The Ubiquitin-Proteasome System Plays an Important Role during Various Stages of the Coronavirus Infection Cycle

Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from...

Full description

Saved in:
Bibliographic Details
Published inJournal of Virology Vol. 84; no. 15; pp. 7869 - 7879
Main Authors Raaben, Matthijs, Posthuma, Clara C., Verheije, Monique H., te Lintelo, Eddie G., Kikkert, Marjolein, Drijfhout, Jan W., Snijder, Eric J., Rottier, Peter J. M., de Haan, Cornelis A. M.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.08.2010
American Society for Microbiology (ASM)
Subjects
Online AccessGet full text
ISSN0022-538X
1098-5514
1098-5514
DOI10.1128/JVI.00485-10

Cover

Abstract Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
AbstractList Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
The ubiquitin-proteasome system (UPS) is a key player in regulating the intracellular sorting and degradation of proteins. In this study we investigated the role of the UPS in different steps of the coronavirus (CoV) infection cycle. Inhibition of the proteasome by different chemical compounds (i.e., MG132, epoxomicin, and Velcade) appeared to not only impair entry but also RNA synthesis and subsequent protein expression of different CoVs (i.e., mouse hepatitis virus [MHV], feline infectious peritonitis virus, and severe acute respiratory syndrome CoV). MHV assembly and release were, however, not appreciably affected by these compounds. The inhibitory effect on CoV protein expression did not appear to result from a general inhibition of translation due to induction of a cellular stress response by the inhibitors. Stress-induced phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) generally results in impaired initiation of protein synthesis, but the sensitivity of MHV infection to proteasome inhibitors was unchanged in cells lacking a phosphorylatable eIF2alpha. MHV infection was affected not only by inhibition of the proteasome but also by interfering with protein ubiquitination. Viral protein expression was reduced in cells expressing a temperature-sensitive ubiquitin-activating enzyme E1 at the restrictive temperature, as well as in cells in which ubiquitin was depleted by using small interfering RNAs. Under these conditions, the susceptibility of the cells to virus infection was, however, not affected, excluding an important role of ubiquitination in virus entry. Our observations reveal an important role of the UPS in multiple steps of the CoV infection cycle and identify the UPS as a potential drug target to modulate the impact of CoV infection.The ubiquitin-proteasome system (UPS) is a key player in regulating the intracellular sorting and degradation of proteins. In this study we investigated the role of the UPS in different steps of the coronavirus (CoV) infection cycle. Inhibition of the proteasome by different chemical compounds (i.e., MG132, epoxomicin, and Velcade) appeared to not only impair entry but also RNA synthesis and subsequent protein expression of different CoVs (i.e., mouse hepatitis virus [MHV], feline infectious peritonitis virus, and severe acute respiratory syndrome CoV). MHV assembly and release were, however, not appreciably affected by these compounds. The inhibitory effect on CoV protein expression did not appear to result from a general inhibition of translation due to induction of a cellular stress response by the inhibitors. Stress-induced phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) generally results in impaired initiation of protein synthesis, but the sensitivity of MHV infection to proteasome inhibitors was unchanged in cells lacking a phosphorylatable eIF2alpha. MHV infection was affected not only by inhibition of the proteasome but also by interfering with protein ubiquitination. Viral protein expression was reduced in cells expressing a temperature-sensitive ubiquitin-activating enzyme E1 at the restrictive temperature, as well as in cells in which ubiquitin was depleted by using small interfering RNAs. Under these conditions, the susceptibility of the cells to virus infection was, however, not affected, excluding an important role of ubiquitination in virus entry. Our observations reveal an important role of the UPS in multiple steps of the CoV infection cycle and identify the UPS as a potential drug target to modulate the impact of CoV infection.
The ubiquitin-proteasome system (UPS) is a key player in regulating the intracellular sorting and degradation of proteins. In this study we investigated the role of the UPS in different steps of the coronavirus (CoV) infection cycle. Inhibition of the proteasome by different chemical compounds (i.e., MG132, epoxomicin, and Velcade) appeared to not only impair entry but also RNA synthesis and subsequent protein expression of different CoVs (i.e., mouse hepatitis virus [MHV], feline infectious peritonitis virus, and severe acute respiratory syndrome CoV). MHV assembly and release were, however, not appreciably affected by these compounds. The inhibitory effect on CoV protein expression did not appear to result from a general inhibition of translation due to induction of a cellular stress response by the inhibitors. Stress-induced phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) generally results in impaired initiation of protein synthesis, but the sensitivity of MHV infection to proteasome inhibitors was unchanged in cells lacking a phosphorylatable eIF2α. MHV infection was affected not only by inhibition of the proteasome but also by interfering with protein ubiquitination. Viral protein expression was reduced in cells expressing a temperature-sensitive ubiquitin-activating enzyme E1 at the restrictive temperature, as well as in cells in which ubiquitin was depleted by using small interfering RNAs. Under these conditions, the susceptibility of the cells to virus infection was, however, not affected, excluding an important role of ubiquitination in virus entry. Our observations reveal an important role of the UPS in multiple steps of the CoV infection cycle and identify the UPS as a potential drug target to modulate the impact of CoV infection.
The ubiquitin-proteasome system (UPS) is a key player in regulating the intracellular sorting and degradation of proteins. In this study we investigated the role of the UPS in different steps of the coronavirus (CoV) infection cycle. Inhibition of the proteasome by different chemical compounds (i.e., MG132, epoxomicin, and Velcade) appeared to not only impair entry but also RNA synthesis and subsequent protein expression of different CoVs (i.e., mouse hepatitis virus [MHV], feline infectious peritonitis virus, and severe acute respiratory syndrome CoV). MHV assembly and release were, however, not appreciably affected by these compounds. The inhibitory effect on CoV protein expression did not appear to result from a general inhibition of translation due to induction of a cellular stress response by the inhibitors. Stress-induced phosphorylation of eukaryotic translation initiation factor 2 (eIF2) generally results in impaired initiation of protein synthesis, but the sensitivity of MHV infection to proteasome inhibitors was unchanged in cells lacking a phosphorylatable eIF2. MHV infection was affected not only by inhibition of the proteasome but also by interfering with protein ubiquitination. Viral protein expression was reduced in cells expressing a temperature-sensitive ubiquitin-activating enzyme E1 at the restrictive temperature, as well as in cells in which ubiquitin was depleted by using small interfering RNAs. Under these conditions, the susceptibility of the cells to virus infection was, however, not affected, excluding an important role of ubiquitination in virus entry. Our observations reveal an important role of the UPS in multiple steps of the CoV infection cycle and identify the UPS as a potential drug target to modulate the impact of CoV infection.
The ubiquitin-proteasome system (UPS) is a key player in regulating the intracellular sorting and degradation of proteins. In this study we investigated the role of the UPS in different steps of the coronavirus (CoV) infection cycle. Inhibition of the proteasome by different chemical compounds (i.e., MG132, epoxomicin, and Velcade) appeared to not only impair entry but also RNA synthesis and subsequent protein expression of different CoVs (i.e., mouse hepatitis virus [MHV], feline infectious peritonitis virus, and severe acute respiratory syndrome CoV). MHV assembly and release were, however, not appreciably affected by these compounds. The inhibitory effect on CoV protein expression did not appear to result from a general inhibition of translation due to induction of a cellular stress response by the inhibitors. Stress-induced phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) generally results in impaired initiation of protein synthesis, but the sensitivity of MHV infection to proteasome inhibitors was unchanged in cells lacking a phosphorylatable eIF2alpha. MHV infection was affected not only by inhibition of the proteasome but also by interfering with protein ubiquitination. Viral protein expression was reduced in cells expressing a temperature-sensitive ubiquitin-activating enzyme E1 at the restrictive temperature, as well as in cells in which ubiquitin was depleted by using small interfering RNAs. Under these conditions, the susceptibility of the cells to virus infection was, however, not affected, excluding an important role of ubiquitination in virus entry. Our observations reveal an important role of the UPS in multiple steps of the CoV infection cycle and identify the UPS as a potential drug target to modulate the impact of CoV infection.
Author Clara C. Posthuma
Eddie G. te Lintelo
Eric J. Snijder
Marjolein Kikkert
Peter J. M. Rottier
Cornelis A. M. de Haan
Matthijs Raaben
Jan W. Drijfhout
Monique H. Verheije
AuthorAffiliation Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands, 1 Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands, 2 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands 3
AuthorAffiliation_xml – name: Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands, 1 Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands, 2 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands 3
Author_xml – sequence: 1
  givenname: Matthijs
  surname: Raaben
  fullname: Raaben, Matthijs
  organization: Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
– sequence: 2
  givenname: Clara C.
  surname: Posthuma
  fullname: Posthuma, Clara C.
  organization: Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
– sequence: 3
  givenname: Monique H.
  surname: Verheije
  fullname: Verheije, Monique H.
  organization: Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
– sequence: 4
  givenname: Eddie G.
  surname: te Lintelo
  fullname: te Lintelo, Eddie G.
  organization: Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
– sequence: 5
  givenname: Marjolein
  surname: Kikkert
  fullname: Kikkert, Marjolein
  organization: Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
– sequence: 6
  givenname: Jan W.
  surname: Drijfhout
  fullname: Drijfhout, Jan W.
  organization: Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
– sequence: 7
  givenname: Eric J.
  surname: Snijder
  fullname: Snijder, Eric J.
  organization: Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
– sequence: 8
  givenname: Peter J. M.
  surname: Rottier
  fullname: Rottier, Peter J. M.
  organization: Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
– sequence: 9
  givenname: Cornelis A. M.
  surname: de Haan
  fullname: de Haan, Cornelis A. M.
  organization: Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20484504$$D View this record in MEDLINE/PubMed
BookMark eNqFkd9rFDEQx4NU7LX65rMEX3zp1iSb7CYvghxWTwoW-wPfQjY7d5eym1yT7Mn996ZeLSqITwMzn_ky3_keoQMfPCD0kpJTSpl8-_lmcUoIl6Ki5AmaUaJkJQTlB2hGCGOVqOW3Q3SU0i0hlPOGP0OHrPBcED5Dm6s14OvO3U0uO19dxJDBpDACvtylDCO-GMwuYePxYtyEmI3P-GsYAPdTdH6Fb0x0YUr4MpsVJByWOBfBeYjBm62LZbLwS7DZBY_nOzvAc_R0aYYELx7qMbo--3A1_1Sdf_m4mL8_r6wgMldccWVF2xFue2JJU_xx4A3rl10j2rbua0lZy6wyxoJRSnZd0zNmVA9MtJbUx-jdXnczdSP0FnyOZtCb6EYTdzoYp_-ceLfWq7DVTKpWKF4E3jwIxHA3Qcp6dMnCMBgPxbFuyy-ZUIz9n6zrppZSqkK--v2ox2t-5VGAkz1gY0gpwvIRoUTfx61L3Ppn3KVTcPYXbl02988ultzwr6XX-6W1W62_uwjapFHfbp2WXFOhW9mo-gcJibpW
CitedBy_id crossref_primary_10_3390_cells13020123
crossref_primary_10_1177_03000605231153764
crossref_primary_10_1074_jbc_M115_687657
crossref_primary_10_1099_vir_0_027573_0
crossref_primary_10_1128_JVI_01001_12
crossref_primary_10_1038_s41467_021_24007_w
crossref_primary_10_1002_jcp_30941
crossref_primary_10_1371_journal_pone_0067793
crossref_primary_10_1128_jvi_01624_23
crossref_primary_10_3390_v14071381
crossref_primary_10_1371_journal_ppat_1004502
crossref_primary_10_1128_JVI_05239_11
crossref_primary_10_7554_eLife_42037
crossref_primary_10_1016_j_bbadis_2022_166527
crossref_primary_10_1371_journal_pone_0124792
crossref_primary_10_1007_s12035_020_02266_w
crossref_primary_10_1016_j_vetmic_2023_109699
crossref_primary_10_1007_s00705_021_05073_3
crossref_primary_10_1051_jbio_2021005
crossref_primary_10_23736_S1973_9087_20_06563_6
crossref_primary_10_3389_fcell_2023_1143532
crossref_primary_10_1111_cmi_13276
crossref_primary_10_1111_cmi_12143
crossref_primary_10_1128_JVI_01360_15
crossref_primary_10_3390_ijms22031308
crossref_primary_10_1016_j_gene_2024_148377
crossref_primary_10_1016_j_ejmech_2021_113267
crossref_primary_10_1016_j_fsi_2022_04_046
crossref_primary_10_1007_s11262_016_1355_5
crossref_primary_10_1002_mas_21617
crossref_primary_10_1016_j_lfs_2018_06_014
crossref_primary_10_1038_s41564_021_01026_3
crossref_primary_10_1016_j_vetmic_2020_108947
crossref_primary_10_1016_j_bbrc_2015_02_097
crossref_primary_10_1016_j_virol_2014_03_028
crossref_primary_10_1128_JVI_01091_16
crossref_primary_10_1128_JVI_05286_11
crossref_primary_10_1016_j_pharmthera_2020_107579
crossref_primary_10_1038_s41598_018_20130_9
crossref_primary_10_3390_v2102356
crossref_primary_10_1038_s41392_022_01156_y
crossref_primary_10_1128_JVI_01631_10
crossref_primary_10_3390_jcm11123312
crossref_primary_10_1016_j_cbi_2020_109298
crossref_primary_10_2174_2212796814999201102195651
crossref_primary_10_1105_tpc_109_072090
crossref_primary_10_1128_JVI_00267_11
crossref_primary_10_1021_acs_jproteome_0c00764
crossref_primary_10_1128_JVI_00175_18
crossref_primary_10_1016_j_virol_2016_08_013
crossref_primary_10_1016_j_cell_2021_03_012
crossref_primary_10_1016_j_bbrc_2020_06_058
crossref_primary_10_1128_JVI_01219_10
crossref_primary_10_3390_v15102001
crossref_primary_10_1038_nrd_2017_33
crossref_primary_10_1128_jvi_01238_24
crossref_primary_10_1128_mbio_03168_21
crossref_primary_10_1016_j_pharmthera_2021_107825
crossref_primary_10_3390_v14071404
crossref_primary_10_1371_journal_pone_0064137
crossref_primary_10_1371_journal_ppat_1002789
crossref_primary_10_1371_journal_pone_0023988
crossref_primary_10_1016_j_tvjl_2014_04_016
crossref_primary_10_1371_journal_pone_0036238
crossref_primary_10_3390_ijms21103622
crossref_primary_10_1007_s00705_021_04958_7
crossref_primary_10_1016_j_compbiomed_2022_106050
crossref_primary_10_1128_jvi_00741_22
crossref_primary_10_1128_JVI_00869_13
crossref_primary_10_1128_JVI_01048_10
crossref_primary_10_1186_s40360_020_00444_z
crossref_primary_10_1016_j_antiviral_2015_05_004
crossref_primary_10_1111_boc_201100105
crossref_primary_10_1128_JVI_00554_17
crossref_primary_10_1016_j_mcpro_2021_100134
crossref_primary_10_1016_j_isci_2020_101526
crossref_primary_10_1016_j_rvsc_2013_08_011
crossref_primary_10_3390_biom12030442
crossref_primary_10_1016_j_micpath_2019_04_044
crossref_primary_10_1002_jmv_29104
crossref_primary_10_1016_j_antiviral_2013_07_001
crossref_primary_10_1016_j_antiviral_2018_10_028
crossref_primary_10_3390_ijms231810452
crossref_primary_10_3389_fimmu_2022_853265
crossref_primary_10_3389_fphar_2020_01278
crossref_primary_10_1002_pmic_201300404
Cites_doi 10.1128/JVI.80.5.2326-2336.2006
10.1056/NEJMoa030747
10.1046/j.1398-9219.2003.0140.x
10.1128/JVI.75.22.10623-10629.2001
10.1083/jcb.124.1.55
10.1021/bi970998j
10.1128/jvi.64.6.3051-3055.1990
10.1371/journal.pone.0002585
10.1046/j.1432-1327.1999.00780.x
10.1111/j.1365-2443.2007.01087.x
10.2174/138161207780162908
10.1023/A:1006909522731
10.1128/JVI.74.12.5647-5654.2000
10.1128/JVI.76.8.3697-3708.2002
10.1016/S1074-5521(01)00056-4
10.1371/journal.pbio.0060226
10.1016/j.ejca.2004.07.006
10.1074/jbc.M412882200
10.1146/annurev.biochem.68.1.1015
10.1111/j.1348-0421.2005.tb03672.x
10.1128/JVI.02241-06
10.1128/JVI.78.13.7175-7185.2004
10.1128/JVI.00486-10
10.1146/annurev.cellbio.22.010605.093503
10.1128/JVI.79.2.884-895.2005
10.1146/annurev.biochem.67.1.425
10.1038/nm1024
10.1128/JVI.00222-07
10.1042/BST0350012
10.1126/science.1085658
10.1074/jbc.M910378199
10.1073/pnas.0510851103
10.1093/nar/19.11.2993
10.1038/sj.emboj.7601073
10.1016/S1097-2765(01)00265-9
10.1073/pnas.97.24.13063
10.1016/j.virol.2005.09.044
10.1006/bbrc.1997.6434
10.1016/j.pep.2005.01.016
10.1128/JVI.79.1.644-648.2005
10.1016/S0021-9258(19)37648-3
10.1128/JVI.79.24.15511-15524.2005
10.1128/JVI.01688-07
10.1016/S0955-0674(03)00080-2
10.1371/journal.ppat.1000088
10.1371/journal.ppat.0010039
10.1128/JVI.01753-08
10.1128/JVI.02747-06
10.1073/pnas.96.18.10403
10.1517/13543784.17.6.879
10.1128/JVI.79.7.4550-4551.2005
10.1128/JVI.76.24.12634-12645.2002
10.1152/ajpheart.00292.2008
10.1099/0022-1317-81-4-853
10.1128/JVI.79.22.14451-14456.2005
10.1128/JVI.77.16.8801-8811.2003
10.1128/JVI.02296-07
10.1128/JVI.74.17.7911-7921.2000
10.1128/JVI.77.21.11312-11323.2003
10.1146/annurev.cellbio.19.110701.154617
10.1128/JVI.74.3.1393-1406.2000
10.1111/j.1462-5822.2007.00951.x
10.1099/vir.0.81611-0
10.1016/S0021-9258(19)36699-2
10.1021/jm0501782
10.1371/journal.pone.0001887
10.1016/j.virol.2006.07.018
10.1128/JVI.79.24.15189-15198.2005
10.1146/annurev.med.57.042905.122625
ContentType Journal Article
Copyright Copyright © 2010, American Society for Microbiology 2010
Copyright_xml – notice: Copyright © 2010, American Society for Microbiology 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7U9
H94
5PM
DOI 10.1128/JVI.00485-10
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
DatabaseTitleList
MEDLINE - Academic
CrossRef
AIDS and Cancer Research Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
EndPage 7879
ExternalDocumentID PMC2897594
20484504
10_1128_JVI_00485_10
jvi_84_15_7869
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAFWJ
AAGFI
AAYJJ
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
ADXHL
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
D0S
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RHF
UCJ
7X8
7U9
H94
5PM
ID FETCH-LOGICAL-c508t-4949c57b04cd0c064854e462dfb65773d381272c9aacea998bb6d22a9de257c03
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 17:53:47 EDT 2025
Fri Sep 05 09:53:49 EDT 2025
Fri Sep 05 08:18:39 EDT 2025
Wed Feb 19 01:47:13 EST 2025
Tue Jul 01 00:57:44 EDT 2025
Thu Apr 24 22:58:41 EDT 2025
Wed May 18 15:25:59 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c508t-4949c57b04cd0c064854e462dfb65773d381272c9aacea998bb6d22a9de257c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Present address: Division Pathology, Department Pathobiology, Utrecht University, Yalelaan 1, 3584 CL Utrecht, Netherlands.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2897594
PMID 20484504
PQID 733638889
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2897594
proquest_miscellaneous_733638889
crossref_primary_10_1128_JVI_00485_10
pubmed_primary_20484504
highwire_asm_jvi_84_15_7869
proquest_miscellaneous_744625922
crossref_citationtrail_10_1128_JVI_00485_10
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-08-01
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of Virology
PublicationTitleAlternate J Virol
PublicationYear 2010
Publisher American Society for Microbiology
American Society for Microbiology (ASM)
Publisher_xml – name: American Society for Microbiology
– name: American Society for Microbiology (ASM)
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
(e_1_3_2_24_2) 2007; 12
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_71_2
(e_1_3_2_11_2) 1993; 43
e_1_3_2_48_2
e_1_3_2_29_2
(e_1_3_2_27_2) 2007; 8
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
e_1_3_2_72_2
e_1_3_2_70_2
20007278 - J Virol. 2010 Feb;84(4):2134-49
2057357 - Nucleic Acids Res. 1991 Jun 11;19(11):2993-3000
15034574 - Nat Med. 2004 Apr;10(4):368-73
16581910 - Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5717-22
16601681 - EMBO J. 2006 Apr 19;25(8):1730-40
18515649 - Am J Physiol Heart Circ Physiol. 2008 Jul;295(1):H401-8
1692350 - J Virol. 1990 Jun;64(6):3051-5
17392370 - J Virol. 2007 Jun;81(11):6007-18
15684421 - J Biol Chem. 2005 Apr 29;280(17):16925-33
16920176 - Virology. 2006 Oct 10;354(1):1-6
11602704 - J Virol. 2001 Nov;75(22):10623-9
16474139 - J Virol. 2006 Mar;80(5):2326-36
17545995 - EMBO Rep. 2007 Jun;8(6):550-5
16753028 - Annu Rev Cell Dev Biol. 2006;22:159-80
17348844 - Curr Pharm Des. 2007;13(5):471-85
18551169 - PLoS Pathog. 2008 Jun;4(6):e1000088
12892785 - Curr Opin Cell Biol. 2003 Aug;15(4):446-55
8384676 - Lab Anim Sci. 1993 Feb;43(1):15-28
18382670 - PLoS One. 2008;3(4):e1887
12690091 - N Engl J Med. 2003 May 15;348(20):1967-76
15915565 - Protein Expr Purif. 2005 May;41(1):207-34
18612413 - PLoS One. 2008;3(7):e2585
14557617 - J Virol. 2003 Nov;77(21):11312-23
11907209 - J Virol. 2002 Apr;76(8):3697-708
15613317 - J Virol. 2005 Jan;79(2):884-95
10627550 - J Virol. 2000 Feb;74(3):1393-406
17212580 - Biochem Soc Trans. 2007 Feb;35(Pt 1):12-7
14617349 - Traffic. 2003 Dec;4(12):857-68
17913808 - J Virol. 2007 Dec;81(24):13631-9
12746549 - Science. 2003 Jun 13;300(5626):1763-7
10504407 - Eur J Biochem. 1999 Oct;265(2):754-62
10748218 - J Biol Chem. 2000 May 19;275(20):15157-65
19129442 - J Virol. 2009 Mar;83(6):2469-79
9398160 - Biochemistry. 1997 Nov 25;36(47):14418-29
17626072 - J Virol. 2007 Sep;81(18):10029-36
15767458 - J Virol. 2005 Apr;79(7):4550-1
16690906 - J Gen Virol. 2006 Jun;87(Pt 6):1403-21
19109393 - J Virol. 2009 Mar;83(5):2099-108
17507493 - J Virol. 2007 Jul;81(14):7380-7
15194794 - J Virol. 2004 Jul;78(13):7175-85
16306622 - J Virol. 2005 Dec;79(24):15511-24
3049611 - J Biol Chem. 1988 Oct 25;263(30):15726-31
10933699 - J Virol. 2000 Sep;74(17):7911-21
11087860 - Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13063-8
16364736 - Virology. 2006 Jan 5;344(1):55-63
10468620 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10403-8
15596861 - J Virol. 2005 Jan;79(1):644-8
10725411 - J Gen Virol. 2000 Apr;81(Pt 4):853-79
16254381 - J Virol. 2005 Nov;79(22):14451-6
8294506 - J Cell Biol. 1994 Jan;124(1-2):55-70
18491989 - Expert Opin Investig Drugs. 2008 Jun;17(6):879-95
20484516 - J Virol. 2010 Aug;84(15):7880-5
12885899 - J Virol. 2003 Aug;77(16):8801-11
11430820 - Mol Cell. 2001 Jun;7(6):1165-76
16341254 - PLoS Pathog. 2005 Dec;1(4):e39
9175783 - Biochem Biophys Res Commun. 1997 May 29;234(3):729-32
18798692 - PLoS Biol. 2008 Sep 16;6(9):e226
10872471 - Annu Rev Biochem. 1999;68:1015-68
15454246 - Eur J Cancer. 2004 Oct;40(15):2217-29
10363639 - Mol Biol Rep. 1999 Apr;26(1-2):3-9
17573774 - Genes Cells. 2007 Jun;12(6):735-44
18234803 - J Virol. 2008 Apr;82(7):3381-90
16306590 - J Virol. 2005 Dec;79(24):15189-98
10823872 - J Virol. 2000 Jun;74(12):5647-54
16250642 - J Med Chem. 2005 Nov 3;48(22):6832-42
12438589 - J Virol. 2002 Dec;76(24):12634-45
14570567 - Annu Rev Cell Dev Biol. 2003;19:141-72
16409135 - Annu Rev Med. 2006;57:33-47
11514224 - Chem Biol. 2001 Aug;8(8):739-58
1400501 - J Biol Chem. 1992 Oct 25;267(30):21911-8
17490409 - Cell Microbiol. 2007 Sep;9(9):2218-29
16172538 - Microbiol Immunol. 2005;49(9):835-44
9759494 - Annu Rev Biochem. 1998;67:425-79
References_xml – ident: e_1_3_2_41_2
  doi: 10.1128/JVI.80.5.2326-2336.2006
– ident: e_1_3_2_16_2
  doi: 10.1056/NEJMoa030747
– ident: e_1_3_2_29_2
  doi: 10.1046/j.1398-9219.2003.0140.x
– ident: e_1_3_2_21_2
  doi: 10.1128/JVI.75.22.10623-10629.2001
– ident: e_1_3_2_20_2
– ident: e_1_3_2_33_2
  doi: 10.1083/jcb.124.1.55
– ident: e_1_3_2_39_2
  doi: 10.1021/bi970998j
– ident: e_1_3_2_68_2
  doi: 10.1128/jvi.64.6.3051-3055.1990
– ident: e_1_3_2_54_2
  doi: 10.1371/journal.pone.0002585
– ident: e_1_3_2_4_2
  doi: 10.1046/j.1432-1327.1999.00780.x
– volume: 12
  start-page: 735
  year: 2007
  ident: e_1_3_2_24_2
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2007.01087.x
– ident: e_1_3_2_71_2
  doi: 10.2174/138161207780162908
– ident: e_1_3_2_61_2
  doi: 10.1023/A:1006909522731
– ident: e_1_3_2_56_2
  doi: 10.1128/JVI.74.12.5647-5654.2000
– ident: e_1_3_2_19_2
  doi: 10.1128/JVI.76.8.3697-3708.2002
– ident: e_1_3_2_31_2
  doi: 10.1016/S1074-5521(01)00056-4
– ident: e_1_3_2_32_2
  doi: 10.1371/journal.pbio.0060226
– ident: e_1_3_2_50_2
– ident: e_1_3_2_9_2
  doi: 10.1016/j.ejca.2004.07.006
– ident: e_1_3_2_37_2
  doi: 10.1074/jbc.M412882200
– ident: e_1_3_2_66_2
  doi: 10.1146/annurev.biochem.68.1.1015
– ident: e_1_3_2_67_2
  doi: 10.1111/j.1348-0421.2005.tb03672.x
– ident: e_1_3_2_74_2
  doi: 10.1128/JVI.02241-06
– ident: e_1_3_2_8_2
  doi: 10.1128/JVI.78.13.7175-7185.2004
– ident: e_1_3_2_44_2
  doi: 10.1128/JVI.00486-10
– ident: e_1_3_2_28_2
  doi: 10.1146/annurev.cellbio.22.010605.093503
– ident: e_1_3_2_69_2
  doi: 10.1128/JVI.79.2.884-895.2005
– ident: e_1_3_2_22_2
  doi: 10.1146/annurev.biochem.67.1.425
– ident: e_1_3_2_64_2
  doi: 10.1038/nm1024
– ident: e_1_3_2_12_2
  doi: 10.1128/JVI.00222-07
– ident: e_1_3_2_18_2
  doi: 10.1042/BST0350012
– ident: e_1_3_2_2_2
  doi: 10.1126/science.1085658
– ident: e_1_3_2_72_2
  doi: 10.1074/jbc.M910378199
– volume: 8
  start-page: 550
  year: 2007
  ident: e_1_3_2_27_2
  publication-title: New insights through SUMO-interacting motifs. EMBO Rep.
– ident: e_1_3_2_47_2
  doi: 10.1073/pnas.0510851103
– ident: e_1_3_2_53_2
  doi: 10.1093/nar/19.11.2993
– ident: e_1_3_2_5_2
  doi: 10.1038/sj.emboj.7601073
– ident: e_1_3_2_52_2
  doi: 10.1016/S1097-2765(01)00265-9
– ident: e_1_3_2_58_2
  doi: 10.1073/pnas.97.24.13063
– ident: e_1_3_2_6_2
  doi: 10.1016/j.virol.2005.09.044
– ident: e_1_3_2_42_2
  doi: 10.1006/bbrc.1997.6434
– ident: e_1_3_2_59_2
  doi: 10.1016/j.pep.2005.01.016
– ident: e_1_3_2_70_2
  doi: 10.1128/JVI.79.1.644-648.2005
– ident: e_1_3_2_34_2
  doi: 10.1016/S0021-9258(19)37648-3
– ident: e_1_3_2_55_2
  doi: 10.1128/JVI.79.24.15511-15524.2005
– ident: e_1_3_2_62_2
  doi: 10.1128/JVI.01688-07
– ident: e_1_3_2_46_2
  doi: 10.1016/S0955-0674(03)00080-2
– ident: e_1_3_2_65_2
  doi: 10.1371/journal.ppat.1000088
– ident: e_1_3_2_51_2
  doi: 10.1371/journal.ppat.0010039
– ident: e_1_3_2_63_2
  doi: 10.1128/JVI.01753-08
– ident: e_1_3_2_10_2
  doi: 10.1128/JVI.02747-06
– ident: e_1_3_2_38_2
  doi: 10.1073/pnas.96.18.10403
– ident: e_1_3_2_57_2
  doi: 10.1517/13543784.17.6.879
– ident: e_1_3_2_60_2
  doi: 10.1128/JVI.79.7.4550-4551.2005
– ident: e_1_3_2_49_2
  doi: 10.1128/JVI.76.24.12634-12645.2002
– ident: e_1_3_2_17_2
  doi: 10.1152/ajpheart.00292.2008
– ident: e_1_3_2_73_2
  doi: 10.1099/0022-1317-81-4-853
– ident: e_1_3_2_13_2
  doi: 10.1128/JVI.79.22.14451-14456.2005
– ident: e_1_3_2_7_2
  doi: 10.1128/JVI.77.16.8801-8811.2003
– ident: e_1_3_2_15_2
  doi: 10.1128/JVI.02296-07
– ident: e_1_3_2_26_2
  doi: 10.1128/JVI.74.17.7911-7921.2000
– ident: e_1_3_2_14_2
  doi: 10.1128/JVI.77.21.11312-11323.2003
– ident: e_1_3_2_23_2
  doi: 10.1146/annurev.cellbio.19.110701.154617
– ident: e_1_3_2_35_2
  doi: 10.1128/JVI.74.3.1393-1406.2000
– ident: e_1_3_2_45_2
  doi: 10.1111/j.1462-5822.2007.00951.x
– ident: e_1_3_2_43_2
  doi: 10.1099/vir.0.81611-0
– ident: e_1_3_2_36_2
  doi: 10.1016/S0021-9258(19)36699-2
– ident: e_1_3_2_25_2
  doi: 10.1021/jm0501782
– volume: 43
  start-page: 15
  year: 1993
  ident: e_1_3_2_11_2
  publication-title: Lab. Anim. Sci.
– ident: e_1_3_2_40_2
  doi: 10.1371/journal.pone.0001887
– ident: e_1_3_2_30_2
  doi: 10.1016/j.virol.2006.07.018
– ident: e_1_3_2_3_2
  doi: 10.1128/JVI.79.24.15189-15198.2005
– ident: e_1_3_2_48_2
  doi: 10.1146/annurev.med.57.042905.122625
– reference: 20007278 - J Virol. 2010 Feb;84(4):2134-49
– reference: 12746549 - Science. 2003 Jun 13;300(5626):1763-7
– reference: 19129442 - J Virol. 2009 Mar;83(6):2469-79
– reference: 11602704 - J Virol. 2001 Nov;75(22):10623-9
– reference: 17507493 - J Virol. 2007 Jul;81(14):7380-7
– reference: 16172538 - Microbiol Immunol. 2005;49(9):835-44
– reference: 10363639 - Mol Biol Rep. 1999 Apr;26(1-2):3-9
– reference: 14570567 - Annu Rev Cell Dev Biol. 2003;19:141-72
– reference: 18612413 - PLoS One. 2008;3(7):e2585
– reference: 15613317 - J Virol. 2005 Jan;79(2):884-95
– reference: 18551169 - PLoS Pathog. 2008 Jun;4(6):e1000088
– reference: 16250642 - J Med Chem. 2005 Nov 3;48(22):6832-42
– reference: 17348844 - Curr Pharm Des. 2007;13(5):471-85
– reference: 18515649 - Am J Physiol Heart Circ Physiol. 2008 Jul;295(1):H401-8
– reference: 18382670 - PLoS One. 2008;3(4):e1887
– reference: 20484516 - J Virol. 2010 Aug;84(15):7880-5
– reference: 11430820 - Mol Cell. 2001 Jun;7(6):1165-76
– reference: 16341254 - PLoS Pathog. 2005 Dec;1(4):e39
– reference: 11514224 - Chem Biol. 2001 Aug;8(8):739-58
– reference: 16581910 - Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5717-22
– reference: 17913808 - J Virol. 2007 Dec;81(24):13631-9
– reference: 10748218 - J Biol Chem. 2000 May 19;275(20):15157-65
– reference: 16690906 - J Gen Virol. 2006 Jun;87(Pt 6):1403-21
– reference: 18798692 - PLoS Biol. 2008 Sep 16;6(9):e226
– reference: 15596861 - J Virol. 2005 Jan;79(1):644-8
– reference: 17545995 - EMBO Rep. 2007 Jun;8(6):550-5
– reference: 10933699 - J Virol. 2000 Sep;74(17):7911-21
– reference: 8384676 - Lab Anim Sci. 1993 Feb;43(1):15-28
– reference: 16306622 - J Virol. 2005 Dec;79(24):15511-24
– reference: 16920176 - Virology. 2006 Oct 10;354(1):1-6
– reference: 14617349 - Traffic. 2003 Dec;4(12):857-68
– reference: 9398160 - Biochemistry. 1997 Nov 25;36(47):14418-29
– reference: 9759494 - Annu Rev Biochem. 1998;67:425-79
– reference: 16254381 - J Virol. 2005 Nov;79(22):14451-6
– reference: 16306590 - J Virol. 2005 Dec;79(24):15189-98
– reference: 17626072 - J Virol. 2007 Sep;81(18):10029-36
– reference: 9175783 - Biochem Biophys Res Commun. 1997 May 29;234(3):729-32
– reference: 11087860 - Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13063-8
– reference: 18234803 - J Virol. 2008 Apr;82(7):3381-90
– reference: 15454246 - Eur J Cancer. 2004 Oct;40(15):2217-29
– reference: 1400501 - J Biol Chem. 1992 Oct 25;267(30):21911-8
– reference: 10725411 - J Gen Virol. 2000 Apr;81(Pt 4):853-79
– reference: 15684421 - J Biol Chem. 2005 Apr 29;280(17):16925-33
– reference: 11907209 - J Virol. 2002 Apr;76(8):3697-708
– reference: 19109393 - J Virol. 2009 Mar;83(5):2099-108
– reference: 2057357 - Nucleic Acids Res. 1991 Jun 11;19(11):2993-3000
– reference: 15194794 - J Virol. 2004 Jul;78(13):7175-85
– reference: 12892785 - Curr Opin Cell Biol. 2003 Aug;15(4):446-55
– reference: 10872471 - Annu Rev Biochem. 1999;68:1015-68
– reference: 12690091 - N Engl J Med. 2003 May 15;348(20):1967-76
– reference: 1692350 - J Virol. 1990 Jun;64(6):3051-5
– reference: 17573774 - Genes Cells. 2007 Jun;12(6):735-44
– reference: 16364736 - Virology. 2006 Jan 5;344(1):55-63
– reference: 16753028 - Annu Rev Cell Dev Biol. 2006;22:159-80
– reference: 17212580 - Biochem Soc Trans. 2007 Feb;35(Pt 1):12-7
– reference: 16409135 - Annu Rev Med. 2006;57:33-47
– reference: 12885899 - J Virol. 2003 Aug;77(16):8801-11
– reference: 16601681 - EMBO J. 2006 Apr 19;25(8):1730-40
– reference: 17490409 - Cell Microbiol. 2007 Sep;9(9):2218-29
– reference: 18491989 - Expert Opin Investig Drugs. 2008 Jun;17(6):879-95
– reference: 12438589 - J Virol. 2002 Dec;76(24):12634-45
– reference: 10823872 - J Virol. 2000 Jun;74(12):5647-54
– reference: 16474139 - J Virol. 2006 Mar;80(5):2326-36
– reference: 8294506 - J Cell Biol. 1994 Jan;124(1-2):55-70
– reference: 3049611 - J Biol Chem. 1988 Oct 25;263(30):15726-31
– reference: 10468620 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10403-8
– reference: 10504407 - Eur J Biochem. 1999 Oct;265(2):754-62
– reference: 17392370 - J Virol. 2007 Jun;81(11):6007-18
– reference: 15034574 - Nat Med. 2004 Apr;10(4):368-73
– reference: 15767458 - J Virol. 2005 Apr;79(7):4550-1
– reference: 10627550 - J Virol. 2000 Feb;74(3):1393-406
– reference: 14557617 - J Virol. 2003 Nov;77(21):11312-23
– reference: 15915565 - Protein Expr Purif. 2005 May;41(1):207-34
SSID ssj0014464
Score 2.3388138
Snippet Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
The ubiquitin-proteasome system (UPS) is a key player in regulating the intracellular sorting and degradation of proteins. In this study we investigated the...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7869
SubjectTerms Animals
Boronic Acids - pharmacology
Bortezomib
Cats
Cell Line
Cercopithecus aethiops
Coronavirus Infections - virology
Coronavirus, Feline - pathogenicity
Feline infectious peritonitis virus
Leupeptins - pharmacology
Mice
Murine hepatitis virus
Murine hepatitis virus - pathogenicity
Oligopeptides - pharmacology
Protease Inhibitors - pharmacology
Proteasome Endopeptidase Complex - metabolism
Proteasome Inhibitors
Pyrazines - pharmacology
SARS coronavirus
SARS Virus - pathogenicity
Ubiquitin - metabolism
Virus Internalization
Virus Release
Virus Replication
Virus-Cell Interactions
Title The Ubiquitin-Proteasome System Plays an Important Role during Various Stages of the Coronavirus Infection Cycle
URI http://jvi.asm.org/content/84/15/7869.abstract
https://www.ncbi.nlm.nih.gov/pubmed/20484504
https://www.proquest.com/docview/733638889
https://www.proquest.com/docview/744625922
https://pubmed.ncbi.nlm.nih.gov/PMC2897594
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIviDtlgPwAT1NG6jqJ84hQp22MIaF26pvlW7dULB1dWlR-PefESZqycn2JKtdKrJwvx5-Pfb5DyGuteMpCw4Ke68cBtzoKlPC1XlycaKaUxdDAx9P4cMSPx9G40_nWzi4p9L75vjWv5H-sCm1gV8yS_QfLNjeFBvgN9oUrWBiuf23jhc6-LrIiy4NSckFdzy5dpc-MJaJXqMGMuZBIs_PCnyaschOXsE7GE7BAEM-99iyyUIOaBmqZzRfro1r5nlnVz77JZDFVrh2c_6yU9t6srCaeTRvejqWBsSpgGZ6FNbVaB2nP3PzCZVMfKJ95WdlmG6twGDwonN8nGlibuaooWBWwaB2Xq30sSpgiUfNT0Ja2yjH72nE1AKOWm02Er-9y0_8zzGk4PjvaR9eEGqvrea7e2z_9JA9GJydyOBgPb5HbLAHShWz66EOz_QRr5PI4Qj2qOmOCibfte29ymVpfetta5ecjty0OM7xP7lUmo-88kh6Qjssfkju-HOnqEbkCPNFteKIeT7TEE1U5bfBEEU_U44lWeKIeT3Q2oYAn2sITbfBESzw9JqODwfD9YVBV5AgMEPkiQCkjEyU65MaGBtisiLjjMbMTHUdJ0rfA_1jCTKqUcQpW8lrHljGVWgdTgwn7T8hOPsvdM0K5iI3DovIwx3AFtHViDLM6tamdJD3OumSvfrfSVHL1WDXliyyXrUxIsIQsLQEtXfKm6X3lZVp-0W-3NpNU15dyusyk4LIXSYRUl9DachK8LG6dqdzBi5MoGtoXQvyuC4CGRSmDkT_1tm5GguLYPAp5lyQbKGg6oMb75j95dlFqvTORJlHKn_95ZLvk7vpre0F2ivnCvQTCXOhXJbh_ABP4yCg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ubiquitin-proteasome+system+plays+an+important+role+during+various+stages+of+the+coronavirus+infection+cycle&rft.jtitle=Journal+of+virology&rft.au=Raaben%2C+Matthijs&rft.au=Posthuma%2C+Clara+C&rft.au=Verheije%2C+Monique+H&rft.au=te+Lintelo%2C+Eddie+G&rft.date=2010-08-01&rft.issn=1098-5514&rft.eissn=1098-5514&rft.volume=84&rft.issue=15&rft.spage=7869&rft_id=info:doi/10.1128%2FJVI.00485-10&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon