Deep learning techniques for cancer classification using microarray gene expression data
Cancer is one of the top causes of death globally. Recently, microarray gene expression data has been used to aid in cancer’s effective and early detection. The use of DNA microarray technology to uncover information from the expression levels of thousands of genes has enormous promise. The DNA micr...
Saved in:
| Published in | Frontiers in physiology Vol. 13; p. 952709 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Frontiers Media S.A
30.09.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1664-042X 1664-042X |
| DOI | 10.3389/fphys.2022.952709 |
Cover
| Abstract | Cancer is one of the top causes of death globally. Recently, microarray gene expression data has been used to aid in cancer’s effective and early detection. The use of DNA microarray technology to uncover information from the expression levels of thousands of genes has enormous promise. The DNA microarray technique can determine the levels of thousands of genes simultaneously in a single experiment. The analysis of gene expression is critical in many disciplines of biological study to obtain the necessary information. This study analyses all the research studies focused on optimizing gene selection for cancer detection using artificial intelligence. One of the most challenging issues is figuring out how to extract meaningful information from massive databases. Deep Learning architectures have performed efficiently in numerous sectors and are used to diagnose many other chronic diseases and to assist physicians in making medical decisions. In this study, we have evaluated the results of different optimizers on a RNA sequence dataset. The Deep learning algorithm proposed in the study classifies five different forms of cancer, including kidney renal clear cell carcinoma (KIRC), Breast Invasive Carcinoma (BRCA), lung adenocarcinoma (LUAD), Prostate Adenocarcinoma (PRAD) and Colon Adenocarcinoma (COAD). The performance of different optimizers like Stochastic gradient descent (SGD), Root Mean Squared Propagation (RMSProp), Adaptive Gradient Optimizer (AdaGrad), and Adaptive Momentum (AdaM). The experimental results gathered on the dataset affirm that AdaGrad and Adam. Also, the performance analysis has been done using different learning rates and decay rates. This study discusses current advancements in deep learning-based gene expression data analysis using optimized feature selection methods. |
|---|---|
| AbstractList | Cancer is one of the top causes of death globally. Recently, microarray gene expression data has been used to aid in cancer’s effective and early detection. The use of DNA microarray technology to uncover information from the expression levels of thousands of genes has enormous promise. The DNA microarray technique can determine the levels of thousands of genes simultaneously in a single experiment. The analysis of gene expression is critical in many disciplines of biological study to obtain the necessary information. This study analyses all the research studies focused on optimizing gene selection for cancer detection using artificial intelligence. One of the most challenging issues is figuring out how to extract meaningful information from massive databases. Deep Learning architectures have performed efficiently in numerous sectors and are used to diagnose many other chronic diseases and to assist physicians in making medical decisions. In this study, we have evaluated the results of different optimizers on a RNA sequence dataset. The Deep learning algorithm proposed in the study classifies five different forms of cancer, including kidney renal clear cell carcinoma (KIRC), Breast Invasive Carcinoma (BRCA), lung adenocarcinoma (LUAD), Prostate Adenocarcinoma (PRAD) and Colon Adenocarcinoma (COAD). The performance of different optimizers like Stochastic gradient descent (SGD), Root Mean Squared Propagation (RMSProp), Adaptive Gradient Optimizer (AdaGrad), and Adaptive Momentum (AdaM). The experimental results gathered on the dataset affirm that AdaGrad and Adam. Also, the performance analysis has been done using different learning rates and decay rates. This study discusses current advancements in deep learning-based gene expression data analysis using optimized feature selection methods. Cancer is one of the top causes of death globally. Recently, microarray gene expression data has been used to aid in cancer's effective and early detection. The use of DNA microarray technology to uncover information from the expression levels of thousands of genes has enormous promise. The DNA microarray technique can determine the levels of thousands of genes simultaneously in a single experiment. The analysis of gene expression is critical in many disciplines of biological study to obtain the necessary information. This study analyses all the research studies focused on optimizing gene selection for cancer detection using artificial intelligence. One of the most challenging issues is figuring out how to extract meaningful information from massive databases. Deep Learning architectures have performed efficiently in numerous sectors and are used to diagnose many other chronic diseases and to assist physicians in making medical decisions. In this study, we have evaluated the results of different optimizers on a RNA sequence dataset. The Deep learning algorithm proposed in the study classifies five different forms of cancer, including kidney renal clear cell carcinoma (KIRC), Breast Invasive Carcinoma (BRCA), lung adenocarcinoma (LUAD), Prostate Adenocarcinoma (PRAD) and Colon Adenocarcinoma (COAD). The performance of different optimizers like Stochastic gradient descent (SGD), Root Mean Squared Propagation (RMSProp), Adaptive Gradient Optimizer (AdaGrad), and Adaptive Momentum (AdaM). The experimental results gathered on the dataset affirm that AdaGrad and Adam. Also, the performance analysis has been done using different learning rates and decay rates. This study discusses current advancements in deep learning-based gene expression data analysis using optimized feature selection methods.Cancer is one of the top causes of death globally. Recently, microarray gene expression data has been used to aid in cancer's effective and early detection. The use of DNA microarray technology to uncover information from the expression levels of thousands of genes has enormous promise. The DNA microarray technique can determine the levels of thousands of genes simultaneously in a single experiment. The analysis of gene expression is critical in many disciplines of biological study to obtain the necessary information. This study analyses all the research studies focused on optimizing gene selection for cancer detection using artificial intelligence. One of the most challenging issues is figuring out how to extract meaningful information from massive databases. Deep Learning architectures have performed efficiently in numerous sectors and are used to diagnose many other chronic diseases and to assist physicians in making medical decisions. In this study, we have evaluated the results of different optimizers on a RNA sequence dataset. The Deep learning algorithm proposed in the study classifies five different forms of cancer, including kidney renal clear cell carcinoma (KIRC), Breast Invasive Carcinoma (BRCA), lung adenocarcinoma (LUAD), Prostate Adenocarcinoma (PRAD) and Colon Adenocarcinoma (COAD). The performance of different optimizers like Stochastic gradient descent (SGD), Root Mean Squared Propagation (RMSProp), Adaptive Gradient Optimizer (AdaGrad), and Adaptive Momentum (AdaM). The experimental results gathered on the dataset affirm that AdaGrad and Adam. Also, the performance analysis has been done using different learning rates and decay rates. This study discusses current advancements in deep learning-based gene expression data analysis using optimized feature selection methods. |
| Author | Gupta, Surbhi Shabaz, Mohammad Sharma, Ashutosh Gupta, Manoj K. |
| AuthorAffiliation | 2 Model Institute of Engineering and Technology , Jammu , India 1 Department of Computer Science and Engineering Department , SMVDU , Jammu , India 3 School of Computer Science , University of Petroleum and Energy Studies , Dehradun , India |
| AuthorAffiliation_xml | – name: 1 Department of Computer Science and Engineering Department , SMVDU , Jammu , India – name: 3 School of Computer Science , University of Petroleum and Energy Studies , Dehradun , India – name: 2 Model Institute of Engineering and Technology , Jammu , India |
| Author_xml | – sequence: 1 givenname: Surbhi surname: Gupta fullname: Gupta, Surbhi – sequence: 2 givenname: Manoj K. surname: Gupta fullname: Gupta, Manoj K. – sequence: 3 givenname: Mohammad surname: Shabaz fullname: Shabaz, Mohammad – sequence: 4 givenname: Ashutosh surname: Sharma fullname: Sharma, Ashutosh |
| BookMark | eNqFkU9v1DAQxS1UREvpB-CWI5dd_C9OfEFCpUClSlyK1Js1cSa7rrx2sBNgv329mwpRDtSXsez3fjN-fk1OQgxIyFtG10K0-v0wbvd5zSnna13zhuoX5IwpJVdU8ruTv_an5CLne1qWpJxS9oqcCsWlYqw-I3efEMfKI6Tgwqaa0G6D-zFjroaYKgvBYikecnaDszC5GKo5H6Q7Z1OElGBfbTBghb_HhEVWBD1M8Ia8HMBnvHis5-T756vby6-rm29fri8_3qxsTdtpZYXurO1U37VIKdiBKeh5zThlulaD7qTgWlkBnUAx9JQzLrXApuvaoeZUiHNyvXD7CPdmTG4HaW8iOHM8iGljIE3OejS1khJUL0sbLnvegqIdbbRtRGutVLSw-MKawwj7X-D9HyCj5pC6OaZuDqmbJfVi-rCYxrnbYW8xTAn8k0me3gS3NZv4s_iV0JoXwLtHQIqH5Cezc9mi9xAwzqVZw2spa3UcsFmkJfqcEw7Guun4KYXs_H-nZP84n3_ZAzu4v0s |
| CitedBy_id | crossref_primary_10_1007_s11082_024_06501_9 crossref_primary_10_1007_s10489_024_05625_5 crossref_primary_10_1109_ACCESS_2024_3368070 crossref_primary_10_1007_s11042_024_18802_y crossref_primary_10_1016_j_prime_2024_100449 crossref_primary_10_1016_j_carbpol_2024_122106 crossref_primary_10_1007_s42979_024_02925_y crossref_primary_10_34288_jri_v6i4_350 crossref_primary_10_1007_s42979_023_01774_5 crossref_primary_10_1016_j_neucom_2024_129318 crossref_primary_10_1183_20734735_0192_2023 crossref_primary_10_1051_itmconf_20246902002 crossref_primary_10_1007_s40846_024_00859_7 crossref_primary_10_1007_s40747_024_01555_4 crossref_primary_10_1051_itmconf_20246902004 crossref_primary_10_1016_j_knosys_2023_110487 crossref_primary_10_1007_s00432_023_05308_7 crossref_primary_10_1038_s41598_024_65315_7 crossref_primary_10_3390_bioengineering11040314 crossref_primary_10_1007_s00500_023_08126_8 crossref_primary_10_1016_j_heliyon_2024_e37241 crossref_primary_10_4236_jbm_2025_133013 crossref_primary_10_1093_bfgp_elae047 crossref_primary_10_1109_TCE_2024_3423786 crossref_primary_10_3390_diagnostics15070805 crossref_primary_10_1002_cnr2_1764 crossref_primary_10_1016_j_bbrc_2024_150225 crossref_primary_10_1007_s42979_024_02957_4 crossref_primary_10_1177_09544089241288028 crossref_primary_10_1109_ACCESS_2025_3535999 crossref_primary_10_1016_j_biortech_2024_131495 crossref_primary_10_3390_bioengineering10080933 crossref_primary_10_14326_abe_13_134 crossref_primary_10_1002_smsc_202300221 |
| Cites_doi | 10.1007/s00521-016-2701-1 10.1016/j.jksuci.2017.12.002 10.1016/j.jbi.2018.12.003 10.3389/fbioe.2020.00737 10.1016/j.artmed.2019.01.006 10.3322/caac.21660 10.1109/CIBCB49929.2021.9562890 10.1186/s12920-020-0686-1 10.1016/j.imu.2017.10.004 10.1109/TCBB.2018.2822803 10.7717/peerj-cs.492 10.1007/s00500-019-03856-0 10.1049/trit.2019.0028 10.1007/s11831-021-09648-w 10.1016/j.compbiolchem.2017.10.009 10.1016/j.cmpb.2017.09.005 10.1093/comjnl/bxab146 10.12729/jbtr.2019.20.1.015 10.1371/journal.pone.0250370 10.1371/journal.pone.0230536 10.1111/coin.12452 10.1186/s12859-016-1334-9 10.3390/pr6050057 10.1371/journal.pone.0207204 10.1016/j.ygeno.2019.11.004 10.1007/s10489-018-1207-1 10.1158/1055-9965.EPI-10-1302 10.1186/s12859-018-2095-4 10.1038/nature14539 10.1142/9789813207813_0022 10.1186/s12859-019-3116-7 10.1093/bioinformatics/btz772 10.1007/s11831-019-09344-w 10.1111/cas.14377 10.1038/s41598-021-84630-x 10.1038/s41598-018-34833-6 10.1016/j.cmpb.2018.10.004 10.1128/CMR.16.1.1-17.2003 10.1080/24751839.2019.1660845 10.1155/2022/9605439 10.1038/s41389-019-0157-8 10.1371/journal.pcbi.1006076 10.1109/ACCESS.2019.2898723 10.1111/bju.15386 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Gupta, Gupta, Shabaz and Sharma. Copyright © 2022 Gupta, Gupta, Shabaz and Sharma. 2022 Gupta, Gupta, Shabaz and Sharma |
| Copyright_xml | – notice: Copyright © 2022 Gupta, Gupta, Shabaz and Sharma. – notice: Copyright © 2022 Gupta, Gupta, Shabaz and Sharma. 2022 Gupta, Gupta, Shabaz and Sharma |
| DBID | AAYXX CITATION 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fphys.2022.952709 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| DocumentTitleAlternate | Gupta et al |
| EISSN | 1664-042X |
| ExternalDocumentID | oai_doaj_org_article_5644a6d40ac24d28a60b079c738cc460 10.3389/fphys.2022.952709 PMC9563992 10_3389_fphys_2022_952709 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION DIK EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM 7X8 5PM ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c508t-c39bccb6db8e00acf16ad251201956f9b43296c3ab3e3fd0212493e7bb8f52033 |
| IEDL.DBID | M48 |
| ISSN | 1664-042X |
| IngestDate | Fri Oct 03 12:52:19 EDT 2025 Sun Oct 26 04:06:07 EDT 2025 Thu Aug 21 18:40:12 EDT 2025 Fri Sep 05 06:27:55 EDT 2025 Wed Oct 01 02:27:40 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-c39bccb6db8e00acf16ad251201956f9b43296c3ab3e3fd0212493e7bb8f52033 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 Edited by: Naveen Aggarwal, Panjab University, India Reviewed by: Rajesh Kumar Garg, National Institute of Technology, Hamirpur, India John Paul, Universiti Malaysia Pahang, Malaysia This article was submitted to Computational Physiology and Medicine, a section of the journal Frontiers in Physiology |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2022.952709 |
| PMID | 36246115 |
| PQID | 2725445660 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5644a6d40ac24d28a60b079c738cc460 unpaywall_primary_10_3389_fphys_2022_952709 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9563992 proquest_miscellaneous_2725445660 crossref_citationtrail_10_3389_fphys_2022_952709 crossref_primary_10_3389_fphys_2022_952709 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-30 |
| PublicationDateYYYYMMDD | 2022-09-30 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in physiology |
| PublicationYear | 2022 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Gupta (B30) 2021 Jerez (B41) 2020; 15 Id (B40) 2021; 16 Shon (B64) 2021; 20 Schiff (B61) 2007; 16 Xiao (B73); 153 Motieghader (B52) 2017; 9 Huynh (B39) 2019; 3 Xiao (B74); 166 Sevakula (B62) 2018; 5963 Torkey (B68) 2021; 1 Aziz (B7) 2017; 71 He (B37) 2020; 8 Chaunzwa (B11) 2021; 1 Dargan (B18) 2020; 27 Gao (B25) 2019; 8 Kong (B47) 2018; 8 B1 Fotouhi (B24) 2019; 90 Gupta (B34); 38 Guia (B28) 2019 Extraction (B20) 2017 Lecun (B49) 2015; 521 Lin (B50) 2018 Urda (B70) 2017 Alomari (B6) 2018; 48 Parvathavardhini (B54) 2020; 3 Guo (B29) 2018; 19 Gupta (B33) Kim (B45) 2020; 36 Salman (B60) 2018; 6 Basavegowda (B8) 2020; 5 García-díaz (B26) 2019; 112 Xu (B76); 7 Ahn (B4) 2018 Huang (B38) 2020; 13 Sung (B65) 2021; 71 Chen (B12) 2018 Kumar (B48) 2021; 29 Tumuluru (B69) 2017 Gupta (B31) 2021 Gupta (B32) Daoud (B17) 2019; 97 Ching (B13) 2018; 14 Dwivedi (B19) 2016; 29 Joshi (B42) 2019 Panda (B53) 2017; 32 Shimizu (B63) 2020; 111 Reid (B56) 2011; 20 Zahras (B78) 2018 Ronoud (B58) 2019; 23 Yuan (B77) 2016; 17 Cho (B14) 2018; 13 Kashyap (B43) 2022; 2022 Wessels (B71) 2021; 128 Akkus (B5) 2017 Xu (B75); 20 Surbhi Gupta (B66) 2021 Danaee (B16) 2017; 22 Gupta (B35) |
| References_xml | – year: 2018 ident: B12 article-title: A method to facilitate cancer detection and type classification from gene expression data using a deep autoencoder and neural network publication-title: Mach. Learn. – volume: 29 start-page: 1545 year: 2016 ident: B19 article-title: Artificial neural network model for effective cancer classification using microarray gene expression data publication-title: Neural comput. Appl. doi: 10.1007/s00521-016-2701-1 – volume: 32 start-page: 940 year: 2017 ident: B53 article-title: Elephant search optimization combined with deep neural network for microarray data analysis publication-title: J. King Saud Univ. - Comput. Inf. Sci. doi: 10.1016/j.jksuci.2017.12.002 – volume: 90 start-page: 103089 year: 2019 ident: B24 article-title: A comprehensive data level analysis for cancer diagnosis on imbalanced data publication-title: J. Biomed. Inf. doi: 10.1016/j.jbi.2018.12.003 – volume: 8 start-page: 737 year: 2020 ident: B37 article-title: A neural network framework for predicting the tissue-of-origin of 15 common cancer types based on RNA-seq data publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00737 – volume: 97 start-page: 204 year: 2019 ident: B17 article-title: A survey of neural network-based cancer prediction models from microarray data publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.01.006 – volume: 71 start-page: 209 year: 2021 ident: B65 article-title: Global cancer statistics 2020 : GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: Ca. Cancer J. Clin. doi: 10.3322/caac.21660 – start-page: 1748 year: 2018 ident: B4 article-title: Deep learning-based identification of cancer or normal tissue using gene expression data – start-page: 1 year: 2021 ident: B66 article-title: Prostate cancer prognosis using multi-layer perceptron and class balancing techniques – year: 2018 ident: B50 article-title: Application of deep learning on predicting prognosis of acute myeloid leukemia with cytogenetics age and mutations publication-title: Mach. Learn. – ident: B32 article-title: Deep learning for brain tumor segmentation using magnetic resonance images doi: 10.1109/CIBCB49929.2021.9562890 – volume: 13 start-page: 41 year: 2020 ident: B38 article-title: Deep learning-based cancer survival prognosis from RNA-seq data : Approaches and evaluations publication-title: BMC Med. Genomics doi: 10.1186/s12920-020-0686-1 – volume: 9 start-page: 246 year: 2017 ident: B52 article-title: A hybrid gene selection algorithm for microarray cancer classification using genetic algorithm and learning automata publication-title: Inf. Med. Unlocked doi: 10.1016/j.imu.2017.10.004 – volume: 5963 start-page: 2089 year: 2018 ident: B62 article-title: Transfer learning for molecular cancer classification using deep neural networks publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2018.2822803 – start-page: 50 volume-title: International work-conference on artificial neural networks year: 2017 ident: B70 article-title: Deep learning to analyze RNA-seq gene expression data – start-page: 449 volume-title: J. Digit. Imaging. year: 2017 ident: B5 article-title: Deep learning for brain MRI segmentation : State of the art and future directions – volume: 1 start-page: e492 year: 2021 ident: B68 article-title: A novel deep autoencoder based survival analysis approach for microarray dataset publication-title: Peer Comput. Sci. doi: 10.7717/peerj-cs.492 – volume: 23 start-page: 13139 year: 2019 ident: B58 article-title: An evolutionary deep belief network extreme learning-based for breast cancer diagnosis publication-title: Soft Comput. doi: 10.1007/s00500-019-03856-0 – volume: 5 start-page: 22 year: 2020 ident: B8 article-title: Deep learning approach for microarray cancer data classification publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/trit.2019.0028 – start-page: 149 year: 2018 ident: B78 article-title: Cervical cancer risk classification based on deep convolutional neural network – volume: 29 start-page: 2043 year: 2021 ident: B48 article-title: A systematic review of artificial intelligence techniques in cancer prediction and diagnosis publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-021-09648-w – volume: 71 start-page: 161 year: 2017 ident: B7 article-title: A novel approach for dimension reduction of microarray publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2017.10.009 – volume: 3 start-page: 2456 year: 2020 ident: B54 article-title: Cancer gene detection using Neuro fuzzy classification algorithm publication-title: Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. – volume: 153 start-page: 1 ident: B73 article-title: A deep learning-based multi-model ensemble method for cancer prediction publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.09.005 – ident: B35 article-title: Computational model for prediction of malignant mesothelioma diagnosis publication-title: Comput. J. doi: 10.1093/comjnl/bxab146 – volume: 20 start-page: 15 year: 2021 ident: B64 article-title: Classification of stomach cancer gene expression data using CNN algorithm of deep learning publication-title: J. Biomed. Transl. Res. doi: 10.12729/jbtr.2019.20.1.015 – volume: 16 start-page: e0250370 year: 2021 ident: B40 article-title: Predicting breast cancer 5-year survival using machine learning: A systematic review. publication-title: PLoS One doi: 10.1371/journal.pone.0250370 – start-page: 1988 year: 2019 ident: B42 article-title: Cancer subtype classification based on superlayered neural network – volume: 15 start-page: e0230536 year: 2020 ident: B41 article-title: Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data publication-title: Plos One doi: 10.1371/journal.pone.0230536 – volume: 38 start-page: 156 ident: B34 article-title: A comprehensive data‐level investigation of cancer diagnosis on imbalanced data publication-title: Comput. Intell. doi: 10.1111/coin.12452 – volume: 17 start-page: 476 year: 2016 ident: B77 article-title: DeepGene : An advanced cancer type classifier based on deep learning and somatic point mutations publication-title: BMC Bioinforma. doi: 10.1186/s12859-016-1334-9 – volume: 6 start-page: 57 year: 2018 ident: B60 article-title: Impact of metaheuristic iteration on artificial neural network structure in medical data publication-title: Process. (Basel). doi: 10.3390/pr6050057 – volume: 13 start-page: e0207204 year: 2018 ident: B14 article-title: Association of specific gene mutations derived from machine learning with survival in lung adenocarcinoma publication-title: PLoS One doi: 10.1371/journal.pone.0207204 – volume: 112 start-page: 1196 year: 2019 ident: B26 article-title: Unsupervised feature selection algorithm for multiclass cancer classification of gene expression RNA-Seq data publication-title: Genomics doi: 10.1016/j.ygeno.2019.11.004 – volume: 48 start-page: 4429 year: 2018 ident: B6 article-title: A novel gene selection method using modified MRMR and hybrid bat-inspired algorithm with β-hill climbing publication-title: Appl. Intell. (Dordr). doi: 10.1007/s10489-018-1207-1 – volume: 20 start-page: 1287 year: 2011 ident: B56 article-title: Does exposure to asbestos cause ovarian cancer ? A systematic literature review and meta-analysis publication-title: Cancer Epidemiol. Biomarkers Prev. doi: 10.1158/1055-9965.EPI-10-1302 – volume: 19 start-page: 118 year: 2018 ident: B29 article-title: BCDForest : A boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data publication-title: BMC Bioinforma. doi: 10.1186/s12859-018-2095-4 – volume: 521 start-page: 436 year: 2015 ident: B49 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 22 start-page: 219 year: 2017 ident: B16 article-title: A deep learning approach for cancer detection and relevant gene identification publication-title: Pac. Symp. Biocomput. doi: 10.1142/9789813207813_0022 – ident: B1 – volume: 20 start-page: 527 ident: B75 article-title: A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data publication-title: BMC Bioinforma. doi: 10.1186/s12859-019-3116-7 – start-page: 1 ident: B33 article-title: A comparative analysis of deep learning approaches for predicting breast cancer survivability publication-title: Archives Comput. Methods Eng. – volume: 36 start-page: 1360 year: 2020 ident: B45 article-title: Cancer classification of single-cell gene expression data by neural network publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz772 – volume: 27 start-page: 1071 year: 2020 ident: B18 article-title: A survey of deep learning and its applications : A new paradigm to machine learning publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-019-09344-w – volume: 111 start-page: 1452 year: 2020 ident: B63 article-title: Artificial intelligence in oncology publication-title: Cancer Sci. doi: 10.1111/cas.14377 – start-page: 913 year: 2019 ident: B28 article-title: DeepGx : Deep learning using gene expression for cancer classification – volume: 1 start-page: 5471 year: 2021 ident: B11 article-title: Deep learning classification of lung cancer histology using CT images publication-title: Sci. Rep. doi: 10.1038/s41598-021-84630-x – start-page: 14218 year: 2017 ident: B69 article-title: Goa-Based DBN : Grasshopper optimization algorithm-based deep belief neural networks for cancer classification Goa-based DBN : Grasshopper optimization algorithm-based deep belief neural networks for cancer classification – volume: 8 start-page: 16477 year: 2018 ident: B47 article-title: A deep neural network model using random forest to extract feature representation for gene expression data classification publication-title: Sci. Rep. doi: 10.1038/s41598-018-34833-6 – volume: 166 start-page: 99 ident: B74 article-title: A semi-supervised deep learning method based on stacked sparse auto-encoder for cancer prediction using RNA-seq data publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.10.004 – volume: 16 start-page: 1 year: 2007 ident: B61 article-title: Human papillomavirus and cervical cancer publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.16.1.1-17.2003 – volume: 3 start-page: 533 year: 2019 ident: B39 article-title: Novel hybrid DCNN–SVM model for classifying RNA-sequencing gene expression data publication-title: J. Inf. Telecommun. doi: 10.1080/24751839.2019.1660845 – volume: 2022 start-page: 9605439 year: 2022 ident: B43 article-title: Global increase in breast cancer incidence: Risk Factors and preventive Measures publication-title: Biomed. Res. Int. doi: 10.1155/2022/9605439 – year: 2017 ident: B20 article-title: Prognosis prediction of human breast cancer by integrating deep neural network and support vector machine supervised feature extraction and classification for breast cancer prognosis prediction – volume-title: Computational prediction of cervical cancer diagnosis using ensemble-based classification algorithm year: 2021 ident: B31 – volume: 8 start-page: 44 year: 2019 ident: B25 article-title: DeepCC : A novel deep learning-based framework for cancer molecular subtype classification publication-title: Oncogenesis doi: 10.1038/s41389-019-0157-8 – start-page: 1 year: 2021 ident: B30 article-title: Deep learning for brain tumor segmentation using magnetic resonance images – volume: 14 start-page: e1006076 year: 2018 ident: B13 article-title: Cox-nnet : An artificial neural network method for prognosis prediction of high-throughput omics data publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006076 – volume: 7 start-page: 22086 ident: B76 article-title: A novel deep flexible neural forest model for classification of cancer subtypes based on gene expression data publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2898723 – volume: 128 start-page: 352 year: 2021 ident: B71 article-title: Deep learning approach to predict lymph node metastasis directly from primary tumor histology in prostate cancer publication-title: BJU Int. doi: 10.1111/bju.15386 |
| SSID | ssj0000402001 |
| Score | 2.4983728 |
| SecondaryResourceType | review_article |
| Snippet | Cancer is one of the top causes of death globally. Recently, microarray gene expression data has been used to aid in cancer’s effective and early detection.... Cancer is one of the top causes of death globally. Recently, microarray gene expression data has been used to aid in cancer's effective and early detection.... |
| SourceID | doaj unpaywall pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 952709 |
| SubjectTerms | artificial intelligence cancer deep learning gene expression Physiology Rna-sequences |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQF7hUvCoWCnKlikOrFK_tOPaRR1erSuUE0t4ie-LQSktYLbsq---ZccJql0O59BQpcV7zjTMz9pfPjH0ROmDcw_6tLfhMezCZC6rKMJIZVUA0sqIfhX_dmOGd_jnKRytLfREnrJUHbg13nmPA9qbSwoPUlbTeiCAKB4WyANqkal1Yt1JMpW8wlUWi305jYhXmzmsaKcB6UMrvLpcFERBXAlHS619LMt9SJLfmzcQv_vrxeCX-DHbYhy5x5BftA--yjdjssf2LBovmhwU_44nKmcbI99noOsYJ7xaEuOdLndYnjikqBwIaN5Q3E1EoYcOJAH_PH4if56dTv-DoWZHH544o23Dikh6wu8GP26th1i2hkAFmXrMMlAsAwVTBRoEmrPvGV5TSpP8Eaxe0ks6A8kFFVVek966dikUIts6lUOoj22wem3jIeC6hX9hYK--V9hKsNSEX-H2CXNUQ6x4Tr_YsodMXp2UuxiXWGQRBmSAoCYKyhaDHvi5PmbTiGv9qfEkgLRuSLnbagd5Sdt5SvuctPfb5FeIS-xFNjvgmPs7xTkUSazPUpljDfu2O60eaP7-TIjfakgR-e-zb0kvef6Gj__FCx2ybLtkyWD6xzdl0Hk8wTZqF09QjXgBcyBI3 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZge4ALr4LY8pCREAdQtq7tOPFxeVQVEhUHVlpOkT2x24qtu1p2VZZfz0ySXTUVAiFOURJb1ozH8Tfx58-MvRTa47yH41uX4DLtwGTWqzrDmcyoAoKRNW0U_nRsjib64zSfXtkLQ7TKSFv36SDos9QqBXcUMRrhmFHZ_UhZP-Z2Uo5sLgth9-d1vMl2TI54fMB2Jsefx18p0zKGWBZy2i5n_r5ub0JqdPt7YPM6VfLWKs3d-tLNZlfmocO7DDYWtPSTb6PV0o_g5zVxx_8z8R6708FUPm4r3Gc3QnrAdscJU_TzNX_FG-Jo80d-l03fhzDn3fETJ3yrCvudIyDmQGGFF0LpREtqIoET3f6EnxMb0C0Wbs0xjgMPPzpabuLEXH3IJocfvrw7yroDGzJAnLfMQFkP4E3tyyCEg3hgXE0AqtmVGK3XSloDynkVVKxJXV5bFQrvy5hLodQjNkgXKTxmPJdwUJQhKueUdhLK0vhc4NcQchUhxCETm16roFMzp0M1ZhVmNeTBqvFgRR6sWg8O2ettlXkr5fGnwm8pFLYFSYW7eYC9VXW9VeUIJp2pNZoqdS1LZ4QXhYVClQDaiCF7sQmkCkctLcW4FC5W2FLRSMMZKlP0IqzXYv9NOjtt9L_RlyQnPGRvtrH4d4P2_qn0E3ab7lpizFM2WC5W4Rmir6V_3g2vX5sJMZw priority: 102 providerName: Unpaywall |
| Title | Deep learning techniques for cancer classification using microarray gene expression data |
| URI | https://www.proquest.com/docview/2725445660 https://pubmed.ncbi.nlm.nih.gov/PMC9563992 https://www.frontiersin.org/articles/10.3389/fphys.2022.952709/pdf https://doaj.org/article/5644a6d40ac24d28a60b079c738cc460 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1664-042X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402001 issn: 1664-042X databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-042X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402001 issn: 1664-042X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1664-042X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402001 issn: 1664-042X databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1664-042X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402001 issn: 1664-042X databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-042X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402001 issn: 1664-042X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1664-042X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402001 issn: 1664-042X databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1664-042X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000402001 issn: 1664-042X databaseCode: M48 dateStart: 20100601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBalPayXsq0bzdYFDcYOHW4VSZbtwxjZj1IGLTsskJ6M9Cyng9RJ3YQ1__3ek51Qj9JddjLYso30-fl9T3r6HmPvhHbo99C-dQo20hZMlDlVROjJjErAG1nQRuHzC3M20t_H8XiLrctbtQN4-2BoR_WkRvX0-O5m9QkN_iNFnOhvT0qaBMBQT8rjLJYJbefbQUeVUSWH85bthx8zxUpi0KxtPnxnxzsFEf8O8_w7b_LJsprb1W87nd5zSqdP2V7LJvmwgf8Z2_LVc7Y_rDCSvl7x9zzkd4aJ8302_ur9nLdVIiZ8I956y5G3ciD08UBkmrKHAmCcsuIn_JqS9mxd2xXHz81zf9dmz1acEkxfsNHpt59fzqK2rkIESMcWEajMAThTuNQLYaEcGFsQzwmbB8vMaSUzA8o65VVZkAi8zpRPnEvLWAqlXrLtalb5A8ZjCYMk9aWyVmkrIU2NiwX-tCBWJfiyx8R6PHNoRcep9sU0x-CDIMgDBDlBkDcQ9NjR5pZ5o7jxWOPPBNKmIYllhxOzepK3tpfHyPmsKTR2VepCptYIJ5IMEpUCaCN67O0a4hyNi1ZMbOVnS3xTEhTcDLVJOth33ti9Uv26CjLdOJak-ttjHzZfyb879Op_dOg126VHNmkth2x7US_9G-ROC9cPcw79YBd9tjO6-DG8_AMZPh2q |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZge4ALr4LY8pCREAdQtq7tOPFxeVQVEhUHVlpOkT2x24qtu1p2VZZfz0ySXTUVAiFOURJb1ozH8Tfx58-MvRTa47yH41uX4DLtwGTWqzrDmcyoAoKRNW0U_nRsjib64zSfXtkLQ7TKSFv36SDos9QqBXcUMRrhmFHZ_UhZP-Z2Uo5sLgth9-d1vMl2TI54fMB2Jsefx18p0zKGWBZy2i5n_r5ub0JqdPt7YPM6VfLWKs3d-tLNZlfmocO7DDYWtPSTb6PV0o_g5zVxx_8z8R6708FUPm4r3Gc3QnrAdscJU_TzNX_FG-Jo80d-l03fhzDn3fETJ3yrCvudIyDmQGGFF0LpREtqIoET3f6EnxMb0C0Wbs0xjgMPPzpabuLEXH3IJocfvrw7yroDGzJAnLfMQFkP4E3tyyCEg3hgXE0AqtmVGK3XSloDynkVVKxJXV5bFQrvy5hLodQjNkgXKTxmPJdwUJQhKueUdhLK0vhc4NcQchUhxCETm16roFMzp0M1ZhVmNeTBqvFgRR6sWg8O2ettlXkr5fGnwm8pFLYFSYW7eYC9VXW9VeUIJp2pNZoqdS1LZ4QXhYVClQDaiCF7sQmkCkctLcW4FC5W2FLRSMMZKlP0IqzXYv9NOjtt9L_RlyQnPGRvtrH4d4P2_qn0E3ab7lpizFM2WC5W4Rmir6V_3g2vX5sJMZw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+techniques+for+cancer+classification+using+microarray+gene+expression+data&rft.jtitle=Frontiers+in+physiology&rft.au=Surbhi+Gupta&rft.au=Surbhi+Gupta&rft.au=Manoj+K.+Gupta&rft.au=Mohammad+Shabaz&rft.date=2022-09-30&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-042X&rft.volume=13&rft_id=info:doi/10.3389%2Ffphys.2022.952709&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5644a6d40ac24d28a60b079c738cc460 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon |