SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network
Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that i...
Saved in:
Published in | Nature methods Vol. 18; no. 11; pp. 1342 - 1351 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.11.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1548-7091 1548-7105 1548-7105 |
DOI | 10.1038/s41592-021-01255-8 |
Cover
Abstract | Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies.
SpaGCN is a spatially resolved transcriptomics data analysis tool for identifying spatial domains and spatially variable genes using graph convolutional networks. |
---|---|
AbstractList | Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies.
SpaGCN is a spatially resolved transcriptomics data analysis tool for identifying spatial domains and spatially variable genes using graph convolutional networks. Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies.Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies. Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies. SpaGCN is a spatially resolved transcriptomics data analysis tool for identifying spatial domains and spatially variable genes using graph convolutional networks. Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies. |
Audience | Academic |
Author | Ma, Nan Shinohara, Russell T. Hu, Jian Coleman, Kyle Lee, Edward B. Schroeder, Amelia Li, Mingyao Li, Xiangjie Irwin, David J. |
Author_xml | – sequence: 1 givenname: Jian orcidid: 0000-0003-2852-7675 surname: Hu fullname: Hu, Jian email: jianhu@pennmedicine.upenn.edu organization: Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania – sequence: 2 givenname: Xiangjie surname: Li fullname: Li, Xiangjie organization: School of Statistics and Data Science, Nankai University – sequence: 3 givenname: Kyle orcidid: 0000-0002-9726-2335 surname: Coleman fullname: Coleman, Kyle organization: Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania – sequence: 4 givenname: Amelia surname: Schroeder fullname: Schroeder, Amelia organization: Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania – sequence: 5 givenname: Nan orcidid: 0000-0001-8553-7808 surname: Ma fullname: Ma, Nan organization: Weitzman School of Design, University of Pennsylvania – sequence: 6 givenname: David J. orcidid: 0000-0002-5599-5098 surname: Irwin fullname: Irwin, David J. organization: Department of Neurology, Perelman School of Medicine, University of Pennsylvania – sequence: 7 givenname: Edward B. orcidid: 0000-0002-4589-1180 surname: Lee fullname: Lee, Edward B. organization: Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania – sequence: 8 givenname: Russell T. surname: Shinohara fullname: Shinohara, Russell T. organization: Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania – sequence: 9 givenname: Mingyao orcidid: 0000-0003-2422-9494 surname: Li fullname: Li, Mingyao email: mingyao@pennmedicine.upenn.edu organization: Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34711970$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1TAQhiNURC_wAiyQJTYsSPElThx21RGUShUsgLXlxJPUxbGDnRTyLLwsPjmnrahQZWk8Gn__zGg8x9mB8w6y7CXBpwQz8S4WhNc0x5TkmFDOc_EkOyK8EHlFMD-49XFNDrPjGK8xZqyg_Fl2yIqKkLrCR9mfr6M633x-jy7cBH1Qk3E96sEBgt9jgBiNd29RHNODssj6NjneIeU0ujJx8tb3C5o8MhrcZLrlDtV-UMbFldzH7IJuVDCqsbCWiKhZUKo5XqHWuxtv523upHUw_fLhx_PsaadshBf7-yT7_vHDt82n_PLL-cXm7DJvORZTXlBdlLRUVdeUuhVcl5gWLcZaMAY1LWqhVSdoQzWhpKyrZJkWndJAaNMpYCfZm13eMfifM8RJDia2YK1y4OcoKa_TfFldVAl9_QC99nNIPa8UrUrOGbunemVBGtf5Kah2m1SelYJQkcyWOv0PlY6GwaSBQGdS_B_Bq33xuRlAyzGYQYVF3v5mAugOaIOPMUB3hxAstysjdysj08rIdWWkSCLxQNSaaf3l1I6xj0vZThpTHddDuJ_GI6q_6MDV8w |
CitedBy_id | crossref_primary_10_1016_j_isci_2023_106792 crossref_primary_10_1002_smtd_202401199 crossref_primary_10_1016_j_ymeth_2025_03_007 crossref_primary_10_1038_s41467_022_34879_1 crossref_primary_10_1016_j_cels_2022_04_004 crossref_primary_10_1038_s41467_022_33619_9 crossref_primary_10_1038_s42003_024_07286_z crossref_primary_10_1093_bib_bbae082 crossref_primary_10_1186_s13059_023_03138_x crossref_primary_10_1016_j_crmeth_2024_100841 crossref_primary_10_34133_bmef_0110 crossref_primary_10_1038_s41587_023_02019_9 crossref_primary_10_1017_S2633903X23000235 crossref_primary_10_1186_s12943_025_02240_x crossref_primary_10_1016_j_crmeth_2024_100838 crossref_primary_10_1073_pnas_2205518119 crossref_primary_10_53941_aim_2025_100001 crossref_primary_10_1038_s41467_023_44367_9 crossref_primary_10_1109_ACCESS_2023_3291352 crossref_primary_10_1038_s41467_022_34867_5 crossref_primary_10_1093_nar_gkad801 crossref_primary_10_1038_s42003_024_06281_8 crossref_primary_10_1097_HEP_0000000000000387 crossref_primary_10_3389_fbinf_2023_1159381 crossref_primary_10_1093_bioinformatics_btad594 crossref_primary_10_1016_j_cell_2022_04_003 crossref_primary_10_1093_neuonc_noaf020 crossref_primary_10_1093_bioinformatics_btac145 crossref_primary_10_1038_s41467_023_43220_3 crossref_primary_10_1038_s41467_024_50150_1 crossref_primary_10_1038_s42003_025_07872_9 crossref_primary_10_1038_s41540_023_00320_6 crossref_primary_10_1093_bfgp_elad011 crossref_primary_10_1038_s41467_023_36560_7 crossref_primary_10_1038_s41580_022_00466_x crossref_primary_10_1038_s41588_023_01646_x crossref_primary_10_1186_s13059_024_03361_0 crossref_primary_10_1016_j_csbj_2024_05_028 crossref_primary_10_3390_cells12040604 crossref_primary_10_1093_bioinformatics_btad362 crossref_primary_10_1093_bioinformatics_btae451 crossref_primary_10_1038_s41467_024_51590_5 crossref_primary_10_1186_s13015_024_00265_3 crossref_primary_10_1038_s41592_022_01651_8 crossref_primary_10_1186_s12943_024_02040_9 crossref_primary_10_1038_s41467_025_56080_w crossref_primary_10_1038_s41592_021_01272_7 crossref_primary_10_1038_s41596_023_00925_5 crossref_primary_10_1038_s41467_023_43172_8 crossref_primary_10_1093_bib_bbae666 crossref_primary_10_1186_s12864_024_10469_x crossref_primary_10_1002_wrna_1865 crossref_primary_10_1186_s13059_022_02734_7 crossref_primary_10_1093_bib_bbac245 crossref_primary_10_1038_s42003_024_06172_y crossref_primary_10_1093_bioinformatics_btad366 crossref_primary_10_1016_j_crmeth_2024_100864 crossref_primary_10_1093_bfgp_elac011 crossref_primary_10_1038_s41467_023_42504_y crossref_primary_10_1093_nar_gkaf087 crossref_primary_10_1093_nar_gkad580 crossref_primary_10_1093_bib_bbac116 crossref_primary_10_1016_j_csbj_2022_05_056 crossref_primary_10_1093_biomtc_ujae066 crossref_primary_10_1038_s41467_023_38121_4 crossref_primary_10_1038_s42003_024_07165_7 crossref_primary_10_1016_j_neucom_2024_128283 crossref_primary_10_1186_s12967_023_04150_2 crossref_primary_10_1186_s43556_023_00144_0 crossref_primary_10_1016_j_jare_2023_05_002 crossref_primary_10_1002_cyto_a_24884 crossref_primary_10_1016_j_crmeth_2023_100558 crossref_primary_10_1038_s41467_024_51708_9 crossref_primary_10_1038_s42003_024_06349_5 crossref_primary_10_1093_bib_bbac475 crossref_primary_10_3390_biom14060674 crossref_primary_10_1016_j_jgg_2024_04_002 crossref_primary_10_1016_j_csbj_2024_01_016 crossref_primary_10_1016_j_jid_2021_12_014 crossref_primary_10_1038_s41467_024_52445_9 crossref_primary_10_1038_s41585_023_00805_3 crossref_primary_10_1038_s41467_022_35233_1 crossref_primary_10_1038_s41467_024_49445_0 crossref_primary_10_1016_j_ymeth_2023_11_002 crossref_primary_10_1016_j_csbj_2023_11_055 crossref_primary_10_1016_j_xgen_2024_100565 crossref_primary_10_1093_bib_bbae524 crossref_primary_10_1186_s13059_023_03078_6 crossref_primary_10_1186_s13059_024_03241_7 crossref_primary_10_3389_frai_2024_1424012 crossref_primary_10_1016_j_yamp_2023_01_002 crossref_primary_10_1038_s41420_023_01569_w crossref_primary_10_1093_bib_bbae045 crossref_primary_10_1007_s11427_024_2770_x crossref_primary_10_1126_sciadv_add9818 crossref_primary_10_3389_fonc_2024_1465098 crossref_primary_10_1016_j_asoc_2024_112541 crossref_primary_10_1109_TCBBIO_2024_3521983 crossref_primary_10_1016_j_crmeth_2024_100886 crossref_primary_10_1093_bib_bbad197 crossref_primary_10_1093_bib_bbae719 crossref_primary_10_1038_s43588_022_00266_5 crossref_primary_10_3390_biom13020221 crossref_primary_10_59717_j_xinn_life_2024_100097 crossref_primary_10_1038_s41588_025_02120_6 crossref_primary_10_1186_s13073_025_01441_9 crossref_primary_10_1186_s13073_025_01449_1 crossref_primary_10_1038_s41467_024_50837_5 crossref_primary_10_1186_s13059_024_03429_x crossref_primary_10_1002_smtd_202401163 crossref_primary_10_1038_s41467_023_37477_x crossref_primary_10_1038_s41467_024_51728_5 crossref_primary_10_3390_app14010307 crossref_primary_10_1186_s13059_024_03290_y crossref_primary_10_1093_bib_bbad500 crossref_primary_10_1038_s41467_024_49457_w crossref_primary_10_1038_s42003_024_07001_y crossref_primary_10_1002_adhm_202403698 crossref_primary_10_1186_s13059_025_03503_y crossref_primary_10_3389_fgene_2022_1090394 crossref_primary_10_1016_j_csbj_2022_08_043 crossref_primary_10_1016_j_trecan_2023_08_004 crossref_primary_10_1038_s41467_022_31739_w crossref_primary_10_3389_fgene_2021_785290 crossref_primary_10_1093_bfgp_elae023 crossref_primary_10_1016_j_jgg_2023_06_005 crossref_primary_10_15252_emmm_202114649 crossref_primary_10_1038_s41598_024_60002_z crossref_primary_10_1038_s41467_024_54973_w crossref_primary_10_1038_s41592_024_02410_7 crossref_primary_10_1016_j_cels_2022_09_002 crossref_primary_10_1371_journal_pcbi_1011935 crossref_primary_10_1093_bib_bbae707 crossref_primary_10_3390_biom13060895 crossref_primary_10_1109_TKDE_2024_3450333 crossref_primary_10_1093_bib_bbae188 crossref_primary_10_1093_bib_bbae500 crossref_primary_10_2217_fon_2022_0156 crossref_primary_10_1038_s41598_023_46392_6 crossref_primary_10_1093_bib_bbad533 crossref_primary_10_1016_j_isci_2024_109009 crossref_primary_10_1038_s41467_025_57072_6 crossref_primary_10_1038_s41467_024_48870_5 crossref_primary_10_1186_s13059_024_03213_x crossref_primary_10_1007_s00500_023_08661_4 crossref_primary_10_1186_s13073_024_01350_3 crossref_primary_10_3389_fimmu_2022_956078 crossref_primary_10_1186_s13059_024_03467_5 crossref_primary_10_1093_lifemedi_lnac053 crossref_primary_10_1371_journal_pcbi_1012254 crossref_primary_10_1038_s43588_024_00622_7 crossref_primary_10_1186_s13073_025_01442_8 crossref_primary_10_1007_s44272_024_00018_8 crossref_primary_10_1186_s13046_022_02385_3 crossref_primary_10_1152_physiol_00001_2024 crossref_primary_10_1186_s13059_023_03145_y crossref_primary_10_1186_s13059_023_03045_1 crossref_primary_10_1093_bioinformatics_btae023 crossref_primary_10_1038_s41592_024_02215_8 crossref_primary_10_1158_0008_5472_CAN_24_2346 crossref_primary_10_1093_bioinformatics_btae027 crossref_primary_10_1093_bib_bbae052 crossref_primary_10_1093_bib_bbae173 crossref_primary_10_1002_wrna_1839 crossref_primary_10_1016_j_cmpb_2024_108431 crossref_primary_10_1093_bib_bbaf021 crossref_primary_10_1038_s43588_023_00528_w crossref_primary_10_1016_j_drudis_2024_103889 crossref_primary_10_1016_j_csbj_2022_08_029 crossref_primary_10_1038_s41467_024_44835_w crossref_primary_10_1038_s42256_023_00734_1 crossref_primary_10_1016_j_csbj_2023_11_011 crossref_primary_10_1190_geo2022_0324_1 crossref_primary_10_1016_j_gpb_2022_10_001 crossref_primary_10_1093_bib_bbae608 crossref_primary_10_1186_s13073_024_01283_x crossref_primary_10_1016_j_gpb_2022_11_012 crossref_primary_10_1109_ACCESS_2024_3479153 crossref_primary_10_1016_j_jgg_2024_09_015 crossref_primary_10_1038_s41467_023_39895_3 crossref_primary_10_1016_j_ymeth_2024_11_001 crossref_primary_10_1093_bioinformatics_btaf005 crossref_primary_10_3389_fsysb_2022_877717 crossref_primary_10_1093_bib_bbad278 crossref_primary_10_1016_j_semcdb_2025_01_002 crossref_primary_10_1093_bib_bbad395 crossref_primary_10_1080_01621459_2024_2308323 crossref_primary_10_1186_s13059_022_02692_0 crossref_primary_10_1093_nar_gkae294 crossref_primary_10_1038_s41467_022_29439_6 crossref_primary_10_1038_s42003_022_03175_5 crossref_primary_10_1093_gigascience_giaf002 crossref_primary_10_1089_cbr_2023_0116 crossref_primary_10_1016_j_trac_2024_118109 crossref_primary_10_1016_j_compbiomed_2023_107440 crossref_primary_10_1038_s41586_023_05915_x crossref_primary_10_1038_s41587_022_01273_7 crossref_primary_10_1093_bib_bbae594 crossref_primary_10_1186_s13059_024_03272_0 crossref_primary_10_1093_bioinformatics_btae607 crossref_primary_10_1136_jitc_2024_008875 crossref_primary_10_1016_j_drudis_2023_103772 crossref_primary_10_1016_j_trac_2024_117818 crossref_primary_10_1093_bib_bbad146 crossref_primary_10_1093_bib_bbac297 crossref_primary_10_1093_bib_bbad265 crossref_primary_10_52601_bpr_2024_240006 crossref_primary_10_1155_2022_5902199 crossref_primary_10_1016_j_csbj_2023_01_016 crossref_primary_10_1093_bib_bbad141 crossref_primary_10_1093_bib_bbad262 crossref_primary_10_1038_s41592_024_02284_9 crossref_primary_10_1038_s41592_024_02503_3 crossref_primary_10_1016_j_ymeth_2024_11_006 crossref_primary_10_34133_bmef_0084 crossref_primary_10_1038_s41592_023_01992_y crossref_primary_10_1002_advs_202410081 crossref_primary_10_1021_acsnano_4c11505 crossref_primary_10_1016_j_csbj_2024_06_019 crossref_primary_10_1186_s12859_023_05355_4 crossref_primary_10_1016_j_ccell_2024_10_008 crossref_primary_10_1038_s43586_024_00330_6 crossref_primary_10_1038_s41467_025_56276_0 crossref_primary_10_1360_TB_2024_0332 crossref_primary_10_1093_bib_bbae388 crossref_primary_10_1038_s41467_023_39748_z crossref_primary_10_1002_advs_202403572 crossref_primary_10_1038_s41598_024_81383_1 crossref_primary_10_1093_bioinformatics_btad641 crossref_primary_10_1093_bioinformatics_btae611 crossref_primary_10_1038_s41467_024_55204_y crossref_primary_10_1007_s11427_023_2561_0 crossref_primary_10_1038_s41592_023_02124_2 crossref_primary_10_1038_s42003_024_06480_3 crossref_primary_10_1186_s13059_024_03211_z crossref_primary_10_1093_bfgp_elae040 crossref_primary_10_1021_acs_jcim_4c00835 crossref_primary_10_1093_bioinformatics_btae186 crossref_primary_10_1016_j_celrep_2023_113174 crossref_primary_10_3389_fams_2024_1403901 crossref_primary_10_1038_s41467_023_35947_w crossref_primary_10_1093_bib_bbaf109 crossref_primary_10_1186_s13059_024_03428_y crossref_primary_10_1089_genbio_2023_0050 crossref_primary_10_1038_s41576_023_00586_w crossref_primary_10_34133_research_0390 crossref_primary_10_1073_pnas_2412146122 crossref_primary_10_1016_j_cell_2024_07_040 crossref_primary_10_1093_bib_bbae255 crossref_primary_10_1002_smtd_202402111 crossref_primary_10_1093_bib_bbae257 crossref_primary_10_1186_s13059_022_02824_6 crossref_primary_10_1093_bib_bbae016 crossref_primary_10_1093_bib_bbae259 crossref_primary_10_1093_bib_bbad048 crossref_primary_10_1109_TCBB_2024_3469164 crossref_primary_10_1261_rna_079801_123 crossref_primary_10_1038_s41467_023_36796_3 crossref_primary_10_1016_j_mbs_2024_109248 crossref_primary_10_1038_s41588_023_01588_4 crossref_primary_10_1093_gigascience_giae003 crossref_primary_10_3390_ijms25084485 crossref_primary_10_1093_nar_gkae962 crossref_primary_10_1186_s13059_024_03245_3 crossref_primary_10_1073_pnas_2319804121 crossref_primary_10_1007_s12539_024_00676_1 crossref_primary_10_1093_nar_gkac901 crossref_primary_10_1042_BSR20221680 crossref_primary_10_1093_bib_bbae685 crossref_primary_10_1038_s41416_024_02706_7 crossref_primary_10_1038_s41467_024_49133_z crossref_primary_10_1016_j_csbj_2024_10_029 crossref_primary_10_1016_j_semcancer_2023_06_006 crossref_primary_10_1038_s41588_024_01664_3 crossref_primary_10_1038_s41467_023_43256_5 crossref_primary_10_1016_j_patter_2023_100915 crossref_primary_10_1093_bioinformatics_btac457 crossref_primary_10_1038_s42003_024_06814_1 crossref_primary_10_1186_s12864_024_11072_w crossref_primary_10_1093_gigascience_giae078 crossref_primary_10_1126_science_adh1938 crossref_primary_10_1016_j_ymeth_2024_10_002 crossref_primary_10_1016_j_cels_2023_03_008 crossref_primary_10_1038_s41598_024_61758_0 crossref_primary_10_1038_s41592_024_02463_8 crossref_primary_10_1093_bib_bbae316 crossref_primary_10_1093_bib_bbae437 crossref_primary_10_1186_s13059_023_02879_z crossref_primary_10_1016_j_cels_2023_03_004 crossref_primary_10_1016_j_csbj_2024_04_039 crossref_primary_10_1038_s41467_024_47152_4 crossref_primary_10_1038_s41592_023_01773_7 crossref_primary_10_1007_s12561_023_09400_x crossref_primary_10_1016_j_csbj_2024_09_005 crossref_primary_10_1038_s41592_024_02257_y crossref_primary_10_1038_s41588_022_01256_z crossref_primary_10_1038_s41592_024_02327_1 crossref_primary_10_3390_cimb46050284 crossref_primary_10_1038_s41467_023_42343_x crossref_primary_10_1093_bib_bbaf086 crossref_primary_10_1186_s13059_022_02653_7 crossref_primary_10_1016_j_jgg_2023_03_011 crossref_primary_10_1038_s41592_024_02316_4 crossref_primary_10_1038_s42003_023_04761_x crossref_primary_10_3390_electronics12194138 crossref_primary_10_3390_s23052856 crossref_primary_10_3389_fonc_2023_1172314 crossref_primary_10_1093_bib_bbae669 crossref_primary_10_1016_j_cell_2023_11_003 crossref_primary_10_1016_j_xpro_2025_103608 crossref_primary_10_1136_ard_2024_225778 crossref_primary_10_1016_j_cels_2024_09_005 crossref_primary_10_34133_research_0568 crossref_primary_10_1186_s13073_024_01282_y crossref_primary_10_1038_s41467_024_55700_1 crossref_primary_10_1038_s41467_022_34567_0 crossref_primary_10_1093_bib_bbad490 crossref_primary_10_1093_bioadv_vbad019 crossref_primary_10_1002_smtd_202401451 crossref_primary_10_1038_s10038_024_01275_0 crossref_primary_10_1038_s41551_022_00942_x crossref_primary_10_1038_s41586_025_08757_x crossref_primary_10_1101_gr_277891_123 crossref_primary_10_1097_BS9_0000000000000141 crossref_primary_10_1002_ctm2_70172 crossref_primary_10_1007_s40291_024_00757_3 crossref_primary_10_1038_s41698_025_00857_1 crossref_primary_10_1038_s42003_024_07037_0 crossref_primary_10_1038_s41467_023_41437_w crossref_primary_10_1038_s43588_022_00272_7 crossref_primary_10_1093_bioinformatics_btac599 crossref_primary_10_1063_5_0091135 crossref_primary_10_1038_s41467_022_35288_0 crossref_primary_10_3389_fgene_2024_1356709 crossref_primary_10_1016_j_arr_2023_102158 crossref_primary_10_1371_journal_pgen_1010983 crossref_primary_10_1038_s41587_021_01182_1 crossref_primary_10_1002_mco2_765 crossref_primary_10_1186_s40779_023_00471_x crossref_primary_10_1016_j_xgen_2025_100771 crossref_primary_10_3389_fgene_2022_912813 crossref_primary_10_1093_nar_gkac219 crossref_primary_10_1038_s41592_025_02617_2 crossref_primary_10_1016_j_csbj_2024_11_041 crossref_primary_10_1126_sciadv_adp4942 crossref_primary_10_1080_10495398_2023_2294785 crossref_primary_10_1093_bib_bbae578 crossref_primary_10_1093_bioinformatics_btae663 crossref_primary_10_1186_s13059_024_03339_y crossref_primary_10_1002_smtd_202401107 crossref_primary_10_1093_gigascience_giae042 crossref_primary_10_15252_msb_202110571 crossref_primary_10_1016_j_crmeth_2023_100507 crossref_primary_10_1145_3641284 crossref_primary_10_15252_msb_202211080 crossref_primary_10_1093_bib_bbae689 crossref_primary_10_1186_s13059_024_03289_5 crossref_primary_10_1038_s41467_024_49171_7 crossref_primary_10_1093_bib_bbae329 crossref_primary_10_1371_journal_pcbi_1012409 crossref_primary_10_1016_j_cels_2024_05_001 crossref_primary_10_1016_j_cels_2025_101235 crossref_primary_10_3389_fgene_2023_1202409 crossref_primary_10_34133_research_0228 |
Cites_doi | 10.1038/nbt.4260 10.1038/s41593-020-00787-0 10.1002/bies.201900221 10.1093/nar/gkaa740 10.1126/science.aaf2403 10.1038/s41587-019-0392-8 10.1111/j.1538-4632.2007.00708.x 10.1111/febs.15572 10.1016/j.cell.2020.06.038 10.1038/s41592-019-0701-7 10.1126/science.1250212 10.1038/nmeth.2892 10.2147/CMAR.S243129 10.1016/j.neuron.2015.11.013 10.1038/s41587-020-0739-1 10.1016/j.neuron.2016.10.001 10.1038/s41586-019-1049-y 10.1038/nmeth.4634 10.1038/s41467-020-15851-3 10.1088/1742-5468/2008/10/P10008 10.1126/science.aat5691 10.1126/science.aaw1219 10.1126/science.aau5324 10.1016/j.cell.2020.10.026 10.1126/science.aaa6090 10.1038/nmeth.4636 10.1016/0377-0427(87)90125-7 10.21873/anticanres.13801 10.1038/s41592-019-0548-y 10.1016/j.cell.2021.05.010 10.1101/2020.05.31.125658 10.1038/s41587-021-00935-2 10.1101/gr.271874.120 10.1101/2021.03.17.435795 10.1038/s41587-021-00830-w 10.1101/2021.01.17.427004 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. COPYRIGHT 2021 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. – notice: COPYRIGHT 2021 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QO 7SS 7TK 7U9 7X2 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. L6V LK8 M0K M0S M1P M2P M7N M7P M7S P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U RC3 7X8 |
DOI | 10.1038/s41592-021-01255-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Agricultural & Environmental Science & Pollution Managment ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Biological Science Collection Agriculture Science Database ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database (subscription) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1548-7105 |
EndPage | 1351 |
ExternalDocumentID | A681286813 34711970 10_1038_s41592_021_01255_8 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS) grantid: R01GM125301 funderid: https://doi.org/10.13039/100000057 – fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI) grantid: R01HL113147; R01HL150359 funderid: https://doi.org/10.13039/100000050 – fundername: U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI) grantid: R01EY030192; R01EY031209 funderid: https://doi.org/10.13039/100000053 – fundername: NEI NIH HHS grantid: R01 EY031209 – fundername: NIA NIH HHS grantid: P01 AG066597 – fundername: NIGMS NIH HHS grantid: R01 GM125301 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 7X2 7X7 7XC 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D1I D1J D1K DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX F5P FEDTE FSGXE FYUFA FZEXT GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ITC K6- KB. L6V LK5 LK8 M0K M1P M2P M7P M7R M7S NNMJJ O9- ODYON P2P P62 PATMY PCBAR PDBOC PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB PMFND 7QL 7QO 7SS 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS PUEGO Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c508t-42d4626a7fb6dc85d6024c00d833e92498daf82b2d1216971213d8fade12bfae3 |
IEDL.DBID | BENPR |
ISSN | 1548-7091 1548-7105 |
IngestDate | Fri Sep 05 13:59:48 EDT 2025 Sat Aug 23 12:21:46 EDT 2025 Tue Jun 17 21:54:49 EDT 2025 Tue Jun 10 20:38:07 EDT 2025 Sun Jul 20 01:30:40 EDT 2025 Tue Jul 01 00:44:36 EDT 2025 Thu Apr 24 23:11:27 EDT 2025 Fri Feb 21 02:37:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-42d4626a7fb6dc85d6024c00d833e92498daf82b2d1216971213d8fade12bfae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2852-7675 0000-0003-2422-9494 0000-0002-5599-5098 0000-0002-4589-1180 0000-0002-9726-2335 0000-0001-8553-7808 |
PMID | 34711970 |
PQID | 2592765533 |
PQPubID | 28015 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2590123947 proquest_journals_2592765533 gale_infotracmisc_A681286813 gale_infotracacademiconefile_A681286813 pubmed_primary_34711970 crossref_primary_10_1038_s41592_021_01255_8 crossref_citationtrail_10_1038_s41592_021_01255_8 springer_journals_10_1038_s41592_021_01255_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | Techniques for life scientists and chemists |
PublicationTitle | Nature methods |
PublicationTitleAbbrev | Nat Methods |
PublicationTitleAlternate | Nat Methods |
PublicationYear | 2021 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Zhang (CR34) 2016; 89 Shah, Lubeck, Zhou, Cai (CR3) 2016; 92 Li, Calder, Cressie (CR27) 2007; 39 CR19 CR18 CR17 Rousseeuw (CR37) 1987; 20 Partel, Wahlby (CR35) 2021; 288 CR38 Asp, Bergenstrahle, Lundeberg (CR1) 2020; 42 Chen, Boettiger, Moffitt, Wang, Zhuang (CR6) 2015; 348 Wang (CR7) 2018; 361 Lee (CR8) 2014; 343 CR36 Sun, Zhu, Zhou (CR25) 2020; 17 CR33 Stickels (CR11) 2020; 39 Zhu, Shah, Dries, Cai, Yuan (CR16) 2018; 36 Lee, Lee, Kim (CR31) 2019; 39 Moncada (CR13) 2020; 38 Maynard (CR32) 2021; 24 Chen (CR14) 2020; 182 Blondel, Guillaume, Lambiotte, Lefebvre (CR15) 2008; 2008 Liu (CR21) 2020; 183 Edsgard, Johnsson, Sandberg (CR23) 2018; 15 Rodriques (CR10) 2019; 363 Abdelaal, Mourragui, Mahfouz, Reinders (CR28) 2020; 48 CR29 Eng (CR4) 2019; 568 CR26 Li (CR39) 2020; 11 Svensson, Teichmann, Stegle (CR24) 2018; 15 Lubeck, Coskun, Zhiyentayev, Ahmad, Cai (CR2) 2014; 11 Cho (CR22) 2021; 184 CR20 Moffitt (CR5) 2018; 362 Li (CR30) 2020; 12 Stahl (CR9) 2016; 353 Vickovic (CR12) 2019; 16 CL Eng (1255_CR4) 2019; 568 1255_CR33 SG Rodriques (1255_CR10) 2019; 363 R Moncada (1255_CR13) 2020; 38 VD Blondel (1255_CR15) 2008; 2008 S Shah (1255_CR3) 2016; 92 RR Stickels (1255_CR11) 2020; 39 1255_CR36 1255_CR17 D Li (1255_CR30) 2020; 12 G Partel (1255_CR35) 2021; 288 1255_CR38 1255_CR19 1255_CR18 CS Cho (1255_CR22) 2021; 184 H Li (1255_CR27) 2007; 39 S Sun (1255_CR25) 2020; 17 Y Liu (1255_CR21) 2020; 183 J Lee (1255_CR31) 2019; 39 KR Maynard (1255_CR32) 2021; 24 1255_CR20 PJ Rousseeuw (1255_CR37) 1987; 20 Q Zhu (1255_CR16) 2018; 36 X Wang (1255_CR7) 2018; 361 JH Lee (1255_CR8) 2014; 343 D Edsgard (1255_CR23) 2018; 15 PL Stahl (1255_CR9) 2016; 353 E Lubeck (1255_CR2) 2014; 11 KH Chen (1255_CR6) 2015; 348 V Svensson (1255_CR24) 2018; 15 T Abdelaal (1255_CR28) 2020; 48 X Li (1255_CR39) 2020; 11 1255_CR26 Y Zhang (1255_CR34) 2016; 89 M Asp (1255_CR1) 2020; 42 JR Moffitt (1255_CR5) 2018; 362 S Vickovic (1255_CR12) 2019; 16 WT Chen (1255_CR14) 2020; 182 1255_CR29 34711969 - Nat Methods. 2021 Nov;18(11):1282-1283. doi: 10.1038/s41592-021-01272-7. |
References_xml | – volume: 36 start-page: 1183 year: 2018 end-page: 1190 ident: CR16 article-title: Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4260 – volume: 24 start-page: 425 year: 2021 end-page: 436 ident: CR32 article-title: Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex publication-title: Nat. Neurosci. doi: 10.1038/s41593-020-00787-0 – volume: 42 start-page: e1900221 year: 2020 ident: CR1 article-title: Spatially resolved transcriptomes-next generation tools for tissue exploration publication-title: Bioessays doi: 10.1002/bies.201900221 – ident: CR18 – volume: 48 start-page: e107 year: 2020 ident: CR28 article-title: SpaGE: Spatial Gene Enhancement using scRNA-seq publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa740 – volume: 353 start-page: 78 year: 2016 end-page: 82 ident: CR9 article-title: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics publication-title: Science doi: 10.1126/science.aaf2403 – volume: 38 start-page: 333 year: 2020 end-page: 342 ident: CR13 article-title: Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0392-8 – volume: 39 start-page: 357 year: 2007 end-page: 375 ident: CR27 article-title: Beyond Moran’s I: testing for spatial dependence based on the spatial autoregressive model publication-title: Geographical Anal. doi: 10.1111/j.1538-4632.2007.00708.x – volume: 288 start-page: 1859 year: 2021 end-page: 1870 ident: CR35 article-title: Spage2vec: Unsupervised representation of localized spatial gene expression signatures publication-title: FEBS J. doi: 10.1111/febs.15572 – volume: 182 start-page: 976 year: 2020 end-page: 991 e919 ident: CR14 article-title: Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease publication-title: Cell doi: 10.1016/j.cell.2020.06.038 – volume: 17 start-page: 193 year: 2020 end-page: 200 ident: CR25 article-title: Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies publication-title: Nat. Methods doi: 10.1038/s41592-019-0701-7 – volume: 343 start-page: 1360 year: 2014 end-page: 1363 ident: CR8 article-title: Highly multiplexed subcellular RNA sequencing in situ publication-title: Science doi: 10.1126/science.1250212 – volume: 11 start-page: 360 year: 2014 end-page: 361 ident: CR2 article-title: Single-cell in situ RNA profiling by sequential hybridization publication-title: Nat. Methods doi: 10.1038/nmeth.2892 – volume: 12 start-page: 2087 year: 2020 end-page: 2095 ident: CR30 article-title: KRT17 Functions as a tumor promoter and regulates proliferation, migration and invasion in pancreatic cancer via mTOR/S6k1 pathway publication-title: Cancer Manag. Res. doi: 10.2147/CMAR.S243129 – ident: CR33 – volume: 89 start-page: 37 year: 2016 end-page: 53 ident: CR34 article-title: Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse publication-title: Neuron doi: 10.1016/j.neuron.2015.11.013 – volume: 39 start-page: 313 year: 2020 end-page: 319 ident: CR11 article-title: Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0739-1 – ident: CR29 – volume: 92 start-page: 342 year: 2016 end-page: 357 ident: CR3 article-title: In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus publication-title: Neuron doi: 10.1016/j.neuron.2016.10.001 – volume: 568 start-page: 235 year: 2019 end-page: 239 ident: CR4 article-title: Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH publication-title: Nature doi: 10.1038/s41586-019-1049-y – volume: 15 start-page: 339 year: 2018 end-page: 342 ident: CR23 article-title: Identification of spatial expression trends in single-cell gene expression data publication-title: Nat. Methods doi: 10.1038/nmeth.4634 – volume: 11 year: 2020 ident: CR39 article-title: Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis publication-title: Nat. Commun. doi: 10.1038/s41467-020-15851-3 – ident: CR19 – volume: 2008 start-page: P10008 year: 2008 ident: CR15 article-title: Fast unfolding of communities in large networks publication-title: J. Stat. Mech.: Theory Exp. doi: 10.1088/1742-5468/2008/10/P10008 – volume: 361 start-page: eaat5691 year: 2018 ident: CR7 article-title: Three-dimensional intact-tissue sequencing of single-cell transcriptional states publication-title: Science doi: 10.1126/science.aat5691 – volume: 363 start-page: 1463 year: 2019 end-page: 1467 ident: CR10 article-title: Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution publication-title: Science doi: 10.1126/science.aaw1219 – ident: CR38 – volume: 362 start-page: eaau5324 year: 2018 ident: CR5 article-title: Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region publication-title: Science doi: 10.1126/science.aau5324 – volume: 183 start-page: 1665 year: 2020 end-page: 1681 e1618 ident: CR21 article-title: High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue publication-title: Cell doi: 10.1016/j.cell.2020.10.026 – volume: 348 start-page: aaa6090 year: 2015 ident: CR6 article-title: RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells publication-title: Science doi: 10.1126/science.aaa6090 – volume: 15 start-page: 343 year: 2018 end-page: 346 ident: CR24 article-title: SpatialDE: Identification of spatially variable genes publication-title: Nat. Methods doi: 10.1038/nmeth.4636 – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: CR37 article-title: Silhouettes: a graphical aid to the interpretaion and validation of cluster analysis publication-title: Computational Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – ident: CR17 – volume: 39 start-page: 5963 year: 2019 end-page: 5971 ident: CR31 article-title: Identification of matrix metalloproteinase 11 as a prognostic biomarker in pancreatic cancer publication-title: Anticancer Res. doi: 10.21873/anticanres.13801 – ident: CR36 – volume: 16 start-page: 987 year: 2019 end-page: 990 ident: CR12 article-title: High-definition spatial transcriptomics for in situ tissue profiling publication-title: Nat. Methods doi: 10.1038/s41592-019-0548-y – ident: CR26 – ident: CR20 – volume: 184 start-page: 3559 year: 2021 end-page: 3572 e3522 ident: CR22 article-title: Microscopic examination of spatial transcriptome using Seq-Scope publication-title: Cell doi: 10.1016/j.cell.2021.05.010 – volume: 15 start-page: 343 year: 2018 ident: 1255_CR24 publication-title: Nat. Methods doi: 10.1038/nmeth.4636 – volume: 92 start-page: 342 year: 2016 ident: 1255_CR3 publication-title: Neuron doi: 10.1016/j.neuron.2016.10.001 – volume: 361 start-page: eaat5691 year: 2018 ident: 1255_CR7 publication-title: Science doi: 10.1126/science.aat5691 – volume: 353 start-page: 78 year: 2016 ident: 1255_CR9 publication-title: Science doi: 10.1126/science.aaf2403 – ident: 1255_CR17 doi: 10.1101/2020.05.31.125658 – volume: 348 start-page: aaa6090 year: 2015 ident: 1255_CR6 publication-title: Science doi: 10.1126/science.aaa6090 – volume: 288 start-page: 1859 year: 2021 ident: 1255_CR35 publication-title: FEBS J. doi: 10.1111/febs.15572 – volume: 20 start-page: 53 year: 1987 ident: 1255_CR37 publication-title: Computational Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – ident: 1255_CR18 doi: 10.1038/s41587-021-00935-2 – volume: 39 start-page: 357 year: 2007 ident: 1255_CR27 publication-title: Geographical Anal. doi: 10.1111/j.1538-4632.2007.00708.x – volume: 42 start-page: e1900221 year: 2020 ident: 1255_CR1 publication-title: Bioessays doi: 10.1002/bies.201900221 – volume: 39 start-page: 313 year: 2020 ident: 1255_CR11 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0739-1 – ident: 1255_CR26 – volume: 184 start-page: 3559 year: 2021 ident: 1255_CR22 publication-title: Cell doi: 10.1016/j.cell.2021.05.010 – volume: 362 start-page: eaau5324 year: 2018 ident: 1255_CR5 publication-title: Science doi: 10.1126/science.aau5324 – volume: 38 start-page: 333 year: 2020 ident: 1255_CR13 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0392-8 – volume: 48 start-page: e107 year: 2020 ident: 1255_CR28 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa740 – ident: 1255_CR36 – volume: 363 start-page: 1463 year: 2019 ident: 1255_CR10 publication-title: Science doi: 10.1126/science.aaw1219 – volume: 15 start-page: 339 year: 2018 ident: 1255_CR23 publication-title: Nat. Methods doi: 10.1038/nmeth.4634 – volume: 343 start-page: 1360 year: 2014 ident: 1255_CR8 publication-title: Science doi: 10.1126/science.1250212 – volume: 39 start-page: 5963 year: 2019 ident: 1255_CR31 publication-title: Anticancer Res. doi: 10.21873/anticanres.13801 – volume: 2008 start-page: P10008 year: 2008 ident: 1255_CR15 publication-title: J. Stat. Mech.: Theory Exp. doi: 10.1088/1742-5468/2008/10/P10008 – volume: 11 year: 2020 ident: 1255_CR39 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15851-3 – volume: 17 start-page: 193 year: 2020 ident: 1255_CR25 publication-title: Nat. Methods doi: 10.1038/s41592-019-0701-7 – volume: 36 start-page: 1183 year: 2018 ident: 1255_CR16 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4260 – ident: 1255_CR38 doi: 10.1101/gr.271874.120 – volume: 12 start-page: 2087 year: 2020 ident: 1255_CR30 publication-title: Cancer Manag. Res. doi: 10.2147/CMAR.S243129 – volume: 89 start-page: 37 year: 2016 ident: 1255_CR34 publication-title: Neuron doi: 10.1016/j.neuron.2015.11.013 – volume: 24 start-page: 425 year: 2021 ident: 1255_CR32 publication-title: Nat. Neurosci. doi: 10.1038/s41593-020-00787-0 – volume: 182 start-page: 976 year: 2020 ident: 1255_CR14 publication-title: Cell doi: 10.1016/j.cell.2020.06.038 – volume: 11 start-page: 360 year: 2014 ident: 1255_CR2 publication-title: Nat. Methods doi: 10.1038/nmeth.2892 – ident: 1255_CR19 doi: 10.1101/2021.03.17.435795 – volume: 183 start-page: 1665 year: 2020 ident: 1255_CR21 publication-title: Cell doi: 10.1016/j.cell.2020.10.026 – ident: 1255_CR29 doi: 10.1038/s41587-021-00830-w – volume: 16 start-page: 987 year: 2019 ident: 1255_CR12 publication-title: Nat. Methods doi: 10.1038/s41592-019-0548-y – volume: 568 start-page: 235 year: 2019 ident: 1255_CR4 publication-title: Nature doi: 10.1038/s41586-019-1049-y – ident: 1255_CR20 doi: 10.1101/2021.01.17.427004 – ident: 1255_CR33 – reference: 34711969 - Nat Methods. 2021 Nov;18(11):1282-1283. doi: 10.1038/s41592-021-01272-7. |
SSID | ssj0033425 |
Score | 2.7290947 |
Snippet | Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1342 |
SubjectTerms | 631/114/2401 631/114/2415 631/1647/794 631/208/212/2019 631/61/212/2019 Algorithms Animals Artificial neural networks Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Brain - metabolism Cluster Analysis Computational Biology Data analysis Datasets Domains Dorsolateral Prefrontal Cortex - metabolism Gene expression Gene Expression Regulation Genes Genetic diversity Genetic research Histology Humans Life Sciences Mice Microenvironments Neural networks Neural Networks, Computer Pancreatic Neoplasms - genetics Pancreatic Neoplasms - pathology Proteomics Software Spatial Analysis Spatial variations Transcriptome Visual Cortex - metabolism |
Title | SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network |
URI | https://link.springer.com/article/10.1038/s41592-021-01255-8 https://www.ncbi.nlm.nih.gov/pubmed/34711970 https://www.proquest.com/docview/2592765533 https://www.proquest.com/docview/2590123947 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_6geCL-G1qLSsIPtilSTbJbgSRWnqtgoeohXtb9itQqMnZXMX7W_xnndlsrl7BvuThMjvZ3MzO_DY7H4S80uCChOU10z61rNCiYKYynGmeNYB4jTThm-7naXV6VnyalbMNMh1zYTCscrSJwVC7zuI38gOA6bmoSkAn7-c_GXaNwtPVsYWGjq0V3LtQYmyTbINJlqD32x-Op1--jraZ8yK0YUWczgS4yphGk3J50IMrw0jMHLfXALSZXHNVNw32Px7rxhFq8EyT--RehJT0cNCBB2TDtw_JnaHJ5PIR-fNtrk-Opm_px1gZAphQUBtP_e8YBdvu0x4jq4EL-jaUFdWto6EYMXKhi46eh5TeZrkidd0Pfd72gTL-drGkv2DzjelY4RE9NUsaamJTDG-Pag5j2yH6_DE5mxx_PzplsSUDs4DkFqzIXQFbIC0aUzkrS1eBj7dp6iTnHrdy0ulG5iZ3WZ5VtcCCcU422vksN432_AnZarvWPyO0qrXJhRGprUThXFnrQjdl7YRw1sATEpKN_76ysV45ts24UOHcnEs1SEyBxFSQmJIJebMaMx-qddxK_RqFqnApA2erY0YCzA-LYqlDrM0m4cITsrtGCUvQrt8e1UJFE9Cra4VNyMvVbRyJYW2t764CDWLauoC3fTqo02reHGBDVos0Ifujfl0z__9L7dw-l-fkbo4qHrIpd8nW4vLKvwBYtTB7ZFPMBFzl5GQvrpu_zZ4gSA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDcLBYwE4kCjJnY2dpAqVErLLm1XCFqpN-NXpEolu5AtsL-F_8JvY8ZxtrQSvfWyh8144mTG_mbieRDyXAMECcvLRPvUJrkWeWIKwxPNswosXiNN-Ka7Ny6GB_mHw8HhEvnT5cJgWGW3J4aN2k0sfiNfAzOdiWIA1smb6bcEu0bh6WrXQkPH1gpuPZQYi4kdO37-E1y4Zn30DuT9grHtrf3NYRK7DCQWjJNZkjOXg1WvRWUKZ-XAFQBbNk2d5NyjdyKdriQzzGUsK0qBNdCcrLTzGTOV9hz4XiHLOWa49sjy263xx08dFnCeh7av6BckAqA5pu2kXK41AJ0Y-cnQnQfDPpFnoPE8QPyDkOeObAMSbt8kN6IJSzdanbtFlnx9m1xtm1rO75Dfn6f6_eb4NR3FShTAhIKaeup_xajbepU2GMkNXBBLUTeorh0NxY-RC51N6FFIIa7mC1I3-aqP6iZQxv-O5_QHOPuY_hVu0VAzp6EGN8Vw-risYGzdRrvfJQeXIpx7pFdPav-A0KLUhgkjUluI3LlBqXNdDUonhLMG7tAnWff2lY310bFNx7EK5_RcqlZiCiSmgsSU7JNXizHTtjrIhdQvUagKtw7gbHXMgID5YREutYG14CT88D5ZOUMJS96evdyphYpbTqNOF0ifPFtcxpEYRlf7yUmgQRu6zOFp77fqtJg3BzMlK0XaJ6udfp0y__9DPbx4Lk_JteH-3q7aHY13HpHrDNU9ZHKukN7s-4l_DCbdzDyJ64aSL5e9VP8C-PtbHA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviG8CA4wE4oFFTew0dpAmNLaVlUE1wSbtzfgjkSaNtJAO6N_Cf8RfxZ3jdHQSe9tLHxr74uTu_LuL74OQ5xogSFhexLpMbJxpkcUmNzzWPK3A4jXS-G-6H8f57mH2_mhwtEL-dLkwGFbZ7Yl-o3YTi9_I-2CmM5EPwDrpVyEsYn97-Gb6LcYOUnjS2rXT0KHNgtvw5cZCksdeOf8J7lyzMdoG3r9gbLhzsLUbh44DsQVDZRZnzGVg4WtRmdxZOXA5QJhNEic5L9FTkU5XkhnmUpbmhcB6aE5W2pUpM5UuOdC9QlYFoGTWI6tvd8b7nzpc4DzzLWDRR4gFwHRI4Um47DcAoxgFytC1ByM_lksweR4s_kHLc8e3HhWHN8mNYM7SzVb-bpGVsr5NrrYNLud3yO_PU_1ua_yajkJVCiBCQWRLWv4KEbj1Om0wqhuoIK6inFBdO-oLISMVOpvQY59OXM0XQ93kqz6uGz8y_Hcypz_A8cdUMH-Lhpo59fW4KYbWBxWDuXUb-X6XHF4Kc-6RXj2pyweE5oU2TBiR2Fxkzg0KnelqUDghnDVwh4ik3dtXNtRKx5YdJ8qf2XOpWo4p4JjyHFMyIq8Wc6ZtpZALR79EpircRoCy1SEbAtaHBbnUJtaFk_DDI7K2NBLU3y5f7sRChe2nUWfKEpFni8s4E0Pq6nJy6segPV1k8LT3W3FarJuDyZIWIonIeidfZ8T__1APL17LU3INVFZ9GI33HpHrDKXdJ3Wukd7s-2n5GKy7mXkS1IaSL5etqX8BNRpfSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SpaGCN%3A+Integrating+gene+expression%2C+spatial+location+and+histology+to+identify+spatial+domains+and+spatially+variable+genes+by+graph+convolutional+network&rft.jtitle=Nature+methods&rft.au=Hu%2C+Jian&rft.au=Li%2C+Xiangjie&rft.au=Coleman%2C+Kyle&rft.au=Schroeder%2C+Amelia&rft.date=2021-11-01&rft.eissn=1548-7105&rft.volume=18&rft.issue=11&rft.spage=1342&rft_id=info:doi/10.1038%2Fs41592-021-01255-8&rft_id=info%3Apmid%2F34711970&rft.externalDocID=34711970 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon |