Deep learning techniques for cancer classification using microarray gene expression data

Cancer is one of the top causes of death globally. Recently, microarray gene expression data has been used to aid in cancer’s effective and early detection. The use of DNA microarray technology to uncover information from the expression levels of thousands of genes has enormous promise. The DNA micr...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 13; p. 952709
Main Authors Gupta, Surbhi, Gupta, Manoj K., Shabaz, Mohammad, Sharma, Ashutosh
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 30.09.2022
Subjects
Online AccessGet full text
ISSN1664-042X
1664-042X
DOI10.3389/fphys.2022.952709

Cover

Abstract Cancer is one of the top causes of death globally. Recently, microarray gene expression data has been used to aid in cancer’s effective and early detection. The use of DNA microarray technology to uncover information from the expression levels of thousands of genes has enormous promise. The DNA microarray technique can determine the levels of thousands of genes simultaneously in a single experiment. The analysis of gene expression is critical in many disciplines of biological study to obtain the necessary information. This study analyses all the research studies focused on optimizing gene selection for cancer detection using artificial intelligence. One of the most challenging issues is figuring out how to extract meaningful information from massive databases. Deep Learning architectures have performed efficiently in numerous sectors and are used to diagnose many other chronic diseases and to assist physicians in making medical decisions. In this study, we have evaluated the results of different optimizers on a RNA sequence dataset. The Deep learning algorithm proposed in the study classifies five different forms of cancer, including kidney renal clear cell carcinoma (KIRC), Breast Invasive Carcinoma (BRCA), lung adenocarcinoma (LUAD), Prostate Adenocarcinoma (PRAD) and Colon Adenocarcinoma (COAD). The performance of different optimizers like Stochastic gradient descent (SGD), Root Mean Squared Propagation (RMSProp), Adaptive Gradient Optimizer (AdaGrad), and Adaptive Momentum (AdaM). The experimental results gathered on the dataset affirm that AdaGrad and Adam. Also, the performance analysis has been done using different learning rates and decay rates. This study discusses current advancements in deep learning-based gene expression data analysis using optimized feature selection methods.
AbstractList Cancer is one of the top causes of death globally. Recently, microarray gene expression data has been used to aid in cancer’s effective and early detection. The use of DNA microarray technology to uncover information from the expression levels of thousands of genes has enormous promise. The DNA microarray technique can determine the levels of thousands of genes simultaneously in a single experiment. The analysis of gene expression is critical in many disciplines of biological study to obtain the necessary information. This study analyses all the research studies focused on optimizing gene selection for cancer detection using artificial intelligence. One of the most challenging issues is figuring out how to extract meaningful information from massive databases. Deep Learning architectures have performed efficiently in numerous sectors and are used to diagnose many other chronic diseases and to assist physicians in making medical decisions. In this study, we have evaluated the results of different optimizers on a RNA sequence dataset. The Deep learning algorithm proposed in the study classifies five different forms of cancer, including kidney renal clear cell carcinoma (KIRC), Breast Invasive Carcinoma (BRCA), lung adenocarcinoma (LUAD), Prostate Adenocarcinoma (PRAD) and Colon Adenocarcinoma (COAD). The performance of different optimizers like Stochastic gradient descent (SGD), Root Mean Squared Propagation (RMSProp), Adaptive Gradient Optimizer (AdaGrad), and Adaptive Momentum (AdaM). The experimental results gathered on the dataset affirm that AdaGrad and Adam. Also, the performance analysis has been done using different learning rates and decay rates. This study discusses current advancements in deep learning-based gene expression data analysis using optimized feature selection methods.
Cancer is one of the top causes of death globally. Recently, microarray gene expression data has been used to aid in cancer's effective and early detection. The use of DNA microarray technology to uncover information from the expression levels of thousands of genes has enormous promise. The DNA microarray technique can determine the levels of thousands of genes simultaneously in a single experiment. The analysis of gene expression is critical in many disciplines of biological study to obtain the necessary information. This study analyses all the research studies focused on optimizing gene selection for cancer detection using artificial intelligence. One of the most challenging issues is figuring out how to extract meaningful information from massive databases. Deep Learning architectures have performed efficiently in numerous sectors and are used to diagnose many other chronic diseases and to assist physicians in making medical decisions. In this study, we have evaluated the results of different optimizers on a RNA sequence dataset. The Deep learning algorithm proposed in the study classifies five different forms of cancer, including kidney renal clear cell carcinoma (KIRC), Breast Invasive Carcinoma (BRCA), lung adenocarcinoma (LUAD), Prostate Adenocarcinoma (PRAD) and Colon Adenocarcinoma (COAD). The performance of different optimizers like Stochastic gradient descent (SGD), Root Mean Squared Propagation (RMSProp), Adaptive Gradient Optimizer (AdaGrad), and Adaptive Momentum (AdaM). The experimental results gathered on the dataset affirm that AdaGrad and Adam. Also, the performance analysis has been done using different learning rates and decay rates. This study discusses current advancements in deep learning-based gene expression data analysis using optimized feature selection methods.Cancer is one of the top causes of death globally. Recently, microarray gene expression data has been used to aid in cancer's effective and early detection. The use of DNA microarray technology to uncover information from the expression levels of thousands of genes has enormous promise. The DNA microarray technique can determine the levels of thousands of genes simultaneously in a single experiment. The analysis of gene expression is critical in many disciplines of biological study to obtain the necessary information. This study analyses all the research studies focused on optimizing gene selection for cancer detection using artificial intelligence. One of the most challenging issues is figuring out how to extract meaningful information from massive databases. Deep Learning architectures have performed efficiently in numerous sectors and are used to diagnose many other chronic diseases and to assist physicians in making medical decisions. In this study, we have evaluated the results of different optimizers on a RNA sequence dataset. The Deep learning algorithm proposed in the study classifies five different forms of cancer, including kidney renal clear cell carcinoma (KIRC), Breast Invasive Carcinoma (BRCA), lung adenocarcinoma (LUAD), Prostate Adenocarcinoma (PRAD) and Colon Adenocarcinoma (COAD). The performance of different optimizers like Stochastic gradient descent (SGD), Root Mean Squared Propagation (RMSProp), Adaptive Gradient Optimizer (AdaGrad), and Adaptive Momentum (AdaM). The experimental results gathered on the dataset affirm that AdaGrad and Adam. Also, the performance analysis has been done using different learning rates and decay rates. This study discusses current advancements in deep learning-based gene expression data analysis using optimized feature selection methods.
Author Gupta, Surbhi
Shabaz, Mohammad
Sharma, Ashutosh
Gupta, Manoj K.
AuthorAffiliation 2 Model Institute of Engineering and Technology , Jammu , India
1 Department of Computer Science and Engineering Department , SMVDU , Jammu , India
3 School of Computer Science , University of Petroleum and Energy Studies , Dehradun , India
AuthorAffiliation_xml – name: 1 Department of Computer Science and Engineering Department , SMVDU , Jammu , India
– name: 3 School of Computer Science , University of Petroleum and Energy Studies , Dehradun , India
– name: 2 Model Institute of Engineering and Technology , Jammu , India
Author_xml – sequence: 1
  givenname: Surbhi
  surname: Gupta
  fullname: Gupta, Surbhi
– sequence: 2
  givenname: Manoj K.
  surname: Gupta
  fullname: Gupta, Manoj K.
– sequence: 3
  givenname: Mohammad
  surname: Shabaz
  fullname: Shabaz, Mohammad
– sequence: 4
  givenname: Ashutosh
  surname: Sharma
  fullname: Sharma, Ashutosh
BookMark eNqFkU9v1DAQxS1UREvpB-CWI5dd_C9OfEFCpUClSlyK1Js1cSa7rrx2sBNgv329mwpRDtSXsez3fjN-fk1OQgxIyFtG10K0-v0wbvd5zSnna13zhuoX5IwpJVdU8ruTv_an5CLne1qWpJxS9oqcCsWlYqw-I3efEMfKI6Tgwqaa0G6D-zFjroaYKgvBYikecnaDszC5GKo5H6Q7Z1OElGBfbTBghb_HhEVWBD1M8Ia8HMBnvHis5-T756vby6-rm29fri8_3qxsTdtpZYXurO1U37VIKdiBKeh5zThlulaD7qTgWlkBnUAx9JQzLrXApuvaoeZUiHNyvXD7CPdmTG4HaW8iOHM8iGljIE3OejS1khJUL0sbLnvegqIdbbRtRGutVLSw-MKawwj7X-D9HyCj5pC6OaZuDqmbJfVi-rCYxrnbYW8xTAn8k0me3gS3NZv4s_iV0JoXwLtHQIqH5Cezc9mi9xAwzqVZw2spa3UcsFmkJfqcEw7Guun4KYXs_H-nZP84n3_ZAzu4v0s
CitedBy_id crossref_primary_10_1007_s11082_024_06501_9
crossref_primary_10_1007_s10489_024_05625_5
crossref_primary_10_1109_ACCESS_2024_3368070
crossref_primary_10_1007_s11042_024_18802_y
crossref_primary_10_1016_j_prime_2024_100449
crossref_primary_10_1016_j_carbpol_2024_122106
crossref_primary_10_1007_s42979_024_02925_y
crossref_primary_10_34288_jri_v6i4_350
crossref_primary_10_1007_s42979_023_01774_5
crossref_primary_10_1016_j_neucom_2024_129318
crossref_primary_10_1183_20734735_0192_2023
crossref_primary_10_1051_itmconf_20246902002
crossref_primary_10_1007_s40846_024_00859_7
crossref_primary_10_1007_s40747_024_01555_4
crossref_primary_10_1051_itmconf_20246902004
crossref_primary_10_1016_j_knosys_2023_110487
crossref_primary_10_1007_s00432_023_05308_7
crossref_primary_10_1038_s41598_024_65315_7
crossref_primary_10_3390_bioengineering11040314
crossref_primary_10_1007_s00500_023_08126_8
crossref_primary_10_1016_j_heliyon_2024_e37241
crossref_primary_10_4236_jbm_2025_133013
crossref_primary_10_1093_bfgp_elae047
crossref_primary_10_1109_TCE_2024_3423786
crossref_primary_10_3390_diagnostics15070805
crossref_primary_10_1002_cnr2_1764
crossref_primary_10_1016_j_bbrc_2024_150225
crossref_primary_10_1007_s42979_024_02957_4
crossref_primary_10_1177_09544089241288028
crossref_primary_10_1109_ACCESS_2025_3535999
crossref_primary_10_1016_j_biortech_2024_131495
crossref_primary_10_3390_bioengineering10080933
crossref_primary_10_14326_abe_13_134
crossref_primary_10_1002_smsc_202300221
Cites_doi 10.1007/s00521-016-2701-1
10.1016/j.jksuci.2017.12.002
10.1016/j.jbi.2018.12.003
10.3389/fbioe.2020.00737
10.1016/j.artmed.2019.01.006
10.3322/caac.21660
10.1109/CIBCB49929.2021.9562890
10.1186/s12920-020-0686-1
10.1016/j.imu.2017.10.004
10.1109/TCBB.2018.2822803
10.7717/peerj-cs.492
10.1007/s00500-019-03856-0
10.1049/trit.2019.0028
10.1007/s11831-021-09648-w
10.1016/j.compbiolchem.2017.10.009
10.1016/j.cmpb.2017.09.005
10.1093/comjnl/bxab146
10.12729/jbtr.2019.20.1.015
10.1371/journal.pone.0250370
10.1371/journal.pone.0230536
10.1111/coin.12452
10.1186/s12859-016-1334-9
10.3390/pr6050057
10.1371/journal.pone.0207204
10.1016/j.ygeno.2019.11.004
10.1007/s10489-018-1207-1
10.1158/1055-9965.EPI-10-1302
10.1186/s12859-018-2095-4
10.1038/nature14539
10.1142/9789813207813_0022
10.1186/s12859-019-3116-7
10.1093/bioinformatics/btz772
10.1007/s11831-019-09344-w
10.1111/cas.14377
10.1038/s41598-021-84630-x
10.1038/s41598-018-34833-6
10.1016/j.cmpb.2018.10.004
10.1128/CMR.16.1.1-17.2003
10.1080/24751839.2019.1660845
10.1155/2022/9605439
10.1038/s41389-019-0157-8
10.1371/journal.pcbi.1006076
10.1109/ACCESS.2019.2898723
10.1111/bju.15386
ContentType Journal Article
Copyright Copyright © 2022 Gupta, Gupta, Shabaz and Sharma.
Copyright © 2022 Gupta, Gupta, Shabaz and Sharma. 2022 Gupta, Gupta, Shabaz and Sharma
Copyright_xml – notice: Copyright © 2022 Gupta, Gupta, Shabaz and Sharma.
– notice: Copyright © 2022 Gupta, Gupta, Shabaz and Sharma. 2022 Gupta, Gupta, Shabaz and Sharma
DBID AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fphys.2022.952709
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate Gupta et al
EISSN 1664-042X
ExternalDocumentID oai_doaj_org_article_5644a6d40ac24d28a60b079c738cc460
10.3389/fphys.2022.952709
PMC9563992
10_3389_fphys_2022_952709
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
DIK
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
7X8
5PM
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c508t-c39bccb6db8e00acf16ad251201956f9b43296c3ab3e3fd0212493e7bb8f52033
IEDL.DBID M48
ISSN 1664-042X
IngestDate Fri Oct 03 12:52:19 EDT 2025
Sun Oct 26 04:06:07 EDT 2025
Thu Aug 21 18:40:12 EDT 2025
Fri Sep 05 06:27:55 EDT 2025
Wed Oct 01 02:27:40 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-c39bccb6db8e00acf16ad251201956f9b43296c3ab3e3fd0212493e7bb8f52033
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
Edited by: Naveen Aggarwal, Panjab University, India
Reviewed by: Rajesh Kumar Garg, National Institute of Technology, Hamirpur, India
John Paul, Universiti Malaysia Pahang, Malaysia
This article was submitted to Computational Physiology and Medicine, a section of the journal Frontiers in Physiology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2022.952709
PMID 36246115
PQID 2725445660
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5644a6d40ac24d28a60b079c738cc460
unpaywall_primary_10_3389_fphys_2022_952709
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9563992
proquest_miscellaneous_2725445660
crossref_citationtrail_10_3389_fphys_2022_952709
crossref_primary_10_3389_fphys_2022_952709
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-30
PublicationDateYYYYMMDD 2022-09-30
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-30
  day: 30
PublicationDecade 2020
PublicationTitle Frontiers in physiology
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Gupta (B30) 2021
Jerez (B41) 2020; 15
Id (B40) 2021; 16
Shon (B64) 2021; 20
Schiff (B61) 2007; 16
Xiao (B73); 153
Motieghader (B52) 2017; 9
Huynh (B39) 2019; 3
Xiao (B74); 166
Sevakula (B62) 2018; 5963
Torkey (B68) 2021; 1
Aziz (B7) 2017; 71
He (B37) 2020; 8
Chaunzwa (B11) 2021; 1
Dargan (B18) 2020; 27
Gao (B25) 2019; 8
Kong (B47) 2018; 8
B1
Fotouhi (B24) 2019; 90
Gupta (B34); 38
Guia (B28) 2019
Extraction (B20) 2017
Lecun (B49) 2015; 521
Lin (B50) 2018
Urda (B70) 2017
Alomari (B6) 2018; 48
Parvathavardhini (B54) 2020; 3
Guo (B29) 2018; 19
Gupta (B33)
Kim (B45) 2020; 36
Salman (B60) 2018; 6
Basavegowda (B8) 2020; 5
García-díaz (B26) 2019; 112
Xu (B76); 7
Ahn (B4) 2018
Huang (B38) 2020; 13
Sung (B65) 2021; 71
Chen (B12) 2018
Kumar (B48) 2021; 29
Tumuluru (B69) 2017
Gupta (B31) 2021
Gupta (B32)
Daoud (B17) 2019; 97
Ching (B13) 2018; 14
Dwivedi (B19) 2016; 29
Joshi (B42) 2019
Panda (B53) 2017; 32
Shimizu (B63) 2020; 111
Reid (B56) 2011; 20
Zahras (B78) 2018
Ronoud (B58) 2019; 23
Yuan (B77) 2016; 17
Cho (B14) 2018; 13
Kashyap (B43) 2022; 2022
Wessels (B71) 2021; 128
Akkus (B5) 2017
Xu (B75); 20
Surbhi Gupta (B66) 2021
Danaee (B16) 2017; 22
Gupta (B35)
References_xml – year: 2018
  ident: B12
  article-title: A method to facilitate cancer detection and type classification from gene expression data using a deep autoencoder and neural network
  publication-title: Mach. Learn.
– volume: 29
  start-page: 1545
  year: 2016
  ident: B19
  article-title: Artificial neural network model for effective cancer classification using microarray gene expression data
  publication-title: Neural comput. Appl.
  doi: 10.1007/s00521-016-2701-1
– volume: 32
  start-page: 940
  year: 2017
  ident: B53
  article-title: Elephant search optimization combined with deep neural network for microarray data analysis
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2017.12.002
– volume: 90
  start-page: 103089
  year: 2019
  ident: B24
  article-title: A comprehensive data level analysis for cancer diagnosis on imbalanced data
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2018.12.003
– volume: 8
  start-page: 737
  year: 2020
  ident: B37
  article-title: A neural network framework for predicting the tissue-of-origin of 15 common cancer types based on RNA-seq data
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00737
– volume: 97
  start-page: 204
  year: 2019
  ident: B17
  article-title: A survey of neural network-based cancer prediction models from microarray data
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.01.006
– volume: 71
  start-page: 209
  year: 2021
  ident: B65
  article-title: Global cancer statistics 2020 : GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: Ca. Cancer J. Clin.
  doi: 10.3322/caac.21660
– start-page: 1748
  year: 2018
  ident: B4
  article-title: Deep learning-based identification of cancer or normal tissue using gene expression data
– start-page: 1
  year: 2021
  ident: B66
  article-title: Prostate cancer prognosis using multi-layer perceptron and class balancing techniques
– year: 2018
  ident: B50
  article-title: Application of deep learning on predicting prognosis of acute myeloid leukemia with cytogenetics age and mutations
  publication-title: Mach. Learn.
– ident: B32
  article-title: Deep learning for brain tumor segmentation using magnetic resonance images
  doi: 10.1109/CIBCB49929.2021.9562890
– volume: 13
  start-page: 41
  year: 2020
  ident: B38
  article-title: Deep learning-based cancer survival prognosis from RNA-seq data : Approaches and evaluations
  publication-title: BMC Med. Genomics
  doi: 10.1186/s12920-020-0686-1
– volume: 9
  start-page: 246
  year: 2017
  ident: B52
  article-title: A hybrid gene selection algorithm for microarray cancer classification using genetic algorithm and learning automata
  publication-title: Inf. Med. Unlocked
  doi: 10.1016/j.imu.2017.10.004
– volume: 5963
  start-page: 2089
  year: 2018
  ident: B62
  article-title: Transfer learning for molecular cancer classification using deep neural networks
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2018.2822803
– start-page: 50
  volume-title: International work-conference on artificial neural networks
  year: 2017
  ident: B70
  article-title: Deep learning to analyze RNA-seq gene expression data
– start-page: 449
  volume-title: J. Digit. Imaging.
  year: 2017
  ident: B5
  article-title: Deep learning for brain MRI segmentation : State of the art and future directions
– volume: 1
  start-page: e492
  year: 2021
  ident: B68
  article-title: A novel deep autoencoder based survival analysis approach for microarray dataset
  publication-title: Peer Comput. Sci.
  doi: 10.7717/peerj-cs.492
– volume: 23
  start-page: 13139
  year: 2019
  ident: B58
  article-title: An evolutionary deep belief network extreme learning-based for breast cancer diagnosis
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-03856-0
– volume: 5
  start-page: 22
  year: 2020
  ident: B8
  article-title: Deep learning approach for microarray cancer data classification
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/trit.2019.0028
– start-page: 149
  year: 2018
  ident: B78
  article-title: Cervical cancer risk classification based on deep convolutional neural network
– volume: 29
  start-page: 2043
  year: 2021
  ident: B48
  article-title: A systematic review of artificial intelligence techniques in cancer prediction and diagnosis
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-021-09648-w
– volume: 71
  start-page: 161
  year: 2017
  ident: B7
  article-title: A novel approach for dimension reduction of microarray
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2017.10.009
– volume: 3
  start-page: 2456
  year: 2020
  ident: B54
  article-title: Cancer gene detection using Neuro fuzzy classification algorithm
  publication-title: Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol.
– volume: 153
  start-page: 1
  ident: B73
  article-title: A deep learning-based multi-model ensemble method for cancer prediction
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.09.005
– ident: B35
  article-title: Computational model for prediction of malignant mesothelioma diagnosis
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxab146
– volume: 20
  start-page: 15
  year: 2021
  ident: B64
  article-title: Classification of stomach cancer gene expression data using CNN algorithm of deep learning
  publication-title: J. Biomed. Transl. Res.
  doi: 10.12729/jbtr.2019.20.1.015
– volume: 16
  start-page: e0250370
  year: 2021
  ident: B40
  article-title: Predicting breast cancer 5-year survival using machine learning: A systematic review.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0250370
– start-page: 1988
  year: 2019
  ident: B42
  article-title: Cancer subtype classification based on superlayered neural network
– volume: 15
  start-page: e0230536
  year: 2020
  ident: B41
  article-title: Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data
  publication-title: Plos One
  doi: 10.1371/journal.pone.0230536
– volume: 38
  start-page: 156
  ident: B34
  article-title: A comprehensive data‐level investigation of cancer diagnosis on imbalanced data
  publication-title: Comput. Intell.
  doi: 10.1111/coin.12452
– volume: 17
  start-page: 476
  year: 2016
  ident: B77
  article-title: DeepGene : An advanced cancer type classifier based on deep learning and somatic point mutations
  publication-title: BMC Bioinforma.
  doi: 10.1186/s12859-016-1334-9
– volume: 6
  start-page: 57
  year: 2018
  ident: B60
  article-title: Impact of metaheuristic iteration on artificial neural network structure in medical data
  publication-title: Process. (Basel).
  doi: 10.3390/pr6050057
– volume: 13
  start-page: e0207204
  year: 2018
  ident: B14
  article-title: Association of specific gene mutations derived from machine learning with survival in lung adenocarcinoma
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0207204
– volume: 112
  start-page: 1196
  year: 2019
  ident: B26
  article-title: Unsupervised feature selection algorithm for multiclass cancer classification of gene expression RNA-Seq data
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.11.004
– volume: 48
  start-page: 4429
  year: 2018
  ident: B6
  article-title: A novel gene selection method using modified MRMR and hybrid bat-inspired algorithm with β-hill climbing
  publication-title: Appl. Intell. (Dordr).
  doi: 10.1007/s10489-018-1207-1
– volume: 20
  start-page: 1287
  year: 2011
  ident: B56
  article-title: Does exposure to asbestos cause ovarian cancer ? A systematic literature review and meta-analysis
  publication-title: Cancer Epidemiol. Biomarkers Prev.
  doi: 10.1158/1055-9965.EPI-10-1302
– volume: 19
  start-page: 118
  year: 2018
  ident: B29
  article-title: BCDForest : A boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data
  publication-title: BMC Bioinforma.
  doi: 10.1186/s12859-018-2095-4
– volume: 521
  start-page: 436
  year: 2015
  ident: B49
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 22
  start-page: 219
  year: 2017
  ident: B16
  article-title: A deep learning approach for cancer detection and relevant gene identification
  publication-title: Pac. Symp. Biocomput.
  doi: 10.1142/9789813207813_0022
– ident: B1
– volume: 20
  start-page: 527
  ident: B75
  article-title: A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data
  publication-title: BMC Bioinforma.
  doi: 10.1186/s12859-019-3116-7
– start-page: 1
  ident: B33
  article-title: A comparative analysis of deep learning approaches for predicting breast cancer survivability
  publication-title: Archives Comput. Methods Eng.
– volume: 36
  start-page: 1360
  year: 2020
  ident: B45
  article-title: Cancer classification of single-cell gene expression data by neural network
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz772
– volume: 27
  start-page: 1071
  year: 2020
  ident: B18
  article-title: A survey of deep learning and its applications : A new paradigm to machine learning
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-019-09344-w
– volume: 111
  start-page: 1452
  year: 2020
  ident: B63
  article-title: Artificial intelligence in oncology
  publication-title: Cancer Sci.
  doi: 10.1111/cas.14377
– start-page: 913
  year: 2019
  ident: B28
  article-title: DeepGx : Deep learning using gene expression for cancer classification
– volume: 1
  start-page: 5471
  year: 2021
  ident: B11
  article-title: Deep learning classification of lung cancer histology using CT images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84630-x
– start-page: 14218
  year: 2017
  ident: B69
  article-title: Goa-Based DBN : Grasshopper optimization algorithm-based deep belief neural networks for cancer classification Goa-based DBN : Grasshopper optimization algorithm-based deep belief neural networks for cancer classification
– volume: 8
  start-page: 16477
  year: 2018
  ident: B47
  article-title: A deep neural network model using random forest to extract feature representation for gene expression data classification
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34833-6
– volume: 166
  start-page: 99
  ident: B74
  article-title: A semi-supervised deep learning method based on stacked sparse auto-encoder for cancer prediction using RNA-seq data
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.10.004
– volume: 16
  start-page: 1
  year: 2007
  ident: B61
  article-title: Human papillomavirus and cervical cancer
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.16.1.1-17.2003
– volume: 3
  start-page: 533
  year: 2019
  ident: B39
  article-title: Novel hybrid DCNN–SVM model for classifying RNA-sequencing gene expression data
  publication-title: J. Inf. Telecommun.
  doi: 10.1080/24751839.2019.1660845
– volume: 2022
  start-page: 9605439
  year: 2022
  ident: B43
  article-title: Global increase in breast cancer incidence: Risk Factors and preventive Measures
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2022/9605439
– year: 2017
  ident: B20
  article-title: Prognosis prediction of human breast cancer by integrating deep neural network and support vector machine supervised feature extraction and classification for breast cancer prognosis prediction
– volume-title: Computational prediction of cervical cancer diagnosis using ensemble-based classification algorithm
  year: 2021
  ident: B31
– volume: 8
  start-page: 44
  year: 2019
  ident: B25
  article-title: DeepCC : A novel deep learning-based framework for cancer molecular subtype classification
  publication-title: Oncogenesis
  doi: 10.1038/s41389-019-0157-8
– start-page: 1
  year: 2021
  ident: B30
  article-title: Deep learning for brain tumor segmentation using magnetic resonance images
– volume: 14
  start-page: e1006076
  year: 2018
  ident: B13
  article-title: Cox-nnet : An artificial neural network method for prognosis prediction of high-throughput omics data
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006076
– volume: 7
  start-page: 22086
  ident: B76
  article-title: A novel deep flexible neural forest model for classification of cancer subtypes based on gene expression data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2898723
– volume: 128
  start-page: 352
  year: 2021
  ident: B71
  article-title: Deep learning approach to predict lymph node metastasis directly from primary tumor histology in prostate cancer
  publication-title: BJU Int.
  doi: 10.1111/bju.15386
SSID ssj0000402001
Score 2.4983728
SecondaryResourceType review_article
Snippet Cancer is one of the top causes of death globally. Recently, microarray gene expression data has been used to aid in cancer’s effective and early detection....
Cancer is one of the top causes of death globally. Recently, microarray gene expression data has been used to aid in cancer's effective and early detection....
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 952709
SubjectTerms artificial intelligence
cancer
deep learning
gene expression
Physiology
Rna-sequences
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQF7hUvCoWCnKlikOrFK_tOPaRR1erSuUE0t4ie-LQSktYLbsq---ZccJql0O59BQpcV7zjTMz9pfPjH0ROmDcw_6tLfhMezCZC6rKMJIZVUA0sqIfhX_dmOGd_jnKRytLfREnrJUHbg13nmPA9qbSwoPUlbTeiCAKB4WyANqkal1Yt1JMpW8wlUWi305jYhXmzmsaKcB6UMrvLpcFERBXAlHS619LMt9SJLfmzcQv_vrxeCX-DHbYhy5x5BftA--yjdjssf2LBovmhwU_44nKmcbI99noOsYJ7xaEuOdLndYnjikqBwIaN5Q3E1EoYcOJAH_PH4if56dTv-DoWZHH544o23Dikh6wu8GP26th1i2hkAFmXrMMlAsAwVTBRoEmrPvGV5TSpP8Eaxe0ks6A8kFFVVek966dikUIts6lUOoj22wem3jIeC6hX9hYK--V9hKsNSEX-H2CXNUQ6x4Tr_YsodMXp2UuxiXWGQRBmSAoCYKyhaDHvi5PmbTiGv9qfEkgLRuSLnbagd5Sdt5SvuctPfb5FeIS-xFNjvgmPs7xTkUSazPUpljDfu2O60eaP7-TIjfakgR-e-zb0kvef6Gj__FCx2ybLtkyWD6xzdl0Hk8wTZqF09QjXgBcyBI3
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZge4ALr4LY8pCREAdQtq7tOPFxeVQVEhUHVlpOkT2x24qtu1p2VZZfz0ySXTUVAiFOURJb1ozH8Tfx58-MvRTa47yH41uX4DLtwGTWqzrDmcyoAoKRNW0U_nRsjib64zSfXtkLQ7TKSFv36SDos9QqBXcUMRrhmFHZ_UhZP-Z2Uo5sLgth9-d1vMl2TI54fMB2Jsefx18p0zKGWBZy2i5n_r5ub0JqdPt7YPM6VfLWKs3d-tLNZlfmocO7DDYWtPSTb6PV0o_g5zVxx_8z8R6708FUPm4r3Gc3QnrAdscJU_TzNX_FG-Jo80d-l03fhzDn3fETJ3yrCvudIyDmQGGFF0LpREtqIoET3f6EnxMb0C0Wbs0xjgMPPzpabuLEXH3IJocfvrw7yroDGzJAnLfMQFkP4E3tyyCEg3hgXE0AqtmVGK3XSloDynkVVKxJXV5bFQrvy5hLodQjNkgXKTxmPJdwUJQhKueUdhLK0vhc4NcQchUhxCETm16roFMzp0M1ZhVmNeTBqvFgRR6sWg8O2ettlXkr5fGnwm8pFLYFSYW7eYC9VXW9VeUIJp2pNZoqdS1LZ4QXhYVClQDaiCF7sQmkCkctLcW4FC5W2FLRSMMZKlP0IqzXYv9NOjtt9L_RlyQnPGRvtrH4d4P2_qn0E3ab7lpizFM2WC5W4Rmir6V_3g2vX5sJMZw
  priority: 102
  providerName: Unpaywall
Title Deep learning techniques for cancer classification using microarray gene expression data
URI https://www.proquest.com/docview/2725445660
https://pubmed.ncbi.nlm.nih.gov/PMC9563992
https://www.frontiersin.org/articles/10.3389/fphys.2022.952709/pdf
https://doaj.org/article/5644a6d40ac24d28a60b079c738cc460
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1664-042X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402001
  issn: 1664-042X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-042X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402001
  issn: 1664-042X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1664-042X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402001
  issn: 1664-042X
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1664-042X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402001
  issn: 1664-042X
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-042X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402001
  issn: 1664-042X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1664-042X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402001
  issn: 1664-042X
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1664-042X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000402001
  issn: 1664-042X
  databaseCode: M48
  dateStart: 20100601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBalPayXsq0bzdYFDcYOHW4VSZbtwxjZj1IGLTsskJ6M9Cyng9RJ3YQ1__3ek51Qj9JddjLYso30-fl9T3r6HmPvhHbo99C-dQo20hZMlDlVROjJjErAG1nQRuHzC3M20t_H8XiLrctbtQN4-2BoR_WkRvX0-O5m9QkN_iNFnOhvT0qaBMBQT8rjLJYJbefbQUeVUSWH85bthx8zxUpi0KxtPnxnxzsFEf8O8_w7b_LJsprb1W87nd5zSqdP2V7LJvmwgf8Z2_LVc7Y_rDCSvl7x9zzkd4aJ8302_ur9nLdVIiZ8I956y5G3ciD08UBkmrKHAmCcsuIn_JqS9mxd2xXHz81zf9dmz1acEkxfsNHpt59fzqK2rkIESMcWEajMAThTuNQLYaEcGFsQzwmbB8vMaSUzA8o65VVZkAi8zpRPnEvLWAqlXrLtalb5A8ZjCYMk9aWyVmkrIU2NiwX-tCBWJfiyx8R6PHNoRcep9sU0x-CDIMgDBDlBkDcQ9NjR5pZ5o7jxWOPPBNKmIYllhxOzepK3tpfHyPmsKTR2VepCptYIJ5IMEpUCaCN67O0a4hyNi1ZMbOVnS3xTEhTcDLVJOth33ti9Uv26CjLdOJak-ttjHzZfyb879Op_dOg126VHNmkth2x7US_9G-ROC9cPcw79YBd9tjO6-DG8_AMZPh2q
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZge4ALr4LY8pCREAdQtq7tOPFxeVQVEhUHVlpOkT2x24qtu1p2VZZfz0ySXTUVAiFOURJb1ozH8Tfx58-MvRTa47yH41uX4DLtwGTWqzrDmcyoAoKRNW0U_nRsjib64zSfXtkLQ7TKSFv36SDos9QqBXcUMRrhmFHZ_UhZP-Z2Uo5sLgth9-d1vMl2TI54fMB2Jsefx18p0zKGWBZy2i5n_r5ub0JqdPt7YPM6VfLWKs3d-tLNZlfmocO7DDYWtPSTb6PV0o_g5zVxx_8z8R6708FUPm4r3Gc3QnrAdscJU_TzNX_FG-Jo80d-l03fhzDn3fETJ3yrCvudIyDmQGGFF0LpREtqIoET3f6EnxMb0C0Wbs0xjgMPPzpabuLEXH3IJocfvrw7yroDGzJAnLfMQFkP4E3tyyCEg3hgXE0AqtmVGK3XSloDynkVVKxJXV5bFQrvy5hLodQjNkgXKTxmPJdwUJQhKueUdhLK0vhc4NcQchUhxCETm16roFMzp0M1ZhVmNeTBqvFgRR6sWg8O2ettlXkr5fGnwm8pFLYFSYW7eYC9VXW9VeUIJp2pNZoqdS1LZ4QXhYVClQDaiCF7sQmkCkctLcW4FC5W2FLRSMMZKlP0IqzXYv9NOjtt9L_RlyQnPGRvtrH4d4P2_qn0E3ab7lpizFM2WC5W4Rmir6V_3g2vX5sJMZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+techniques+for+cancer+classification+using+microarray+gene+expression+data&rft.jtitle=Frontiers+in+physiology&rft.au=Surbhi+Gupta&rft.au=Surbhi+Gupta&rft.au=Manoj+K.+Gupta&rft.au=Mohammad+Shabaz&rft.date=2022-09-30&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-042X&rft.volume=13&rft_id=info:doi/10.3389%2Ffphys.2022.952709&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5644a6d40ac24d28a60b079c738cc460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon