SVM-based prediction of linear B-cell epitopes using Bayes Feature Extraction
Backgound The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the development of peptide-based diagnostics, therapeutics and vaccines. As experimental approaches are often laborious and time consuming,...
Saved in:
| Published in | BMC genomics Vol. 11; no. Suppl 4; p. S21 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
02.12.2010
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2164 1471-2164 |
| DOI | 10.1186/1471-2164-11-S4-S21 |
Cover
| Abstract | Backgound
The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the development of peptide-based diagnostics, therapeutics and vaccines. As experimental approaches are often laborious and time consuming,
in silico
methods for prediction of these immunogenic regions are critical. Such efforts, however, have been significantly hindered by high variability in the length and composition of the epitope sequences, making naïve modeling methods difficult to apply.
Results
We analyzed two benchmark datasets and found that linear B-cell epitopes possess distinctive residue conservation and position-specific residue propensities which could be exploited for epitope discrimination
in silico
. We developed a support vector machines (SVM) prediction model employing Bayes Feature Extraction to predict linear B-cell epitopes of diverse lengths (12- to 20-mers). The best SVM classifier achieved an accuracy of 74.50% and A
ROC
of 0.84 on an independent test set and was shown to outperform existing linear B-cell epitope prediction algorithms. In addition, we applied our model to a dataset of antigenic proteins with experimentally-verified epitopes and found it to be generally effective for discriminating the epitopes from non-epitopes.
Conclusion
We developed a SVM prediction model utilizing Bayes Feature Extraction and showed that it was effective in discriminating epitopes from non-epitopes in benchmark datasets and annotated antigenic proteins. A web server for predicting linear B-cell epitopes was developed and is available, together with supplementary materials, at
http://www.immunopred.org/bayesb/index.html
. |
|---|---|
| AbstractList | Abstract Backgound: The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the development of peptide-based diagnostics, therapeutics and vaccines. As experimental approaches are often laborious and time consuming, in silico methods for prediction of these immunogenic regions are critical. Such efforts, however, have been significantly hindered by high variability in the length and composition of the epitope sequences, making naïve modeling methods difficult to apply. Results: We analyzed two benchmark datasets and found that linear B-cell epitopes possess distinctive residue conservation and position-specific residue propensities which could be exploited for epitope discrimination in silico . We developed a support vector machines (SVM) prediction model employing Bayes Feature Extraction to predict linear B-cell epitopes of diverse lengths (12- to 20-mers). The best SVM classifier achieved an accuracy of 74.50% and AROC of 0.84 on an independent test set and was shown to outperform existing linear B-cell epitope prediction algorithms. In addition, we applied our model to a dataset of antigenic proteins with experimentally-verified epitopes and found it to be generally effective for discriminating the epitopes from non-epitopes. Conclusion: We developed a SVM prediction model utilizing Bayes Feature Extraction and showed that it was effective in discriminating epitopes from non-epitopes in benchmark datasets and annotated antigenic proteins. A web server for predicting linear B-cell epitopes was developed and is available, together with supplementary materials, at http://www.immunopred.org/bayesb/index.html . The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the development of peptide-based diagnostics, therapeutics and vaccines. As experimental approaches are often laborious and time consuming, in silico methods for prediction of these immunogenic regions are critical. Such efforts, however, have been significantly hindered by high variability in the length and composition of the epitope sequences, making naïve modeling methods difficult to apply.BACKGROUNDThe identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the development of peptide-based diagnostics, therapeutics and vaccines. As experimental approaches are often laborious and time consuming, in silico methods for prediction of these immunogenic regions are critical. Such efforts, however, have been significantly hindered by high variability in the length and composition of the epitope sequences, making naïve modeling methods difficult to apply.We analyzed two benchmark datasets and found that linear B-cell epitopes possess distinctive residue conservation and position-specific residue propensities which could be exploited for epitope discrimination in silico. We developed a support vector machines (SVM) prediction model employing Bayes Feature Extraction to predict linear B-cell epitopes of diverse lengths (12- to 20-mers). The best SVM classifier achieved an accuracy of 74.50% and AROC of 0.84 on an independent test set and was shown to outperform existing linear B-cell epitope prediction algorithms. In addition, we applied our model to a dataset of antigenic proteins with experimentally-verified epitopes and found it to be generally effective for discriminating the epitopes from non-epitopes.RESULTSWe analyzed two benchmark datasets and found that linear B-cell epitopes possess distinctive residue conservation and position-specific residue propensities which could be exploited for epitope discrimination in silico. We developed a support vector machines (SVM) prediction model employing Bayes Feature Extraction to predict linear B-cell epitopes of diverse lengths (12- to 20-mers). The best SVM classifier achieved an accuracy of 74.50% and AROC of 0.84 on an independent test set and was shown to outperform existing linear B-cell epitope prediction algorithms. In addition, we applied our model to a dataset of antigenic proteins with experimentally-verified epitopes and found it to be generally effective for discriminating the epitopes from non-epitopes.We developed a SVM prediction model utilizing Bayes Feature Extraction and showed that it was effective in discriminating epitopes from non-epitopes in benchmark datasets and annotated antigenic proteins. A web server for predicting linear B-cell epitopes was developed and is available, together with supplementary materials, at http://www.immunopred.org/bayesb/index.html.CONCLUSIONWe developed a SVM prediction model utilizing Bayes Feature Extraction and showed that it was effective in discriminating epitopes from non-epitopes in benchmark datasets and annotated antigenic proteins. A web server for predicting linear B-cell epitopes was developed and is available, together with supplementary materials, at http://www.immunopred.org/bayesb/index.html. Backgound The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the development of peptide-based diagnostics, therapeutics and vaccines. As experimental approaches are often laborious and time consuming, in silico methods for prediction of these immunogenic regions are critical. Such efforts, however, have been significantly hindered by high variability in the length and composition of the epitope sequences, making naïve modeling methods difficult to apply. Results We analyzed two benchmark datasets and found that linear B-cell epitopes possess distinctive residue conservation and position-specific residue propensities which could be exploited for epitope discrimination in silico . We developed a support vector machines (SVM) prediction model employing Bayes Feature Extraction to predict linear B-cell epitopes of diverse lengths (12- to 20-mers). The best SVM classifier achieved an accuracy of 74.50% and A ROC of 0.84 on an independent test set and was shown to outperform existing linear B-cell epitope prediction algorithms. In addition, we applied our model to a dataset of antigenic proteins with experimentally-verified epitopes and found it to be generally effective for discriminating the epitopes from non-epitopes. Conclusion We developed a SVM prediction model utilizing Bayes Feature Extraction and showed that it was effective in discriminating epitopes from non-epitopes in benchmark datasets and annotated antigenic proteins. A web server for predicting linear B-cell epitopes was developed and is available, together with supplementary materials, at http://www.immunopred.org/bayesb/index.html . The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the development of peptide-based diagnostics, therapeutics and vaccines. As experimental approaches are often laborious and time consuming, in silico methods for prediction of these immunogenic regions are critical. Such efforts, however, have been significantly hindered by high variability in the length and composition of the epitope sequences, making naïve modeling methods difficult to apply. We analyzed two benchmark datasets and found that linear B-cell epitopes possess distinctive residue conservation and position-specific residue propensities which could be exploited for epitope discrimination in silico. We developed a support vector machines (SVM) prediction model employing Bayes Feature Extraction to predict linear B-cell epitopes of diverse lengths (12- to 20-mers). The best SVM classifier achieved an accuracy of 74.50% and AROC of 0.84 on an independent test set and was shown to outperform existing linear B-cell epitope prediction algorithms. In addition, we applied our model to a dataset of antigenic proteins with experimentally-verified epitopes and found it to be generally effective for discriminating the epitopes from non-epitopes. We developed a SVM prediction model utilizing Bayes Feature Extraction and showed that it was effective in discriminating epitopes from non-epitopes in benchmark datasets and annotated antigenic proteins. A web server for predicting linear B-cell epitopes was developed and is available, together with supplementary materials, at http://www.immunopred.org/bayesb/index.html. The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the development of peptide-based diagnostics, therapeutics and vaccines. As experimental approaches are often laborious and time consuming, in silico methods for prediction of these immunogenic regions are critical. Such efforts, however, have been significantly hindered by high variability in the length and composition of the epitope sequences, making naieve modeling methods difficult to apply. We analyzed two benchmark datasets and found that linear B-cell epitopes possess distinctive residue conservation and position-specific residue propensities which could be exploited for epitope discrimination in silico. We developed a support vector machines (SVM) prediction model employing Bayes Feature Extraction to predict linear B-cell epitopes of diverse lengths (12- to 20-mers). The best SVM classifier achieved an accuracy of 74.50% and AROC of 0.84 on an independent test set and was shown to outperform existing linear B-cell epitope prediction algorithms. In addition, we applied our model to a dataset of antigenic proteins with experimentally-verified epitopes and found it to be generally effective for discriminating the epitopes from non-epitopes. We developed a SVM prediction model utilizing Bayes Feature Extraction and showed that it was effective in discriminating epitopes from non-epitopes in benchmark datasets and annotated antigenic proteins. A web server for predicting linear B-cell epitopes was developed and is available, together with supplementary materials, at http://www.immunopred.org/bayesb/index.html. |
| ArticleNumber | S21 |
| Author | Simarmata, Diane Ng, Lisa FP Tong, Joo Chuan Wee, Lawrence JK Kam, Yiu-Wing |
| AuthorAffiliation | 2 Data Mining Department, Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis South Tower, Singapore 138632 1 Singapore Immunology Network, 8A Biomedical Grove, #04-06 Immunos, Biopolis, Singapore 138648 3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597 |
| AuthorAffiliation_xml | – name: 2 Data Mining Department, Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis South Tower, Singapore 138632 – name: 3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597 – name: 1 Singapore Immunology Network, 8A Biomedical Grove, #04-06 Immunos, Biopolis, Singapore 138648 |
| Author_xml | – sequence: 1 givenname: Lawrence JK surname: Wee fullname: Wee, Lawrence JK organization: Singapore Immunology Network, 8A Biomedical Grove, Data Mining Department, Institute for Infocomm Research – sequence: 2 givenname: Diane surname: Simarmata fullname: Simarmata, Diane organization: Singapore Immunology Network, 8A Biomedical Grove – sequence: 3 givenname: Yiu-Wing surname: Kam fullname: Kam, Yiu-Wing organization: Singapore Immunology Network, 8A Biomedical Grove – sequence: 4 givenname: Lisa FP surname: Ng fullname: Ng, Lisa FP organization: Singapore Immunology Network, 8A Biomedical Grove, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore – sequence: 5 givenname: Joo Chuan surname: Tong fullname: Tong, Joo Chuan email: victor@bic.nus.edu.sg organization: Data Mining Department, Institute for Infocomm Research, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21143805$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUU1v1DAUtFAR_YBfgIQiLpwC_k58QaJVW5BacQhwtRznZXGVtYOdAPvv63SXtvTQnvxsz8ybN-8Q7fngAaHXBL8npJYfCK9ISYnkJSFlw8uGkmfo4PZ17169jw5TusKYVDUVL9A-JYSzGosDdNn8uCxbk6Arxgids5MLvgh9MTgPJhbHpYVhKGB0UxghFXNyflUcm02uz8BMc4Ti9O8UzQ3xJXremyHBq915hL6fnX47-VxefD3_cvLporQC11NZSVkxw3pV17zuSSWoVa3tLVcdtBhUz7noTUcESGuk7JjpMJVUiZZJ4D1lR4hvdWc_ms0fMwx6jG5t4kYTrJd09DK7XmbPV524TpRk2sctbZzbNXQWfDZ-Rw3G6f9_vPupV-G3ZhgLRXEWeLcTiOHXDGnSa5eWgIyHMCetBBdKVUo9iawprpSoxaL59gHyKszR5_i0wrknZUxm0Jv7zm8t_1tkBrAtwMaQUoT-8UAarpubQNQDlnWTWTaZx3fDE9zdDlLu5FcQ73w_RrsGAqHSoQ |
| CitedBy_id | crossref_primary_10_1016_j_jtbi_2017_03_031 crossref_primary_10_3390_ijms150610410 crossref_primary_10_1155_2013_283129 crossref_primary_10_1093_bioinformatics_btab321 crossref_primary_10_1186_s12864_016_3317_7 crossref_primary_10_1186_s13040_015_0047_3 crossref_primary_10_1186_1471_2164_12_S3_S11 crossref_primary_10_3934_mbe_2021443 crossref_primary_10_1007_s13721_015_0109_y crossref_primary_10_1186_1755_8794_8_S4_S3 crossref_primary_10_3390_s22114027 crossref_primary_10_1007_s12639_018_0996_9 crossref_primary_10_1371_journal_pone_0040104 crossref_primary_10_1039_c3mb70326f crossref_primary_10_1002_bip_22609 crossref_primary_10_1109_ACCESS_2017_2765363 crossref_primary_10_1155_2012_976385 crossref_primary_10_1186_s12859_017_1528_9 crossref_primary_10_1186_s13040_020_00211_0 crossref_primary_10_3390_ijms22063210 crossref_primary_10_1007_s41870_022_00951_8 crossref_primary_10_2174_0929867328666210504114351 crossref_primary_10_1007_s00607_019_00710_x crossref_primary_10_1002_prot_24527 crossref_primary_10_1186_s12859_014_0414_y crossref_primary_10_1186_1745_6150_8_27 crossref_primary_10_3390_pathogens11020146 crossref_primary_10_1186_s12967_018_1560_1 crossref_primary_10_1007_s41870_023_01294_8 crossref_primary_10_1186_s12859_016_1008_7 crossref_primary_10_1586_ecp_11_39 crossref_primary_10_3390_ijms231911880 crossref_primary_10_2174_1568026619666181130111827 crossref_primary_10_1038_srep12478 crossref_primary_10_1371_journal_pone_0134835 crossref_primary_10_1371_journal_ppat_1003001 crossref_primary_10_1016_j_compbiolchem_2014_02_002 crossref_primary_10_1080_09168451_2015_1025692 crossref_primary_10_1371_journal_pone_0071610 crossref_primary_10_1039_c2mb25251a |
| Cites_doi | 10.1002/prot.21078 10.1186/1471-2105-7-124 10.1016/j.molimm.2008.09.009 10.1073/pnas.0607879104 10.1186/1745-7580-2-2 10.1002/jmr.893 10.1186/1471-2105-10-287 10.1002/jmr.771 10.1016/0263-7855(93)80074-2 10.1023/A:1009715923555 10.1007/s00726-006-0485-9 10.1002/jmr.602 10.1186/1471-2164-6-79 10.1093/nar/gkm895 10.1093/bioinformatics/btq043 10.1371/journal.pcbi.0020071 10.1016/S0264-410X(99)00329-1 10.1093/protein/gzn075 10.1371/journal.pone.0004920 10.1110/ps.041059505 10.1186/1471-2105-7-425 |
| ContentType | Journal Article |
| Copyright | Wee et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 2010 Wee et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2010 Wee et al; licensee BioMed Central Ltd. 2010 Wee et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Wee et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: 2010 Wee et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2010 Wee et al; licensee BioMed Central Ltd. 2010 Wee et al; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/1471-2164-11-S4-S21 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (Selected full-text) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2164 |
| EndPage | S21 |
| ExternalDocumentID | 10.1186/1471-2164-11-s4-s21 PMC3005920 2502003621 21143805 10_1186_1471_2164_11_S4_S21 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 2XV 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ AIXEN ALIPV C24 CGR CUY CVF ECM EIF NPM 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c508t-76673a3f98848f1752c9bcfc49deb0e9f445fad15e6ca66d3ad026295b36e4f23 |
| IEDL.DBID | M48 |
| ISSN | 1471-2164 |
| IngestDate | Thu Aug 28 11:03:59 EDT 2025 Tue Sep 30 15:37:24 EDT 2025 Thu Sep 04 18:01:19 EDT 2025 Thu Oct 02 06:32:46 EDT 2025 Mon Oct 06 18:23:41 EDT 2025 Thu Jan 02 22:08:22 EST 2025 Wed Oct 01 03:02:56 EDT 2025 Thu Apr 24 23:04:22 EDT 2025 Sat Sep 06 07:28:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 4 |
| Keywords | Support Vector Machine Training Support Vector Machine Classifier Support Vector Machine Amino Acid Pair Support Vector Machine Prediction |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-76673a3f98848f1752c9bcfc49deb0e9f445fad15e6ca66d3ad026295b36e4f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-11-S4-S21 |
| PMID | 21143805 |
| PQID | 902032336 |
| PQPubID | 44682 |
| ParticipantIDs | unpaywall_primary_10_1186_1471_2164_11_s4_s21 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3005920 proquest_miscellaneous_954599799 proquest_miscellaneous_820795850 proquest_journals_902032336 pubmed_primary_21143805 crossref_primary_10_1186_1471_2164_11_S4_S21 crossref_citationtrail_10_1186_1471_2164_11_S4_S21 springer_journals_10_1186_1471_2164_11_S4_S21 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2010-12-02 |
| PublicationDateYYYYMMDD | 2010-12-02 |
| PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC genomics |
| PublicationTitleAbbrev | BMC Genomics |
| PublicationTitleAlternate | BMC Genomics |
| PublicationYear | 2010 |
| Publisher | BioMed Central Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V |
| References | S Saha (3480_CR5) 2004 AJ Alix (3480_CR3) 1999; 18 3480_CR16 MJ Sweredoski (3480_CR12) 2009; 22 J Shao (3480_CR19) 2009; 4 3480_CR23 JE Larsen (3480_CR7) 2006; 2 Y El-Manzalawy (3480_CR11) 2008; 21 ND Rubinstein (3480_CR13) 2009; 46 MJ Blythe (3480_CR6) 2005; 14 The UniProt Consortium (3480_CR22) 2008; 36 S Saha (3480_CR18) 2005; 6 J Shen (3480_CR15) 2007; 104 CJC Burges (3480_CR24) 1998; 2 J Chen (3480_CR10) 2007; 33 B Korber (3480_CR1) 2006; 6 Y EL-Manzalawy (3480_CR21) 2008 J Song (3480_CR17) 2006; 7 J Söllner (3480_CR8) 2006; 19 S Saha (3480_CR9) 2006; 65 ND Rubinstein (3480_CR14) 2009; 10 M Odorico (3480_CR4) 2003; 16 JL Pellequer (3480_CR2) 1993; 11 J Song (3480_CR20) 2010; 26 18947876 - Mol Immunol. 2009 Feb;46(5):840-7 19751513 - BMC Bioinformatics. 2009;10:287 16526956 - BMC Bioinformatics. 2006;7:124 12557235 - J Mol Recognit. 2003 Jan-Feb;16(1):20-2 18045787 - Nucleic Acids Res. 2008 Jan;36(Database issue):D190-5 15921533 - BMC Genomics. 2005;6:79 17014735 - BMC Bioinformatics. 2006;7:425 15576553 - Protein Sci. 2005 Jan;14(1):246-8 20130033 - Bioinformatics. 2010 Mar 15;26(6):752-60 10506656 - Vaccine. 1999 Sep;18(3-4):311-4 19074155 - Protein Eng Des Sel. 2009 Mar;22(3):113-20 16846250 - PLoS Comput Biol. 2006 Jun 30;2(6):e71 16598694 - J Mol Recognit. 2006 May-Jun;19(3):200-8 18496882 - J Mol Recognit. 2008 Jul-Aug;21(4):243-55 19290060 - PLoS One. 2009;4(3):e4920 16894596 - Proteins. 2006 Oct 1;65(1):40-8 16635264 - Immunome Res. 2006 Apr 24;2:2 7509182 - J Mol Graph. 1993 Sep;11(3):204-10, 191-2 17252308 - Amino Acids. 2007 Sep;33(3):423-8 17360525 - Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4337-41 |
| References_xml | – volume: 65 start-page: 40 year: 2006 ident: 3480_CR9 publication-title: Proteins doi: 10.1002/prot.21078 – start-page: 289 volume-title: IEEE International Conference on Bioinformatics and Biomedicine year: 2008 ident: 3480_CR21 – ident: 3480_CR16 doi: 10.1186/1471-2105-7-124 – volume: 46 start-page: 840 year: 2009 ident: 3480_CR13 publication-title: Mol Immunol doi: 10.1016/j.molimm.2008.09.009 – volume: 104 start-page: 4337 year: 2007 ident: 3480_CR15 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0607879104 – volume: 2 start-page: 2 year: 2006 ident: 3480_CR7 publication-title: Immunome Res doi: 10.1186/1745-7580-2-2 – ident: 3480_CR23 – volume: 21 start-page: 243 year: 2008 ident: 3480_CR11 publication-title: J Mol Recognit doi: 10.1002/jmr.893 – volume: 10 start-page: 287 year: 2009 ident: 3480_CR14 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-287 – volume: 19 start-page: 200 year: 2006 ident: 3480_CR8 publication-title: J Mol Recognit doi: 10.1002/jmr.771 – volume: 11 start-page: 204 year: 1993 ident: 3480_CR2 publication-title: J Mol Graph doi: 10.1016/0263-7855(93)80074-2 – volume: 2 start-page: 121 year: 1998 ident: 3480_CR24 publication-title: Data Mining and Knowledge Discovery doi: 10.1023/A:1009715923555 – volume: 33 start-page: 423 year: 2007 ident: 3480_CR10 publication-title: Amino Acids doi: 10.1007/s00726-006-0485-9 – volume: 16 start-page: 20 year: 2003 ident: 3480_CR4 publication-title: J Mol Recognit doi: 10.1002/jmr.602 – volume: 6 start-page: 79 year: 2005 ident: 3480_CR18 publication-title: BMC Genomics doi: 10.1186/1471-2164-6-79 – volume: 36 start-page: D190 year: 2008 ident: 3480_CR22 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm895 – start-page: 197 volume-title: ICARIS 2004, LNCS 3239 year: 2004 ident: 3480_CR5 – volume: 26 start-page: 752 year: 2010 ident: 3480_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq043 – volume: 6 start-page: e71 year: 2006 ident: 3480_CR1 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0020071 – volume: 18 start-page: 311 year: 1999 ident: 3480_CR3 publication-title: Vaccine doi: 10.1016/S0264-410X(99)00329-1 – volume: 22 start-page: 113 year: 2009 ident: 3480_CR12 publication-title: Protein Eng Des Sel doi: 10.1093/protein/gzn075 – volume: 4 start-page: e4920 year: 2009 ident: 3480_CR19 publication-title: PLoS One doi: 10.1371/journal.pone.0004920 – volume: 14 start-page: 246 year: 2005 ident: 3480_CR6 publication-title: Protein Sci doi: 10.1110/ps.041059505 – volume: 7 start-page: 425 year: 2006 ident: 3480_CR17 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-425 – reference: 15921533 - BMC Genomics. 2005;6:79 – reference: 18947876 - Mol Immunol. 2009 Feb;46(5):840-7 – reference: 15576553 - Protein Sci. 2005 Jan;14(1):246-8 – reference: 20130033 - Bioinformatics. 2010 Mar 15;26(6):752-60 – reference: 7509182 - J Mol Graph. 1993 Sep;11(3):204-10, 191-2 – reference: 18045787 - Nucleic Acids Res. 2008 Jan;36(Database issue):D190-5 – reference: 16598694 - J Mol Recognit. 2006 May-Jun;19(3):200-8 – reference: 12557235 - J Mol Recognit. 2003 Jan-Feb;16(1):20-2 – reference: 19751513 - BMC Bioinformatics. 2009;10:287 – reference: 10506656 - Vaccine. 1999 Sep;18(3-4):311-4 – reference: 16846250 - PLoS Comput Biol. 2006 Jun 30;2(6):e71 – reference: 17360525 - Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4337-41 – reference: 16635264 - Immunome Res. 2006 Apr 24;2:2 – reference: 18496882 - J Mol Recognit. 2008 Jul-Aug;21(4):243-55 – reference: 19074155 - Protein Eng Des Sel. 2009 Mar;22(3):113-20 – reference: 17252308 - Amino Acids. 2007 Sep;33(3):423-8 – reference: 17014735 - BMC Bioinformatics. 2006;7:425 – reference: 16894596 - Proteins. 2006 Oct 1;65(1):40-8 – reference: 19290060 - PLoS One. 2009;4(3):e4920 – reference: 16526956 - BMC Bioinformatics. 2006;7:124 |
| SSID | ssj0017825 |
| Score | 2.2706566 |
| Snippet | Backgound
The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for... The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great implications for the... Abstract Backgound: The identification of B-cell epitopes on antigens has been a subject of intense research as the knowledge of these markers has great... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | S21 |
| SubjectTerms | Accuracy Algorithms Animal Genetics and Genomics Antigens - chemistry Antigens - immunology Bayes Theorem Benchmarking Biomedical and Life Sciences Computer Simulation Data mining Decision trees Epitopes, B-Lymphocyte - immunology Genomics Internet Life Sciences Methods Microarrays Microbial Genetics and Genomics Peptides - chemistry Peptides - immunology Plant Genetics and Genomics Prediction models Predictive Value of Tests Proceedings Protein folding Proteomics Studies |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA7rLKI-iHfrquTBR8O2aZJJHkQcmWURZhHHlX0LaS6rMHRqO4POvzenNx0W560lKW1PTpLv5CTfh9Ab6WSQKffEesEI44UiUrBADOMmRs-FcxYOOC8uxPkl-3TFr47QYjgLA9sqhzGxHajd2sIa-alqtb7zXLyvfhIQjYLk6qCgYXplBfeuZRi7hY4pEGNN0PFsfvH5y5hWiNMh76mHMilOszgyExoDBjhctmRkSbP96ekG5ry5dXLMn95Dd7ZlZXa_zGr1zxR19gDd77El_tA5w0N05MtH6HanNrl7jBbLbwsCs5bDVQ35GWgTvA4YkKap8YzAKj72VezklW8wbIm_xjOzi9eAFLe1x_Pfm7o7CvEEXZ7Nv348J72aArERhG3IFAQ-TR6UlEyGiBqoVYUNlinni9SrwBgPxmXcC2uEcLlxMT6jihe58CzQ_CmalOvSP0dYFEZKRa3wgTKeK1nI1Lc8QYVNPTcJooMRte2pxkHxYqXbkEMKDZbXYPl4q5dMR8sn6O34UNUxbRyufjK0ju67XaNHJ0kQHktjfwHzmdKvt42OiGeqYoyU_r-KiqhSQbozQc-61h4_KIbLQNHPEzTd84OxArB175eUP763rN2gC6BofC0ZPObvdx_8TzK61WG7NEw3NHtx0C4n6C4d9uPQl2iyqbf-VURVm-J131f-AIEjHrI priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhobQ9hD5TJ23RoceKemVJKx2TkhAC28t2S25ClqW2sHiNvUu7_z4zfrVLyEJuNpJseaSRvvFoviHkky501KkMzAclmJC5YVqJyJyQDqznvCg8BjjPvqnrhbi5lbcHRA6xMO1p98El2a7UrVpr9WUCyyjjgO4xEmwu2BzDx48k8nnBNF7w89F5AJue7AmGHmi4uwndQ5b3D0iOXtLn5OmmrNz2j1su_9uIrl6Q4x5B0vNuyF-Sg1C-Ik-6nJLb12Q2_zFjuDcVtKrRC4OSp6tIEU-6ml4w_FdPQwWqXIWG4sH3n_TCbeEa8eCmDvTy77ruAh7ekMXV5fev16zPmcA8QK01m2IaT5dFo7XQEbAB9yb30QtThDwNJgohoysmMijvlCoyV4AVxo3MMxVE5NlbcliuyvCOUJU7rQ33KkQuZGZ0rtPQsgHlPg3SJYQPQrS-JxTHvBZL2xoWWlmUvEXJw62dCwuST8jnsVHV8Wnsr342jI7tlauxpk37nmUqIXQsBa1A8bkyrDaNBVwzNWAJpQ9XMYAdDTo1E3LSjfbYITCKkYhfJmS6Mw_GCsjJvVtS_v7VcnMj-7_h8Fo2zJh__d77nWycVvvl0gjb8MnpI59_Rp7x4RwOf08O1_UmfAA0tc4_trpzBw4UFiQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELaqVAg48IaGAvKBI043Xtuxjy1qVSGlQgpB5bSyvTZUpJvVPlTCr8eTfdAQEQmJ26481tqzM_Y3mhdCb2UqvYy4I9YJRhg3ikjBPNGM62A9mzS1kOA8vRDnc_bhkl_uoWmXC2OuLRQnvb6y5eh2AvqiyW-A_gmuOMpT36i7FEfjcLwSGlA_ZIjNGJlBWvm-4AGaD9D-_OLj8Zd1hlFL1VYe2ppZMlLS8ebttAU5tyMne_fpfXS3znK9utGLxa0b6uwhyrq9NYEp30d1ZUb25x9lH__b5h-hBy2WxceN8D1Gey57gu403S1XT9F09nlK4JZMcV6APwhkAC89BmSrC3xCwGuAXR4OldyVGELwv-ITvQrPgEzrwuHTH1XRpF48Q_Oz00_vz0nbvYHYAPoqMoGGojr2SkomfUAp1CpjvWUqdSZyyjPGvU7H3AmrhUhjnQZ7kCpuYuGYp_FzNMiWmTtAWBgtpaJWOE8Zj5U0MnLrukTGRo7rIaLdX0tsW9ocOmwskrWJI0UCfEqAT-E1mbEk8GmI3vWT8qayx27yw04cklbNy0StG9DHsRgi3I8G_QT26cwt6zIJCGuigk0W_Z1EBRSrwL06RC8a8eoXFMxzaAnAh2iyIXg9AVQH3xzJrr6tq4RDHwJFw2dJJ6K_171zn6SX4918KVkSNOblP9Ifonu0iwiir9CgKmr3OuC6yrxptfUX049GEg priority: 102 providerName: Unpaywall |
| Title | SVM-based prediction of linear B-cell epitopes using Bayes Feature Extraction |
| URI | https://link.springer.com/article/10.1186/1471-2164-11-S4-S21 https://www.ncbi.nlm.nih.gov/pubmed/21143805 https://www.proquest.com/docview/902032336 https://www.proquest.com/docview/820795850 https://www.proquest.com/docview/954599799 https://pubmed.ncbi.nlm.nih.gov/PMC3005920 https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-11-S4-S21 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2164 dateEnd: 20250331 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals (Selected full-text) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: U2A dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED9tqxDwgPimDCo_IJ4wtI7t2g8IrdWmCanVRCkqT5GTOIBUpVnaivW_5y5NMqqx8hI5svPh8zn3u5x9P4A3JjGp6SrPY68llyqy3GiZcieVQ-85SpKYNjiPxvp8Kj_P1OwA6gWZlQCX_3TtiE9qWszfX11uPuGE_1hOeKM_9PADywXiftojNpF8Inpv80tOzFIUga1oNg6hhdbLEr3DSF5HGtBCqnIHUnWPKjPRLffdtV43IOnNlZVNePU-3F1nudv8dvP5Xxbs7CE8qKAnO9nqyiM48NljuLMlo9w8gdHk24iTUUtYXlD4hoaMLVJGQNQVbMDpJz_zOX4Dcr9ktGL-Bxu4DZYJSK4Lz06vVsV2p8RTmJ6dfh2e84psgceI0Va8T_yfLkitMdKkCCpEbKM4jaVNfNT1NpVSpS7pKa9jp3USuATdN2FVFGgvUxE8g6NskfkXwHTkjLEi1j4VUgXWRKbryzRCUdz1yrVB1EIM4yoTORFizMPSIzE6JMmHJHk8DScyRMm34V1zUb5NxLG_-XE9OmGtVKEt-eKDQLeBNbU4nUh8LvOL9TJEQNS36EJ1b29iEXRaioa24fl2tJsXQm-aMvirNvR39KBpQMm8d2uyXz_LpN5EG2AFPpbXGnP93nv7yRu12i-XpQyXovfy_906hnuiXrMjXsHRqlj714i8VlEHDvuzfgdag9PxxRc8G-php_yL0SknFR6nAsut6fji5PsfZAMuNg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTWjwgPimjA8_wBvWWsd27YcJUejUsbVCdEN78xzHYZOqNDStRv84_jfu0iRQTfRtb4nsKM75zneX-_gR8lYnOtVtGZgPSjAhY8O0EilzQjrwnuMk8VjgPBypwZn4ci7Pt8jvuhYG0yrrM7E8qJOpx3_k-6bE-o4i9SH_yRA0CoOrNYKGq5AVkoOyw1hV13EcltfgwRUHR59hu99xftg__TRgFcgA82CbzFkXcS9dlBqthU5BmXJvYp96YZIQt4NJhZCpSzoyKO-USiKXgNvCjYwjFUSKfQ9AA-yISBjw_XZ6_dHXb00YA9SvrFoddbTa74AmYBwcFCxmGws25p11dXjDxr2ZqtnEa--R3UWWu-W1m0z-UYmHD8j9ypalH1fM95BshewRubNCt1w-JsPx9yFDLZnQfIbxIOQBOk0pWrZuRnsMowY05HCo5KGgmIL_g_bcEq7RMl3MAu3_ms9WpRdPyNmtEPYp2c6mWXhOqIqd1oZ7FVIuZGR0rNuh7EsU-3aQrkV4TUTrq9bmiLAxsaWLo5VFylukPNzasbBA-RZ53zyUrzp7bJ6-V--OrcS8sA1TtghtRkE-kXwuC9NFYcHC6hrwydr_n2LAijUYXm2RZ6vdbhYE7jlCAsgW6a7xQTMBu4Ovj2RXl2WXcMQhMBxey2qO-bvujd_JGrbaTJdC2IJ3XmykyxuyOzgdntiTo9HxHrnL61wg_pJsz2eL8Aosunn8upIbSi5uW1T_AN4jXAg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQImA5IJ5LWB4-cMTa1LFd-8iWrZZHV0hlETfLdmxAqtIoSQX993jygmq1lbglip04M57MN5kXQq9lLoNMuSfOC0YYt4pIwQIxjJtoPds8d5DgvLgQ55fswzc-RBPWQ7T74JLschqgSlPRnJR56ERcipNJ_KQSGpE-ZIUtGVlCKvlNFtUbNDGYidnoSIgKkPfFhq6ZuKuQrqDMq8GSo8f0LrqzKUqz_WVWq3-U0vw-utejSfy2Y_8DdMMXD9Gtrr_k9hFaLL8uCOipHJcVeGSAC3gdMGBLU-FTAv_tsS-jWJe-xhAE_x2fmm08Bmy4qTw--91UXfLDY3Q5P_syOyd9_wTiIuxqyBRaeposKCmZDBEnUKesC46p3NvUq8AYDyafcC-cESLPTB4tMqq4zYRngWZP0EGxLvxThIU1UirqhA-U8UxJK1PfVgayLvXcJIgORNSuLy4OPS5WujUypNBAeQ2Uj6d6yXSkfILejJPKrrbG_uHHA3d0L2i1Vm0L-CwTCcLj1SghQD5T-PWm1hHjTFW0itLrh6iIIxU4OBN01HF7XFA0kKEoP0_QdGcfjAOgPvfuleLnj7ZON3QCUDQ-lgw75u-6974nGbfVfrrUTNd08uw_7_8K3f78bq4_vb_4eIwO6RCeQ5-jg6ba-BcRZDX2ZStGfwD_4R02 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELaqVAg48IaGAvKBI043Xtuxjy1qVSGlQgpB5bSyvTZUpJvVPlTCr8eTfdAQEQmJ26481tqzM_Y3mhdCb2UqvYy4I9YJRhg3ikjBPNGM62A9mzS1kOA8vRDnc_bhkl_uoWmXC2OuLRQnvb6y5eh2AvqiyW-A_gmuOMpT36i7FEfjcLwSGlA_ZIjNGJlBWvm-4AGaD9D-_OLj8Zd1hlFL1VYe2ppZMlLS8ebttAU5tyMne_fpfXS3znK9utGLxa0b6uwhyrq9NYEp30d1ZUb25x9lH__b5h-hBy2WxceN8D1Gey57gu403S1XT9F09nlK4JZMcV6APwhkAC89BmSrC3xCwGuAXR4OldyVGELwv-ITvQrPgEzrwuHTH1XRpF48Q_Oz00_vz0nbvYHYAPoqMoGGojr2SkomfUAp1CpjvWUqdSZyyjPGvU7H3AmrhUhjnQZ7kCpuYuGYp_FzNMiWmTtAWBgtpaJWOE8Zj5U0MnLrukTGRo7rIaLdX0tsW9ocOmwskrWJI0UCfEqAT-E1mbEk8GmI3vWT8qayx27yw04cklbNy0StG9DHsRgi3I8G_QT26cwt6zIJCGuigk0W_Z1EBRSrwL06RC8a8eoXFMxzaAnAh2iyIXg9AVQH3xzJrr6tq4RDHwJFw2dJJ6K_171zn6SX4918KVkSNOblP9Ifonu0iwiir9CgKmr3OuC6yrxptfUX049GEg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SVM-based+prediction+of+linear+B-cell+epitopes+using+Bayes+Feature+Extraction&rft.jtitle=BMC+genomics&rft.au=Wee%2C+Lawrence+JK&rft.au=Simarmata%2C+Diane&rft.au=Kam%2C+Yiu-Wing&rft.au=Ng%2C+Lisa+FP&rft.date=2010-12-02&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=11&rft.issue=4&rft.spage=S21&rft.epage=S21&rft_id=info:doi/10.1186%2F1471-2164-11-S4-S21&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |