Risk-Sensitive Reinforcement Learning
We derive a family of risk-sensitive reinforcement learning methods for agents, who face sequential decision-making tasks in uncertain environments. By applying a utility function to the temporal difference (TD) error, nonlinear transformations are effectively applied not only to the received reward...
Saved in:
| Published in | Neural computation Vol. 26; no. 7; pp. 1298 - 1328 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
One Rogers Street, Cambridge, MA 02142-1209, USA
MIT Press
01.07.2014
MIT Press Journals, The |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0899-7667 1530-888X 1530-888X |
| DOI | 10.1162/NECO_a_00600 |
Cover
| Abstract | We derive a family of risk-sensitive reinforcement learning methods for agents, who face sequential decision-making tasks in uncertain environments. By applying a utility function to the temporal difference (TD) error, nonlinear transformations are effectively applied not only to the received rewards but also to the true transition probabilities of the underlying Markov decision process. When appropriate utility functions are chosen, the agents’ behaviors express key features of human behavior as predicted by prospect theory (Kahneman & Tversky,
), for example, different risk preferences for gains and losses, as well as the shape of subjective probability curves. We derive a risk-sensitive Q-learning algorithm, which is necessary for modeling human behavior when transition probabilities are unknown, and prove its convergence. As a proof of principle for the applicability of the new framework, we apply it to quantify human behavior in a sequential investment task. We find that the risk-sensitive variant provides a significantly better fit to the behavioral data and that it leads to an interpretation of the subject's responses that is indeed consistent with prospect theory. The analysis of simultaneously measured fMRI signals shows a significant correlation of the risk-sensitive TD error with BOLD signal change in the ventral striatum. In addition we find a significant correlation of the risk-sensitive Q-values with neural activity in the striatum, cingulate cortex, and insula that is not present if standard Q-values are used. |
|---|---|
| AbstractList | We derive a family of risk-sensitive reinforcement learning methods for agents, who face sequential decision-making tasks in uncertain environments. By applying a utility function to the temporal difference (TD) error, nonlinear transformations are effectively applied not only to the received rewards but also to the true transition probabilities of the underlying Markov decision process. When appropriate utility functions are chosen, the agents' behaviors express key features of human behavior as predicted by prospect theory (Kahneman & Tversky, 1979 ), for example, different risk preferences for gains and losses, as well as the shape of subjective probability curves. We derive a risk-sensitive Q-learning algorithm, which is necessary for modeling human behavior when transition probabilities are unknown, and prove its convergence. As a proof of principle for the applicability of the new framework, we apply it to quantify human behavior in a sequential investment task. We find that the risk-sensitive variant provides a significantly better fit to the behavioral data and that it leads to an interpretation of the subject's responses that is indeed consistent with prospect theory. The analysis of simultaneously measured fMRI signals shows a significant correlation of the risk-sensitive TD error with BOLD signal change in the ventral striatum. In addition we find a significant correlation of the risk-sensitive Q-values with neural activity in the striatum, cingulate cortex, and insula that is not present if standard Q-values are used. We derive a family of risk-sensitive reinforcement learning methods for agents, who face sequential decision-making tasks in uncertain environments. By applying a utility function to the temporal difference (TD) error, nonlinear transformations are effectively applied not only to the received rewards but also to the true transition probabilities of the underlying Markov decision process. When appropriate utility functions are chosen, the agents’ behaviors express key features of human behavior as predicted by prospect theory (Kahneman & Tversky, ), for example, different risk preferences for gains and losses, as well as the shape of subjective probability curves. We derive a risk-sensitive Q-learning algorithm, which is necessary for modeling human behavior when transition probabilities are unknown, and prove its convergence. As a proof of principle for the applicability of the new framework, we apply it to quantify human behavior in a sequential investment task. We find that the risk-sensitive variant provides a significantly better fit to the behavioral data and that it leads to an interpretation of the subject's responses that is indeed consistent with prospect theory. The analysis of simultaneously measured fMRI signals shows a significant correlation of the risk-sensitive TD error with BOLD signal change in the ventral striatum. In addition we find a significant correlation of the risk-sensitive Q-values with neural activity in the striatum, cingulate cortex, and insula that is not present if standard Q-values are used. We derive a family of risk-sensitive reinforcement learning methods for agents, who face sequential decision-making tasks in uncertain environments. By applying a utility function to the temporal difference (TD) error, nonlinear transformations are effectively applied not only to the received rewards but also to the true transition probabilities of the underlying Markov decision process. When appropriate utility functions are chosen, the agents' behaviors express key features of human behavior as predicted by prospect theory (Kahneman & Tversky, 1979 ), for example, different risk preferences for gains and losses, as well as the shape of subjective probability curves. We derive a risk-sensitive Q-learning algorithm, which is necessary for modeling human behavior when transition probabilities are unknown, and prove its convergence. As a proof of principle for the applicability of the new framework, we apply it to quantify human behavior in a sequential investment task. We find that the risk-sensitive variant provides a significantly better fit to the behavioral data and that it leads to an interpretation of the subject's responses that is indeed consistent with prospect theory. The analysis of simultaneously measured fMRI signals shows a significant correlation of the risk-sensitive TD error with BOLD signal change in the ventral striatum. In addition we find a significant correlation of the risk-sensitive Q-values with neural activity in the striatum, cingulate cortex, and insula that is not present if standard Q-values are used.We derive a family of risk-sensitive reinforcement learning methods for agents, who face sequential decision-making tasks in uncertain environments. By applying a utility function to the temporal difference (TD) error, nonlinear transformations are effectively applied not only to the received rewards but also to the true transition probabilities of the underlying Markov decision process. When appropriate utility functions are chosen, the agents' behaviors express key features of human behavior as predicted by prospect theory (Kahneman & Tversky, 1979 ), for example, different risk preferences for gains and losses, as well as the shape of subjective probability curves. We derive a risk-sensitive Q-learning algorithm, which is necessary for modeling human behavior when transition probabilities are unknown, and prove its convergence. As a proof of principle for the applicability of the new framework, we apply it to quantify human behavior in a sequential investment task. We find that the risk-sensitive variant provides a significantly better fit to the behavioral data and that it leads to an interpretation of the subject's responses that is indeed consistent with prospect theory. The analysis of simultaneously measured fMRI signals shows a significant correlation of the risk-sensitive TD error with BOLD signal change in the ventral striatum. In addition we find a significant correlation of the risk-sensitive Q-values with neural activity in the striatum, cingulate cortex, and insula that is not present if standard Q-values are used. |
| Author | Shen, Yun Tobia, Michael J. Sommer, Tobias Obermayer, Klaus |
| Author_xml | – sequence: 1 givenname: Yun surname: Shen fullname: Shen, Yun email: yun@ni.tu-berlin.de organization: Technical University, 10587 Berlin, Germany yun@ni.tu-berlin.de – sequence: 2 givenname: Michael J. surname: Tobia fullname: Tobia, Michael J. email: m.tobia@uke.de organization: University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany m.tobia@uke.de – sequence: 3 givenname: Tobias surname: Sommer fullname: Sommer, Tobias email: t.sommer@uke.de organization: University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany t.sommer@uke.de – sequence: 4 givenname: Klaus surname: Obermayer fullname: Obermayer, Klaus organization: Technical University, 10587 Berlin, Germany, and Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany oby@ni.tu-berlin.de |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24708369$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0UtrGzEUBWBRUmrH6a7rECiBLjLplTR67RJMXmBicBLoTsiaO0WpR-NI40D76zupnWBCQlda6DsHXd1dshPbiIR8oXBMqWTfr8_GU-ssgAT4QIZUcCi01j92yBC0MYWSUg3Ibs730BsK4hMZsFKB5tIMyeEs5F_FDcYcuvCIBzMMsW6TxwZjdzBBl2KIP_fIx9otMn7enCNyd352O74sJtOLq_HppPACdFeUKLwsoaaKaTpXtCqdmfOKCu9ZXfsSSl0ZQBCl0xJqXSnNnABaIYfSO8NH5Nu6d5nahxXmzjYhe1wsXMR2lS2V_ZCCSmD_p4JTI5TQqqdfX9H7dpViP8iTElxLbWiv9jdqNW-wsssUGpd-2-e_6gFbA5_anBPW1ofOdaGNXXJhYSnYp4XY7YX0oaNXoefed_hmqiZsv_JtevIGjejbRyaDshyYYNwyYLRPWzD2T1j-u3-p-Aslvao6 |
| CODEN | NEUCEB |
| CitedBy_id | crossref_primary_10_1016_j_sysconle_2021_105009 crossref_primary_10_1109_ACCESS_2024_3486549 crossref_primary_10_1111_risa_14104 crossref_primary_10_1109_LRA_2021_3070252 crossref_primary_10_1016_j_artint_2024_104096 crossref_primary_10_1007_s10462_023_10468_6 crossref_primary_10_1016_j_isatra_2021_06_010 crossref_primary_10_1007_s10458_022_09596_0 crossref_primary_10_2139_ssrn_3971071 crossref_primary_10_3390_a16070325 crossref_primary_10_1080_14697688_2023_2244531 crossref_primary_10_1109_TAC_2020_2989702 crossref_primary_10_2139_ssrn_4149461 crossref_primary_10_1109_LWC_2024_3430516 crossref_primary_10_2139_ssrn_4613523 crossref_primary_10_1061__ASCE_CP_1943_5487_0000991 crossref_primary_10_1109_TAC_2019_2926674 crossref_primary_10_1111_mafi_12382 crossref_primary_10_1137_22M1527209 crossref_primary_10_1016_j_artint_2022_103743 crossref_primary_10_1177_0278364918772017 crossref_primary_10_3389_fpsyg_2015_01342 crossref_primary_10_1080_21642583_2018_1528483 crossref_primary_10_1126_sciadv_ade7972 crossref_primary_10_1162_NECO_a_00887 crossref_primary_10_1007_s40747_024_01621_x crossref_primary_10_1007_s00521_023_09300_7 crossref_primary_10_1145_3603148 crossref_primary_10_1146_annurev_control_053018_023634 crossref_primary_10_3390_biomimetics7040193 crossref_primary_10_1109_TNNLS_2017_2654539 crossref_primary_10_1002_mde_3002 crossref_primary_10_1111_mafi_12388 crossref_primary_10_1109_LCSYS_2022_3185404 crossref_primary_10_1109_TNNLS_2021_3106818 |
| Cites_doi | 10.1137/120899005 10.1093/cercor/bhn098 10.1002/9780470316887 10.1073/pnas.0900102106 10.1111/1467-9965.00068 10.2307/1914185 10.1016/j.neuroimage.2011.06.087 10.1371/journal.pcbi.1000857 10.1017/CBO9780511840203 10.1126/science.275.5306.1593 10.1523/JNEUROSCI.4286-07.2008 10.1007/s007800200072 10.1523/JNEUROSCI.5498-10.2012 10.1515/9783110212075 10.1007/BF00122574 10.1016/S0167-6911(96)00051-5 10.1016/j.conb.2004.10.016 10.1016/B978-1-55860-335-6.50021-0 10.1287/moor.27.2.294.324 10.1007/s10107-010-0393-3 10.1287/mnsc.18.7.356 10.1016/S0896-6273(02)00967-4 10.1007/s00186-009-0285-6 10.1016/j.neuroimage.2013.11.051 10.1023/A:1017940631555 |
| ContentType | Journal Article |
| Copyright | Copyright MIT Press Journals Jul 2014 |
| Copyright_xml | – notice: Copyright MIT Press Journals Jul 2014 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1162/NECO_a_00600 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef Computer and Information Systems Abstracts MEDLINE - Academic Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1530-888X |
| EndPage | 1328 |
| ExternalDocumentID | 3333811681 24708369 10_1162_NECO_a_00600 neco_a_00600.pdf |
| Genre | Letter Feature Correspondence |
| GroupedDBID | - 0R 123 36B 4.4 4S 6IK AAJGR AALMD AAPBV ABDBF ABDNZ ABFLS ABIVO ABPTK ACGFO ADIYS AEGXH AEILP AENEX AFHIN AIAGR ALMA_UNASSIGNED_HOLDINGS ARCSS AVWKF AZFZN BEFXN BFFAM BGNUA BKEBE BPEOZ CAG CS3 DC DU5 EAP EAS EBC EBD EBS ECS EDO EJD EMB EMK EPL EPS EST ESX F5P FEDTE FNEHJ HVGLF HZ I-F IPLJI JAVBF MCG MKJ O9- OCL P2P PK0 PQEST PQQKQ RMI SV3 TUS WG8 WH7 X XJE ZWS --- -~X .4S .DC 0R~ 41~ 53G AAFWJ AAYXX ABAZT ABEFU ABJNI ABVLG ACUHS ACYGS ADMLS AMVHM CITATION COF EMOBN HZ~ H~9 MINIK CGR CUY CVF ECM EIF NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c508t-4e5c640f17281b71d4a9b3d15cc2ffc4048d90e054a860f8d782a501de304ca93 |
| ISSN | 0899-7667 1530-888X |
| IngestDate | Thu Sep 04 17:20:57 EDT 2025 Thu Sep 04 16:05:49 EDT 2025 Sat Aug 16 22:51:27 EDT 2025 Mon Jul 21 06:01:39 EDT 2025 Thu Apr 24 23:08:52 EDT 2025 Wed Oct 01 02:03:08 EDT 2025 Sun Jul 17 10:31:12 EDT 2022 Tue Mar 01 17:17:39 EST 2022 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c508t-4e5c640f17281b71d4a9b3d15cc2ffc4048d90e054a860f8d782a501de304ca93 |
| Notes | July, 2014 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 ObjectType-Correspondence-1 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 24708369 |
| PQID | 1535386891 |
| PQPubID | 37252 |
| PageCount | 31 |
| ParticipantIDs | proquest_miscellaneous_1531957587 proquest_journals_1535386891 crossref_primary_10_1162_NECO_a_00600 mit_journals_necov26i7_302523_2021_11_09_zip_neco_a_00600 mit_journals_10_1162_NECO_a_00600 crossref_citationtrail_10_1162_NECO_a_00600 pubmed_primary_24708369 proquest_miscellaneous_1660051602 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-07-01 |
| PublicationDateYYYYMMDD | 2014-07-01 |
| PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | One Rogers Street, Cambridge, MA 02142-1209, USA |
| PublicationPlace_xml | – name: One Rogers Street, Cambridge, MA 02142-1209, USA – name: United States – name: Cambridge |
| PublicationTitle | Neural computation |
| PublicationTitleAlternate | Neural Comput |
| PublicationYear | 2014 |
| Publisher | MIT Press MIT Press Journals, The |
| Publisher_xml | – name: MIT Press – name: MIT Press Journals, The |
| References | B20 B21 B22 B23 B25 B26 B27 B29 Gollier C. (B12) 2004 Ghosh J. (B8) 2006 Bertsekas D. (B2) 1996 B30 B31 B10 B32 B13 B14 B15 B16 B17 Sutton R. (B28) 1998 B18 B19 B1 B3 B5 B6 Glimcher P. (B11) 2008 B7 B9 Savage L. (B24) 1972 |
| References_xml | – ident: B27 doi: 10.1137/120899005 – ident: B10 doi: 10.1093/cercor/bhn098 – volume-title: Neuroeconomics: Decision making and the brain year: 2008 ident: B11 – ident: B22 doi: 10.1002/9780470316887 – ident: B32 doi: 10.1073/pnas.0900102106 – volume-title: The foundations of statistics year: 1972 ident: B24 – volume-title: Neuro-dynamic programming year: 1996 ident: B2 – ident: B1 doi: 10.1111/1467-9965.00068 – ident: B16 doi: 10.2307/1914185 – ident: B29 doi: 10.1016/j.neuroimage.2011.06.087 – volume-title: Reinforcement learning year: 1998 ident: B28 – ident: B18 doi: 10.1371/journal.pcbi.1000857 – ident: B9 doi: 10.1017/CBO9780511840203 – volume-title: An introduction to Bayesian analysis year: 2006 ident: B8 – ident: B26 doi: 10.1126/science.275.5306.1593 – ident: B21 doi: 10.1523/JNEUROSCI.4286-07.2008 – ident: B6 doi: 10.1007/s007800200072 – ident: B19 doi: 10.1523/JNEUROSCI.5498-10.2012 – ident: B7 doi: 10.1515/9783110212075 – ident: B31 doi: 10.1007/BF00122574 – ident: B14 doi: 10.1016/S0167-6911(96)00051-5 – ident: B20 doi: 10.1016/j.conb.2004.10.016 – ident: B13 doi: 10.1016/B978-1-55860-335-6.50021-0 – ident: B3 doi: 10.1287/moor.27.2.294.324 – ident: B23 doi: 10.1007/s10107-010-0393-3 – ident: B15 doi: 10.1287/mnsc.18.7.356 – ident: B25 doi: 10.1016/S0896-6273(02)00967-4 – ident: B5 doi: 10.1007/s00186-009-0285-6 – ident: B30 doi: 10.1016/j.neuroimage.2013.11.051 – volume-title: The economics of risk and time year: 2004 ident: B12 – ident: B17 doi: 10.1023/A:1017940631555 |
| SSID | ssj0006105 |
| Score | 2.4643967 |
| Snippet | We derive a family of risk-sensitive reinforcement learning methods for agents, who face sequential decision-making tasks in uncertain environments. By... |
| SourceID | proquest pubmed crossref mit |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1298 |
| SubjectTerms | Algorithms Behavior Brain - physiology Brain Mapping Decision making Decision Making - physiology Decision making models Human behavior Humans Learning Letters Magnetic Resonance Imaging Markov analysis Markov Chains Mathematical analysis Mathematical models Models, Psychological Neuropsychology Nonlinear Dynamics Oxygen - blood Probability Reinforcement Reinforcement (Psychology) Risk Signal transduction Tasks Transition probabilities Utilities Utility functions |
| Title | Risk-Sensitive Reinforcement Learning |
| URI | https://direct.mit.edu/neco/article/doi/10.1162/NECO_a_00600 https://www.ncbi.nlm.nih.gov/pubmed/24708369 https://www.proquest.com/docview/1535386891 https://www.proquest.com/docview/1531957587 https://www.proquest.com/docview/1660051602 |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1530-888X dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0006105 issn: 0899-7667 databaseCode: ABDBF dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1530-888X dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0006105 issn: 0899-7667 databaseCode: AMVHM dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1530-888X dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0006105 issn: 0899-7667 databaseCode: ADMLS dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZY98IL90thoCAxXlDAsR07fpymThVaW2lrUXmyHCeZKraksBSJ_XqOEydNpBUNXqIqOa5bf_bx55wbQu8pTYjOOKy0JJY-S7DxNdHElyLOEmtMjKgNFJ5M-XjBvizDZVPe3UWXlPEnc3NrXMn_oAr3AFcbJfsPyLZfCjfgM-ALV0AYrnfC-Gx1_d0_ty7olQPQWVqlQTXVG78mc-pFl37aVBxVQhBbyqFngz93URrfNlvP3CKuPWmda33HglRcuaIrlUxLy2ex1fO_nZ_Gpe6_VAhY64Da6h4pfcHrShmNoqxD292EEB2tB5wh6uygcMCNbtfO3GZ7nY6OZ0ormwkGb3ehxvI-namTxempmo-W8w_rH76tD2bt6K5Yyh7aJ6C_8QDtH02-jiftrsudu2rzw5sgB04-dzvs0Y-9q1W5-2RRMYz5I_TAHQ28oxrnx-hemj9BD5uyG57Twk_RYR92rwe718D-DC1ORvPjse-qXfgGSHLpszQ0nOHMFgwLYhEkTMuYJkFoDMkyw0DVJhKnQLF1xHEWJcDtdIiDJKWYGS3pczTIizx9iTySBFTLEHOrkzMi4pRnAQtlRKkWIpND9LEZBGVcKnhbkeRSVUdCTlR3yIbosJVe1ylQdsi9g_FUbn1c75CRPZk8NcUvwldCUSDfhCoCnBOaKSzVzWpdPd-2PWiQ6nQSUtiyeSQD6L59DCrS2r10nhabSiaQcCyJxF9kOLf7E8dkiF7Us6D9s4QJm8NdvrpD69fo_nY9HaBB-XOTvgHaWsZv3Yz9A1T-lRM |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk-Sensitive+Reinforcement+Learning&rft.jtitle=Neural+computation&rft.au=Shen%2C+Yun&rft.au=Tobia%2C+Michael+J&rft.au=Sommer%2C+Tobias&rft.au=Obermayer%2C+Klaus&rft.date=2014-07-01&rft.issn=0899-7667&rft.volume=26&rft.issue=7&rft.spage=1298&rft.epage=1328&rft_id=info:doi/10.1162%2FNECO_a_00600&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon |