SVM-based prediction of linear B-cell epitopes using Bayes Feature Extraction

Backgound The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the development of peptide-based diagnostics, therapeutics and vaccines. As experimental approaches are often laborious and time consuming,...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 11; no. Suppl 4; p. S21
Main Authors Wee, Lawrence JK, Simarmata, Diane, Kam, Yiu-Wing, Ng, Lisa FP, Tong, Joo Chuan
Format Journal Article
LanguageEnglish
Published London BioMed Central 02.12.2010
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/1471-2164-11-S4-S21

Cover

Abstract Backgound The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the development of peptide-based diagnostics, therapeutics and vaccines. As experimental approaches are often laborious and time consuming, in silico methods for prediction of these immunogenic regions are critical. Such efforts, however, have been significantly hindered by high variability in the length and composition of the epitope sequences, making naïve modeling methods difficult to apply. Results We analyzed two benchmark datasets and found that linear B-cell epitopes possess distinctive residue conservation and position-specific residue propensities which could be exploited for epitope discrimination in silico . We developed a support vector machines (SVM) prediction model employing Bayes Feature Extraction to predict linear B-cell epitopes of diverse lengths (12- to 20-mers). The best SVM classifier achieved an accuracy of 74.50% and A ROC of 0.84 on an independent test set and was shown to outperform existing linear B-cell epitope prediction algorithms. In addition, we applied our model to a dataset of antigenic proteins with experimentally-verified epitopes and found it to be generally effective for discriminating the epitopes from non-epitopes. Conclusion We developed a SVM prediction model utilizing Bayes Feature Extraction and showed that it was effective in discriminating epitopes from non-epitopes in benchmark datasets and annotated antigenic proteins. A web server for predicting linear B-cell epitopes was developed and is available, together with supplementary materials, at http://www.immunopred.org/bayesb/index.html .
AbstractList Abstract Backgound: The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the development of peptide-based diagnostics, therapeutics and vaccines. As experimental approaches are often laborious and time consuming, in silico methods for prediction of these immunogenic regions are critical. Such efforts, however, have been significantly hindered by high variability in the length and composition of the epitope sequences, making naïve modeling methods difficult to apply. Results: We analyzed two benchmark datasets and found that linear B-cell epitopes possess distinctive residue conservation and position-specific residue propensities which could be exploited for epitope discrimination in silico . We developed a support vector machines (SVM) prediction model employing Bayes Feature Extraction to predict linear B-cell epitopes of diverse lengths (12- to 20-mers). The best SVM classifier achieved an accuracy of 74.50% and AROC of 0.84 on an independent test set and was shown to outperform existing linear B-cell epitope prediction algorithms. In addition, we applied our model to a dataset of antigenic proteins with experimentally-verified epitopes and found it to be generally effective for discriminating the epitopes from non-epitopes. Conclusion: We developed a SVM prediction model utilizing Bayes Feature Extraction and showed that it was effective in discriminating epitopes from non-epitopes in benchmark datasets and annotated antigenic proteins. A web server for predicting linear B-cell epitopes was developed and is available, together with supplementary materials, at http://www.immunopred.org/bayesb/index.html .
The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the development of peptide-based diagnostics, therapeutics and vaccines. As experimental approaches are often laborious and time consuming, in silico methods for prediction of these immunogenic regions are critical. Such efforts, however, have been significantly hindered by high variability in the length and composition of the epitope sequences, making naïve modeling methods difficult to apply.BACKGROUNDThe identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the development of peptide-based diagnostics, therapeutics and vaccines. As experimental approaches are often laborious and time consuming, in silico methods for prediction of these immunogenic regions are critical. Such efforts, however, have been significantly hindered by high variability in the length and composition of the epitope sequences, making naïve modeling methods difficult to apply.We analyzed two benchmark datasets and found that linear B-cell epitopes possess distinctive residue conservation and position-specific residue propensities which could be exploited for epitope discrimination in silico. We developed a support vector machines (SVM) prediction model employing Bayes Feature Extraction to predict linear B-cell epitopes of diverse lengths (12- to 20-mers). The best SVM classifier achieved an accuracy of 74.50% and AROC of 0.84 on an independent test set and was shown to outperform existing linear B-cell epitope prediction algorithms. In addition, we applied our model to a dataset of antigenic proteins with experimentally-verified epitopes and found it to be generally effective for discriminating the epitopes from non-epitopes.RESULTSWe analyzed two benchmark datasets and found that linear B-cell epitopes possess distinctive residue conservation and position-specific residue propensities which could be exploited for epitope discrimination in silico. We developed a support vector machines (SVM) prediction model employing Bayes Feature Extraction to predict linear B-cell epitopes of diverse lengths (12- to 20-mers). The best SVM classifier achieved an accuracy of 74.50% and AROC of 0.84 on an independent test set and was shown to outperform existing linear B-cell epitope prediction algorithms. In addition, we applied our model to a dataset of antigenic proteins with experimentally-verified epitopes and found it to be generally effective for discriminating the epitopes from non-epitopes.We developed a SVM prediction model utilizing Bayes Feature Extraction and showed that it was effective in discriminating epitopes from non-epitopes in benchmark datasets and annotated antigenic proteins. A web server for predicting linear B-cell epitopes was developed and is available, together with supplementary materials, at http://www.immunopred.org/bayesb/index.html.CONCLUSIONWe developed a SVM prediction model utilizing Bayes Feature Extraction and showed that it was effective in discriminating epitopes from non-epitopes in benchmark datasets and annotated antigenic proteins. A web server for predicting linear B-cell epitopes was developed and is available, together with supplementary materials, at http://www.immunopred.org/bayesb/index.html.
Backgound The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the development of peptide-based diagnostics, therapeutics and vaccines. As experimental approaches are often laborious and time consuming, in silico methods for prediction of these immunogenic regions are critical. Such efforts, however, have been significantly hindered by high variability in the length and composition of the epitope sequences, making naïve modeling methods difficult to apply. Results We analyzed two benchmark datasets and found that linear B-cell epitopes possess distinctive residue conservation and position-specific residue propensities which could be exploited for epitope discrimination in silico . We developed a support vector machines (SVM) prediction model employing Bayes Feature Extraction to predict linear B-cell epitopes of diverse lengths (12- to 20-mers). The best SVM classifier achieved an accuracy of 74.50% and A ROC of 0.84 on an independent test set and was shown to outperform existing linear B-cell epitope prediction algorithms. In addition, we applied our model to a dataset of antigenic proteins with experimentally-verified epitopes and found it to be generally effective for discriminating the epitopes from non-epitopes. Conclusion We developed a SVM prediction model utilizing Bayes Feature Extraction and showed that it was effective in discriminating epitopes from non-epitopes in benchmark datasets and annotated antigenic proteins. A web server for predicting linear B-cell epitopes was developed and is available, together with supplementary materials, at http://www.immunopred.org/bayesb/index.html .
The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the development of peptide-based diagnostics, therapeutics and vaccines. As experimental approaches are often laborious and time consuming, in silico methods for prediction of these immunogenic regions are critical. Such efforts, however, have been significantly hindered by high variability in the length and composition of the epitope sequences, making naïve modeling methods difficult to apply. We analyzed two benchmark datasets and found that linear B-cell epitopes possess distinctive residue conservation and position-specific residue propensities which could be exploited for epitope discrimination in silico. We developed a support vector machines (SVM) prediction model employing Bayes Feature Extraction to predict linear B-cell epitopes of diverse lengths (12- to 20-mers). The best SVM classifier achieved an accuracy of 74.50% and AROC of 0.84 on an independent test set and was shown to outperform existing linear B-cell epitope prediction algorithms. In addition, we applied our model to a dataset of antigenic proteins with experimentally-verified epitopes and found it to be generally effective for discriminating the epitopes from non-epitopes. We developed a SVM prediction model utilizing Bayes Feature Extraction and showed that it was effective in discriminating epitopes from non-epitopes in benchmark datasets and annotated antigenic proteins. A web server for predicting linear B-cell epitopes was developed and is available, together with supplementary materials, at http://www.immunopred.org/bayesb/index.html.
The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the development of peptide-based diagnostics, therapeutics and vaccines. As experimental approaches are often laborious and time consuming, in silico methods for prediction of these immunogenic regions are critical. Such efforts, however, have been significantly hindered by high variability in the length and composition of the epitope sequences, making naieve modeling methods difficult to apply. We analyzed two benchmark datasets and found that linear B-cell epitopes possess distinctive residue conservation and position-specific residue propensities which could be exploited for epitope discrimination in silico. We developed a support vector machines (SVM) prediction model employing Bayes Feature Extraction to predict linear B-cell epitopes of diverse lengths (12- to 20-mers). The best SVM classifier achieved an accuracy of 74.50% and AROC of 0.84 on an independent test set and was shown to outperform existing linear B-cell epitope prediction algorithms. In addition, we applied our model to a dataset of antigenic proteins with experimentally-verified epitopes and found it to be generally effective for discriminating the epitopes from non-epitopes. We developed a SVM prediction model utilizing Bayes Feature Extraction and showed that it was effective in discriminating epitopes from non-epitopes in benchmark datasets and annotated antigenic proteins. A web server for predicting linear B-cell epitopes was developed and is available, together with supplementary materials, at http://www.immunopred.org/bayesb/index.html.
ArticleNumber S21
Author Simarmata, Diane
Ng, Lisa FP
Tong, Joo Chuan
Wee, Lawrence JK
Kam, Yiu-Wing
AuthorAffiliation 2 Data Mining Department, Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis South Tower, Singapore 138632
1 Singapore Immunology Network, 8A Biomedical Grove, #04-06 Immunos, Biopolis, Singapore 138648
3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597
AuthorAffiliation_xml – name: 2 Data Mining Department, Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis South Tower, Singapore 138632
– name: 3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597
– name: 1 Singapore Immunology Network, 8A Biomedical Grove, #04-06 Immunos, Biopolis, Singapore 138648
Author_xml – sequence: 1
  givenname: Lawrence JK
  surname: Wee
  fullname: Wee, Lawrence JK
  organization: Singapore Immunology Network, 8A Biomedical Grove, Data Mining Department, Institute for Infocomm Research
– sequence: 2
  givenname: Diane
  surname: Simarmata
  fullname: Simarmata, Diane
  organization: Singapore Immunology Network, 8A Biomedical Grove
– sequence: 3
  givenname: Yiu-Wing
  surname: Kam
  fullname: Kam, Yiu-Wing
  organization: Singapore Immunology Network, 8A Biomedical Grove
– sequence: 4
  givenname: Lisa FP
  surname: Ng
  fullname: Ng, Lisa FP
  organization: Singapore Immunology Network, 8A Biomedical Grove, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore
– sequence: 5
  givenname: Joo Chuan
  surname: Tong
  fullname: Tong, Joo Chuan
  email: victor@bic.nus.edu.sg
  organization: Data Mining Department, Institute for Infocomm Research, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21143805$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAUtFAR_YBfgIQiLpwC_k58QaJVW5BacQhwtRznZXGVtYOdAPvv63SXtvTQnvxsz8ybN-8Q7fngAaHXBL8npJYfCK9ISYnkJSFlw8uGkmfo4PZ17169jw5TusKYVDUVL9A-JYSzGosDdNn8uCxbk6Arxgids5MLvgh9MTgPJhbHpYVhKGB0UxghFXNyflUcm02uz8BMc4Ti9O8UzQ3xJXremyHBq915hL6fnX47-VxefD3_cvLporQC11NZSVkxw3pV17zuSSWoVa3tLVcdtBhUz7noTUcESGuk7JjpMJVUiZZJ4D1lR4hvdWc_ms0fMwx6jG5t4kYTrJd09DK7XmbPV524TpRk2sctbZzbNXQWfDZ-Rw3G6f9_vPupV-G3ZhgLRXEWeLcTiOHXDGnSa5eWgIyHMCetBBdKVUo9iawprpSoxaL59gHyKszR5_i0wrknZUxm0Jv7zm8t_1tkBrAtwMaQUoT-8UAarpubQNQDlnWTWTaZx3fDE9zdDlLu5FcQ73w_RrsGAqHSoQ
CitedBy_id crossref_primary_10_1016_j_jtbi_2017_03_031
crossref_primary_10_3390_ijms150610410
crossref_primary_10_1155_2013_283129
crossref_primary_10_1093_bioinformatics_btab321
crossref_primary_10_1186_s12864_016_3317_7
crossref_primary_10_1186_s13040_015_0047_3
crossref_primary_10_1186_1471_2164_12_S3_S11
crossref_primary_10_3934_mbe_2021443
crossref_primary_10_1007_s13721_015_0109_y
crossref_primary_10_1186_1755_8794_8_S4_S3
crossref_primary_10_3390_s22114027
crossref_primary_10_1007_s12639_018_0996_9
crossref_primary_10_1371_journal_pone_0040104
crossref_primary_10_1039_c3mb70326f
crossref_primary_10_1002_bip_22609
crossref_primary_10_1109_ACCESS_2017_2765363
crossref_primary_10_1155_2012_976385
crossref_primary_10_1186_s12859_017_1528_9
crossref_primary_10_1186_s13040_020_00211_0
crossref_primary_10_3390_ijms22063210
crossref_primary_10_1007_s41870_022_00951_8
crossref_primary_10_2174_0929867328666210504114351
crossref_primary_10_1007_s00607_019_00710_x
crossref_primary_10_1002_prot_24527
crossref_primary_10_1186_s12859_014_0414_y
crossref_primary_10_1186_1745_6150_8_27
crossref_primary_10_3390_pathogens11020146
crossref_primary_10_1186_s12967_018_1560_1
crossref_primary_10_1007_s41870_023_01294_8
crossref_primary_10_1186_s12859_016_1008_7
crossref_primary_10_1586_ecp_11_39
crossref_primary_10_3390_ijms231911880
crossref_primary_10_2174_1568026619666181130111827
crossref_primary_10_1038_srep12478
crossref_primary_10_1371_journal_pone_0134835
crossref_primary_10_1371_journal_ppat_1003001
crossref_primary_10_1016_j_compbiolchem_2014_02_002
crossref_primary_10_1080_09168451_2015_1025692
crossref_primary_10_1371_journal_pone_0071610
crossref_primary_10_1039_c2mb25251a
Cites_doi 10.1002/prot.21078
10.1186/1471-2105-7-124
10.1016/j.molimm.2008.09.009
10.1073/pnas.0607879104
10.1186/1745-7580-2-2
10.1002/jmr.893
10.1186/1471-2105-10-287
10.1002/jmr.771
10.1016/0263-7855(93)80074-2
10.1023/A:1009715923555
10.1007/s00726-006-0485-9
10.1002/jmr.602
10.1186/1471-2164-6-79
10.1093/nar/gkm895
10.1093/bioinformatics/btq043
10.1371/journal.pcbi.0020071
10.1016/S0264-410X(99)00329-1
10.1093/protein/gzn075
10.1371/journal.pone.0004920
10.1110/ps.041059505
10.1186/1471-2105-7-425
ContentType Journal Article
Copyright Wee et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2010 Wee et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2010 Wee et al; licensee BioMed Central Ltd. 2010 Wee et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Wee et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: 2010 Wee et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2010 Wee et al; licensee BioMed Central Ltd. 2010 Wee et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/1471-2164-11-S4-S21
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (Selected full-text)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage S21
ExternalDocumentID 10.1186/1471-2164-11-s4-s21
PMC3005920
2502003621
21143805
10_1186_1471_2164_11_S4_S21
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2VQ
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
AIXEN
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c508t-76673a3f98848f1752c9bcfc49deb0e9f445fad15e6ca66d3ad026295b36e4f23
IEDL.DBID M48
ISSN 1471-2164
IngestDate Thu Aug 28 11:03:59 EDT 2025
Tue Sep 30 15:37:24 EDT 2025
Thu Sep 04 18:01:19 EDT 2025
Thu Oct 02 06:32:46 EDT 2025
Mon Oct 06 18:23:41 EDT 2025
Thu Jan 02 22:08:22 EST 2025
Wed Oct 01 03:02:56 EDT 2025
Thu Apr 24 23:04:22 EDT 2025
Sat Sep 06 07:28:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 4
Keywords Support Vector Machine Training
Support Vector Machine Classifier
Support Vector Machine
Amino Acid Pair
Support Vector Machine Prediction
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-76673a3f98848f1752c9bcfc49deb0e9f445fad15e6ca66d3ad026295b36e4f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-11-S4-S21
PMID 21143805
PQID 902032336
PQPubID 44682
ParticipantIDs unpaywall_primary_10_1186_1471_2164_11_s4_s21
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3005920
proquest_miscellaneous_954599799
proquest_miscellaneous_820795850
proquest_journals_902032336
pubmed_primary_21143805
crossref_primary_10_1186_1471_2164_11_S4_S21
crossref_citationtrail_10_1186_1471_2164_11_S4_S21
springer_journals_10_1186_1471_2164_11_S4_S21
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-02
PublicationDateYYYYMMDD 2010-12-02
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-02
  day: 02
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2010
Publisher BioMed Central
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
References S Saha (3480_CR5) 2004
AJ Alix (3480_CR3) 1999; 18
3480_CR16
MJ Sweredoski (3480_CR12) 2009; 22
J Shao (3480_CR19) 2009; 4
3480_CR23
JE Larsen (3480_CR7) 2006; 2
Y El-Manzalawy (3480_CR11) 2008; 21
ND Rubinstein (3480_CR13) 2009; 46
MJ Blythe (3480_CR6) 2005; 14
The UniProt Consortium (3480_CR22) 2008; 36
S Saha (3480_CR18) 2005; 6
J Shen (3480_CR15) 2007; 104
CJC Burges (3480_CR24) 1998; 2
J Chen (3480_CR10) 2007; 33
B Korber (3480_CR1) 2006; 6
Y EL-Manzalawy (3480_CR21) 2008
J Song (3480_CR17) 2006; 7
J Söllner (3480_CR8) 2006; 19
S Saha (3480_CR9) 2006; 65
ND Rubinstein (3480_CR14) 2009; 10
M Odorico (3480_CR4) 2003; 16
JL Pellequer (3480_CR2) 1993; 11
J Song (3480_CR20) 2010; 26
18947876 - Mol Immunol. 2009 Feb;46(5):840-7
19751513 - BMC Bioinformatics. 2009;10:287
16526956 - BMC Bioinformatics. 2006;7:124
12557235 - J Mol Recognit. 2003 Jan-Feb;16(1):20-2
18045787 - Nucleic Acids Res. 2008 Jan;36(Database issue):D190-5
15921533 - BMC Genomics. 2005;6:79
17014735 - BMC Bioinformatics. 2006;7:425
15576553 - Protein Sci. 2005 Jan;14(1):246-8
20130033 - Bioinformatics. 2010 Mar 15;26(6):752-60
10506656 - Vaccine. 1999 Sep;18(3-4):311-4
19074155 - Protein Eng Des Sel. 2009 Mar;22(3):113-20
16846250 - PLoS Comput Biol. 2006 Jun 30;2(6):e71
16598694 - J Mol Recognit. 2006 May-Jun;19(3):200-8
18496882 - J Mol Recognit. 2008 Jul-Aug;21(4):243-55
19290060 - PLoS One. 2009;4(3):e4920
16894596 - Proteins. 2006 Oct 1;65(1):40-8
16635264 - Immunome Res. 2006 Apr 24;2:2
7509182 - J Mol Graph. 1993 Sep;11(3):204-10, 191-2
17252308 - Amino Acids. 2007 Sep;33(3):423-8
17360525 - Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4337-41
References_xml – volume: 65
  start-page: 40
  year: 2006
  ident: 3480_CR9
  publication-title: Proteins
  doi: 10.1002/prot.21078
– start-page: 289
  volume-title: IEEE International Conference on Bioinformatics and Biomedicine
  year: 2008
  ident: 3480_CR21
– ident: 3480_CR16
  doi: 10.1186/1471-2105-7-124
– volume: 46
  start-page: 840
  year: 2009
  ident: 3480_CR13
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2008.09.009
– volume: 104
  start-page: 4337
  year: 2007
  ident: 3480_CR15
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0607879104
– volume: 2
  start-page: 2
  year: 2006
  ident: 3480_CR7
  publication-title: Immunome Res
  doi: 10.1186/1745-7580-2-2
– ident: 3480_CR23
– volume: 21
  start-page: 243
  year: 2008
  ident: 3480_CR11
  publication-title: J Mol Recognit
  doi: 10.1002/jmr.893
– volume: 10
  start-page: 287
  year: 2009
  ident: 3480_CR14
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-287
– volume: 19
  start-page: 200
  year: 2006
  ident: 3480_CR8
  publication-title: J Mol Recognit
  doi: 10.1002/jmr.771
– volume: 11
  start-page: 204
  year: 1993
  ident: 3480_CR2
  publication-title: J Mol Graph
  doi: 10.1016/0263-7855(93)80074-2
– volume: 2
  start-page: 121
  year: 1998
  ident: 3480_CR24
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009715923555
– volume: 33
  start-page: 423
  year: 2007
  ident: 3480_CR10
  publication-title: Amino Acids
  doi: 10.1007/s00726-006-0485-9
– volume: 16
  start-page: 20
  year: 2003
  ident: 3480_CR4
  publication-title: J Mol Recognit
  doi: 10.1002/jmr.602
– volume: 6
  start-page: 79
  year: 2005
  ident: 3480_CR18
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-6-79
– volume: 36
  start-page: D190
  year: 2008
  ident: 3480_CR22
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm895
– start-page: 197
  volume-title: ICARIS 2004, LNCS 3239
  year: 2004
  ident: 3480_CR5
– volume: 26
  start-page: 752
  year: 2010
  ident: 3480_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq043
– volume: 6
  start-page: e71
  year: 2006
  ident: 3480_CR1
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0020071
– volume: 18
  start-page: 311
  year: 1999
  ident: 3480_CR3
  publication-title: Vaccine
  doi: 10.1016/S0264-410X(99)00329-1
– volume: 22
  start-page: 113
  year: 2009
  ident: 3480_CR12
  publication-title: Protein Eng Des Sel
  doi: 10.1093/protein/gzn075
– volume: 4
  start-page: e4920
  year: 2009
  ident: 3480_CR19
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004920
– volume: 14
  start-page: 246
  year: 2005
  ident: 3480_CR6
  publication-title: Protein Sci
  doi: 10.1110/ps.041059505
– volume: 7
  start-page: 425
  year: 2006
  ident: 3480_CR17
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-425
– reference: 15921533 - BMC Genomics. 2005;6:79
– reference: 18947876 - Mol Immunol. 2009 Feb;46(5):840-7
– reference: 15576553 - Protein Sci. 2005 Jan;14(1):246-8
– reference: 20130033 - Bioinformatics. 2010 Mar 15;26(6):752-60
– reference: 7509182 - J Mol Graph. 1993 Sep;11(3):204-10, 191-2
– reference: 18045787 - Nucleic Acids Res. 2008 Jan;36(Database issue):D190-5
– reference: 16598694 - J Mol Recognit. 2006 May-Jun;19(3):200-8
– reference: 12557235 - J Mol Recognit. 2003 Jan-Feb;16(1):20-2
– reference: 19751513 - BMC Bioinformatics. 2009;10:287
– reference: 10506656 - Vaccine. 1999 Sep;18(3-4):311-4
– reference: 16846250 - PLoS Comput Biol. 2006 Jun 30;2(6):e71
– reference: 17360525 - Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4337-41
– reference: 16635264 - Immunome Res. 2006 Apr 24;2:2
– reference: 18496882 - J Mol Recognit. 2008 Jul-Aug;21(4):243-55
– reference: 19074155 - Protein Eng Des Sel. 2009 Mar;22(3):113-20
– reference: 17252308 - Amino Acids. 2007 Sep;33(3):423-8
– reference: 17014735 - BMC Bioinformatics. 2006;7:425
– reference: 16894596 - Proteins. 2006 Oct 1;65(1):40-8
– reference: 19290060 - PLoS One. 2009;4(3):e4920
– reference: 16526956 - BMC Bioinformatics. 2006;7:124
SSID ssj0017825
Score 2.2706566
Snippet Backgound The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for...
The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the...
Abstract Backgound: The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage S21
SubjectTerms Accuracy
Algorithms
Animal Genetics and Genomics
Antigens - chemistry
Antigens - immunology
Bayes Theorem
Benchmarking
Biomedical and Life Sciences
Computer Simulation
Data mining
Decision trees
Epitopes, B-Lymphocyte - immunology
Genomics
Internet
Life Sciences
Methods
Microarrays
Microbial Genetics and Genomics
Peptides - chemistry
Peptides - immunology
Plant Genetics and Genomics
Prediction models
Predictive Value of Tests
Proceedings
Protein folding
Proteomics
Studies
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA7rLKI-iHfrquTBR8O2aZJJHkQcmWURZhHHlX0LaS6rMHRqO4POvzenNx0W560lKW1PTpLv5CTfh9Ab6WSQKffEesEI44UiUrBADOMmRs-FcxYOOC8uxPkl-3TFr47QYjgLA9sqhzGxHajd2sIa-alqtb7zXLyvfhIQjYLk6qCgYXplBfeuZRi7hY4pEGNN0PFsfvH5y5hWiNMh76mHMilOszgyExoDBjhctmRkSbP96ekG5ry5dXLMn95Dd7ZlZXa_zGr1zxR19gDd77El_tA5w0N05MtH6HanNrl7jBbLbwsCs5bDVQ35GWgTvA4YkKap8YzAKj72VezklW8wbIm_xjOzi9eAFLe1x_Pfm7o7CvEEXZ7Nv348J72aArERhG3IFAQ-TR6UlEyGiBqoVYUNlinni9SrwBgPxmXcC2uEcLlxMT6jihe58CzQ_CmalOvSP0dYFEZKRa3wgTKeK1nI1Lc8QYVNPTcJooMRte2pxkHxYqXbkEMKDZbXYPl4q5dMR8sn6O34UNUxbRyufjK0ju67XaNHJ0kQHktjfwHzmdKvt42OiGeqYoyU_r-KiqhSQbozQc-61h4_KIbLQNHPEzTd84OxArB175eUP763rN2gC6BofC0ZPObvdx_8TzK61WG7NEw3NHtx0C4n6C4d9uPQl2iyqbf-VURVm-J131f-AIEjHrI
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhobQ9hD5TJ23RoceKemVJKx2TkhAC28t2S25ClqW2sHiNvUu7_z4zfrVLyEJuNpJseaSRvvFoviHkky501KkMzAclmJC5YVqJyJyQDqznvCg8BjjPvqnrhbi5lbcHRA6xMO1p98El2a7UrVpr9WUCyyjjgO4xEmwu2BzDx48k8nnBNF7w89F5AJue7AmGHmi4uwndQ5b3D0iOXtLn5OmmrNz2j1su_9uIrl6Q4x5B0vNuyF-Sg1C-Ik-6nJLb12Q2_zFjuDcVtKrRC4OSp6tIEU-6ml4w_FdPQwWqXIWG4sH3n_TCbeEa8eCmDvTy77ruAh7ekMXV5fev16zPmcA8QK01m2IaT5dFo7XQEbAB9yb30QtThDwNJgohoysmMijvlCoyV4AVxo3MMxVE5NlbcliuyvCOUJU7rQ33KkQuZGZ0rtPQsgHlPg3SJYQPQrS-JxTHvBZL2xoWWlmUvEXJw62dCwuST8jnsVHV8Wnsr342jI7tlauxpk37nmUqIXQsBa1A8bkyrDaNBVwzNWAJpQ9XMYAdDTo1E3LSjfbYITCKkYhfJmS6Mw_GCsjJvVtS_v7VcnMj-7_h8Fo2zJh__d77nWycVvvl0gjb8MnpI59_Rp7x4RwOf08O1_UmfAA0tc4_trpzBw4UFiQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELaqVAg48IaGAvKBI043Xtuxjy1qVSGlQgpB5bSyvTZUpJvVPlTCr8eTfdAQEQmJ26481tqzM_Y3mhdCb2UqvYy4I9YJRhg3ikjBPNGM62A9mzS1kOA8vRDnc_bhkl_uoWmXC2OuLRQnvb6y5eh2AvqiyW-A_gmuOMpT36i7FEfjcLwSGlA_ZIjNGJlBWvm-4AGaD9D-_OLj8Zd1hlFL1VYe2ppZMlLS8ebttAU5tyMne_fpfXS3znK9utGLxa0b6uwhyrq9NYEp30d1ZUb25x9lH__b5h-hBy2WxceN8D1Gey57gu403S1XT9F09nlK4JZMcV6APwhkAC89BmSrC3xCwGuAXR4OldyVGELwv-ITvQrPgEzrwuHTH1XRpF48Q_Oz00_vz0nbvYHYAPoqMoGGojr2SkomfUAp1CpjvWUqdSZyyjPGvU7H3AmrhUhjnQZ7kCpuYuGYp_FzNMiWmTtAWBgtpaJWOE8Zj5U0MnLrukTGRo7rIaLdX0tsW9ocOmwskrWJI0UCfEqAT-E1mbEk8GmI3vWT8qayx27yw04cklbNy0StG9DHsRgi3I8G_QT26cwt6zIJCGuigk0W_Z1EBRSrwL06RC8a8eoXFMxzaAnAh2iyIXg9AVQH3xzJrr6tq4RDHwJFw2dJJ6K_171zn6SX4918KVkSNOblP9Ifonu0iwiir9CgKmr3OuC6yrxptfUX049GEg
  priority: 102
  providerName: Unpaywall
Title SVM-based prediction of linear B-cell epitopes using Bayes Feature Extraction
URI https://link.springer.com/article/10.1186/1471-2164-11-S4-S21
https://www.ncbi.nlm.nih.gov/pubmed/21143805
https://www.proquest.com/docview/902032336
https://www.proquest.com/docview/820795850
https://www.proquest.com/docview/954599799
https://pubmed.ncbi.nlm.nih.gov/PMC3005920
https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-11-S4-S21
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 20250331
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals (Selected full-text)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: U2A
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED9tqxDwgPimDCo_IJ4wtI7t2g8IrdWmCanVRCkqT5GTOIBUpVnaivW_5y5NMqqx8hI5svPh8zn3u5x9P4A3JjGp6SrPY68llyqy3GiZcieVQ-85SpKYNjiPxvp8Kj_P1OwA6gWZlQCX_3TtiE9qWszfX11uPuGE_1hOeKM_9PADywXiftojNpF8Inpv80tOzFIUga1oNg6hhdbLEr3DSF5HGtBCqnIHUnWPKjPRLffdtV43IOnNlZVNePU-3F1nudv8dvP5Xxbs7CE8qKAnO9nqyiM48NljuLMlo9w8gdHk24iTUUtYXlD4hoaMLVJGQNQVbMDpJz_zOX4Dcr9ktGL-Bxu4DZYJSK4Lz06vVsV2p8RTmJ6dfh2e84psgceI0Va8T_yfLkitMdKkCCpEbKM4jaVNfNT1NpVSpS7pKa9jp3USuATdN2FVFGgvUxE8g6NskfkXwHTkjLEi1j4VUgXWRKbryzRCUdz1yrVB1EIM4yoTORFizMPSIzE6JMmHJHk8DScyRMm34V1zUb5NxLG_-XE9OmGtVKEt-eKDQLeBNbU4nUh8LvOL9TJEQNS36EJ1b29iEXRaioa24fl2tJsXQm-aMvirNvR39KBpQMm8d2uyXz_LpN5EG2AFPpbXGnP93nv7yRu12i-XpQyXovfy_906hnuiXrMjXsHRqlj714i8VlEHDvuzfgdag9PxxRc8G-php_yL0SknFR6nAsut6fji5PsfZAMuNg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTWjwgPimjA8_wBvWWsd27YcJUejUsbVCdEN78xzHYZOqNDStRv84_jfu0iRQTfRtb4nsKM75zneX-_gR8lYnOtVtGZgPSjAhY8O0EilzQjrwnuMk8VjgPBypwZn4ci7Pt8jvuhYG0yrrM7E8qJOpx3_k-6bE-o4i9SH_yRA0CoOrNYKGq5AVkoOyw1hV13EcltfgwRUHR59hu99xftg__TRgFcgA82CbzFkXcS9dlBqthU5BmXJvYp96YZIQt4NJhZCpSzoyKO-USiKXgNvCjYwjFUSKfQ9AA-yISBjw_XZ6_dHXb00YA9SvrFoddbTa74AmYBwcFCxmGws25p11dXjDxr2ZqtnEa--R3UWWu-W1m0z-UYmHD8j9ypalH1fM95BshewRubNCt1w-JsPx9yFDLZnQfIbxIOQBOk0pWrZuRnsMowY05HCo5KGgmIL_g_bcEq7RMl3MAu3_ms9WpRdPyNmtEPYp2c6mWXhOqIqd1oZ7FVIuZGR0rNuh7EsU-3aQrkV4TUTrq9bmiLAxsaWLo5VFylukPNzasbBA-RZ53zyUrzp7bJ6-V--OrcS8sA1TtghtRkE-kXwuC9NFYcHC6hrwydr_n2LAijUYXm2RZ6vdbhYE7jlCAsgW6a7xQTMBu4Ovj2RXl2WXcMQhMBxey2qO-bvujd_JGrbaTJdC2IJ3XmykyxuyOzgdntiTo9HxHrnL61wg_pJsz2eL8Aosunn8upIbSi5uW1T_AN4jXAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQImA5IJ5LWB4-cMTa1LFd-8iWrZZHV0hlETfLdmxAqtIoSQX993jygmq1lbglip04M57MN5kXQq9lLoNMuSfOC0YYt4pIwQIxjJtoPds8d5DgvLgQ55fswzc-RBPWQ7T74JLschqgSlPRnJR56ERcipNJ_KQSGpE-ZIUtGVlCKvlNFtUbNDGYidnoSIgKkPfFhq6ZuKuQrqDMq8GSo8f0LrqzKUqz_WVWq3-U0vw-utejSfy2Y_8DdMMXD9Gtrr_k9hFaLL8uCOipHJcVeGSAC3gdMGBLU-FTAv_tsS-jWJe-xhAE_x2fmm08Bmy4qTw--91UXfLDY3Q5P_syOyd9_wTiIuxqyBRaeposKCmZDBEnUKesC46p3NvUq8AYDyafcC-cESLPTB4tMqq4zYRngWZP0EGxLvxThIU1UirqhA-U8UxJK1PfVgayLvXcJIgORNSuLy4OPS5WujUypNBAeQ2Uj6d6yXSkfILejJPKrrbG_uHHA3d0L2i1Vm0L-CwTCcLj1SghQD5T-PWm1hHjTFW0itLrh6iIIxU4OBN01HF7XFA0kKEoP0_QdGcfjAOgPvfuleLnj7ZON3QCUDQ-lgw75u-6974nGbfVfrrUTNd08uw_7_8K3f78bq4_vb_4eIwO6RCeQ5-jg6ba-BcRZDX2ZStGfwD_4R02
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELaqVAg48IaGAvKBI043Xtuxjy1qVSGlQgpB5bSyvTZUpJvVPlTCr8eTfdAQEQmJ26481tqzM_Y3mhdCb2UqvYy4I9YJRhg3ikjBPNGM62A9mzS1kOA8vRDnc_bhkl_uoWmXC2OuLRQnvb6y5eh2AvqiyW-A_gmuOMpT36i7FEfjcLwSGlA_ZIjNGJlBWvm-4AGaD9D-_OLj8Zd1hlFL1VYe2ppZMlLS8ebttAU5tyMne_fpfXS3znK9utGLxa0b6uwhyrq9NYEp30d1ZUb25x9lH__b5h-hBy2WxceN8D1Gey57gu403S1XT9F09nlK4JZMcV6APwhkAC89BmSrC3xCwGuAXR4OldyVGELwv-ITvQrPgEzrwuHTH1XRpF48Q_Oz00_vz0nbvYHYAPoqMoGGojr2SkomfUAp1CpjvWUqdSZyyjPGvU7H3AmrhUhjnQZ7kCpuYuGYp_FzNMiWmTtAWBgtpaJWOE8Zj5U0MnLrukTGRo7rIaLdX0tsW9ocOmwskrWJI0UCfEqAT-E1mbEk8GmI3vWT8qayx27yw04cklbNy0StG9DHsRgi3I8G_QT26cwt6zIJCGuigk0W_Z1EBRSrwL06RC8a8eoXFMxzaAnAh2iyIXg9AVQH3xzJrr6tq4RDHwJFw2dJJ6K_171zn6SX4918KVkSNOblP9Ifonu0iwiir9CgKmr3OuC6yrxptfUX049GEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SVM-based+prediction+of+linear+B-cell+epitopes+using+Bayes+Feature+Extraction&rft.jtitle=BMC+genomics&rft.au=Wee%2C+Lawrence+JK&rft.au=Simarmata%2C+Diane&rft.au=Kam%2C+Yiu-Wing&rft.au=Ng%2C+Lisa+FP&rft.date=2010-12-02&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=11&rft.issue=4&rft.spage=S21&rft.epage=S21&rft_id=info:doi/10.1186%2F1471-2164-11-S4-S21&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon