqldOFQlCXsNQOliqw1BUshcX1auea135rB2PDkvSNM2qn_n4J7kxN8YdCZAw40JLwbJ-Q4vfV5kVtXTbWex1sXLNiKJgs40jxbykIQNmIBor06S3peVxTKACLqmOdkCguA5_82f537evdFgHdCUyKOSc7_h-T9pbJuOVq24WA83db90vI5Z8w2XRT-w7XL2Q31tA |
| CitedBy_id | crossref_primary_10_3390_app15052830 |
| Cites_doi | 10.1007/s11831-023-09968-z 10.1109/JBHI.2017.2731873 10.3390/s22030832 10.1016/j.cviu.2018.10.009 10.1259/bjr.20220934 10.1016/j.patrec.2019.03.022 10.1016/j.crad.2019.02.006 10.3390/tomography8020073 10.3390/diagnostics12071694 10.1016/j.cmpb.2021.106018 10.1038/s41598-022-13658-4 10.1155/2021/4428964 10.1109/JSAC.2020.3020598 10.1016/j.compind.2019.01.001 10.1038/nrclinonc.2017.141 10.1007/s11548-020-02203-1 10.1038/s41598-022-09929-9 10.3389/fonc.2023.1102254 10.1016/j.ijmedinf.2022.104779 10.1016/j.jpse.2022.100091 10.3390/diagnostics13122041 10.3390/app10228298 10.1109/ACCESS.2019.2908991 10.1016/j.eswa.2015.02.005 10.3390/app13126894 10.1186/s12911-019-0997-3 10.3390/cancers15123139 10.1186/s12880-020-00543-7 10.1016/j.cmpb.2022.106951 10.3390/app13074272 10.1109/ACCESS.2019.2898044 10.1186/1751-0473-8-20 10.1155/2022/1744969 10.1186/s12874-022-01583-z 10.1016/j.nic.2020.08.001 10.4103/2153-3539.97788 10.1080/09500340.2024.2313724 10.1016/j.acra.2011.09.014 10.3390/app12094616 10.5121/acij.2019.10501 10.1016/j.cmpb.2018.01.025 10.1109/ICCV.2017.322 10.1109/cvpr52688.2022.01112 10.1109/ICBK50248.2020.00041 10.1016/j.compbiomed.2020.103698 10.1609/aaai.v35i18.17895 10.3389/fonc.2023.1179025 10.1007/s10278-019-00232-0 10.1109/ISBIWorkshops50223.2020.9153436 10.3390/medicina60010014 10.1109/CVPR42600.2020.01331 10.1109/ICDM.2019.00083 10.1016/B978-0-12-810408-8.00023-7 10.1117/12.2515588 10.1109/CVPR.2016.308 10.1515/biol-2022-0517 10.1109/TMI.2019.2945514 10.1016/j.neucom.2021.11.047 10.1109/SSCI47803.2020.9308512 10.2967/jnumed.123.266080 10.1007/s11604-023-01474-3 10.32604/iasc.2021.0186 10.1109/ICCV51070.2023.00371 10.1109/ICASID.2019.8925267 10.1007/978-981-13-9042-5_56 10.1186/s12938-019-0626-5 10.1016/j.ejmp.2021.02.006 10.1109/ic-ETITE47903.2020.36 10.1007/s10462-019-09716-5 10.17632/jh9trvbjbv 10.1101/2022.03.07.22272009 10.1109/CVPR.2016.91 10.1007/978-981-13-6837-0_7 10.1186/s13244-020-00887-2 10.17632/wmy84gzngw.1 10.1016/j.ejmp.2021.03.009 10.2967/jnumed.123.266110 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7S9 L.6 5PM ADTOC UNPAY |
| DOI | 10.1007/s11517-024-03084-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) Proquest Health and Medical Complete ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection Proquest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed ProQuest Business Collection (Alumni Edition) MEDLINE - Academic AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1741-0444 |
| EndPage | 2756 |
| ExternalDocumentID | 10.1007/s11517-024-03084-1 PMC11330402 38693328 10_1007_s11517_024_03084_1 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Universitat Politècnica de València |
| GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM 7SC 7TB 7TS 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 7S9 L.6 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c508t-d7b859c6e836b722092591bd72a73f2b96eb8e073226c5ca917d021a40fda5533 |
| IEDL.DBID | C6C |
| ISSN | 0140-0118 1741-0444 |
| IngestDate | Sun Oct 26 03:18:08 EDT 2025 Tue Sep 30 17:08:11 EDT 2025 Sun Sep 28 08:09:12 EDT 2025 Thu Oct 02 06:45:42 EDT 2025 Tue Oct 07 05:41:50 EDT 2025 Mon Jul 21 05:55:40 EDT 2025 Wed Oct 01 03:38:03 EDT 2025 Thu Apr 24 23:01:58 EDT 2025 Fri Feb 21 02:38:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Deep learning Breast cancer Mammography Mobil app Ultrasound |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-d7b859c6e836b722092591bd72a73f2b96eb8e073226c5ca917d021a40fda5533 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doi.org/10.1007/s11517-024-03084-1 |
| PMID | 38693328 |
| PQID | 3093957155 |
| PQPubID | 54161 |
| PageCount | 20 |
| ParticipantIDs | unpaywall_primary_10_1007_s11517_024_03084_1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11330402 proquest_miscellaneous_3153720975 proquest_miscellaneous_3050176560 proquest_journals_3093957155 pubmed_primary_38693328 crossref_primary_10_1007_s11517_024_03084_1 crossref_citationtrail_10_1007_s11517_024_03084_1 springer_journals_10_1007_s11517_024_03084_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
| PublicationTitle | Medical & biological engineering & computing |
| PublicationTitleAbbrev | Med Biol Eng Comput |
| PublicationTitleAlternate | Med Biol Eng Comput |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Drabiak, Kyzer, Nemov, El Naqa (CR84) 2023; 96 Weng, Zhou, Li, Qiu (CR42) 2019; 7 Wang, Deng, Liu, Hu, Liang, Fan (CR32) 2020; 22 CR39 CR38 CR34 CR31 Shao, Wang, Yan (CR62) 2019; 106 CR74 Wollny, Kellman, Ledesma-Carbayo, Skinner, Hublin, Hierl (CR4) 2013; 8 Ibrokhimov, Kang (CR61) 2022; 12 CR70 Lee, Chen (CR21) 2015; 42 Heath, Bowyer, Kopans, Kegelmeyer, Moore, Chang (CR56) 1998 Jiménez-Gaona, Rodríguez-Álvarez, Lakshminarayanan (CR23) 2020; 10 Pang, Wong, Ng, Chan (CR71) 2021; 203 Jiménez Gaona, Castillo Malla, Vega Crespo, Vicuña, Neira, Dávila, Verhoeven (CR72) 2022; 12 CR2 van Timmeren, Cester, Tanadini-Lang, Alkadhi, Baessler (CR53) 2020; 11 CR3 CR6 CR5 Bargsten, Schlaefer (CR12) 2020; 15 Khan, Islam, Jan, Din, Rodrigues (CR51) 2019; 125 CR9 CR49 CR46 CR45 CR44 CR41 Al-Dhabyani, Gomaa, Khaled, Aly (CR43) 2019; 10 Moreira, Amaral, Domingues, Cardoso, Cardoso, Cardoso (CR59) 2012; 19 CR85 CR40 Taylor, Monga, Johnson, Hawley, Patel (CR75) 2023; 13 Le, Wang, Huang, Hickman, Gilbert (CR76) 2019; 74 CR83 Papademetris, Jackowski, Rajeevan, DiStasio, Okuda, Constable, Staib (CR7) 2006; 2006 CR82 Jiménez-Gaona, Rodríguez-Álvarez, Carrión-Figueroa, Castillo-Malla, Lakshminarayanan (CR52) 2024 CR81 Abhisheka, Biswas, Purkayastha (CR47) 2023; 30 Dourado, da Silva, da Nobrega, Rebouças Filho, Muhammad, de Albuquerque (CR20) 2021; 39 Yap, Pons, Marti (CR55) 2018; 22 Afrin, Larson, Fatemi, Alizad (CR78) 2023; 15 Luo, Chong (CR33) 2020; 30 Zhang, Hu, Philbrick, Conte, Sobek, Rouzrokh, Erickson (CR10) 2022; 8 Prodan, Paraschiv, Stanciu (CR79) 2023; 13 CR19 Li, Hatanaka, Fujita, Hara, Endo (CR58) 1999; 17 CR17 Ahmad, Ali, Shah (CR11) 2022; 12 Borji (CR69) 2019; 179 CR15 CR14 CR13 Jiménez Gaona, Castillo Malla, Vega Crespo, Vicuña, Neira, Dávila, Verhoeven (CR18) 2022; 12 CR57 Chen, Hao, Zou, Hollander, Ng, Isaac (CR36) 2022; 22 Li, Wu, Wu (CR48) 2019; 7 CR54 Aljuaid, Alturki, Alsubaie, Cavallaro, Liotta (CR66) 2022; 223 Gao, Song, Wang, Liu, Mandelis, Qi (CR65) 2021; 2021 CR50 Liu, Liu, Han, Zhang, Wang (CR37) 2019; 19 Zhang, Dai, Sang (CR8) 2022; 20 Linna, Kahn (CR30) 2022; 163 Buckley, Coopey, Sharko, Polubriaginof, Drohan (CR35) 2012; 3 Chowdhury, Das, Dey, Sarkar, Dwivedi, Rao Mukkamala, Murmu (CR22) 2022; 22 Müller, Kramer (CR16) 2021; 21 Huynh, Tran, Tran (CR77) 2023; 13 CR29 CR28 Lambin, Leijenaar, Deist, Peerlings, De Jong, Van Timmeren, Walsh (CR1) 2017; 14 CR27 CR26 CR25 CR24 CR68 CR67 CR64 Dihge, Bendahl, Skarping, Hjärtström, Ohlsson, Rydén (CR73) 2023; 13 Woldesellasse, Tesfamariam (CR63) 2023; 3 CR60 Oyelade, Ezugwu, Almutairi, Saha, Abualigah, Chiroma (CR80) 2022; 12 Y Liu (3084_CR37) 2019; 19 3084_CR60 JE van Timmeren (3084_CR53) 2020; 11 W Ahmad (3084_CR11) 2022; 12 3084_CR29 A Borji (3084_CR69) 2019; 179 3084_CR26 S Khan (3084_CR51) 2019; 125 L Zhang (3084_CR8) 2022; 20 3084_CR25 J Wang (3084_CR32) 2020; 22 HN Huynh (3084_CR77) 2023; 13 3084_CR28 3084_CR27 IC Moreira (3084_CR59) 2012; 19 K Zhang (3084_CR10) 2022; 8 M Heath (3084_CR56) 1998 S Shao (3084_CR62) 2019; 106 ON Oyelade (3084_CR80) 2022; 12 3084_CR24 3084_CR68 3084_CR9 3084_CR67 T Pang (3084_CR71) 2021; 203 3084_CR6 3084_CR64 3084_CR5 L Bargsten (3084_CR12) 2020; 15 3084_CR70 H Woldesellasse (3084_CR63) 2023; 3 D Müller (3084_CR16) 2021; 21 N Linna (3084_CR30) 2022; 163 S Li (3084_CR58) 1999; 17 B Ibrokhimov (3084_CR61) 2022; 12 JW Luo (3084_CR33) 2020; 30 3084_CR39 3084_CR38 L Dihge (3084_CR73) 2023; 13 H Afrin (3084_CR78) 2023; 15 3084_CR34 P Lambin (3084_CR1) 2017; 14 3084_CR31 3084_CR74 H Lee (3084_CR21) 2015; 42 3084_CR82 3084_CR81 M Gao (3084_CR65) 2021; 2021 CMJM Dourado (3084_CR20) 2021; 39 Y Jiménez-Gaona (3084_CR23) 2020; 10 Y Chen (3084_CR36) 2022; 22 Y Jiménez-Gaona (3084_CR52) 2024 X Papademetris (3084_CR7) 2006; 2006 W Al-Dhabyani (3084_CR43) 2019; 10 3084_CR49 3084_CR44 3084_CR46 3084_CR45 3084_CR40 Y Weng (3084_CR42) 2019; 7 B Abhisheka (3084_CR47) 2023; 30 3084_CR83 CR Taylor (3084_CR75) 2023; 13 3084_CR41 H Aljuaid (3084_CR66) 2022; 223 K Drabiak (3084_CR84) 2023; 96 3084_CR85 3084_CR3 3084_CR2 G Wollny (3084_CR4) 2013; 8 EPV Le (3084_CR76) 2019; 74 D Chowdhury (3084_CR22) 2022; 22 3084_CR19 Y Li (3084_CR48) 2019; 7 JM Buckley (3084_CR35) 2012; 3 3084_CR15 3084_CR14 Y Jiménez Gaona (3084_CR18) 2022; 12 3084_CR17 3084_CR54 3084_CR13 3084_CR57 Y Jiménez Gaona (3084_CR72) 2022; 12 3084_CR50 MH Yap (3084_CR55) 2018; 22 M Prodan (3084_CR79) 2023; 13 |
| References_xml | – ident: CR45 – ident: CR70 – volume: 30 start-page: 5023 issue: 8 year: 2023 end-page: 5052 ident: CR47 article-title: A comprehensive review on breast cancer detection, classification and segmentation using deep learning publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-023-09968-z – volume: 22 start-page: 1218 issue: 4 year: 2018 end-page: 1226 ident: CR55 article-title: Automated breast ultrasound lesions detection using convolutional neural networks publication-title: IEEE J Biomed Heal Informatics doi: 10.1109/JBHI.2017.2731873 – ident: CR49 – ident: CR68 – ident: CR74 – volume: 22 start-page: 832 issue: 3 year: 2022 ident: CR22 article-title: ABCanDroid: a cloud integrated android app for noninvasive early breast cancer detection using transfer learning publication-title: Sensors doi: 10.3390/s22030832 – ident: CR39 – year: 1998 ident: CR56 publication-title: Current status of the digital database for screening mammography. En Digital mammography – volume: 179 start-page: 41 year: 2019 end-page: 65 ident: CR69 article-title: Pros and cons of GAN evaluation measures publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2018.10.009 – volume: 96 start-page: 20220934 year: 2023 ident: CR84 article-title: AI and machine learning ethics, law, diversity, and global impact publication-title: Br J Radiol doi: 10.1259/bjr.20220934 – volume: 125 start-page: 1 year: 2019 end-page: 6 ident: CR51 article-title: A novel deep learning based framework for the detection and classification of breast cancer using transfer learning publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.03.022 – volume: 74 start-page: 357 issue: 5 year: 2019 end-page: 366 ident: CR76 article-title: Artificial intelligence in breast imaging publication-title: Clin Radiol doi: 10.1016/j.crad.2019.02.006 – volume: 8 start-page: 905 year: 2022 end-page: 919 ident: CR10 article-title: SOUP-GAN: su-per-resolution MRI using generative adversarial networks publication-title: Tomography doi: 10.3390/tomography8020073 – ident: CR29 – ident: CR54 – volume: 11 start-page: 1 issue: 1 year: 2020 end-page: 16 ident: CR53 article-title: Radiomics in medical imaging “how-to” guide and critical reflection publication-title: Insights Imaging – volume: 12 start-page: 1694 year: 2022 ident: CR18 article-title: Ra-diomics diagnostic tool based on deep learning for col-poscopy image classification publication-title: Diagnostics doi: 10.3390/diagnostics12071694 – ident: CR25 – volume: 203 year: 2021 ident: CR71 article-title: Semi-supervised GAN-based radiomics model for data augmentation in breast ultrasound mass classification publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.106018 – volume: 10 start-page: 1 issue: 5 year: 2019 end-page: 11 ident: CR43 article-title: Deep learning ap-proaches for data augmentation and classification of breast masses using ultrasound images publication-title: Int J Adv Comput Sci Appl – ident: CR46 – ident: CR19 – volume: 12 start-page: 9533 year: 2022 ident: CR11 article-title: A new generative adversarial network for medical images super resolution publication-title: Sci Rep doi: 10.1038/s41598-022-13658-4 – ident: CR67 – ident: CR15 – ident: CR50 – ident: CR9 – ident: CR57 – volume: 2021 start-page: 1 year: 2021 end-page: 16 ident: CR65 article-title: A novel deep convolutional neural network based on ResNet-18 and transfer learning for detection of wood knot defects publication-title: Journal of Sensors doi: 10.1155/2021/4428964 – ident: CR60 – ident: CR85 – ident: CR5 – ident: CR81 – volume: 39 start-page: 541 issue: 2 year: 2021 end-page: 548 ident: CR20 article-title: An open IoHT-based deep learning framework for online medical image recognition publication-title: IEEE J Select Areas Commun doi: 10.1109/JSAC.2020.3020598 – volume: 106 start-page: 85 year: 2019 end-page: 93 ident: CR62 article-title: Generative adversarial networks for data augmentation in machine fault diagnosis publication-title: Comput Ind doi: 10.1016/j.compind.2019.01.001 – ident: CR64 – ident: CR26 – volume: 14 start-page: 749 issue: 12 year: 2017 end-page: 762 ident: CR1 article-title: Radiomics: the bridge between medical imaging and person-alized medicine publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2017.141 – volume: 15 start-page: 1427 year: 2020 end-page: 1436 ident: CR12 article-title: SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing publication-title: Int J CARS doi: 10.1007/s11548-020-02203-1 – volume: 2006 start-page: 209 year: 2006 ident: CR7 article-title: BioImage Suite: an integrated medical image analysis suite: an update publication-title: Insight J – volume: 12 start-page: 6166 issue: 1 year: 2022 ident: CR80 article-title: A generative adversarial network for synthetization of regions of interest based on digital mammograms publication-title: Sci Rep doi: 10.1038/s41598-022-09929-9 – volume: 22 start-page: e16816 issue: 1 year: 2020 ident: CR32 article-title: Systematic evaluation of research progress on natural language processing in medicine over the past 20 years: bibliometric study on PubMed publication-title: J Med Int Res – volume: 13 start-page: 1102254 year: 2023 ident: CR73 article-title: The implementation of NILS: a web-based artificial neural network decision support tool for noninvasive lymph node staging in breast cancer publication-title: Front Oncol doi: 10.3389/fonc.2023.1102254 – volume: 163 year: 2022 ident: CR30 article-title: Applications of natural language processing in radiology: a systematic review publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2022.104779 – volume: 3 issue: 1 year: 2023 ident: CR63 article-title: Data augmentation using conditional generative adversarial network (cGAN): application for prediction of corrosion pit depth and testing using neural network publication-title: J Pipeline Sci Eng doi: 10.1016/j.jpse.2022.100091 – ident: CR14 – volume: 13 start-page: 2041 issue: 12 year: 2023 ident: CR75 article-title: Artificial intelligence applications in breast imaging: current status and future directions publication-title: Diagnostics doi: 10.3390/diagnostics13122041 – ident: CR2 – volume: 10 start-page: 8298 issue: 22 year: 2020 ident: CR23 article-title: Deep-learning-based computer-aided systems for breast cancer imaging: a critical review publication-title: Appl Sci doi: 10.3390/app10228298 – volume: 7 start-page: 44247 year: 2019 end-page: 44257 ident: CR42 article-title: Nas-unet: neural architecture search for medical image seg-men-tation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2908991 – volume: 42 start-page: 5356 issue: 12 year: 2015 end-page: 5365 ident: CR21 article-title: Image based computer aided diagnosis system for cancer detection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.02.005 – ident: CR82 – volume: 13 start-page: 6894 issue: 12 year: 2023 ident: CR77 article-title: Region-of-interest optimization for deep-learning-based breast cancer detection in mammograms publication-title: Appl Sci doi: 10.3390/app13126894 – ident: CR6 – volume: 19 start-page: 1 issue: 1 year: 2019 end-page: 10 ident: CR37 article-title: The implementation of natural language processing to extract index lesions from breast magnetic resonance imaging reports publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-019-0997-3 – volume: 12 start-page: 1694 year: 2022 ident: CR72 article-title: Radiomics diagnostic tool based on deep learning for colposcopy image classification publication-title: Diagnostics doi: 10.3390/diagnostics12071694 – ident: CR40 – ident: CR27 – volume: 15 start-page: 3139 issue: 12 year: 2023 ident: CR78 article-title: Deep learning in different ultrasound methods for breast cancer, from diagnosis to prognosis: current trends, challenges, and an analysis publication-title: Cancers doi: 10.3390/cancers15123139 – ident: CR44 – ident: CR3 – ident: CR38 – volume: 21 start-page: 12 year: 2021 ident: CR16 article-title: MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning publication-title: BMC Med Imaging doi: 10.1186/s12880-020-00543-7 – ident: CR17 – ident: CR31 – volume: 17 start-page: 427 year: 1999 end-page: 428 ident: CR58 article-title: Automated detection of mammographic masses in MIAS Database publication-title: Med Imaging Technol – ident: CR13 – volume: 223 year: 2022 ident: CR66 article-title: Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2022.106951 – ident: CR34 – volume: 13 start-page: 4272 issue: 7 year: 2023 ident: CR79 article-title: Applying deep learning methods for mammography analysis and breast cancer detection publication-title: Appl Sci doi: 10.3390/app13074272 – volume: 7 start-page: 21400 year: 2019 end-page: 21408 ident: CR48 article-title: Classification of breast cancer histology images using multi-size and discriminative patches based on deep learning publication-title: Ieee Access doi: 10.1109/ACCESS.2019.2898044 – volume: 8 start-page: 1 issue: 1 year: 2013 end-page: 20 ident: CR4 article-title: MIA-A free and open source software for gray scale medical image analysis publication-title: Source Code Biol Med doi: 10.1186/1751-0473-8-20 – volume: 20 start-page: 1744969 issue: 2022 year: 2022 ident: CR8 article-title: Med-SRNet: GAN-based medical image super-resolution via high-resolution repre-sentation learning publication-title: Comput Intell Neurosci doi: 10.1155/2022/1744969 – volume: 22 start-page: 136 issue: 1 year: 2022 ident: CR36 article-title: Automated medical chart review for breast cancer outcomes research: a novel natural language processing extraction system publication-title: BMC Med Res Methodol doi: 10.1186/s12874-022-01583-z – ident: CR83 – ident: CR28 – ident: CR41 – volume: 30 start-page: 447 issue: 4 year: 2020 end-page: 458 ident: CR33 article-title: Review of natural language processing in radiology publication-title: Neuroimaging Clinics doi: 10.1016/j.nic.2020.08.001 – ident: CR24 – volume: 3 start-page: 23 issue: 1 year: 2012 ident: CR35 article-title: The feasibility of using natural language processing to extract clinical information from breast pathology reports publication-title: J Pathol Inform doi: 10.4103/2153-3539.97788 – year: 2024 ident: CR52 article-title: Breast mass regions classification from mammograms using convolutional neural networks and transfer learning publication-title: J Modern Optics TMOP doi: 10.1080/09500340.2024.2313724 – volume: 19 start-page: 236 issue: 2 year: 2012 end-page: 248 ident: CR59 article-title: INbreast publication-title: Acad Radiol doi: 10.1016/j.acra.2011.09.014 – volume: 12 start-page: 4616 issue: 9 year: 2022 ident: CR61 article-title: Two-stage deep learning method for breast cancer detection using high-resolution mammogram images publication-title: Appl Sci doi: 10.3390/app12094616 – volume: 20 start-page: 1744969 issue: 2022 year: 2022 ident: 3084_CR8 publication-title: Comput Intell Neurosci doi: 10.1155/2022/1744969 – volume: 96 start-page: 20220934 year: 2023 ident: 3084_CR84 publication-title: Br J Radiol doi: 10.1259/bjr.20220934 – volume: 12 start-page: 1694 year: 2022 ident: 3084_CR18 publication-title: Diagnostics doi: 10.3390/diagnostics12071694 – volume: 2006 start-page: 209 year: 2006 ident: 3084_CR7 publication-title: Insight J – volume: 12 start-page: 9533 year: 2022 ident: 3084_CR11 publication-title: Sci Rep doi: 10.1038/s41598-022-13658-4 – volume: 125 start-page: 1 year: 2019 ident: 3084_CR51 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.03.022 – volume: 10 start-page: 1 issue: 5 year: 2019 ident: 3084_CR43 publication-title: Int J Adv Comput Sci Appl doi: 10.5121/acij.2019.10501 – volume-title: Current status of the digital database for screening mammography. En Digital mammography year: 1998 ident: 3084_CR56 – volume: 13 start-page: 4272 issue: 7 year: 2023 ident: 3084_CR79 publication-title: Appl Sci doi: 10.3390/app13074272 – ident: 3084_CR6 doi: 10.1016/j.cmpb.2018.01.025 – ident: 3084_CR26 doi: 10.1109/ICCV.2017.322 – volume: 7 start-page: 44247 year: 2019 ident: 3084_CR42 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2908991 – ident: 3084_CR64 doi: 10.1109/cvpr52688.2022.01112 – ident: 3084_CR14 doi: 10.1109/ICBK50248.2020.00041 – ident: 3084_CR17 – volume: 17 start-page: 427 year: 1999 ident: 3084_CR58 publication-title: Med Imaging Technol – ident: 3084_CR50 doi: 10.1016/j.compbiomed.2020.103698 – ident: 3084_CR13 doi: 10.1609/aaai.v35i18.17895 – volume: 30 start-page: 447 issue: 4 year: 2020 ident: 3084_CR33 publication-title: Neuroimaging Clinics doi: 10.1016/j.nic.2020.08.001 – ident: 3084_CR74 doi: 10.3389/fonc.2023.1179025 – ident: 3084_CR5 doi: 10.1007/s10278-019-00232-0 – ident: 3084_CR9 doi: 10.1109/ISBIWorkshops50223.2020.9153436 – volume: 13 start-page: 6894 issue: 12 year: 2023 ident: 3084_CR77 publication-title: Appl Sci doi: 10.3390/app13126894 – volume: 7 start-page: 21400 year: 2019 ident: 3084_CR48 publication-title: Ieee Access doi: 10.1109/ACCESS.2019.2898044 – volume: 22 start-page: 1218 issue: 4 year: 2018 ident: 3084_CR55 publication-title: IEEE J Biomed Heal Informatics doi: 10.1109/JBHI.2017.2731873 – ident: 3084_CR70 doi: 10.3390/medicina60010014 – volume: 19 start-page: 1 issue: 1 year: 2019 ident: 3084_CR37 publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-019-0997-3 – ident: 3084_CR39 doi: 10.1109/CVPR42600.2020.01331 – ident: 3084_CR31 doi: 10.1109/ICDM.2019.00083 – ident: 3084_CR28 doi: 10.1016/B978-0-12-810408-8.00023-7 – volume: 3 start-page: 23 issue: 1 year: 2012 ident: 3084_CR35 publication-title: J Pathol Inform doi: 10.4103/2153-3539.97788 – volume: 21 start-page: 12 year: 2021 ident: 3084_CR16 publication-title: BMC Med Imaging doi: 10.1186/s12880-020-00543-7 – ident: 3084_CR67 doi: 10.1117/12.2515588 – volume: 39 start-page: 541 issue: 2 year: 2021 ident: 3084_CR20 publication-title: IEEE J Select Areas Commun doi: 10.1109/JSAC.2020.3020598 – ident: 3084_CR44 – ident: 3084_CR46 doi: 10.1109/CVPR.2016.308 – ident: 3084_CR24 doi: 10.1515/biol-2022-0517 – volume: 22 start-page: 136 issue: 1 year: 2022 ident: 3084_CR36 publication-title: BMC Med Res Methodol doi: 10.1186/s12874-022-01583-z – volume: 19 start-page: 236 issue: 2 year: 2012 ident: 3084_CR59 publication-title: Acad Radiol doi: 10.1016/j.acra.2011.09.014 – ident: 3084_CR40 doi: 10.1109/TMI.2019.2945514 – volume: 3 issue: 1 year: 2023 ident: 3084_CR63 publication-title: J Pipeline Sci Eng doi: 10.1016/j.jpse.2022.100091 – ident: 3084_CR29 doi: 10.1016/j.neucom.2021.11.047 – volume: 13 start-page: 2041 issue: 12 year: 2023 ident: 3084_CR75 publication-title: Diagnostics doi: 10.3390/diagnostics13122041 – ident: 3084_CR15 doi: 10.1109/SSCI47803.2020.9308512 – ident: 3084_CR81 doi: 10.2967/jnumed.123.266080 – ident: 3084_CR83 doi: 10.1007/s11604-023-01474-3 – ident: 3084_CR45 doi: 10.32604/iasc.2021.0186 – volume: 12 start-page: 6166 issue: 1 year: 2022 ident: 3084_CR80 publication-title: Sci Rep doi: 10.1038/s41598-022-09929-9 – volume: 13 start-page: 1102254 year: 2023 ident: 3084_CR73 publication-title: Front Oncol doi: 10.3389/fonc.2023.1102254 – volume: 8 start-page: 1 issue: 1 year: 2013 ident: 3084_CR4 publication-title: Source Code Biol Med doi: 10.1186/1751-0473-8-20 – volume: 15 start-page: 1427 year: 2020 ident: 3084_CR12 publication-title: Int J CARS doi: 10.1007/s11548-020-02203-1 – ident: 3084_CR38 doi: 10.1109/ICCV51070.2023.00371 – ident: 3084_CR68 doi: 10.1109/ICASID.2019.8925267 – volume: 22 start-page: 832 issue: 3 year: 2022 ident: 3084_CR22 publication-title: Sensors doi: 10.3390/s22030832 – volume: 203 year: 2021 ident: 3084_CR71 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.106018 – volume: 179 start-page: 41 year: 2019 ident: 3084_CR69 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2018.10.009 – ident: 3084_CR27 doi: 10.1007/978-981-13-9042-5_56 – volume: 42 start-page: 5356 issue: 12 year: 2015 ident: 3084_CR21 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.02.005 – volume: 106 start-page: 85 year: 2019 ident: 3084_CR62 publication-title: Comput Ind doi: 10.1016/j.compind.2019.01.001 – ident: 3084_CR41 doi: 10.1186/s12938-019-0626-5 – volume: 163 year: 2022 ident: 3084_CR30 publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2022.104779 – volume: 12 start-page: 4616 issue: 9 year: 2022 ident: 3084_CR61 publication-title: Appl Sci doi: 10.3390/app12094616 – ident: 3084_CR3 doi: 10.1016/j.ejmp.2021.02.006 – ident: 3084_CR34 doi: 10.1109/ic-ETITE47903.2020.36 – ident: 3084_CR57 – ident: 3084_CR49 doi: 10.1007/s10462-019-09716-5 – year: 2024 ident: 3084_CR52 publication-title: J Modern Optics TMOP doi: 10.1080/09500340.2024.2313724 – volume: 22 start-page: e16816 issue: 1 year: 2020 ident: 3084_CR32 publication-title: J Med Int Res – volume: 12 start-page: 1694 year: 2022 ident: 3084_CR72 publication-title: Diagnostics doi: 10.3390/diagnostics12071694 – ident: 3084_CR85 doi: 10.17632/jh9trvbjbv – volume: 2021 start-page: 1 year: 2021 ident: 3084_CR65 publication-title: Journal of Sensors doi: 10.1155/2021/4428964 – ident: 3084_CR60 doi: 10.1101/2022.03.07.22272009 – ident: 3084_CR25 doi: 10.1109/CVPR.2016.91 – volume: 14 start-page: 749 issue: 12 year: 2017 ident: 3084_CR1 publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2017.141 – ident: 3084_CR19 doi: 10.1007/978-981-13-6837-0_7 – volume: 223 year: 2022 ident: 3084_CR66 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2022.106951 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 3084_CR53 publication-title: Insights Imaging doi: 10.1186/s13244-020-00887-2 – volume: 74 start-page: 357 issue: 5 year: 2019 ident: 3084_CR76 publication-title: Clin Radiol doi: 10.1016/j.crad.2019.02.006 – ident: 3084_CR54 doi: 10.17632/wmy84gzngw.1 – ident: 3084_CR2 doi: 10.1016/j.ejmp.2021.03.009 – volume: 15 start-page: 3139 issue: 12 year: 2023 ident: 3084_CR78 publication-title: Cancers doi: 10.3390/cancers15123139 – volume: 8 start-page: 905 year: 2022 ident: 3084_CR10 publication-title: Tomography doi: 10.3390/tomography8020073 – volume: 10 start-page: 8298 issue: 22 year: 2020 ident: 3084_CR23 publication-title: Appl Sci doi: 10.3390/app10228298 – ident: 3084_CR82 doi: 10.2967/jnumed.123.266110 – volume: 30 start-page: 5023 issue: 8 year: 2023 ident: 3084_CR47 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-023-09968-z |
| SSID | ssj0021524 |
| Score | 2.4416215 |
| Snippet | Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2737 |
| SubjectTerms | Abnormalities Accuracy Algorithms Applications programs Artificial intelligence asymmetry Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Breast cancer breast neoplasms Breasts Classification Computer Applications Deep learning Human Physiology image analysis Image classification Image processing Image segmentation Imaging Learning algorithms Machine learning Mammography Medical imaging Mobile computing Modular equipment Nodules Original Original Article Radiology Segmentation Synthetic data telemedicine ultrasonics |
| SummonAdditionalLinks | – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB_qFXx8EF_VaJUV_GYX89hkE0HESksReohY6BcJ-0p7kMudbQ7xv3cm2eR6FA6_BXYTkpnZmd9mZn8D8E6mFRGHp7yqRMaFKiTXudBcSIMGIiJdRHQ4-XSanZyJb-fp-Q5Mh7MwVFY5-MTOUduFoX_kHyhjV6QSw9_n5W9OXaMouzq00FC-tYL91FGM3YHdmJixJrB7eDT9_mPcgmG0EmNRI2Jrf4ymP0yHwU9yjFmcOFwEjzZD1S38ebuMcsylPoB7q2ap_v5RdX0jXB0_goceZ7IvvWE8hh3XPIG7pz6T_hR-HV6pqWs_MsXmCz2r2Y1MNkMgyzRVq7dsNkeHwwxhbCoq6scp9FmGF9a5JfONJy6Yqi9QYu3l_PoZnB0f_fx6wn2rBW4QobXcSp2nhclcnmRaxnFY4LYo0lbGSiZVrIvM6dyhO0C0ZlKjcJNnUZpKhJVVKULGPZg0i8a9ACYyFRaqqmxhrcD9pTIIgkyodCh1lIgqgGiQamk8Dzm1w6jLNYMyaaJETZSdJsoogPfjPcuehWPr7P1BWaVfkdfl2n4CeDsO41qiBIlq3GJFc1J0UERHtGUOhgiJ8pH4nOe9_sdXSvKsSJI4DyDfsIxxAnF5b440s8uO0zuK6MdSGAdwMBjR-t23ferBaGj_IZmX2yXzCu7Hnf1TCd0-TNqrlXuNmKvVb_xC-gccLSUT priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBcjhX08rPue125osLdVrWVLlrW3tqyUQcMeFugehtGX2zDHCYnD2P76nWzFbdoRujeDzkY6n3S_051-QuiD4KUnDuekLFlGmJKC6JxpwoQBA2FUS-oPJ58Ns9MR-3LOzwNNjj8LcyN_f7AAxALrKHgS4plVGIFIZyvjgLsHaGs0_Hr4va9RpO1mHiBsiI8ZY-GEzL8_su6FbkHL2xWSfZr0EXqwrGfq9y9VVdc80cl2d6XRoiUw9AUoP_eXjd43f27QO95tkE_Q4wBI8WFnQU_RPVc_Q_fPQsr9OfpxNFdD13zCCk-melzhaylvDIgXa1_W3uDxBFYmbDwY99VHXbv3kRbDg3VuhsMNFRdYVRfT-bi5nCxeoNHJ52_HpyTcyUAMQLmGWKFzLk3m8jTTIkliCfET1VYkSqRlomXmdO5g3QBYZ7hREA1aMAbF4tIqDtjyJRrU09q9RphlKpaqLK20lkEgqgygJRMrHQtNU1ZGiK7-UWECYbm_N6MqrqiWvd4K0FvR6q2gEfrYvzPr6Do2Su-ufn0Rpu6i8KlhyQXgrAi975th0vlMiqrddOllOKxknrdogwz4EgH6EfCdV5019V1K80ymaZJHKF-zs17Ak36vt9Tjy5b8m1K_AxUnEdpbmeRV3zcNda832zto5s3_ie-gh0lrvb72bhcNmvnSvQWw1uh3YZb-BawAL5Y priority: 102 providerName: Unpaywall |
| Title | BraNet: a mobil application for breast image classification based on deep learning algorithms |
| URI | https://link.springer.com/article/10.1007/s11517-024-03084-1 https://www.ncbi.nlm.nih.gov/pubmed/38693328 https://www.proquest.com/docview/3093957155 https://www.proquest.com/docview/3050176560 https://www.proquest.com/docview/3153720975 https://pubmed.ncbi.nlm.nih.gov/PMC11330402 https://doi.org/10.1007/s11517-024-03084-1 |
| UnpaywallVersion | publishedVersion |
| Volume | 62 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1741-0444 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0021524 issn: 1741-0444 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1741-0444 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0021524 issn: 1741-0444 databaseCode: ADMLS dateStart: 19770101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 1741-0444 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1741-0444 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0021524 issn: 1741-0444 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1741-0444 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0021524 issn: 1741-0444 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1741-0444 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0021524 issn: 1741-0444 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 1741-0444 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021524 issn: 1741-0444 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-2FvbxUPbVzWsXNNjbKuYP2bL6lpakZaOhjAXSh2H05TbgOCFxGPvvd3Ict2lH2F5sY8nC1ul0v_OdfgL4xOPcEYfHNM9ZQpkUnKqUKcq4xgHCAiUCtzj5YpCcD9nXUTxqaHLcWph78fsvC0QsOI-iJaGOWYVR9HR20UgldWA2OW2dK7RDrE1XRNTcLJD5exubRugBsnyYINlGSZ_D02U5k79_yaK4Y4j6L2CvQZCkuxL5S3hky1fw5KKJkb-GnydzObDVMZFkMlXjgtyJUROEqES5PPSKjCc4lRDt0LNLF1qVO6NmCF4Ya2ek2VLimsjiejofVzeTxRsY9ns_Ts9ps4kC1Yi9Kmq4SmOhE5tGieJh6At0eAJleCh5lIdKJFalFhUdcZiOtUT3zWBvSubnRsYIBvdhp5yW9h0QlkhfyDw3whiGnqPUCG-0L5XPVRCx3INg3auZbhjG3UYXRXbLjewkkaEksloSWeDB5_aZ2YpfY2vtw7WwskbXFpmL5YqYIzDy4GNbjFriQh-ytNOlqxPj1OOIhrbUwcmfY_9wbOftSv7tK0VpIqIoTD1IN0ZGW8GxdG-WlOObmq07CNwvIz_04Gg9iG7ffdunHrUD7R965v3_tX4Az8JaH1yy3CHsVPOl_YDoqlIdeMxHHI9p_6wDu92zq289PJ_0BpffO7XK4XEYdvHecHDZvfoD5H4ezQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRAdCgtWH0Q70arjqBPdjCXSSYjFLHasrXdRaSFvkicyUzahWx27WYp_Tm_zXM2k2yXwuJL3wIzCZNzP3NuhLwTcYGNw2NWFDxhXEnBdMo14yIHAuGBlgEWJ_cHSe-Efz-NT9fI37YWBtMqW5k4F9RmnOMd-UeM2MlYgPr7PPnDcGoURlfbERrKjVYwO_MWY66w49BeXYILN905-Ab4fh-G-3vHX3vMTRlgORgnNTNCp7HME5tGiRZh6EvwCAJtRKhEVIRaJlanFjgBDJU8zhX4NwZ-T3G_MCqO8UIUVMAGj7gE529jd2_w42fn8oF25F0SJdjyrmynKd4DZSsY6EiGPWM4C5ZV4w1792baZhe7vUc2Z9VEXV2qsrymHvcfkPvOrqVfGkJ8SNZs9Yjc6bvI_WPya_dCDWz9iSo6GuthSa9FzikYzlRjdnxNhyMQcDRHmx6TmJp1VLWGwoOxdkLdoIszqsozwFB9Ppo-ISe3AvSnZL0aV_Y5oTxRvlRFYaQxHPxZlYPRlftK-0IHES88ErRQzXLX9xzHb5TZomMzYiIDTGRzTGSBRz5070yarh8rd2-1yMqcBJhmC3r1yNtuGXgXAzKqsuMZ7olBIGL7oxV7QCUJgI-A7zxr8N8dKUoTGUVh6pF0iTK6Ddg7fHmlGp7Pe4gHAV5k-aFHtlsiWpx91a9ud4T2H5B5sRoyb8hm77h_lB0dDA5fkrvhnBcwfW-LrNcXM_sK7L1av3ZMRcnv2-bjfydMYLM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRA9FAqVH0Q70arjqBPdmguk0wiiKh1aa1dfLCwL5LOZCbtQja7drOU_ppf5zm5bZfC4kvfAjMJk3M_c24Ab2WYU-PwkOe5iLhQieQ6FpoLmSGBCE8nHhUnHw2j_WPxfRSONuBvVwtDaZWdTKwFtZlmdEe-SxG7JJSo_nbzNi3i597g0-wPpwlSFGntxmk0JHJoLy_QfZt_PNhDXL_z_cG3X1_3eTthgGdomFTcSB2HSRbZOIi09H03QW_A00b6Sga5r5PI6tgiF6CRkoWZQt_G4K8p4eZGhSFdhqL4vyUDPBrykhwtnT3Ui6JPn0Qrvi3Yacr2UM1KjtqRU7cYwb1VpXjN0r2esNlHbe_C7UU5U5cXqiiuKMbBfbjXWrTsc0OCD2DDlg9h66iN2T-C31_O1dBWH5hik6keF-xKzJyhycw05cVXbDxB0cYysuYpfalZJyVrGD4Ya2esHXFxylRxiviozibzx3B8IyB_ApvltLTPgIlIuYnKc5MYI9CTVRmaW5mrtCu1F4jcAa-Dapq1Hc9p8EaRLns1EyZSxERaYyL1HHjfvzNr-n2s3b3dIStteX-eLinVgTf9MnIthWJUaacL2hOiKKTGR2v2oDKSCB-J33na4L8_UhBHSRD4sQPxCmX0G6hr-OpKOT6ru4d7Hl1hub4DOx0RLc--7ld3ekL7D8g8Xw-Z17CF3Jv-OBgevoA7fs0KlLe3DZvV-cK-REOv0q9qjmJwctMs_A9kRV5N |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBcjhX08rPue125osLdVrWVLlrW3tqyUQcMeFugehtGX2zDHCYnD2P76nWzFbdoRujeDzkY6n3S_051-QuiD4KUnDuekLFlGmJKC6JxpwoQBA2FUS-oPJ58Ns9MR-3LOzwNNjj8LcyN_f7AAxALrKHgS4plVGIFIZyvjgLsHaGs0_Hr4va9RpO1mHiBsiI8ZY-GEzL8_su6FbkHL2xWSfZr0EXqwrGfq9y9VVdc80cl2d6XRoiUw9AUoP_eXjd43f27QO95tkE_Q4wBI8WFnQU_RPVc_Q_fPQsr9OfpxNFdD13zCCk-melzhaylvDIgXa1_W3uDxBFYmbDwY99VHXbv3kRbDg3VuhsMNFRdYVRfT-bi5nCxeoNHJ52_HpyTcyUAMQLmGWKFzLk3m8jTTIkliCfET1VYkSqRlomXmdO5g3QBYZ7hREA1aMAbF4tIqDtjyJRrU09q9RphlKpaqLK20lkEgqgygJRMrHQtNU1ZGiK7-UWECYbm_N6MqrqiWvd4K0FvR6q2gEfrYvzPr6Do2Su-ufn0Rpu6i8KlhyQXgrAi975th0vlMiqrddOllOKxknrdogwz4EgH6EfCdV5019V1K80ymaZJHKF-zs17Ak36vt9Tjy5b8m1K_AxUnEdpbmeRV3zcNda832zto5s3_ie-gh0lrvb72bhcNmvnSvQWw1uh3YZb-BawAL5Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BraNet%3A+a+mobil+application+for+breast+image+classification+based+on+deep+learning+algorithms&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Jim%C3%A9nez-Gaona%2C+Yuliana&rft.au=%C3%81lvarez%2C+Mar%C3%ADa+Jos%C3%A9+Rodr%C3%ADguez&rft.au=Castillo-Malla%2C+Darwin&rft.au=Garc%C3%ADa-Jaen%2C+Santiago&rft.date=2024-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=62&rft.issue=9&rft.spage=2737&rft.epage=2756&rft_id=info:doi/10.1007%2Fs11517-024-03084-1&rft.externalDocID=10_1007_s11517_024_03084_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |