Characterization of noise in long-term ECG monitoring with machine learning based on clinical criteria

Noise and artifacts affect strongly the quality of the electrocardiogram (ECG) in long-term ECG monitoring (LTM), making some of its parts impractical for diagnosis. The clinical severity of noise defines a qualitative quality score according to the manner clinicians make the interpretation of the E...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 61; no. 9; pp. 2227 - 2240
Main Authors Holgado-Cuadrado, Roberto, Plaza-Seco, Carmen, Lovisolo, Lisandro, Blanco-Velasco, Manuel
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0140-0118
1741-0444
1741-0444
DOI10.1007/s11517-023-02802-5

Cover

Abstract Noise and artifacts affect strongly the quality of the electrocardiogram (ECG) in long-term ECG monitoring (LTM), making some of its parts impractical for diagnosis. The clinical severity of noise defines a qualitative quality score according to the manner clinicians make the interpretation of the ECG, in contrast to assess noise from a quantitative standpoint. So clinical noise refers to a scale of different levels of qualitative severity of noise which aims at elucidating which ECG fragments are valid to achieve diagnosis from a clinical point of view, unlike the traditional approach, which assesses noise in terms of quantitative severity. This work proposes the use of machine learning (ML) techniques to categorize different qualitative noise severity using a database annotated according to a clinical noise taxonomy as gold standard. A comparative study is carried out using five representative ML methods, namely, K neareast neighbors, decision trees, support vector machine, single-layer perceptron, and random forest. The models are fed by signal quality indexes characterizing the waveform in time and frequency domains, as well as from a statistical viewpoint, to distinguish between clinically valid ECG segments from invalid ones. A solid methodology to prevent overfitting to both the dataset and the patient is developed, taking into account balance of classes, patient separation, and patient rotation in the test set. All the proposed learning systems have demonstrated good classification performance, attaining a recall, precision, and F1 score up to 0.78, 0.80, and 0.77, respectively, in the test set by a single-layer perceptron approach. These systems provide a classification solution for assessing the clinical quality of the ECG taken from LTM recordings. Graphical Abstract Clinical Noise Severity Classification based on Machine Learning techniques towards Long-Term ECG Monitoring
AbstractList Noise and artifacts affect strongly the quality of the electrocardiogram (ECG) in long-term ECG monitoring (LTM), making some of its parts impractical for diagnosis. The clinical severity of noise defines a qualitative quality score according to the manner clinicians make the interpretation of the ECG, in contrast to assess noise from a quantitative standpoint. So clinical noise refers to a scale of different levels of qualitative severity of noise which aims at elucidating which ECG fragments are valid to achieve diagnosis from a clinical point of view, unlike the traditional approach, which assesses noise in terms of quantitative severity. This work proposes the use of machine learning (ML) techniques to categorize different qualitative noise severity using a database annotated according to a clinical noise taxonomy as gold standard. A comparative study is carried out using five representative ML methods, namely, K neareast neighbors, decision trees, support vector machine, single-layer perceptron, and random forest. The models are fed by signal quality indexes characterizing the waveform in time and frequency domains, as well as from a statistical viewpoint, to distinguish between clinically valid ECG segments from invalid ones. A solid methodology to prevent overfitting to both the dataset and the patient is developed, taking into account balance of classes, patient separation, and patient rotation in the test set. All the proposed learning systems have demonstrated good classification performance, attaining a recall, precision, and F1 score up to 0.78, 0.80, and 0.77, respectively, in the test set by a single-layer perceptron approach. These systems provide a classification solution for assessing the clinical quality of the ECG taken from LTM recordings. Graphical AbstractClinical Noise Severity Classification based on Machine Learning techniques towards Long-Term ECG Monitoring
Noise and artifacts affect strongly the quality of the electrocardiogram (ECG) in long-term ECG monitoring (LTM), making some of its parts impractical for diagnosis. The clinical severity of noise defines a qualitative quality score according to the manner clinicians make the interpretation of the ECG, in contrast to assess noise from a quantitative standpoint. So clinical noise refers to a scale of different levels of qualitative severity of noise which aims at elucidating which ECG fragments are valid to achieve diagnosis from a clinical point of view, unlike the traditional approach, which assesses noise in terms of quantitative severity. This work proposes the use of machine learning (ML) techniques to categorize different qualitative noise severity using a database annotated according to a clinical noise taxonomy as gold standard. A comparative study is carried out using five representative ML methods, namely, K neareast neighbors, decision trees, support vector machine, single-layer perceptron, and random forest. The models are fed by signal quality indexes characterizing the waveform in time and frequency domains, as well as from a statistical viewpoint, to distinguish between clinically valid ECG segments from invalid ones. A solid methodology to prevent overfitting to both the dataset and the patient is developed, taking into account balance of classes, patient separation, and patient rotation in the test set. All the proposed learning systems have demonstrated good classification performance, attaining a recall, precision, and F1 score up to 0.78, 0.80, and 0.77, respectively, in the test set by a single-layer perceptron approach. These systems provide a classification solution for assessing the clinical quality of the ECG taken from LTM recordings. Graphical Abstract Clinical Noise Severity Classification based on Machine Learning techniques towards Long-Term ECG Monitoring
Noise and artifacts affect strongly the quality of the electrocardiogram (ECG) in long-term ECG monitoring (LTM), making some of its parts impractical for diagnosis. The clinical severity of noise defines a qualitative quality score according to the manner clinicians make the interpretation of the ECG, in contrast to assess noise from a quantitative standpoint. So clinical noise refers to a scale of different levels of qualitative severity of noise which aims at elucidating which ECG fragments are valid to achieve diagnosis from a clinical point of view, unlike the traditional approach, which assesses noise in terms of quantitative severity. This work proposes the use of machine learning (ML) techniques to categorize different qualitative noise severity using a database annotated according to a clinical noise taxonomy as gold standard. A comparative study is carried out using five representative ML methods, namely, K neareast neighbors, decision trees, support vector machine, single-layer perceptron, and random forest. The models are fed by signal quality indexes characterizing the waveform in time and frequency domains, as well as from a statistical viewpoint, to distinguish between clinically valid ECG segments from invalid ones. A solid methodology to prevent overfitting to both the dataset and the patient is developed, taking into account balance of classes, patient separation, and patient rotation in the test set. All the proposed learning systems have demonstrated good classification performance, attaining a recall, precision, and F1 score up to 0.78, 0.80, and 0.77, respectively, in the test set by a single-layer perceptron approach. These systems provide a classification solution for assessing the clinical quality of the ECG taken from LTM recordings.
Noise and artifacts affect strongly the quality of the electrocardiogram (ECG) in long-term ECG monitoring (LTM), making some of its parts impractical for diagnosis. The clinical severity of noise defines a qualitative quality score according to the manner clinicians make the interpretation of the ECG, in contrast to assess noise from a quantitative standpoint. So clinical noise refers to a scale of different levels of qualitative severity of noise which aims at elucidating which ECG fragments are valid to achieve diagnosis from a clinical point of view, unlike the traditional approach, which assesses noise in terms of quantitative severity. This work proposes the use of machine learning (ML) techniques to categorize different qualitative noise severity using a database annotated according to a clinical noise taxonomy as gold standard. A comparative study is carried out using five representative ML methods, namely, K neareast neighbors, decision trees, support vector machine, single-layer perceptron, and random forest. The models are fed by signal quality indexes characterizing the waveform in time and frequency domains, as well as from a statistical viewpoint, to distinguish between clinically valid ECG segments from invalid ones. A solid methodology to prevent overfitting to both the dataset and the patient is developed, taking into account balance of classes, patient separation, and patient rotation in the test set. All the proposed learning systems have demonstrated good classification performance, attaining a recall, precision, and F1 score up to 0.78, 0.80, and 0.77, respectively, in the test set by a single-layer perceptron approach. These systems provide a classification solution for assessing the clinical quality of the ECG taken from LTM recordings. Graphical Abstract Clinical Noise Severity Classification based on Machine Learning techniques towards Long-Term ECG Monitoring
Noise and artifacts affect strongly the quality of the electrocardiogram (ECG) in long-term ECG monitoring (LTM), making some of its parts impractical for diagnosis. The clinical severity of noise defines a qualitative quality score according to the manner clinicians make the interpretation of the ECG, in contrast to assess noise from a quantitative standpoint. So clinical noise refers to a scale of different levels of qualitative severity of noise which aims at elucidating which ECG fragments are valid to achieve diagnosis from a clinical point of view, unlike the traditional approach, which assesses noise in terms of quantitative severity. This work proposes the use of machine learning (ML) techniques to categorize different qualitative noise severity using a database annotated according to a clinical noise taxonomy as gold standard. A comparative study is carried out using five representative ML methods, namely, K neareast neighbors, decision trees, support vector machine, single-layer perceptron, and random forest. The models are fed by signal quality indexes characterizing the waveform in time and frequency domains, as well as from a statistical viewpoint, to distinguish between clinically valid ECG segments from invalid ones. A solid methodology to prevent overfitting to both the dataset and the patient is developed, taking into account balance of classes, patient separation, and patient rotation in the test set. All the proposed learning systems have demonstrated good classification performance, attaining a recall, precision, and F1 score up to 0.78, 0.80, and 0.77, respectively, in the test set by a single-layer perceptron approach. These systems provide a classification solution for assessing the clinical quality of the ECG taken from LTM recordings. Graphical Abstract Clinical Noise Severity Classification based on Machine Learning techniques towards Long-Term ECG Monitoring.Noise and artifacts affect strongly the quality of the electrocardiogram (ECG) in long-term ECG monitoring (LTM), making some of its parts impractical for diagnosis. The clinical severity of noise defines a qualitative quality score according to the manner clinicians make the interpretation of the ECG, in contrast to assess noise from a quantitative standpoint. So clinical noise refers to a scale of different levels of qualitative severity of noise which aims at elucidating which ECG fragments are valid to achieve diagnosis from a clinical point of view, unlike the traditional approach, which assesses noise in terms of quantitative severity. This work proposes the use of machine learning (ML) techniques to categorize different qualitative noise severity using a database annotated according to a clinical noise taxonomy as gold standard. A comparative study is carried out using five representative ML methods, namely, K neareast neighbors, decision trees, support vector machine, single-layer perceptron, and random forest. The models are fed by signal quality indexes characterizing the waveform in time and frequency domains, as well as from a statistical viewpoint, to distinguish between clinically valid ECG segments from invalid ones. A solid methodology to prevent overfitting to both the dataset and the patient is developed, taking into account balance of classes, patient separation, and patient rotation in the test set. All the proposed learning systems have demonstrated good classification performance, attaining a recall, precision, and F1 score up to 0.78, 0.80, and 0.77, respectively, in the test set by a single-layer perceptron approach. These systems provide a classification solution for assessing the clinical quality of the ECG taken from LTM recordings. Graphical Abstract Clinical Noise Severity Classification based on Machine Learning techniques towards Long-Term ECG Monitoring.
Noise and artifacts affect strongly the quality of the electrocardiogram (ECG) in long-term ECG monitoring (LTM), making some of its parts impractical for diagnosis. The clinical severity of noise defines a qualitative quality score according to the manner clinicians make the interpretation of the ECG, in contrast to assess noise from a quantitative standpoint. So clinical noise refers to a scale of different levels of qualitative severity of noise which aims at elucidating which ECG fragments are valid to achieve diagnosis from a clinical point of view, unlike the traditional approach, which assesses noise in terms of quantitative severity. This work proposes the use of machine learning (ML) techniques to categorize different qualitative noise severity using a database annotated according to a clinical noise taxonomy as gold standard. A comparative study is carried out using five representative ML methods, namely, K neareast neighbors, decision trees, support vector machine, single-layer perceptron, and random forest. The models are fed by signal quality indexes characterizing the waveform in time and frequency domains, as well as from a statistical viewpoint, to distinguish between clinically valid ECG segments from invalid ones. A solid methodology to prevent overfitting to both the dataset and the patient is developed, taking into account balance of classes, patient separation, and patient rotation in the test set. All the proposed learning systems have demonstrated good classification performance, attaining a recall, precision, and F1 score up to 0.78, 0.80, and 0.77, respectively, in the test set by a single-layer perceptron approach. These systems provide a classification solution for assessing the clinical quality of the ECG taken from LTM recordings. Graphical Abstract Clinical Noise Severity Classification based on Machine Learning techniques towards Long-Term ECG Monitoring.
Noise and artifacts affect strongly the quality of the electrocardiogram (ECG) in long-term ECG monitoring (LTM), making some of its parts impractical for diagnosis. The clinical severity of noise defines a qualitative quality score according to the manner clinicians make the interpretation of the ECG, in contrast to assess noise from a quantitative standpoint. So clinical noise refers to a scale of different levels of qualitative severity of noise which aims at elucidating which ECG fragments are valid to achieve diagnosis from a clinical point of view, unlike the traditional approach, which assesses noise in terms of quantitative severity. This work proposes the use of machine learning (ML) techniques to categorize different qualitative noise severity using a database annotated according to a clinical noise taxonomy as gold standard. A comparative study is carried out using five representative ML methods, namely, K neareast neighbors, decision trees, support vector machine, single-layer perceptron, and random forest. The models are fed by signal quality indexes characterizing the waveform in time and frequency domains, as well as from a statistical viewpoint, to distinguish between clinically valid ECG segments from invalid ones. A solid methodology to prevent overfitting to both the dataset and the patient is developed, taking into account balance of classes, patient separation, and patient rotation in the test set. All the proposed learning systems have demonstrated good classification performance, attaining a recall, precision, and F1 score up to 0.78, 0.80, and 0.77, respectively, in the test set by a single-layer perceptron approach. These systems provide a classification solution for assessing the clinical quality of the ECG taken from LTM recordings.
Author Blanco-Velasco, Manuel
Plaza-Seco, Carmen
Lovisolo, Lisandro
Holgado-Cuadrado, Roberto
Author_xml – sequence: 1
  givenname: Roberto
  orcidid: 0000-0002-5913-341X
  surname: Holgado-Cuadrado
  fullname: Holgado-Cuadrado, Roberto
  email: roberto.holgado@uah.es
  organization: Department for Signal Theory and Communications, Universidad de Alcalá
– sequence: 2
  givenname: Carmen
  orcidid: 0000-0002-4714-1789
  surname: Plaza-Seco
  fullname: Plaza-Seco, Carmen
  organization: Department for Signal Theory and Communications, Universidad de Alcalá
– sequence: 3
  givenname: Lisandro
  orcidid: 0000-0002-7404-9371
  surname: Lovisolo
  fullname: Lovisolo, Lisandro
  organization: Department for Signal Theory and Communications, Universidad de Alcalá, DETEL - Dep. of Electronics and Communications Engineering, UERJ - Rio de Janeiro State University
– sequence: 4
  givenname: Manuel
  orcidid: 0000-0001-6593-1517
  surname: Blanco-Velasco
  fullname: Blanco-Velasco, Manuel
  organization: Department for Signal Theory and Communications, Universidad de Alcalá
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37010711$$D View this record in MEDLINE/PubMed
BookMark eNqNks1vFCEYxompsdvqP-DBkHjxMsrLxwxzMmbTD5MmXvRMWGB2aRhYYcam_etlu6vVHqoHQgLP8-Th93KCjmKKDqHXQN4DId2HAiCgawhldUlCG_EMLaDj0BDO-RFaEOCkIQDyGJ2Uck0IBUH5C3TMOgKkA1igYbnRWZvJZX-nJ58iTgOOyReHfcQhxXVT70Z8trzAY4p-StnHNb7x0waP2mx8dDg4nePudKWLs7hmmOCjNzpgk_0uWr9Ezwcdint12E_Rt_Ozr8vL5urLxeflp6vGCCKnRveGSwq192roeme14NpIIFxYy12v6UBWwrbSth2DHrhpiR0GCnZgjmtL2Sli-9w5bvXtjQ5BbbMfdb5VQNSOmtpTU5WauqemRHV93Lu282p01rg4Zf3gTNqrv2-i36h1-lEDOdBW8prw7pCQ0_fZlUmNvhgXgo4uzUUxEAxkLwX7p5R2PW97Kimp0rePpNdpzrECVFRySaAF1lbVmz_b_679a8hVIPcCk1Mp2Q3K-Ol-2PUxPjxNhj6y_hfOwxDKdvdZXH6o_YTrJyy62v8
CitedBy_id crossref_primary_10_1016_j_talanta_2024_126180
crossref_primary_10_3390_bioengineering11030222
crossref_primary_10_1109_TBME_2024_3454545
crossref_primary_10_1016_j_bspc_2025_107523
Cites_doi 10.1016/j.cmpb.2015.12.008
10.1186/s12938-015-0053-1
10.1023/A:1010933404324
10.1109/TBME.2014.2355135
10.1161/01.STR.0000131269.69502.d9
10.1161/01.CIR.101.23.e215
10.1186/s12864-019-6413-7
10.1016/j.compbiomed.2007.06.003
10.1016/j.bspc.2021.103316
10.1109/TBME.2010.2048109
10.1109/ACCESS.2019.2912036
10.1109/JBHI.2017.2686436
10.3390/s17112448
10.1007/s11517-022-02633-w
10.1016/j.cmpb.2019.105050
10.1109/RBME.2018.2810957
10.1007/978-0-387-84858-7
10.1016/j.knosys.2021.107385
10.1109/IEMBS.2008.4649801
10.1016/j.ijcard.2008.10.004
10.1016/j.amjcard.2010.04.027
10.1109/ICMB.2014.32
10.1007/BF02522855
10.3389/fphys.2018.00727
10.1016/j.compbiomed.2017.06.009
10.1007/s10115-007-0114-2
10.2139/ssrn.4102843
10.1126/science.134.3486.1214
10.22489/CinC.2016.187-125
10.1109/EMBC.2012.6346633
10.1007/s11517-021-02425-8
10.1016/j.cmpb.2014.09.002
10.1007/978-3-319-46162-5
10.1088/0967-3334/33/9/1419
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1007/s11517-023-02802-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central Nursing & Allied Health database (via ProQuest)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM (via ProQuest)
ABI/INFORM Global (PDF only)
ProQuest Central Health & Medical Collection (via ProQuest)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Science Database (via ProQuest)
ProQuest Central Biological Science Database (via ProQuest)
Biochemistry Abstracts 1
Nursing & Allied Health Premium
ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
ProQuest Business Collection (Alumni Edition)

MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 2240
ExternalDocumentID 10.1007/s11517-023-02802-5
PMC10412684
37010711
10_1007_s11517_023_02802_5
Genre Journal Article
Review
GrantInformation_xml – fundername: Comunidad de Madrid
  funderid: https://doi.org/10.13039/100012818
– fundername: Universidad de Alcalá
– fundername: ;
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7SC
7TB
7TS
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c508t-a9c4821014bf79eda54ac81045dd4e9a2f0b5d68d6731914c60dff21df3e4ad23
IEDL.DBID BENPR
ISSN 0140-0118
1741-0444
IngestDate Sun Oct 26 04:08:31 EDT 2025
Tue Sep 30 17:12:12 EDT 2025
Thu Oct 02 05:31:52 EDT 2025
Fri Sep 05 06:26:41 EDT 2025
Tue Oct 07 05:32:38 EDT 2025
Thu Apr 03 07:10:07 EDT 2025
Wed Oct 01 03:38:02 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
Fri Feb 21 02:43:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Long-term monitoring (LTM)
Machine learning (ML)
Signal quality
Electrocardiogram (ECG)
Clinical noise severity
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-a9c4821014bf79eda54ac81045dd4e9a2f0b5d68d6731914c60dff21df3e4ad23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6593-1517
0000-0002-4714-1789
0000-0002-5913-341X
0000-0002-7404-9371
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s11517-023-02802-5
PMID 37010711
PQID 2848016136
PQPubID 54161
PageCount 14
ParticipantIDs unpaywall_primary_10_1007_s11517_023_02802_5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10412684
proquest_miscellaneous_3153189853
proquest_miscellaneous_2794692820
proquest_journals_2848016136
pubmed_primary_37010711
crossref_citationtrail_10_1007_s11517_023_02802_5
crossref_primary_10_1007_s11517_023_02802_5
springer_journals_10_1007_s11517_023_02802_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Everss-VillalbaEMelgarejo-MeseguerFMBlanco-VelascoMGimeno-BlanesFJSala-PlaSRojo-ÁlvarezJLGarcía-AlberolaANoise maps for quantitative and clinical severity towards long-term ECG monitoringSensors20171711244810.3390/s17112448290683625713011
Moody GB, Muldrow WK, Mark RG (1984) A noise stress test for arrhythmia detectors. In: Computers in cardiology, vol 11, pp 381–384
TomasBGrabovacMTomasKApplication of the R–peak detection algorithm for locating noise in ECG signalsBiomed Sig Process Control20227210331610.1016/j.bspc.2021.103316
QinJWangCZouQSunYChenBActive learning with extreme learning machine for online imbalanced multiclass classificationKnowl-Based Syst202123110738510.1016/j.knosys.2021.107385
BreimanLRandom forestsMach Learn200145153210.1023/A:1010933404324
Everss-Villalba E, Melgarejo-Meseguer F, Gimeno-Blanes FJ, Sala-Pla S, Blanco-Velasco M, Rojo-Álvarez JL, García-Alberola A (2016) Clinical severity of noise in ECG. In: 2016 computing in cardiology conference (CinC), pp 641–644
Varon C, Testelmans D, Buyse B, Suykens JA, Van Huffel S (2012) Robust artefact detection in long-term ECG recordings based on autocorrelation function similarity and percentile analysis. In: IEEE engineering in medicine and biology conference, pp 3151–3154
JabaudonDSztajzelJSievertKLandisTSztajzelRUsefulness of ambulatory 7–day ECG monitoring for the detection of atrial fibrillation and flutter after acute stroke and transient ischemic attackStroke20043571647165110.1161/01.STR.0000131269.69502.d915155965
DagresNKottkampHPiorkowskiCWeisSAryaASommerPBodeKGerds-LiJHKremastinosDTHindricksGInfluence of the duration of Holter monitoring on the detection of arrhythmia recurrences after catheter ablation of atrial fibrillation: Implications for patient follow–upInt J Cardiol2010139330530610.1016/j.ijcard.2008.10.00418990460
BishopCMPattern recognition and machine learning (Information Science and Statistics)2006New YorkSpringer-Verlag
LiQRajagopalanCCliffordGDA machine learning approach to multi-level ECG signal quality classificationComput Methods Programs Biomed2014117343544710.1016/j.cmpb.2014.09.00225306242
SatijaURamkumarBManikandanMSA review of signal processing techniques for electrocardiogram signal quality assessmentIEEE Rev Biomed Eng201811365210.1109/RBME.2018.281095729994590
AhsanMAQayyumARaziAQadirJAn active learning method for diabetic retinopathy classification with uncertainty quantificationMed Biol Eng Comput202260102797281110.1007/s11517-022-02633-w35859243
LuzEJdSSchwartzWRCámara-ChávezGMenottiDECG–based heartbeat classification for arrhythmia detection: a surveyComput Methods Programs Biomed201612714416410.1016/j.cmpb.2015.12.00826775139
SatijaURamkumarBManikandanMSAutomated ECG noise detection and classification system for unsupervised healthcare monitoringIEEE J Biomed Health Inform201822372273210.1109/JBHI.2017.268643628333651
SwerskyKSnoekJAdamsRPMulti-task Bayesian optimizationAdv Neural Inf Process Syst20132629512959
BujaLMButanyJCardiovascular pathology20164th edn.San DiegoAcademic Press
PortaABaselliGLambardiFCeruttiSAntoliniRDel GrecoMRavelliFNolloGPerformance assessment of standard algorithms for dynamic RT interval measurement: comparison between R-Tapex and R-Tend approachMed Biol Eng Comput199836135421:STN:280:DyaK1c3ns12msw%3D%3D10.1007/BF025228559614746
HeumannCShomakerMShalabh: introduction to statistics and data analysis2016SwitzerlandSpringer10.1007/978-3-319-46162-5
Clifford GD, Azuaje F, McSharry P et al (2006) Advanced methods and tools for ECG data analysis. Artech Hsouse Boston
Blanco-VelascoMWengBBarnerKEECG signal denoising and baseline wander correction based on the empirical mode decompositionComput Biol Med200838111310.1016/j.compbiomed.2007.06.00317669389
GoodfellowIBengioYCourvilleADeep learning2016CambridgeMIT Press
SnoekJLarochelleHAdamsRPPractical Bayesian optimization of machine learning algorithmsAdv Neural Inf Process Syst20122529512959
HolterNJNew method for heart studiesScience19611343486121412201:STN:280:DyaF38%2FkvF2kuw%3D%3D10.1126/science.134.3486.121413908591
WuXKumarVRoss QuinlanJGhoshJYangQMotodaHMcLachlanGJNgALiuBYuPSTop 10 algorithms in data miningKnowl Inf Syst200814113710.1007/s10115-007-0114-2
HastieTTibshiraniRFriedmanJThe elements of statistical learning: data mining, inference and prediction20092nd edn.New YorkSpringer10.1007/978-0-387-84858-7
Nuñez Y, Lovisolo L, da Silva Mello L, Orihuela C (2022) On the interpretability of machine learning regression for path-loss prediction of millimeter-wave links. Expert Systems with Applications p 119324
Jiali W, Yue Z (2014) Research and implementation of Holter data format unification. In: International conference on medical biometrics, pp 141–146
ChiangHTHsiehYYFuSWHungKHTsaoYChienSYNoise reduction in ECG signals using fully convolutional denoising autoencodersIEEE Access20197608066081310.1109/ACCESS.2019.2912036
OrphanidouCBonniciTCharltonPCliftonDVallanceDTarassenkoLSignal–quality indices for the electrocardiogram and photoplethysmogram: Derivation and applications to wireless monitoringIEEE J Biomed Health Inform201519383283825069129
CliffordGBeharJLiQRezekISignal quality indices and data fusion for determining clinical acceptability of electrocardiogramsPhysiol Meas2012339141914331:STN:280:DC%2BC38fovF2kug%3D%3D10.1088/0967-3334/33/9/141922902749
Redmond SJ, Lovell NH, Basilakis J, Celler BG (2008) ECG quality measures in telecare monitoring. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society, pp 2869–2872
ChiccoDJurmanGThe advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluationBMC Genomics202021111310.1186/s12864-019-6413-7
MorgadoEAlonso-AtienzaFSantiago-MozosRBarquero-PérezÓSilvaIRamosJMarkRQuality estimation of the electrocardiogram using cross-correlation among leadsBiomed Eng Online201514111910.1186/s12938-015-0053-1
TobónDPFalkTHMaierMMS-QI: a modulation spectrum-based ECG quality index for telehealth applicationsIEEE Trans Biomed Eng20146381613162210.1109/TBME.2014.2355135
GoldbergerAAmaralLGlassLHausdorffJIvanovPMarkRMietusJMoodyGBPengCStanleyHPhysiobank, Physiotoolkit, and Physionet: components of a new research resource for complex physiologic signalsCirculation200010123E215201:STN:280:DC%2BD3czhtFGisw%3D%3D10.1161/01.CIR.101.23.e21510851218
XieJPengLWeiLGongYZuoFWangJYinCLiYA signal quality assessment–based ECG waveform delineation method used for wearable monitoring systemsMed Biol Eng Comput202159102073208410.1007/s11517-021-02425-834432182
MoeyersonsJSmetsEMoralesJVillaADe RaedtWTestelmansDBuyseBVan HoofCWillemsRVan HuffelSArtefact detection and quality assessment of ambulatory ECG signalsComput Methods Programs Biomed201918210505010.1016/j.cmpb.2019.105050314734426891233
Blanco-VelascoMCruz-RoldánFGodino-LlorenteJIBarnerKENonlinear trend estimation of the ventricular repolarization segment for T-wave alternans detectionIEEE Trans Biomed Eng201057102402241210.1109/TBME.2010.204810920409985
RodriguesJBeloDGamboaHNoise detection on ECG based on agglomerative clustering of morphological featuresComput Biol Med20178732233410.1016/j.compbiomed.2017.06.00928649031
Pastor-PérezFJManzano-FernándezSGoya-EstebanRPascual-FigalDABarquero-PérezOComparison of detection of arrhythmias in patients with chronic heart failure secondary to non-ischemic versus ischemic cardiomyopathy by 1 versus 7-day Holter monitoringAm J Cardiol2010106567768110.1016/j.amjcard.2010.04.02720723645
ZhaoZZhangYSQI quality evaluation mechanism of single-lead ECG signal based on simple heuristic fusion and fuzzy comprehensive evaluationFront Physiol2018972710.3389/fphys.2018.00727299629626011094
T Hastie (2802_CR33) 2009
NJ Holter (2802_CR3) 1961; 134
2802_CR4
B Tomas (2802_CR16) 2022; 72
LM Buja (2802_CR1) 2016
J Qin (2802_CR41) 2021; 231
MA Ahsan (2802_CR42) 2022; 60
FJ Pastor-Pérez (2802_CR7) 2010; 106
G Clifford (2802_CR24) 2012; 33
Z Zhao (2802_CR19) 2018; 9
A Goldberger (2802_CR29) 2000; 101
J Snoek (2802_CR30) 2012; 25
U Satija (2802_CR12) 2018; 11
Q Li (2802_CR26) 2014; 117
J Rodrigues (2802_CR25) 2017; 87
L Breiman (2802_CR34) 2001; 45
D Chicco (2802_CR39) 2020; 21
A Porta (2802_CR14) 1998; 36
C Orphanidou (2802_CR18) 2015; 19
I Goodfellow (2802_CR36) 2016
C Heumann (2802_CR38) 2016
N Dagres (2802_CR6) 2010; 139
2802_CR17
E Everss-Villalba (2802_CR10) 2017; 17
2802_CR9
2802_CR8
U Satija (2802_CR27) 2018; 22
M Blanco-Velasco (2802_CR37) 2010; 57
EJdS Luz (2802_CR2) 2016; 127
J Xie (2802_CR23) 2021; 59
E Morgado (2802_CR22) 2015; 14
X Wu (2802_CR35) 2008; 14
CM Bishop (2802_CR32) 2006
K Swersky (2802_CR31) 2013; 26
2802_CR20
2802_CR40
M Blanco-Velasco (2802_CR11) 2008; 38
J Moeyersons (2802_CR21) 2019; 182
DP Tobón (2802_CR15) 2014; 63
D Jabaudon (2802_CR5) 2004; 35
HT Chiang (2802_CR13) 2019; 7
2802_CR28
References_xml – reference: LuzEJdSSchwartzWRCámara-ChávezGMenottiDECG–based heartbeat classification for arrhythmia detection: a surveyComput Methods Programs Biomed201612714416410.1016/j.cmpb.2015.12.00826775139
– reference: BishopCMPattern recognition and machine learning (Information Science and Statistics)2006New YorkSpringer-Verlag
– reference: HastieTTibshiraniRFriedmanJThe elements of statistical learning: data mining, inference and prediction20092nd edn.New YorkSpringer10.1007/978-0-387-84858-7
– reference: JabaudonDSztajzelJSievertKLandisTSztajzelRUsefulness of ambulatory 7–day ECG monitoring for the detection of atrial fibrillation and flutter after acute stroke and transient ischemic attackStroke20043571647165110.1161/01.STR.0000131269.69502.d915155965
– reference: GoodfellowIBengioYCourvilleADeep learning2016CambridgeMIT Press
– reference: Blanco-VelascoMWengBBarnerKEECG signal denoising and baseline wander correction based on the empirical mode decompositionComput Biol Med200838111310.1016/j.compbiomed.2007.06.00317669389
– reference: Everss-Villalba E, Melgarejo-Meseguer F, Gimeno-Blanes FJ, Sala-Pla S, Blanco-Velasco M, Rojo-Álvarez JL, García-Alberola A (2016) Clinical severity of noise in ECG. In: 2016 computing in cardiology conference (CinC), pp 641–644
– reference: CliffordGBeharJLiQRezekISignal quality indices and data fusion for determining clinical acceptability of electrocardiogramsPhysiol Meas2012339141914331:STN:280:DC%2BC38fovF2kug%3D%3D10.1088/0967-3334/33/9/141922902749
– reference: Jiali W, Yue Z (2014) Research and implementation of Holter data format unification. In: International conference on medical biometrics, pp 141–146
– reference: ChiangHTHsiehYYFuSWHungKHTsaoYChienSYNoise reduction in ECG signals using fully convolutional denoising autoencodersIEEE Access20197608066081310.1109/ACCESS.2019.2912036
– reference: SwerskyKSnoekJAdamsRPMulti-task Bayesian optimizationAdv Neural Inf Process Syst20132629512959
– reference: WuXKumarVRoss QuinlanJGhoshJYangQMotodaHMcLachlanGJNgALiuBYuPSTop 10 algorithms in data miningKnowl Inf Syst200814113710.1007/s10115-007-0114-2
– reference: Pastor-PérezFJManzano-FernándezSGoya-EstebanRPascual-FigalDABarquero-PérezOComparison of detection of arrhythmias in patients with chronic heart failure secondary to non-ischemic versus ischemic cardiomyopathy by 1 versus 7-day Holter monitoringAm J Cardiol2010106567768110.1016/j.amjcard.2010.04.02720723645
– reference: SatijaURamkumarBManikandanMSA review of signal processing techniques for electrocardiogram signal quality assessmentIEEE Rev Biomed Eng201811365210.1109/RBME.2018.281095729994590
– reference: HolterNJNew method for heart studiesScience19611343486121412201:STN:280:DyaF38%2FkvF2kuw%3D%3D10.1126/science.134.3486.121413908591
– reference: TobónDPFalkTHMaierMMS-QI: a modulation spectrum-based ECG quality index for telehealth applicationsIEEE Trans Biomed Eng20146381613162210.1109/TBME.2014.2355135
– reference: Blanco-VelascoMCruz-RoldánFGodino-LlorenteJIBarnerKENonlinear trend estimation of the ventricular repolarization segment for T-wave alternans detectionIEEE Trans Biomed Eng201057102402241210.1109/TBME.2010.204810920409985
– reference: Everss-VillalbaEMelgarejo-MeseguerFMBlanco-VelascoMGimeno-BlanesFJSala-PlaSRojo-ÁlvarezJLGarcía-AlberolaANoise maps for quantitative and clinical severity towards long-term ECG monitoringSensors20171711244810.3390/s17112448290683625713011
– reference: Nuñez Y, Lovisolo L, da Silva Mello L, Orihuela C (2022) On the interpretability of machine learning regression for path-loss prediction of millimeter-wave links. Expert Systems with Applications p 119324
– reference: TomasBGrabovacMTomasKApplication of the R–peak detection algorithm for locating noise in ECG signalsBiomed Sig Process Control20227210331610.1016/j.bspc.2021.103316
– reference: DagresNKottkampHPiorkowskiCWeisSAryaASommerPBodeKGerds-LiJHKremastinosDTHindricksGInfluence of the duration of Holter monitoring on the detection of arrhythmia recurrences after catheter ablation of atrial fibrillation: Implications for patient follow–upInt J Cardiol2010139330530610.1016/j.ijcard.2008.10.00418990460
– reference: SnoekJLarochelleHAdamsRPPractical Bayesian optimization of machine learning algorithmsAdv Neural Inf Process Syst20122529512959
– reference: Clifford GD, Azuaje F, McSharry P et al (2006) Advanced methods and tools for ECG data analysis. Artech Hsouse Boston
– reference: HeumannCShomakerMShalabh: introduction to statistics and data analysis2016SwitzerlandSpringer10.1007/978-3-319-46162-5
– reference: OrphanidouCBonniciTCharltonPCliftonDVallanceDTarassenkoLSignal–quality indices for the electrocardiogram and photoplethysmogram: Derivation and applications to wireless monitoringIEEE J Biomed Health Inform201519383283825069129
– reference: RodriguesJBeloDGamboaHNoise detection on ECG based on agglomerative clustering of morphological featuresComput Biol Med20178732233410.1016/j.compbiomed.2017.06.00928649031
– reference: SatijaURamkumarBManikandanMSAutomated ECG noise detection and classification system for unsupervised healthcare monitoringIEEE J Biomed Health Inform201822372273210.1109/JBHI.2017.268643628333651
– reference: QinJWangCZouQSunYChenBActive learning with extreme learning machine for online imbalanced multiclass classificationKnowl-Based Syst202123110738510.1016/j.knosys.2021.107385
– reference: LiQRajagopalanCCliffordGDA machine learning approach to multi-level ECG signal quality classificationComput Methods Programs Biomed2014117343544710.1016/j.cmpb.2014.09.00225306242
– reference: Varon C, Testelmans D, Buyse B, Suykens JA, Van Huffel S (2012) Robust artefact detection in long-term ECG recordings based on autocorrelation function similarity and percentile analysis. In: IEEE engineering in medicine and biology conference, pp 3151–3154
– reference: BujaLMButanyJCardiovascular pathology20164th edn.San DiegoAcademic Press
– reference: BreimanLRandom forestsMach Learn200145153210.1023/A:1010933404324
– reference: AhsanMAQayyumARaziAQadirJAn active learning method for diabetic retinopathy classification with uncertainty quantificationMed Biol Eng Comput202260102797281110.1007/s11517-022-02633-w35859243
– reference: MoeyersonsJSmetsEMoralesJVillaADe RaedtWTestelmansDBuyseBVan HoofCWillemsRVan HuffelSArtefact detection and quality assessment of ambulatory ECG signalsComput Methods Programs Biomed201918210505010.1016/j.cmpb.2019.105050314734426891233
– reference: MorgadoEAlonso-AtienzaFSantiago-MozosRBarquero-PérezÓSilvaIRamosJMarkRQuality estimation of the electrocardiogram using cross-correlation among leadsBiomed Eng Online201514111910.1186/s12938-015-0053-1
– reference: ZhaoZZhangYSQI quality evaluation mechanism of single-lead ECG signal based on simple heuristic fusion and fuzzy comprehensive evaluationFront Physiol2018972710.3389/fphys.2018.00727299629626011094
– reference: PortaABaselliGLambardiFCeruttiSAntoliniRDel GrecoMRavelliFNolloGPerformance assessment of standard algorithms for dynamic RT interval measurement: comparison between R-Tapex and R-Tend approachMed Biol Eng Comput199836135421:STN:280:DyaK1c3ns12msw%3D%3D10.1007/BF025228559614746
– reference: Redmond SJ, Lovell NH, Basilakis J, Celler BG (2008) ECG quality measures in telecare monitoring. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society, pp 2869–2872
– reference: XieJPengLWeiLGongYZuoFWangJYinCLiYA signal quality assessment–based ECG waveform delineation method used for wearable monitoring systemsMed Biol Eng Comput202159102073208410.1007/s11517-021-02425-834432182
– reference: Moody GB, Muldrow WK, Mark RG (1984) A noise stress test for arrhythmia detectors. In: Computers in cardiology, vol 11, pp 381–384
– reference: GoldbergerAAmaralLGlassLHausdorffJIvanovPMarkRMietusJMoodyGBPengCStanleyHPhysiobank, Physiotoolkit, and Physionet: components of a new research resource for complex physiologic signalsCirculation200010123E215201:STN:280:DC%2BD3czhtFGisw%3D%3D10.1161/01.CIR.101.23.e21510851218
– reference: ChiccoDJurmanGThe advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluationBMC Genomics202021111310.1186/s12864-019-6413-7
– volume: 127
  start-page: 144
  year: 2016
  ident: 2802_CR2
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2015.12.008
– volume: 14
  start-page: 1
  issue: 1
  year: 2015
  ident: 2802_CR22
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-015-0053-1
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 2802_CR34
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 63
  start-page: 1613
  issue: 8
  year: 2014
  ident: 2802_CR15
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2355135
– volume: 35
  start-page: 1647
  issue: 7
  year: 2004
  ident: 2802_CR5
  publication-title: Stroke
  doi: 10.1161/01.STR.0000131269.69502.d9
– volume: 101
  start-page: E215
  issue: 23
  year: 2000
  ident: 2802_CR29
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: 2802_CR8
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  ident: 2802_CR39
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6413-7
– volume: 38
  start-page: 1
  issue: 1
  year: 2008
  ident: 2802_CR11
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2007.06.003
– volume: 72
  start-page: 103316
  year: 2022
  ident: 2802_CR16
  publication-title: Biomed Sig Process Control
  doi: 10.1016/j.bspc.2021.103316
– volume: 57
  start-page: 2402
  issue: 10
  year: 2010
  ident: 2802_CR37
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2048109
– ident: 2802_CR28
– volume: 7
  start-page: 60806
  year: 2019
  ident: 2802_CR13
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912036
– volume: 22
  start-page: 722
  issue: 3
  year: 2018
  ident: 2802_CR27
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2686436
– volume: 17
  start-page: 2448
  issue: 11
  year: 2017
  ident: 2802_CR10
  publication-title: Sensors
  doi: 10.3390/s17112448
– volume: 60
  start-page: 2797
  issue: 10
  year: 2022
  ident: 2802_CR42
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-022-02633-w
– volume: 182
  start-page: 105050
  year: 2019
  ident: 2802_CR21
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.105050
– volume-title: Pattern recognition and machine learning (Information Science and Statistics)
  year: 2006
  ident: 2802_CR32
– volume: 11
  start-page: 36
  year: 2018
  ident: 2802_CR12
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2018.2810957
– volume-title: The elements of statistical learning: data mining, inference and prediction
  year: 2009
  ident: 2802_CR33
  doi: 10.1007/978-0-387-84858-7
– volume: 231
  start-page: 107385
  year: 2021
  ident: 2802_CR41
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107385
– volume: 19
  start-page: 832
  issue: 3
  year: 2015
  ident: 2802_CR18
  publication-title: IEEE J Biomed Health Inform
– ident: 2802_CR17
  doi: 10.1109/IEMBS.2008.4649801
– volume: 139
  start-page: 305
  issue: 3
  year: 2010
  ident: 2802_CR6
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2008.10.004
– volume-title: Cardiovascular pathology
  year: 2016
  ident: 2802_CR1
– volume: 106
  start-page: 677
  issue: 5
  year: 2010
  ident: 2802_CR7
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2010.04.027
– ident: 2802_CR4
  doi: 10.1109/ICMB.2014.32
– volume-title: Deep learning
  year: 2016
  ident: 2802_CR36
– volume: 36
  start-page: 35
  issue: 1
  year: 1998
  ident: 2802_CR14
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02522855
– volume: 9
  start-page: 727
  year: 2018
  ident: 2802_CR19
  publication-title: Front Physiol
  doi: 10.3389/fphys.2018.00727
– volume: 87
  start-page: 322
  year: 2017
  ident: 2802_CR25
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.06.009
– volume: 14
  start-page: 1
  issue: 1
  year: 2008
  ident: 2802_CR35
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-007-0114-2
– volume: 26
  start-page: 2951
  year: 2013
  ident: 2802_CR31
  publication-title: Adv Neural Inf Process Syst
– ident: 2802_CR40
  doi: 10.2139/ssrn.4102843
– volume: 134
  start-page: 1214
  issue: 3486
  year: 1961
  ident: 2802_CR3
  publication-title: Science
  doi: 10.1126/science.134.3486.1214
– volume: 25
  start-page: 2951
  year: 2012
  ident: 2802_CR30
  publication-title: Adv Neural Inf Process Syst
– ident: 2802_CR9
  doi: 10.22489/CinC.2016.187-125
– ident: 2802_CR20
  doi: 10.1109/EMBC.2012.6346633
– volume: 59
  start-page: 2073
  issue: 10
  year: 2021
  ident: 2802_CR23
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-021-02425-8
– volume: 117
  start-page: 435
  issue: 3
  year: 2014
  ident: 2802_CR26
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2014.09.002
– volume-title: Shalabh: introduction to statistics and data analysis
  year: 2016
  ident: 2802_CR38
  doi: 10.1007/978-3-319-46162-5
– volume: 33
  start-page: 1419
  issue: 9
  year: 2012
  ident: 2802_CR24
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/33/9/1419
SSID ssj0021524
Score 2.4554002
SecondaryResourceType review_article
Snippet Noise and artifacts affect strongly the quality of the electrocardiogram (ECG) in long-term ECG monitoring (LTM), making some of its parts impractical for...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2227
SubjectTerms Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Classification
Comparative studies
comparative study
Computer Applications
data collection
Decision trees
Diagnosis
EKG
Electrocardiography
Human Physiology
Imaging
Learning algorithms
Machine learning
Noise monitoring
patients
Performance indices
Quality assessment
Radiology
Review
Review Article
Signal quality
Support vector machines
Taxonomy
Test sets
Waveforms
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVuJx4NlCSkFG4kZd5eEkzrFabVuByomVyily_Cgrtk7F7grBr-9MXstSqOg5tmM745lvMjOfAd6F2orIpprnaBs4ar-cV5VMuUPnORWZRJ-IfuiffspOpuLDWXrWFYUt-mz3PiTZaOp1sRsap5yjjeEUDkQX6i5sNXxbI9g6PP7ycTI4WmiTxJC6iAi6K5b5-yibBukayryeLDlETB_C_ZW_VD9_qPn8N6N09Bim_XLaXJRvB6tldaB__cH0eNv1PoFHHUplh61YPYU71j-De6ddHP45uPHA89yWcbLaMV_PFpbNPJvX_pyTymeT8TG7aLQGvZrRT1920aRvWtbdV3HOyJAahmP0VZoMNRkNrbZhejT5PD7h3Y0NXCPQW3JVaCFjuv63cnlhjUqF0hI9vtQYYQsVu7BKTSZNlidELKez0DgXR8YlVigTJzsw8rW3L4EJJYo8dCLUeIxdQYqCKooyxKuaUFIAUf_ZSt3RmdOtGvNyTcRMG1jiBpbNBpbY5_3Q57Il87ix9V4vDWV3sBclWnNJKDnJAng7PMYjSXEW5W29wjZE2l-gLxv-u02CliaSBYKlAF60AjZMKcnRSc6jKAC5IXpDA6IE33ziZ18bavCI6NMyKQLY74VqPfeblro_SPJ_7Mzu7UZ_BQ_iRowpM28PRsvvK_saodyyetOd3Cs4cTqn
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB6VrcTxwF0ILchIvFFvczjXY7W0VEiteGCl8hQ5PsqqW2dFs0Lw65nJtWwLFYhnTyzbGXu-8cx8BnjjKyMCEyueom3gePqlvCyzmFt0nmORZOgT0YX-8UlyNBUfTuPTDXjX18I02e59SLKtaSCWJlfvLbTdWxW-oaFKOdobTqFBdKfG2HwLNpMYEfkINqcnH_c_D9mLQXPNh9gbPWchRFc78_uO1u3TNdB5PXdyCKDegztLt5Dfv8n5_BcbdfgATD-7NjXlfLysy7H6cYX48X-n_xDudyCW7bda9wg2jHsMt4-7MP0TsJOBBrqt8mSVZa6aXRo2c2xeuTNOFoEdTN6zi-ZQoaEwuhNmF012p2HdcxZnjOysZthHX8TJ8KCjruVTmB4efJoc8e5BB64QB9Zc5kpkIb0OXNo0N1rGQqoMHcJYa2FyGVq_jHWS6SSNiHdOJb62Ngy0jYyQOoy2YOQqZ54DE1LkqW-Fr3CX25zOESo4ShDOKgJRHgT9byxUx3ZOj27MixVPMy1igYtYNItY4Ddvh28WLdfHjdI7vXYU3b6_LNDYZwSio8SD10Mz7lgKw0hnqiXKEKd_jq6u_2eZCA1RkOWIpTx41ircMKQoRR86DQIPsjVVHASIMXy9xc2-NMzhAbGrJZnwYLdXstXYb5rq7qDZf7EyL_5NfBvuho0qU-LeDozqr0vzEpFeXb7qNvJPveBGEg
  priority: 102
  providerName: Unpaywall
Title Characterization of noise in long-term ECG monitoring with machine learning based on clinical criteria
URI https://link.springer.com/article/10.1007/s11517-023-02802-5
https://www.ncbi.nlm.nih.gov/pubmed/37010711
https://www.proquest.com/docview/2848016136
https://www.proquest.com/docview/2794692820
https://www.proquest.com/docview/3153189853
https://pubmed.ncbi.nlm.nih.gov/PMC10412684
https://link.springer.com/content/pdf/10.1007/s11517-023-02802-5.pdf
UnpaywallVersion publishedVersion
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: ADMLS
  dateStart: 19770101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9NAEB_uWvDxQXydRs-ygt-8xTw2rw8ibWh7KBcOsdD7FLbZ3bPQS6rXIv73zuRVy2HxSwrdTZruznNn5jcA7-xcC0f7OQ9RN3CUfiFfLCKfG3SefRFE6BPRgf5FGpzPxOe5Pz-CtK2FobTKViZWglqVOZ2Rf0AxGpF54gWf1j84dY2i6GrbQkM2rRXUxwpi7Bj6LiFj9aA_GqeXXzsXDLWV6JIa0bZuymjqYjpUfiFHHcYp3Igu2r6qumN_3k2j7GKpD-H-tljL37_kavWXupo8hkeNncmGNWE8gSNdPIV7F00k_RmYpENqrgsxWWlYUS5vNVsWbFUW15yENhsnU3ZT8T39JqNjW3ZTJWBq1nScuGakChXDZ7R1lgxlET1aPofZZPwtOedNzwWeo6m24TLOReRSA9-FCWOtpC9kHqHP5isldCxdYy98FUQqCD2ChssDWxnjOsp4WkjleifQK8pCvwQmpIhD2wg7R0Y0MbE61QQFaHHmZOdY4LTLm-UNIDn1xVhlOyhl2pIMtySrtiTDe95396xrOI6Ds0_bXcsa1rzNdoRkwdtuGJmKIiWy0OUW5xDsfozeqP3vOR7qCieK0dyx4EVNCN0reSG6uaHjWBDtkUg3gUC990eK5fcK3NshALQgEhactdS0e_dDf_Wso7j_WJlXh1fmNTxwK0agXLpT6G1-bvUbNL42iwEch_MQr9FkOoD-cDIapfQ5vfoyHjTchqNJkOB15g7xu1l6Obz6A658L6Y
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VrUThgHhjKLBIcKIr_Fi_DhWCkJLSJkKolXpz17vrEim1A0lU9c_x25ix1w5RRcSlZ69fO--dmW8A3rjKCM-EisdoGzhqv5jneRLyAoPnUEQJxkR0oD8cRYMT8fU0PN2A320vDJVVtjqxVtS6UnRG_h7VaELuSRB9mP7kNDWKsqvtCA1pRyvovRpizDZ2HJqrSwzhZnsHn5Heb31_v3_cG3A7ZYArdE7mXKZKJD6NrM2LODVahkKqBKOUUGthUukXbh7qKNFRHBAYmopcXRS-p4vACKkJ-ABNwJYIRIrB39an_ujb9y7kQ-souiJK9OVt207TvIfGNuZoMzmlNzEkXDWN1_zd62WbXe72Dmwvyqm8upSTyV_mcf8e3LV-LfvYMOJ92DDlA7g1tJn7h1D0OmTopvGTVQUrq_HMsHHJJlV5zslIsH7vC7uo9Qy9k9ExMbuoCz4NsxMuzhmZXs3wGW1fJ0PdR4-Wj-DkRnb_MWyWVWmeAhMSKeAWwlUo-EVKqoV6kCL0cBX5VQ547fZmygKg0xyOSbaEbiaSZEiSrCZJhve86-6ZNvAfa1fvtFTLrCqYZUvGdeB1dxmFmDIzsjTVAtcQzH-K0a_77zUB2iYvSdG9cuBJwwjdJwUxhtWx5zmQrLBIt4BAxFevlOMfNZi4R4BrUSIc2G25afnt6351t-O4_9iZZ-t35hVsD46HR9nRwejwOdz2a6GgOr4d2Jz_WpgX6PjN85dWuhic3bRA_wErlWS9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRSpwQDyLocAiwYmu6sfaax8QQmlDS2nFgUq5mfU-SqTUDiRR1b_Gr2PGrxBVRFx69vq1896Z-Qbgja-tCGysuUTbwFH7SV4UacwdBs-xSFKMiehA_-Q0OTwTn0fxaAN-d70wVFbZ6cRaUZtK0xn5HqrRlNyTKNlzbVnE1_3hh-lPThOkKNPajdNoWOTYXl1i-DZ7f7SPtH4bhsODb4ND3k4Y4BodkzlXmRZpSONqCycza1QslE4xQomNETZTofOL2CSpSWREQGg68Y1zYWBcZIUyBHqA6v-WjKKMygnlaBnsoV0UffkkevFtw07TtodmVnK0lpwSmxgMrhrFa57u9YLNPmt7F24vyqm6ulSTyV-GcXgf7rUeLfvYsOAD2LDlQ9g6aXP2j8ANekzopuWTVY6V1Xhm2bhkk6o852Qe2MHgE7uoNQy9k9EBMbuoSz0ta2dbnDMyuobhM7qOToZajx6tHsPZjez9E9gsq9I-BSaUyKTvhK9R5F1GSoW6jxL0bTV5VB4E3fbmuoU-pwkck3wJ2kwkyZEkeU2SHO95198zbYA_1q7e6aiWt0pgli9Z1oPX_WUUX8rJqNJWC1xDAP8Zxr3-v9dEaJWCNEPHyoPthhH6T4okBtQyCDxIV1ikX0Dw4atXyvGPGkY8IKi1JBUe7HbctPz2db-623Pcf-zMs_U78wq2UIzzL0enx8_hTljLBBXw7cDm_NfCvkCPb168rEWLwfebluU_U5FiVw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB6VrcTxwF0ILchIvFFvczjXY7W0VEiteGCl8hQ5PsqqW2dFs0Lw65nJtWwLFYhnTyzbGXu-8cx8BnjjKyMCEyueom3gePqlvCyzmFt0nmORZOgT0YX-8UlyNBUfTuPTDXjX18I02e59SLKtaSCWJlfvLbTdWxW-oaFKOdobTqFBdKfG2HwLNpMYEfkINqcnH_c_D9mLQXPNh9gbPWchRFc78_uO1u3TNdB5PXdyCKDegztLt5Dfv8n5_BcbdfgATD-7NjXlfLysy7H6cYX48X-n_xDudyCW7bda9wg2jHsMt4-7MP0TsJOBBrqt8mSVZa6aXRo2c2xeuTNOFoEdTN6zi-ZQoaEwuhNmF012p2HdcxZnjOysZthHX8TJ8KCjruVTmB4efJoc8e5BB64QB9Zc5kpkIb0OXNo0N1rGQqoMHcJYa2FyGVq_jHWS6SSNiHdOJb62Ngy0jYyQOoy2YOQqZ54DE1LkqW-Fr3CX25zOESo4ShDOKgJRHgT9byxUx3ZOj27MixVPMy1igYtYNItY4Ddvh28WLdfHjdI7vXYU3b6_LNDYZwSio8SD10Mz7lgKw0hnqiXKEKd_jq6u_2eZCA1RkOWIpTx41ircMKQoRR86DQIPsjVVHASIMXy9xc2-NMzhAbGrJZnwYLdXstXYb5rq7qDZf7EyL_5NfBvuho0qU-LeDozqr0vzEpFeXb7qNvJPveBGEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+noise+in+long-term+ECG+monitoring+with+machine+learning+based+on+clinical+criteria&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Holgado-Cuadrado%2C+Roberto&rft.au=Plaza-Seco%2C+Carmen&rft.au=Lovisolo%2C+Lisandro&rft.au=Blanco-Velasco%2C+Manuel&rft.date=2023-09-01&rft.issn=0140-0118&rft.volume=61&rft.issue=9+p.2227-2240&rft.spage=2227&rft.epage=2240&rft_id=info:doi/10.1007%2Fs11517-023-02802-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon