SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network

Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that i...

Full description

Saved in:
Bibliographic Details
Published inNature methods Vol. 18; no. 11; pp. 1342 - 1351
Main Authors Hu, Jian, Li, Xiangjie, Coleman, Kyle, Schroeder, Amelia, Ma, Nan, Irwin, David J., Lee, Edward B., Shinohara, Russell T., Li, Mingyao
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.11.2021
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1548-7091
1548-7105
1548-7105
DOI10.1038/s41592-021-01255-8

Cover

Abstract Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies. SpaGCN is a spatially resolved transcriptomics data analysis tool for identifying spatial domains and spatially variable genes using graph convolutional networks.
AbstractList Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies. SpaGCN is a spatially resolved transcriptomics data analysis tool for identifying spatial domains and spatially variable genes using graph convolutional networks.
Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies.Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies.
Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies. SpaGCN is a spatially resolved transcriptomics data analysis tool for identifying spatial domains and spatially variable genes using graph convolutional networks.
Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies.
Audience Academic
Author Ma, Nan
Shinohara, Russell T.
Hu, Jian
Coleman, Kyle
Lee, Edward B.
Schroeder, Amelia
Li, Mingyao
Li, Xiangjie
Irwin, David J.
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0003-2852-7675
  surname: Hu
  fullname: Hu, Jian
  email: jianhu@pennmedicine.upenn.edu
  organization: Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania
– sequence: 2
  givenname: Xiangjie
  surname: Li
  fullname: Li, Xiangjie
  organization: School of Statistics and Data Science, Nankai University
– sequence: 3
  givenname: Kyle
  orcidid: 0000-0002-9726-2335
  surname: Coleman
  fullname: Coleman, Kyle
  organization: Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania
– sequence: 4
  givenname: Amelia
  surname: Schroeder
  fullname: Schroeder, Amelia
  organization: Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania
– sequence: 5
  givenname: Nan
  orcidid: 0000-0001-8553-7808
  surname: Ma
  fullname: Ma, Nan
  organization: Weitzman School of Design, University of Pennsylvania
– sequence: 6
  givenname: David J.
  orcidid: 0000-0002-5599-5098
  surname: Irwin
  fullname: Irwin, David J.
  organization: Department of Neurology, Perelman School of Medicine, University of Pennsylvania
– sequence: 7
  givenname: Edward B.
  orcidid: 0000-0002-4589-1180
  surname: Lee
  fullname: Lee, Edward B.
  organization: Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
– sequence: 8
  givenname: Russell T.
  surname: Shinohara
  fullname: Shinohara, Russell T.
  organization: Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania
– sequence: 9
  givenname: Mingyao
  orcidid: 0000-0003-2422-9494
  surname: Li
  fullname: Li, Mingyao
  email: mingyao@pennmedicine.upenn.edu
  organization: Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34711970$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhiNURC_wAiyQJTYsSPElThx21RGUShUsgLXlxJPUxbGDnRTyLLwsPjmnrahQZWk8Gn__zGg8x9mB8w6y7CXBpwQz8S4WhNc0x5TkmFDOc_EkOyK8EHlFMD-49XFNDrPjGK8xZqyg_Fl2yIqKkLrCR9mfr6M633x-jy7cBH1Qk3E96sEBgt9jgBiNd29RHNODssj6NjneIeU0ujJx8tb3C5o8MhrcZLrlDtV-UMbFldzH7IJuVDCqsbCWiKhZUKo5XqHWuxtv523upHUw_fLhx_PsaadshBf7-yT7_vHDt82n_PLL-cXm7DJvORZTXlBdlLRUVdeUuhVcl5gWLcZaMAY1LWqhVSdoQzWhpKyrZJkWndJAaNMpYCfZm13eMfifM8RJDia2YK1y4OcoKa_TfFldVAl9_QC99nNIPa8UrUrOGbunemVBGtf5Kah2m1SelYJQkcyWOv0PlY6GwaSBQGdS_B_Bq33xuRlAyzGYQYVF3v5mAugOaIOPMUB3hxAstysjdysj08rIdWWkSCLxQNSaaf3l1I6xj0vZThpTHddDuJ_GI6q_6MDV8w
CitedBy_id crossref_primary_10_1016_j_isci_2023_106792
crossref_primary_10_1002_smtd_202401199
crossref_primary_10_1016_j_ymeth_2025_03_007
crossref_primary_10_1038_s41467_022_34879_1
crossref_primary_10_1016_j_cels_2022_04_004
crossref_primary_10_1038_s41467_022_33619_9
crossref_primary_10_1038_s42003_024_07286_z
crossref_primary_10_1093_bib_bbae082
crossref_primary_10_1186_s13059_023_03138_x
crossref_primary_10_1016_j_crmeth_2024_100841
crossref_primary_10_34133_bmef_0110
crossref_primary_10_1038_s41587_023_02019_9
crossref_primary_10_1017_S2633903X23000235
crossref_primary_10_1186_s12943_025_02240_x
crossref_primary_10_1016_j_crmeth_2024_100838
crossref_primary_10_1073_pnas_2205518119
crossref_primary_10_53941_aim_2025_100001
crossref_primary_10_1038_s41467_023_44367_9
crossref_primary_10_1109_ACCESS_2023_3291352
crossref_primary_10_1038_s41467_022_34867_5
crossref_primary_10_1093_nar_gkad801
crossref_primary_10_1038_s42003_024_06281_8
crossref_primary_10_1097_HEP_0000000000000387
crossref_primary_10_3389_fbinf_2023_1159381
crossref_primary_10_1093_bioinformatics_btad594
crossref_primary_10_1016_j_cell_2022_04_003
crossref_primary_10_1093_neuonc_noaf020
crossref_primary_10_1093_bioinformatics_btac145
crossref_primary_10_1038_s41467_023_43220_3
crossref_primary_10_1038_s41467_024_50150_1
crossref_primary_10_1038_s42003_025_07872_9
crossref_primary_10_1038_s41540_023_00320_6
crossref_primary_10_1093_bfgp_elad011
crossref_primary_10_1038_s41467_023_36560_7
crossref_primary_10_1038_s41580_022_00466_x
crossref_primary_10_1038_s41588_023_01646_x
crossref_primary_10_1186_s13059_024_03361_0
crossref_primary_10_1016_j_csbj_2024_05_028
crossref_primary_10_3390_cells12040604
crossref_primary_10_1093_bioinformatics_btad362
crossref_primary_10_1093_bioinformatics_btae451
crossref_primary_10_1038_s41467_024_51590_5
crossref_primary_10_1186_s13015_024_00265_3
crossref_primary_10_1038_s41592_022_01651_8
crossref_primary_10_1186_s12943_024_02040_9
crossref_primary_10_1038_s41467_025_56080_w
crossref_primary_10_1038_s41592_021_01272_7
crossref_primary_10_1038_s41596_023_00925_5
crossref_primary_10_1038_s41467_023_43172_8
crossref_primary_10_1093_bib_bbae666
crossref_primary_10_1186_s12864_024_10469_x
crossref_primary_10_1002_wrna_1865
crossref_primary_10_1186_s13059_022_02734_7
crossref_primary_10_1093_bib_bbac245
crossref_primary_10_1038_s42003_024_06172_y
crossref_primary_10_1093_bioinformatics_btad366
crossref_primary_10_1016_j_crmeth_2024_100864
crossref_primary_10_1093_bfgp_elac011
crossref_primary_10_1038_s41467_023_42504_y
crossref_primary_10_1093_nar_gkaf087
crossref_primary_10_1093_nar_gkad580
crossref_primary_10_1093_bib_bbac116
crossref_primary_10_1016_j_csbj_2022_05_056
crossref_primary_10_1093_biomtc_ujae066
crossref_primary_10_1038_s41467_023_38121_4
crossref_primary_10_1038_s42003_024_07165_7
crossref_primary_10_1016_j_neucom_2024_128283
crossref_primary_10_1186_s12967_023_04150_2
crossref_primary_10_1186_s43556_023_00144_0
crossref_primary_10_1016_j_jare_2023_05_002
crossref_primary_10_1002_cyto_a_24884
crossref_primary_10_1016_j_crmeth_2023_100558
crossref_primary_10_1038_s41467_024_51708_9
crossref_primary_10_1038_s42003_024_06349_5
crossref_primary_10_1093_bib_bbac475
crossref_primary_10_3390_biom14060674
crossref_primary_10_1016_j_jgg_2024_04_002
crossref_primary_10_1016_j_csbj_2024_01_016
crossref_primary_10_1016_j_jid_2021_12_014
crossref_primary_10_1038_s41467_024_52445_9
crossref_primary_10_1038_s41585_023_00805_3
crossref_primary_10_1038_s41467_022_35233_1
crossref_primary_10_1038_s41467_024_49445_0
crossref_primary_10_1016_j_ymeth_2023_11_002
crossref_primary_10_1016_j_csbj_2023_11_055
crossref_primary_10_1016_j_xgen_2024_100565
crossref_primary_10_1093_bib_bbae524
crossref_primary_10_1186_s13059_023_03078_6
crossref_primary_10_1186_s13059_024_03241_7
crossref_primary_10_3389_frai_2024_1424012
crossref_primary_10_1016_j_yamp_2023_01_002
crossref_primary_10_1038_s41420_023_01569_w
crossref_primary_10_1093_bib_bbae045
crossref_primary_10_1007_s11427_024_2770_x
crossref_primary_10_1126_sciadv_add9818
crossref_primary_10_3389_fonc_2024_1465098
crossref_primary_10_1016_j_asoc_2024_112541
crossref_primary_10_1109_TCBBIO_2024_3521983
crossref_primary_10_1016_j_crmeth_2024_100886
crossref_primary_10_1093_bib_bbad197
crossref_primary_10_1093_bib_bbae719
crossref_primary_10_1038_s43588_022_00266_5
crossref_primary_10_3390_biom13020221
crossref_primary_10_59717_j_xinn_life_2024_100097
crossref_primary_10_1038_s41588_025_02120_6
crossref_primary_10_1186_s13073_025_01441_9
crossref_primary_10_1186_s13073_025_01449_1
crossref_primary_10_1038_s41467_024_50837_5
crossref_primary_10_1186_s13059_024_03429_x
crossref_primary_10_1002_smtd_202401163
crossref_primary_10_1038_s41467_023_37477_x
crossref_primary_10_1038_s41467_024_51728_5
crossref_primary_10_3390_app14010307
crossref_primary_10_1186_s13059_024_03290_y
crossref_primary_10_1093_bib_bbad500
crossref_primary_10_1038_s41467_024_49457_w
crossref_primary_10_1038_s42003_024_07001_y
crossref_primary_10_1002_adhm_202403698
crossref_primary_10_1186_s13059_025_03503_y
crossref_primary_10_3389_fgene_2022_1090394
crossref_primary_10_1016_j_csbj_2022_08_043
crossref_primary_10_1016_j_trecan_2023_08_004
crossref_primary_10_1038_s41467_022_31739_w
crossref_primary_10_3389_fgene_2021_785290
crossref_primary_10_1093_bfgp_elae023
crossref_primary_10_1016_j_jgg_2023_06_005
crossref_primary_10_15252_emmm_202114649
crossref_primary_10_1038_s41598_024_60002_z
crossref_primary_10_1038_s41467_024_54973_w
crossref_primary_10_1038_s41592_024_02410_7
crossref_primary_10_1016_j_cels_2022_09_002
crossref_primary_10_1371_journal_pcbi_1011935
crossref_primary_10_1093_bib_bbae707
crossref_primary_10_3390_biom13060895
crossref_primary_10_1109_TKDE_2024_3450333
crossref_primary_10_1093_bib_bbae188
crossref_primary_10_1093_bib_bbae500
crossref_primary_10_2217_fon_2022_0156
crossref_primary_10_1038_s41598_023_46392_6
crossref_primary_10_1093_bib_bbad533
crossref_primary_10_1016_j_isci_2024_109009
crossref_primary_10_1038_s41467_025_57072_6
crossref_primary_10_1038_s41467_024_48870_5
crossref_primary_10_1186_s13059_024_03213_x
crossref_primary_10_1007_s00500_023_08661_4
crossref_primary_10_1186_s13073_024_01350_3
crossref_primary_10_3389_fimmu_2022_956078
crossref_primary_10_1186_s13059_024_03467_5
crossref_primary_10_1093_lifemedi_lnac053
crossref_primary_10_1371_journal_pcbi_1012254
crossref_primary_10_1038_s43588_024_00622_7
crossref_primary_10_1186_s13073_025_01442_8
crossref_primary_10_1007_s44272_024_00018_8
crossref_primary_10_1186_s13046_022_02385_3
crossref_primary_10_1152_physiol_00001_2024
crossref_primary_10_1186_s13059_023_03145_y
crossref_primary_10_1186_s13059_023_03045_1
crossref_primary_10_1093_bioinformatics_btae023
crossref_primary_10_1038_s41592_024_02215_8
crossref_primary_10_1158_0008_5472_CAN_24_2346
crossref_primary_10_1093_bioinformatics_btae027
crossref_primary_10_1093_bib_bbae052
crossref_primary_10_1093_bib_bbae173
crossref_primary_10_1002_wrna_1839
crossref_primary_10_1016_j_cmpb_2024_108431
crossref_primary_10_1093_bib_bbaf021
crossref_primary_10_1038_s43588_023_00528_w
crossref_primary_10_1016_j_drudis_2024_103889
crossref_primary_10_1016_j_csbj_2022_08_029
crossref_primary_10_1038_s41467_024_44835_w
crossref_primary_10_1038_s42256_023_00734_1
crossref_primary_10_1016_j_csbj_2023_11_011
crossref_primary_10_1190_geo2022_0324_1
crossref_primary_10_1016_j_gpb_2022_10_001
crossref_primary_10_1093_bib_bbae608
crossref_primary_10_1186_s13073_024_01283_x
crossref_primary_10_1016_j_gpb_2022_11_012
crossref_primary_10_1109_ACCESS_2024_3479153
crossref_primary_10_1016_j_jgg_2024_09_015
crossref_primary_10_1038_s41467_023_39895_3
crossref_primary_10_1016_j_ymeth_2024_11_001
crossref_primary_10_1093_bioinformatics_btaf005
crossref_primary_10_3389_fsysb_2022_877717
crossref_primary_10_1093_bib_bbad278
crossref_primary_10_1016_j_semcdb_2025_01_002
crossref_primary_10_1093_bib_bbad395
crossref_primary_10_1080_01621459_2024_2308323
crossref_primary_10_1186_s13059_022_02692_0
crossref_primary_10_1093_nar_gkae294
crossref_primary_10_1038_s41467_022_29439_6
crossref_primary_10_1038_s42003_022_03175_5
crossref_primary_10_1093_gigascience_giaf002
crossref_primary_10_1089_cbr_2023_0116
crossref_primary_10_1016_j_trac_2024_118109
crossref_primary_10_1016_j_compbiomed_2023_107440
crossref_primary_10_1038_s41586_023_05915_x
crossref_primary_10_1038_s41587_022_01273_7
crossref_primary_10_1093_bib_bbae594
crossref_primary_10_1186_s13059_024_03272_0
crossref_primary_10_1093_bioinformatics_btae607
crossref_primary_10_1136_jitc_2024_008875
crossref_primary_10_1016_j_drudis_2023_103772
crossref_primary_10_1016_j_trac_2024_117818
crossref_primary_10_1093_bib_bbad146
crossref_primary_10_1093_bib_bbac297
crossref_primary_10_1093_bib_bbad265
crossref_primary_10_52601_bpr_2024_240006
crossref_primary_10_1155_2022_5902199
crossref_primary_10_1016_j_csbj_2023_01_016
crossref_primary_10_1093_bib_bbad141
crossref_primary_10_1093_bib_bbad262
crossref_primary_10_1038_s41592_024_02284_9
crossref_primary_10_1038_s41592_024_02503_3
crossref_primary_10_1016_j_ymeth_2024_11_006
crossref_primary_10_34133_bmef_0084
crossref_primary_10_1038_s41592_023_01992_y
crossref_primary_10_1002_advs_202410081
crossref_primary_10_1021_acsnano_4c11505
crossref_primary_10_1016_j_csbj_2024_06_019
crossref_primary_10_1186_s12859_023_05355_4
crossref_primary_10_1016_j_ccell_2024_10_008
crossref_primary_10_1038_s43586_024_00330_6
crossref_primary_10_1038_s41467_025_56276_0
crossref_primary_10_1360_TB_2024_0332
crossref_primary_10_1093_bib_bbae388
crossref_primary_10_1038_s41467_023_39748_z
crossref_primary_10_1002_advs_202403572
crossref_primary_10_1038_s41598_024_81383_1
crossref_primary_10_1093_bioinformatics_btad641
crossref_primary_10_1093_bioinformatics_btae611
crossref_primary_10_1038_s41467_024_55204_y
crossref_primary_10_1007_s11427_023_2561_0
crossref_primary_10_1038_s41592_023_02124_2
crossref_primary_10_1038_s42003_024_06480_3
crossref_primary_10_1186_s13059_024_03211_z
crossref_primary_10_1093_bfgp_elae040
crossref_primary_10_1021_acs_jcim_4c00835
crossref_primary_10_1093_bioinformatics_btae186
crossref_primary_10_1016_j_celrep_2023_113174
crossref_primary_10_3389_fams_2024_1403901
crossref_primary_10_1038_s41467_023_35947_w
crossref_primary_10_1093_bib_bbaf109
crossref_primary_10_1186_s13059_024_03428_y
crossref_primary_10_1089_genbio_2023_0050
crossref_primary_10_1038_s41576_023_00586_w
crossref_primary_10_34133_research_0390
crossref_primary_10_1073_pnas_2412146122
crossref_primary_10_1016_j_cell_2024_07_040
crossref_primary_10_1093_bib_bbae255
crossref_primary_10_1002_smtd_202402111
crossref_primary_10_1093_bib_bbae257
crossref_primary_10_1186_s13059_022_02824_6
crossref_primary_10_1093_bib_bbae016
crossref_primary_10_1093_bib_bbae259
crossref_primary_10_1093_bib_bbad048
crossref_primary_10_1109_TCBB_2024_3469164
crossref_primary_10_1261_rna_079801_123
crossref_primary_10_1038_s41467_023_36796_3
crossref_primary_10_1016_j_mbs_2024_109248
crossref_primary_10_1038_s41588_023_01588_4
crossref_primary_10_1093_gigascience_giae003
crossref_primary_10_3390_ijms25084485
crossref_primary_10_1093_nar_gkae962
crossref_primary_10_1186_s13059_024_03245_3
crossref_primary_10_1073_pnas_2319804121
crossref_primary_10_1007_s12539_024_00676_1
crossref_primary_10_1093_nar_gkac901
crossref_primary_10_1042_BSR20221680
crossref_primary_10_1093_bib_bbae685
crossref_primary_10_1038_s41416_024_02706_7
crossref_primary_10_1038_s41467_024_49133_z
crossref_primary_10_1016_j_csbj_2024_10_029
crossref_primary_10_1016_j_semcancer_2023_06_006
crossref_primary_10_1038_s41588_024_01664_3
crossref_primary_10_1038_s41467_023_43256_5
crossref_primary_10_1016_j_patter_2023_100915
crossref_primary_10_1093_bioinformatics_btac457
crossref_primary_10_1038_s42003_024_06814_1
crossref_primary_10_1186_s12864_024_11072_w
crossref_primary_10_1093_gigascience_giae078
crossref_primary_10_1126_science_adh1938
crossref_primary_10_1016_j_ymeth_2024_10_002
crossref_primary_10_1016_j_cels_2023_03_008
crossref_primary_10_1038_s41598_024_61758_0
crossref_primary_10_1038_s41592_024_02463_8
crossref_primary_10_1093_bib_bbae316
crossref_primary_10_1093_bib_bbae437
crossref_primary_10_1186_s13059_023_02879_z
crossref_primary_10_1016_j_cels_2023_03_004
crossref_primary_10_1016_j_csbj_2024_04_039
crossref_primary_10_1038_s41467_024_47152_4
crossref_primary_10_1038_s41592_023_01773_7
crossref_primary_10_1007_s12561_023_09400_x
crossref_primary_10_1016_j_csbj_2024_09_005
crossref_primary_10_1038_s41592_024_02257_y
crossref_primary_10_1038_s41588_022_01256_z
crossref_primary_10_1038_s41592_024_02327_1
crossref_primary_10_3390_cimb46050284
crossref_primary_10_1038_s41467_023_42343_x
crossref_primary_10_1093_bib_bbaf086
crossref_primary_10_1186_s13059_022_02653_7
crossref_primary_10_1016_j_jgg_2023_03_011
crossref_primary_10_1038_s41592_024_02316_4
crossref_primary_10_1038_s42003_023_04761_x
crossref_primary_10_3390_electronics12194138
crossref_primary_10_3390_s23052856
crossref_primary_10_3389_fonc_2023_1172314
crossref_primary_10_1093_bib_bbae669
crossref_primary_10_1016_j_cell_2023_11_003
crossref_primary_10_1016_j_xpro_2025_103608
crossref_primary_10_1136_ard_2024_225778
crossref_primary_10_1016_j_cels_2024_09_005
crossref_primary_10_34133_research_0568
crossref_primary_10_1186_s13073_024_01282_y
crossref_primary_10_1038_s41467_024_55700_1
crossref_primary_10_1038_s41467_022_34567_0
crossref_primary_10_1093_bib_bbad490
crossref_primary_10_1093_bioadv_vbad019
crossref_primary_10_1002_smtd_202401451
crossref_primary_10_1038_s10038_024_01275_0
crossref_primary_10_1038_s41551_022_00942_x
crossref_primary_10_1038_s41586_025_08757_x
crossref_primary_10_1101_gr_277891_123
crossref_primary_10_1097_BS9_0000000000000141
crossref_primary_10_1002_ctm2_70172
crossref_primary_10_1007_s40291_024_00757_3
crossref_primary_10_1038_s41698_025_00857_1
crossref_primary_10_1038_s42003_024_07037_0
crossref_primary_10_1038_s41467_023_41437_w
crossref_primary_10_1038_s43588_022_00272_7
crossref_primary_10_1093_bioinformatics_btac599
crossref_primary_10_1063_5_0091135
crossref_primary_10_1038_s41467_022_35288_0
crossref_primary_10_3389_fgene_2024_1356709
crossref_primary_10_1016_j_arr_2023_102158
crossref_primary_10_1371_journal_pgen_1010983
crossref_primary_10_1038_s41587_021_01182_1
crossref_primary_10_1002_mco2_765
crossref_primary_10_1186_s40779_023_00471_x
crossref_primary_10_1016_j_xgen_2025_100771
crossref_primary_10_3389_fgene_2022_912813
crossref_primary_10_1093_nar_gkac219
crossref_primary_10_1038_s41592_025_02617_2
crossref_primary_10_1016_j_csbj_2024_11_041
crossref_primary_10_1126_sciadv_adp4942
crossref_primary_10_1080_10495398_2023_2294785
crossref_primary_10_1093_bib_bbae578
crossref_primary_10_1093_bioinformatics_btae663
crossref_primary_10_1186_s13059_024_03339_y
crossref_primary_10_1002_smtd_202401107
crossref_primary_10_1093_gigascience_giae042
crossref_primary_10_15252_msb_202110571
crossref_primary_10_1016_j_crmeth_2023_100507
crossref_primary_10_1145_3641284
crossref_primary_10_15252_msb_202211080
crossref_primary_10_1093_bib_bbae689
crossref_primary_10_1186_s13059_024_03289_5
crossref_primary_10_1038_s41467_024_49171_7
crossref_primary_10_1093_bib_bbae329
crossref_primary_10_1371_journal_pcbi_1012409
crossref_primary_10_1016_j_cels_2024_05_001
crossref_primary_10_1016_j_cels_2025_101235
crossref_primary_10_3389_fgene_2023_1202409
crossref_primary_10_34133_research_0228
Cites_doi 10.1038/nbt.4260
10.1038/s41593-020-00787-0
10.1002/bies.201900221
10.1093/nar/gkaa740
10.1126/science.aaf2403
10.1038/s41587-019-0392-8
10.1111/j.1538-4632.2007.00708.x
10.1111/febs.15572
10.1016/j.cell.2020.06.038
10.1038/s41592-019-0701-7
10.1126/science.1250212
10.1038/nmeth.2892
10.2147/CMAR.S243129
10.1016/j.neuron.2015.11.013
10.1038/s41587-020-0739-1
10.1016/j.neuron.2016.10.001
10.1038/s41586-019-1049-y
10.1038/nmeth.4634
10.1038/s41467-020-15851-3
10.1088/1742-5468/2008/10/P10008
10.1126/science.aat5691
10.1126/science.aaw1219
10.1126/science.aau5324
10.1016/j.cell.2020.10.026
10.1126/science.aaa6090
10.1038/nmeth.4636
10.1016/0377-0427(87)90125-7
10.21873/anticanres.13801
10.1038/s41592-019-0548-y
10.1016/j.cell.2021.05.010
10.1101/2020.05.31.125658
10.1038/s41587-021-00935-2
10.1101/gr.271874.120
10.1101/2021.03.17.435795
10.1038/s41587-021-00830-w
10.1101/2021.01.17.427004
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
COPYRIGHT 2021 Nature Publishing Group
The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QO
7SS
7TK
7U9
7X2
7X7
7XB
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
L6V
LK8
M0K
M0S
M1P
M2P
M7N
M7P
M7S
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
RC3
7X8
DOI 10.1038/s41592-021-01255-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database (subscription)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Agricultural Science Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1548-7105
EndPage 1351
ExternalDocumentID A681286813
34711970
10_1038_s41592_021_01255_8
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: R01GM125301
  funderid: https://doi.org/10.13039/100000057
– fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
  grantid: R01HL113147; R01HL150359
  funderid: https://doi.org/10.13039/100000050
– fundername: U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
  grantid: R01EY030192; R01EY031209
  funderid: https://doi.org/10.13039/100000053
– fundername: NEI NIH HHS
  grantid: R01 EY031209
– fundername: NIA NIH HHS
  grantid: P01 AG066597
– fundername: NIGMS NIH HHS
  grantid: R01 GM125301
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
7X2
7X7
7XC
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D1I
D1J
D1K
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESX
F5P
FEDTE
FSGXE
FYUFA
FZEXT
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ITC
K6-
KB.
L6V
LK5
LK8
M0K
M1P
M2P
M7P
M7R
M7S
NNMJJ
O9-
ODYON
P2P
P62
PATMY
PCBAR
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
PMFND
7QL
7QO
7SS
7TK
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
RC3
7X8
ID FETCH-LOGICAL-c508t-42d4626a7fb6dc85d6024c00d833e92498daf82b2d1216971213d8fade12bfae3
IEDL.DBID BENPR
ISSN 1548-7091
1548-7105
IngestDate Fri Sep 05 13:59:48 EDT 2025
Sat Aug 23 12:21:46 EDT 2025
Tue Jun 17 21:54:49 EDT 2025
Tue Jun 10 20:38:07 EDT 2025
Sun Jul 20 01:30:40 EDT 2025
Tue Jul 01 00:44:36 EDT 2025
Thu Apr 24 23:11:27 EDT 2025
Fri Feb 21 02:37:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-42d4626a7fb6dc85d6024c00d833e92498daf82b2d1216971213d8fade12bfae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2852-7675
0000-0003-2422-9494
0000-0002-5599-5098
0000-0002-4589-1180
0000-0002-9726-2335
0000-0001-8553-7808
PMID 34711970
PQID 2592765533
PQPubID 28015
PageCount 10
ParticipantIDs proquest_miscellaneous_2590123947
proquest_journals_2592765533
gale_infotracmisc_A681286813
gale_infotracacademiconefile_A681286813
pubmed_primary_34711970
crossref_primary_10_1038_s41592_021_01255_8
crossref_citationtrail_10_1038_s41592_021_01255_8
springer_journals_10_1038_s41592_021_01255_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Techniques for life scientists and chemists
PublicationTitle Nature methods
PublicationTitleAbbrev Nat Methods
PublicationTitleAlternate Nat Methods
PublicationYear 2021
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Zhang (CR34) 2016; 89
Shah, Lubeck, Zhou, Cai (CR3) 2016; 92
Li, Calder, Cressie (CR27) 2007; 39
CR19
CR18
CR17
Rousseeuw (CR37) 1987; 20
Partel, Wahlby (CR35) 2021; 288
CR38
Asp, Bergenstrahle, Lundeberg (CR1) 2020; 42
Chen, Boettiger, Moffitt, Wang, Zhuang (CR6) 2015; 348
Wang (CR7) 2018; 361
Lee (CR8) 2014; 343
CR36
Sun, Zhu, Zhou (CR25) 2020; 17
CR33
Stickels (CR11) 2020; 39
Zhu, Shah, Dries, Cai, Yuan (CR16) 2018; 36
Lee, Lee, Kim (CR31) 2019; 39
Moncada (CR13) 2020; 38
Maynard (CR32) 2021; 24
Chen (CR14) 2020; 182
Blondel, Guillaume, Lambiotte, Lefebvre (CR15) 2008; 2008
Liu (CR21) 2020; 183
Edsgard, Johnsson, Sandberg (CR23) 2018; 15
Rodriques (CR10) 2019; 363
Abdelaal, Mourragui, Mahfouz, Reinders (CR28) 2020; 48
CR29
Eng (CR4) 2019; 568
CR26
Li (CR39) 2020; 11
Svensson, Teichmann, Stegle (CR24) 2018; 15
Lubeck, Coskun, Zhiyentayev, Ahmad, Cai (CR2) 2014; 11
Cho (CR22) 2021; 184
CR20
Moffitt (CR5) 2018; 362
Li (CR30) 2020; 12
Stahl (CR9) 2016; 353
Vickovic (CR12) 2019; 16
CL Eng (1255_CR4) 2019; 568
1255_CR33
SG Rodriques (1255_CR10) 2019; 363
R Moncada (1255_CR13) 2020; 38
VD Blondel (1255_CR15) 2008; 2008
S Shah (1255_CR3) 2016; 92
RR Stickels (1255_CR11) 2020; 39
1255_CR36
1255_CR17
D Li (1255_CR30) 2020; 12
G Partel (1255_CR35) 2021; 288
1255_CR38
1255_CR19
1255_CR18
CS Cho (1255_CR22) 2021; 184
H Li (1255_CR27) 2007; 39
S Sun (1255_CR25) 2020; 17
Y Liu (1255_CR21) 2020; 183
J Lee (1255_CR31) 2019; 39
KR Maynard (1255_CR32) 2021; 24
1255_CR20
PJ Rousseeuw (1255_CR37) 1987; 20
Q Zhu (1255_CR16) 2018; 36
X Wang (1255_CR7) 2018; 361
JH Lee (1255_CR8) 2014; 343
D Edsgard (1255_CR23) 2018; 15
PL Stahl (1255_CR9) 2016; 353
E Lubeck (1255_CR2) 2014; 11
KH Chen (1255_CR6) 2015; 348
V Svensson (1255_CR24) 2018; 15
T Abdelaal (1255_CR28) 2020; 48
X Li (1255_CR39) 2020; 11
1255_CR26
Y Zhang (1255_CR34) 2016; 89
M Asp (1255_CR1) 2020; 42
JR Moffitt (1255_CR5) 2018; 362
S Vickovic (1255_CR12) 2019; 16
WT Chen (1255_CR14) 2020; 182
1255_CR29
34711969 - Nat Methods. 2021 Nov;18(11):1282-1283. doi: 10.1038/s41592-021-01272-7.
References_xml – volume: 36
  start-page: 1183
  year: 2018
  end-page: 1190
  ident: CR16
  article-title: Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4260
– volume: 24
  start-page: 425
  year: 2021
  end-page: 436
  ident: CR32
  article-title: Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-020-00787-0
– volume: 42
  start-page: e1900221
  year: 2020
  ident: CR1
  article-title: Spatially resolved transcriptomes-next generation tools for tissue exploration
  publication-title: Bioessays
  doi: 10.1002/bies.201900221
– ident: CR18
– volume: 48
  start-page: e107
  year: 2020
  ident: CR28
  article-title: SpaGE: Spatial Gene Enhancement using scRNA-seq
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa740
– volume: 353
  start-page: 78
  year: 2016
  end-page: 82
  ident: CR9
  article-title: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics
  publication-title: Science
  doi: 10.1126/science.aaf2403
– volume: 38
  start-page: 333
  year: 2020
  end-page: 342
  ident: CR13
  article-title: Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0392-8
– volume: 39
  start-page: 357
  year: 2007
  end-page: 375
  ident: CR27
  article-title: Beyond Moran’s I: testing for spatial dependence based on the spatial autoregressive model
  publication-title: Geographical Anal.
  doi: 10.1111/j.1538-4632.2007.00708.x
– volume: 288
  start-page: 1859
  year: 2021
  end-page: 1870
  ident: CR35
  article-title: Spage2vec: Unsupervised representation of localized spatial gene expression signatures
  publication-title: FEBS J.
  doi: 10.1111/febs.15572
– volume: 182
  start-page: 976
  year: 2020
  end-page: 991 e919
  ident: CR14
  article-title: Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.038
– volume: 17
  start-page: 193
  year: 2020
  end-page: 200
  ident: CR25
  article-title: Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0701-7
– volume: 343
  start-page: 1360
  year: 2014
  end-page: 1363
  ident: CR8
  article-title: Highly multiplexed subcellular RNA sequencing in situ
  publication-title: Science
  doi: 10.1126/science.1250212
– volume: 11
  start-page: 360
  year: 2014
  end-page: 361
  ident: CR2
  article-title: Single-cell in situ RNA profiling by sequential hybridization
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2892
– volume: 12
  start-page: 2087
  year: 2020
  end-page: 2095
  ident: CR30
  article-title: KRT17 Functions as a tumor promoter and regulates proliferation, migration and invasion in pancreatic cancer via mTOR/S6k1 pathway
  publication-title: Cancer Manag. Res.
  doi: 10.2147/CMAR.S243129
– ident: CR33
– volume: 89
  start-page: 37
  year: 2016
  end-page: 53
  ident: CR34
  article-title: Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.11.013
– volume: 39
  start-page: 313
  year: 2020
  end-page: 319
  ident: CR11
  article-title: Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0739-1
– ident: CR29
– volume: 92
  start-page: 342
  year: 2016
  end-page: 357
  ident: CR3
  article-title: In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.10.001
– volume: 568
  start-page: 235
  year: 2019
  end-page: 239
  ident: CR4
  article-title: Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH
  publication-title: Nature
  doi: 10.1038/s41586-019-1049-y
– volume: 15
  start-page: 339
  year: 2018
  end-page: 342
  ident: CR23
  article-title: Identification of spatial expression trends in single-cell gene expression data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4634
– volume: 11
  year: 2020
  ident: CR39
  article-title: Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15851-3
– ident: CR19
– volume: 2008
  start-page: P10008
  year: 2008
  ident: CR15
  article-title: Fast unfolding of communities in large networks
  publication-title: J. Stat. Mech.: Theory Exp.
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 361
  start-page: eaat5691
  year: 2018
  ident: CR7
  article-title: Three-dimensional intact-tissue sequencing of single-cell transcriptional states
  publication-title: Science
  doi: 10.1126/science.aat5691
– volume: 363
  start-page: 1463
  year: 2019
  end-page: 1467
  ident: CR10
  article-title: Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution
  publication-title: Science
  doi: 10.1126/science.aaw1219
– ident: CR38
– volume: 362
  start-page: eaau5324
  year: 2018
  ident: CR5
  article-title: Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region
  publication-title: Science
  doi: 10.1126/science.aau5324
– volume: 183
  start-page: 1665
  year: 2020
  end-page: 1681 e1618
  ident: CR21
  article-title: High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.026
– volume: 348
  start-page: aaa6090
  year: 2015
  ident: CR6
  article-title: RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells
  publication-title: Science
  doi: 10.1126/science.aaa6090
– volume: 15
  start-page: 343
  year: 2018
  end-page: 346
  ident: CR24
  article-title: SpatialDE: Identification of spatially variable genes
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4636
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: CR37
  article-title: Silhouettes: a graphical aid to the interpretaion and validation of cluster analysis
  publication-title: Computational Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– ident: CR17
– volume: 39
  start-page: 5963
  year: 2019
  end-page: 5971
  ident: CR31
  article-title: Identification of matrix metalloproteinase 11 as a prognostic biomarker in pancreatic cancer
  publication-title: Anticancer Res.
  doi: 10.21873/anticanres.13801
– ident: CR36
– volume: 16
  start-page: 987
  year: 2019
  end-page: 990
  ident: CR12
  article-title: High-definition spatial transcriptomics for in situ tissue profiling
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0548-y
– ident: CR26
– ident: CR20
– volume: 184
  start-page: 3559
  year: 2021
  end-page: 3572 e3522
  ident: CR22
  article-title: Microscopic examination of spatial transcriptome using Seq-Scope
  publication-title: Cell
  doi: 10.1016/j.cell.2021.05.010
– volume: 15
  start-page: 343
  year: 2018
  ident: 1255_CR24
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4636
– volume: 92
  start-page: 342
  year: 2016
  ident: 1255_CR3
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.10.001
– volume: 361
  start-page: eaat5691
  year: 2018
  ident: 1255_CR7
  publication-title: Science
  doi: 10.1126/science.aat5691
– volume: 353
  start-page: 78
  year: 2016
  ident: 1255_CR9
  publication-title: Science
  doi: 10.1126/science.aaf2403
– ident: 1255_CR17
  doi: 10.1101/2020.05.31.125658
– volume: 348
  start-page: aaa6090
  year: 2015
  ident: 1255_CR6
  publication-title: Science
  doi: 10.1126/science.aaa6090
– volume: 288
  start-page: 1859
  year: 2021
  ident: 1255_CR35
  publication-title: FEBS J.
  doi: 10.1111/febs.15572
– volume: 20
  start-page: 53
  year: 1987
  ident: 1255_CR37
  publication-title: Computational Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– ident: 1255_CR18
  doi: 10.1038/s41587-021-00935-2
– volume: 39
  start-page: 357
  year: 2007
  ident: 1255_CR27
  publication-title: Geographical Anal.
  doi: 10.1111/j.1538-4632.2007.00708.x
– volume: 42
  start-page: e1900221
  year: 2020
  ident: 1255_CR1
  publication-title: Bioessays
  doi: 10.1002/bies.201900221
– volume: 39
  start-page: 313
  year: 2020
  ident: 1255_CR11
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0739-1
– ident: 1255_CR26
– volume: 184
  start-page: 3559
  year: 2021
  ident: 1255_CR22
  publication-title: Cell
  doi: 10.1016/j.cell.2021.05.010
– volume: 362
  start-page: eaau5324
  year: 2018
  ident: 1255_CR5
  publication-title: Science
  doi: 10.1126/science.aau5324
– volume: 38
  start-page: 333
  year: 2020
  ident: 1255_CR13
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0392-8
– volume: 48
  start-page: e107
  year: 2020
  ident: 1255_CR28
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa740
– ident: 1255_CR36
– volume: 363
  start-page: 1463
  year: 2019
  ident: 1255_CR10
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 15
  start-page: 339
  year: 2018
  ident: 1255_CR23
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4634
– volume: 343
  start-page: 1360
  year: 2014
  ident: 1255_CR8
  publication-title: Science
  doi: 10.1126/science.1250212
– volume: 39
  start-page: 5963
  year: 2019
  ident: 1255_CR31
  publication-title: Anticancer Res.
  doi: 10.21873/anticanres.13801
– volume: 2008
  start-page: P10008
  year: 2008
  ident: 1255_CR15
  publication-title: J. Stat. Mech.: Theory Exp.
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 11
  year: 2020
  ident: 1255_CR39
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15851-3
– volume: 17
  start-page: 193
  year: 2020
  ident: 1255_CR25
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0701-7
– volume: 36
  start-page: 1183
  year: 2018
  ident: 1255_CR16
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4260
– ident: 1255_CR38
  doi: 10.1101/gr.271874.120
– volume: 12
  start-page: 2087
  year: 2020
  ident: 1255_CR30
  publication-title: Cancer Manag. Res.
  doi: 10.2147/CMAR.S243129
– volume: 89
  start-page: 37
  year: 2016
  ident: 1255_CR34
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.11.013
– volume: 24
  start-page: 425
  year: 2021
  ident: 1255_CR32
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-020-00787-0
– volume: 182
  start-page: 976
  year: 2020
  ident: 1255_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.038
– volume: 11
  start-page: 360
  year: 2014
  ident: 1255_CR2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2892
– ident: 1255_CR19
  doi: 10.1101/2021.03.17.435795
– volume: 183
  start-page: 1665
  year: 2020
  ident: 1255_CR21
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.026
– ident: 1255_CR29
  doi: 10.1038/s41587-021-00830-w
– volume: 16
  start-page: 987
  year: 2019
  ident: 1255_CR12
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0548-y
– volume: 568
  start-page: 235
  year: 2019
  ident: 1255_CR4
  publication-title: Nature
  doi: 10.1038/s41586-019-1049-y
– ident: 1255_CR20
  doi: 10.1101/2021.01.17.427004
– ident: 1255_CR33
– reference: 34711969 - Nat Methods. 2021 Nov;18(11):1282-1283. doi: 10.1038/s41592-021-01272-7.
SSID ssj0033425
Score 2.7290947
Snippet Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1342
SubjectTerms 631/114/2401
631/114/2415
631/1647/794
631/208/212/2019
631/61/212/2019
Algorithms
Animals
Artificial neural networks
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Brain - metabolism
Cluster Analysis
Computational Biology
Data analysis
Datasets
Domains
Dorsolateral Prefrontal Cortex - metabolism
Gene expression
Gene Expression Regulation
Genes
Genetic diversity
Genetic research
Histology
Humans
Life Sciences
Mice
Microenvironments
Neural networks
Neural Networks, Computer
Pancreatic Neoplasms - genetics
Pancreatic Neoplasms - pathology
Proteomics
Software
Spatial Analysis
Spatial variations
Transcriptome
Visual Cortex - metabolism
Title SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network
URI https://link.springer.com/article/10.1038/s41592-021-01255-8
https://www.ncbi.nlm.nih.gov/pubmed/34711970
https://www.proquest.com/docview/2592765533
https://www.proquest.com/docview/2590123947
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_6geCL-G1qLSsIPtilSTbJbgSRWnqtgoeohXtb9itQqMnZXMX7W_xnndlsrl7BvuThMjvZ3MzO_DY7H4S80uCChOU10z61rNCiYKYynGmeNYB4jTThm-7naXV6VnyalbMNMh1zYTCscrSJwVC7zuI38gOA6bmoSkAn7-c_GXaNwtPVsYWGjq0V3LtQYmyTbINJlqD32x-Op1--jraZ8yK0YUWczgS4yphGk3J50IMrw0jMHLfXALSZXHNVNw32Px7rxhFq8EyT--RehJT0cNCBB2TDtw_JnaHJ5PIR-fNtrk-Opm_px1gZAphQUBtP_e8YBdvu0x4jq4EL-jaUFdWto6EYMXKhi46eh5TeZrkidd0Pfd72gTL-drGkv2DzjelY4RE9NUsaamJTDG-Pag5j2yH6_DE5mxx_PzplsSUDs4DkFqzIXQFbIC0aUzkrS1eBj7dp6iTnHrdy0ulG5iZ3WZ5VtcCCcU422vksN432_AnZarvWPyO0qrXJhRGprUThXFnrQjdl7YRw1sATEpKN_76ysV45ts24UOHcnEs1SEyBxFSQmJIJebMaMx-qddxK_RqFqnApA2erY0YCzA-LYqlDrM0m4cITsrtGCUvQrt8e1UJFE9Cra4VNyMvVbRyJYW2t764CDWLauoC3fTqo02reHGBDVos0Ifujfl0z__9L7dw-l-fkbo4qHrIpd8nW4vLKvwBYtTB7ZFPMBFzl5GQvrpu_zZ4gSA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDcLBYwE4kCjJnY2dpAqVErLLm1XCFqpN-NXpEolu5AtsL-F_8JvY8ZxtrQSvfWyh8144mTG_mbieRDyXAMECcvLRPvUJrkWeWIKwxPNswosXiNN-Ka7Ny6GB_mHw8HhEvnT5cJgWGW3J4aN2k0sfiNfAzOdiWIA1smb6bcEu0bh6WrXQkPH1gpuPZQYi4kdO37-E1y4Zn30DuT9grHtrf3NYRK7DCQWjJNZkjOXg1WvRWUKZ-XAFQBbNk2d5NyjdyKdriQzzGUsK0qBNdCcrLTzGTOV9hz4XiHLOWa49sjy263xx08dFnCeh7av6BckAqA5pu2kXK41AJ0Y-cnQnQfDPpFnoPE8QPyDkOeObAMSbt8kN6IJSzdanbtFlnx9m1xtm1rO75Dfn6f6_eb4NR3FShTAhIKaeup_xajbepU2GMkNXBBLUTeorh0NxY-RC51N6FFIIa7mC1I3-aqP6iZQxv-O5_QHOPuY_hVu0VAzp6EGN8Vw-risYGzdRrvfJQeXIpx7pFdPav-A0KLUhgkjUluI3LlBqXNdDUonhLMG7tAnWff2lY310bFNx7EK5_RcqlZiCiSmgsSU7JNXizHTtjrIhdQvUagKtw7gbHXMgID5YREutYG14CT88D5ZOUMJS96evdyphYpbTqNOF0ifPFtcxpEYRlf7yUmgQRu6zOFp77fqtJg3BzMlK0XaJ6udfp0y__9DPbx4Lk_JteH-3q7aHY13HpHrDNU9ZHKukN7s-4l_DCbdzDyJ64aSL5e9VP8C-PtbHA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviG8CA4wE4oFFTew0dpAmNLaVlUE1wSbtzfgjkSaNtJAO6N_Cf8RfxZ3jdHQSe9tLHxr74uTu_LuL74OQ5xogSFhexLpMbJxpkcUmNzzWPK3A4jXS-G-6H8f57mH2_mhwtEL-dLkwGFbZ7Yl-o3YTi9_I-2CmM5EPwDrpVyEsYn97-Gb6LcYOUnjS2rXT0KHNgtvw5cZCksdeOf8J7lyzMdoG3r9gbLhzsLUbh44DsQVDZRZnzGVg4WtRmdxZOXA5QJhNEic5L9FTkU5XkhnmUpbmhcB6aE5W2pUpM5UuOdC9QlYFoGTWI6tvd8b7nzpc4DzzLWDRR4gFwHRI4Um47DcAoxgFytC1ByM_lksweR4s_kHLc8e3HhWHN8mNYM7SzVb-bpGVsr5NrrYNLud3yO_PU_1ua_yajkJVCiBCQWRLWv4KEbj1Om0wqhuoIK6inFBdO-oLISMVOpvQY59OXM0XQ93kqz6uGz8y_Hcypz_A8cdUMH-Lhpo59fW4KYbWBxWDuXUb-X6XHF4Kc-6RXj2pyweE5oU2TBiR2Fxkzg0KnelqUDghnDVwh4ik3dtXNtRKx5YdJ8qf2XOpWo4p4JjyHFMyIq8Wc6ZtpZALR79EpircRoCy1SEbAtaHBbnUJtaFk_DDI7K2NBLU3y5f7sRChe2nUWfKEpFni8s4E0Pq6nJy6segPV1k8LT3W3FarJuDyZIWIonIeidfZ8T__1APL17LU3INVFZ9GI33HpHrDKXdJ3Wukd7s-2n5GKy7mXkS1IaSL5etqX8BNRpfSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SpaGCN%3A+Integrating+gene+expression%2C+spatial+location+and+histology+to+identify+spatial+domains+and+spatially+variable+genes+by+graph+convolutional+network&rft.jtitle=Nature+methods&rft.au=Hu%2C+Jian&rft.au=Li%2C+Xiangjie&rft.au=Coleman%2C+Kyle&rft.au=Schroeder%2C+Amelia&rft.date=2021-11-01&rft.eissn=1548-7105&rft.volume=18&rft.issue=11&rft.spage=1342&rft_id=info:doi/10.1038%2Fs41592-021-01255-8&rft_id=info%3Apmid%2F34711970&rft.externalDocID=34711970
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon