Multi-Layered QCA Content-Addressable Memory Cell Using Low-Power Electronic Interaction for AI-Based Data Learning and Retrieval in Quantum Computing Environment
In this study, we propose a quantum structure of an associative memory cell for effective data learning based on artificial intelligence. For effective learning of related data, content-based retrieval and storage rather than memory address is essential. A content-addressable memory (CAM), which is...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 1; p. 19 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
20.12.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s23010019 |
Cover
Abstract | In this study, we propose a quantum structure of an associative memory cell for effective data learning based on artificial intelligence. For effective learning of related data, content-based retrieval and storage rather than memory address is essential. A content-addressable memory (CAM), which is an efficient memory cell structure for this purpose, in a quantum computing environment, is designed based on quantum-dot cellular automata (QCA). A CAM cell is composed of a memory unit that stores information, a match unit that performs a search, and a structure, using an XOR gate or an XNOR gate in the match unit, that shows good performance. In this study, we designed an XNOR gate with a multilayer structure based on electron interactions and proposed a QCA-based CAM cell using it. The area and time efficiency are verified through a simulation using QCADesigner, and the quantum cost of the proposed XOR gate and CAM cell were reduced by at least 70% and 15%, respectively, when compared to the latest research. In addition, we physically proved the potential energy owing to the interaction between the electrons inside the QCA cell. We also proposed an additional CAM circuit targeting the reduction in energy dissipation that overcomes the best available designs. The simulation and calculation of power dissipation are performed by QCADesigner-E and it is confirmed that more than 27% is reduced. |
---|---|
AbstractList | In this study, we propose a quantum structure of an associative memory cell for effective data learning based on artificial intelligence. For effective learning of related data, content-based retrieval and storage rather than memory address is essential. A content-addressable memory (CAM), which is an efficient memory cell structure for this purpose, in a quantum computing environment, is designed based on quantum-dot cellular automata (QCA). A CAM cell is composed of a memory unit that stores information, a match unit that performs a search, and a structure, using an XOR gate or an XNOR gate in the match unit, that shows good performance. In this study, we designed an XNOR gate with a multilayer structure based on electron interactions and proposed a QCA-based CAM cell using it. The area and time efficiency are verified through a simulation using QCADesigner, and the quantum cost of the proposed XOR gate and CAM cell were reduced by at least 70% and 15%, respectively, when compared to the latest research. In addition, we physically proved the potential energy owing to the interaction between the electrons inside the QCA cell. We also proposed an additional CAM circuit targeting the reduction in energy dissipation that overcomes the best available designs. The simulation and calculation of power dissipation are performed by QCADesigner-E and it is confirmed that more than 27% is reduced. In this study, we propose a quantum structure of an associative memory cell for effective data learning based on artificial intelligence. For effective learning of related data, content-based retrieval and storage rather than memory address is essential. A content-addressable memory (CAM), which is an efficient memory cell structure for this purpose, in a quantum computing environment, is designed based on quantum-dot cellular automata (QCA). A CAM cell is composed of a memory unit that stores information, a match unit that performs a search, and a structure, using an XOR gate or an XNOR gate in the match unit, that shows good performance. In this study, we designed an XNOR gate with a multilayer structure based on electron interactions and proposed a QCA-based CAM cell using it. The area and time efficiency are verified through a simulation using QCADesigner, and the quantum cost of the proposed XOR gate and CAM cell were reduced by at least 70% and 15%, respectively, when compared to the latest research. In addition, we physically proved the potential energy owing to the interaction between the electrons inside the QCA cell. We also proposed an additional CAM circuit targeting the reduction in energy dissipation that overcomes the best available designs. The simulation and calculation of power dissipation are performed by QCADesigner-E and it is confirmed that more than 27% is reduced.In this study, we propose a quantum structure of an associative memory cell for effective data learning based on artificial intelligence. For effective learning of related data, content-based retrieval and storage rather than memory address is essential. A content-addressable memory (CAM), which is an efficient memory cell structure for this purpose, in a quantum computing environment, is designed based on quantum-dot cellular automata (QCA). A CAM cell is composed of a memory unit that stores information, a match unit that performs a search, and a structure, using an XOR gate or an XNOR gate in the match unit, that shows good performance. In this study, we designed an XNOR gate with a multilayer structure based on electron interactions and proposed a QCA-based CAM cell using it. The area and time efficiency are verified through a simulation using QCADesigner, and the quantum cost of the proposed XOR gate and CAM cell were reduced by at least 70% and 15%, respectively, when compared to the latest research. In addition, we physically proved the potential energy owing to the interaction between the electrons inside the QCA cell. We also proposed an additional CAM circuit targeting the reduction in energy dissipation that overcomes the best available designs. The simulation and calculation of power dissipation are performed by QCADesigner-E and it is confirmed that more than 27% is reduced. |
Audience | Academic |
Author | Jeon, Jun-Cheol Almatrood, Amjad Kim, Hyun-Il |
AuthorAffiliation | 2 Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia 1 Department of Convergence Science, Kongju National University, Gongju 32588, Republic of Korea |
AuthorAffiliation_xml | – name: 2 Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia – name: 1 Department of Convergence Science, Kongju National University, Gongju 32588, Republic of Korea |
Author_xml | – sequence: 1 givenname: Jun-Cheol orcidid: 0000-0002-0243-9063 surname: Jeon fullname: Jeon, Jun-Cheol – sequence: 2 givenname: Amjad surname: Almatrood fullname: Almatrood, Amjad – sequence: 3 givenname: Hyun-Il surname: Kim fullname: Kim, Hyun-Il |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36616616$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstuEzEUhkeoiF5gwQsgS2xgMa2vE3uDFEKASKmgiK5HZzye4GjGDrYnVV-HJ8VpStRWyJZs2d_5z0X_aXHkvDNF8Zrgc8YUvoiUYYIxUc-KE8IpLyWl-OjB_bg4jXGNMWWMyRfFMasqstsnxZ_LsU-2XMKtCaZFV7MpmnmXjEvltG2DiRGa3qBLM_hwi2am79F1tG6Flv6m_O5vTEDz3ugUvLMaLXJkAJ2sd6jzAU0X5UeIWfcTJEBLA8HtYsG16IdJwZot9Mg6dDWCS-OQUw-bMe2QudvarDnkQl4Wzzvoo3l1f54V15_nP2dfy-W3L4vZdFlqgWUqSSM7lafRGAaaSz1RlWnaCrqGctYIiWnHWzFRolWMc111RICiRGEhtawkYWfFYq_beljXm2AHCLe1B1vfPfiwqiEkq3tTC6pFpyh0oBkXRMiKTijp2kZgzhSjWevDXmszNoNpdW4jQP9I9PGPs7_qld_WSuZqJzILvLsXCP73aGKqBxt1Hj8448dY00lFlOSYVxl9-wRd-zG4PKo7imImCM7U-Z5aQW7Aus7nvDqv1gxWZz91Nr9PJ7wSjDPBc8Cbhy0cav_nnQy83wM6-BiD6Q4IwfXOl_XBl5m9eMJqm2Dnk1yF7f8T8RcOj-Ny |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e35926 crossref_primary_10_3390_electronics12194093 crossref_primary_10_3390_nano14171460 crossref_primary_10_3390_app13189998 crossref_primary_10_1016_j_mseb_2023_117040 |
Cites_doi | 10.1016/j.neunet.2019.01.004 10.1016/j.mee.2019.03.015 10.1016/j.physb.2018.02.024 10.1109/4.32008 10.1007/s11227-021-03913-2 10.1016/j.mee.2019.111197 10.3390/electronics10161885 10.1007/s10773-018-3840-1 10.1109/IDT.2008.4802475 10.1016/j.mee.2016.06.009 10.1016/j.mejo.2015.03.020 10.4236/cs.2013.42020 10.1109/CADS.2017.8310671 10.1016/j.micpro.2019.102927 10.3390/nano12030540 10.1016/j.compeleceng.2017.09.019 10.1007/s11227-019-02962-y 10.1016/j.ssel.2019.11.004 10.1109/TNANO.2003.820815 10.1016/j.micpro.2017.03.009 10.1016/j.compeleceng.2020.106658 10.1166/sl.2019.4117 10.1016/j.jcss.2014.04.012 10.1142/S0218126618501153 10.1166/jctn.2013.2773 10.1007/s11227-020-03341-8 10.3390/electronics9061036 10.3390/s22093541 10.1088/0957-4484/4/1/004 10.1016/j.ijleo.2021.168409 10.1016/j.micpro.2016.09.015 10.1166/jctn.2010.1517 10.1007/s10773-019-04261-x 10.1166/jolpe.2014.1320 10.35378/gujs.500724 10.1049/iet-cds.2016.0071 10.1108/CW-06-2019-0062 10.1016/j.compeleceng.2019.08.002 10.1007/s10773-020-04558-2 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23010019 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_52c5f92afac34515862721fdb5043932 PMC9824378 A746534354 36616616 10_3390_s23010019 |
Genre | Journal Article |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GrantInformation_xml | – fundername: Institute for Information and Communications Technology Promotion grantid: 2020-0-00126 – fundername: Al Jouf University grantid: DSR-2021-02-03100 – fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP) – fundername: Korean Government through MSIT grantid: 2020-0-00126 – fundername: Deanship of Scientific Research at Jouf University grantid: DSR-2021-02-03100 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c508t-1b8f9390be3ac48c796ebd6afb243b5802f4d5795d9344c6f15a9219058c86813 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:20:03 EDT 2025 Thu Aug 21 18:38:09 EDT 2025 Thu Sep 04 18:15:45 EDT 2025 Sat Aug 23 13:04:18 EDT 2025 Tue Jun 10 21:00:12 EDT 2025 Wed Feb 19 02:25:21 EST 2025 Tue Jul 01 01:19:38 EDT 2025 Thu Apr 24 22:53:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | nanotechnology quantum-dot cellular automata content addressable memory artificial intelligent learning quantum computing low-power QCA circuits |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-1b8f9390be3ac48c796ebd6afb243b5802f4d5795d9344c6f15a9219058c86813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0243-9063 |
OpenAccessLink | https://www.proquest.com/docview/2761203510?pq-origsite=%requestingapplication%&accountid=15518 |
PMID | 36616616 |
PQID | 2761203510 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_52c5f92afac34515862721fdb5043932 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9824378 proquest_miscellaneous_2761984046 proquest_journals_2761203510 gale_infotracacademiconefile_A746534354 pubmed_primary_36616616 crossref_primary_10_3390_s23010019 crossref_citationtrail_10_3390_s23010019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221220 |
PublicationDateYYYYMMDD | 2022-12-20 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221220 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Khosroshahy (ref_12) 2017; 50 Beigh (ref_9) 2013; 4 Seyedi (ref_19) 2022; 251 Chabi (ref_14) 2017; 49 ref_51 Almatrood (ref_27) 2018; 2018 Navi (ref_48) 2010; 7 Mustafa (ref_11) 2013; 51 ref_17 Ahmadpour (ref_43) 2022; 78 Sardinha (ref_44) 2015; 46 Erniyazov (ref_23) 2019; 211 Roshan (ref_34) 2019; 78 Liu (ref_2) 2019; 113 ref_25 Chabi (ref_16) 2014; 2014 Sandhu (ref_37) 2019; 32 Bahar (ref_39) 2019; 17 Kaviya (ref_33) 2019; 6 ref_28 Safoev (ref_15) 2020; 222 Senthilnathan (ref_32) 2020; 85 Heydari (ref_38) 2019; 58 Ziaur (ref_41) 2019; 1 Ajitha (ref_10) 2015; 5 Hashemi (ref_7) 2013; 10 Jeon (ref_18) 2021; 77 Lent (ref_6) 1993; 4 Jeon (ref_31) 2019; 76 ref_36 Roshan (ref_29) 2018; 57 Verleysen (ref_1) 1989; 24 Chudasama (ref_24) 2018; 65 Kianpour (ref_20) 2014; 80 Song (ref_42) 2020; 67 Shahidinejad (ref_21) 2012; 403 Mohammadi (ref_26) 2017; 11 Sasamal (ref_30) 2019; 670 Fan (ref_35) 2021; 60 Walus (ref_49) 2004; 3 ref_46 Poorhosseini (ref_13) 2017; 27 Sadoghifar (ref_47) 2018; 537 Angizi (ref_8) 2014; 10 ref_3 Safoev (ref_22) 2020; 72 Majeed (ref_40) 2019; 46 Heikalabad (ref_45) 2016; 163 ref_5 ref_4 |
References_xml | – volume: 113 start-page: 41 year: 2019 ident: ref_2 article-title: Deep associative neural network for associative memory based on unsupervised representation learning publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.01.004 – volume: 211 start-page: 37 year: 2019 ident: ref_23 article-title: Carry save adder and carry look ahead adder using inverter chain based coplanar QCA full adder for low energy dissipation publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2019.03.015 – volume: 537 start-page: 202 year: 2018 ident: ref_47 article-title: A Content-Addressable Memory structure using quantum cells in nanotechnology with energy dissipation analysis publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2018.02.024 – ident: ref_51 – volume: 24 start-page: 562 year: 1989 ident: ref_1 article-title: Neural Networks for High-Storage Content-Addressable Memory: VLSI Circuit and Learning Algorithm publication-title: IEEE J. Solid-State Circuits doi: 10.1109/4.32008 – volume: 5 start-page: 22 year: 2015 ident: ref_10 article-title: An efficient design of XOR gate and its applications using QCA publication-title: I-Manag. J. Electron. Eng. – volume: 78 start-page: 1672 year: 2022 ident: ref_43 article-title: Efficient designs of quantum-dot cellular automata multiplexer and RAM with physical proof along with power analysis publication-title: J. Supercomput. doi: 10.1007/s11227-021-03913-2 – volume: 222 start-page: 111197 year: 2020 ident: ref_15 article-title: A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2019.111197 – ident: ref_17 doi: 10.3390/electronics10161885 – volume: 51 start-page: 60 year: 2013 ident: ref_11 article-title: Design and implementation of quantum cellular automata based novel parity generator and checker circuits with minimum complexity and cell count publication-title: Indian J. Pure Appl. Phys. – volume: 57 start-page: 3223 year: 2018 ident: ref_29 article-title: Novel D Latches and D Flip-Flops with Set and Reset Ability in QCA Nanotechnology Using Minimum Cells and Area publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-018-3840-1 – volume: 67 start-page: 3397 year: 2020 ident: ref_42 article-title: An Ultra-Low Cost Multilayer RAM in Quantum-Dot Cellular Automata publication-title: IEEE Trans. Circuits Syst. II Express Briefs – ident: ref_5 doi: 10.1109/IDT.2008.4802475 – volume: 163 start-page: 140 year: 2016 ident: ref_45 article-title: Content addressable memory cell in quantum-dot cellular automata publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2016.06.009 – volume: 46 start-page: 563 year: 2015 ident: ref_44 article-title: TCAM/CAM-QCA:(Ternary) Content Addressable Memory using Quantum-dot Cellular Automata publication-title: Microelectron. J. doi: 10.1016/j.mejo.2015.03.020 – ident: ref_4 – volume: 4 start-page: 147 year: 2013 ident: ref_9 article-title: Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA) publication-title: Circuits Syst. doi: 10.4236/cs.2013.42020 – ident: ref_46 doi: 10.1109/CADS.2017.8310671 – volume: 2018 start-page: 348 year: 2018 ident: ref_27 article-title: QCA circuit design of n-bit non-restoring binary array divider publication-title: J. Eng. – volume: 403 start-page: 3392 year: 2012 ident: ref_21 article-title: Design of first adder/subtractor using quantum-dot cellular automata publication-title: Adv. Mater. Res. – volume: 72 start-page: 102927 year: 2020 ident: ref_22 article-title: Design of high-performance QCA incrementer/decrementer circuit based on adder/subtractor methodology publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2019.102927 – ident: ref_28 doi: 10.3390/nano12030540 – volume: 6 start-page: 2019 year: 2019 ident: ref_33 article-title: Design of Linear Feedback Shift Register in Quantum Dot Cellular Automata publication-title: Int. J. Inf. Comput. Sci. – volume: 65 start-page: 527 year: 2018 ident: ref_24 article-title: An efficient design of Vedic multiplier using ripple carry adder in Quantum-dot Cellular Automata publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2017.09.019 – volume: 76 start-page: 6438 year: 2019 ident: ref_31 article-title: Low Complexity QCA Universal Shift Register Design Using Multiplexer and D Flip-Flop Based on Electronic Correlations publication-title: J. Supercomput. doi: 10.1007/s11227-019-02962-y – volume: 1 start-page: 73 year: 2019 ident: ref_41 article-title: Analysis and modeling of sequential circuits in QCA nano computing: RAM and SISO register study publication-title: Solid State Electron. Lett. doi: 10.1016/j.ssel.2019.11.004 – volume: 3 start-page: 26 year: 2004 ident: ref_49 article-title: QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2003.820815 – volume: 50 start-page: 154 year: 2017 ident: ref_12 article-title: Quantum-dot cellular automata circuits with reduced external fixed inputs publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2017.03.009 – volume: 85 start-page: 106658 year: 2020 ident: ref_32 article-title: Power-efficient implementation of pseudo-random number generator using quantum dot cellular automata-based D flip flop publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2020.106658 – volume: 17 start-page: 595 year: 2019 ident: ref_39 article-title: A New Structure for Random Access Memory Using Quantum-Dot Cellular Automata publication-title: Sens. Lett. doi: 10.1166/sl.2019.4117 – ident: ref_3 – volume: 80 start-page: 1404 year: 2014 ident: ref_20 article-title: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2014.04.012 – volume: 27 start-page: 1850115 year: 2017 ident: ref_13 article-title: A fault-tolerant and efficient XOR structure for modular design of complex QCA circuits publication-title: J. Circuits Syst. Comput. doi: 10.1142/S0218126618501153 – volume: 10 start-page: 798 year: 2013 ident: ref_7 article-title: New quantum dot cellular automata cell arrangements publication-title: J. Comput. Theor. Nanosci. doi: 10.1166/jctn.2013.2773 – volume: 2014 start-page: 463967 year: 2014 ident: ref_16 article-title: Efficient QCA exclusive-or and multiplexer circuits based on a nano electronic compatible designing approach publication-title: Int. Sch. Res. Not. – volume: 77 start-page: 1562 year: 2021 ident: ref_18 article-title: Designing nanotechnology QCA–multiplexer using majority function-based NAND for quantum computing publication-title: J. Supercomput. doi: 10.1007/s11227-020-03341-8 – ident: ref_25 doi: 10.3390/electronics9061036 – volume: 670 start-page: 233 year: 2019 ident: ref_30 article-title: Design of QCA-Based D Flip Flop and Memory Cell Using Rotated Majority Gate, Smart Innovations in Communication and Computational Sciences publication-title: Adcances Intell. Syst. Comput. – ident: ref_36 doi: 10.3390/s22093541 – volume: 4 start-page: 49 year: 1993 ident: ref_6 article-title: Quantum cellular automata publication-title: Nanotechnology doi: 10.1088/0957-4484/4/1/004 – volume: 251 start-page: 168409 year: 2022 ident: ref_19 article-title: An efficient structure for designing a nano-scale fault-tolerant 2:1 multiplexer based on quantum-dot cellular automata publication-title: Optik doi: 10.1016/j.ijleo.2021.168409 – volume: 49 start-page: 127 year: 2017 ident: ref_14 article-title: Towards ultra-efficient QCA reversible circuits publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2016.09.015 – volume: 7 start-page: 1546 year: 2010 ident: ref_48 article-title: Five-Input Majority Gate, a New Device for Quantum-Dot Cellular Automata publication-title: J. Comput. Theor. Nanosci. doi: 10.1166/jctn.2010.1517 – volume: 58 start-page: 3961 year: 2019 ident: ref_38 article-title: A Cost-Aware Efficient RAM Structure Based on Quantum-Dot Cellular Automata Nanotechnology publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-019-04261-x – volume: 10 start-page: 259 year: 2014 ident: ref_8 article-title: Novel robust single layer wire crossing approach for exclusive OR sum of products logic design with quantum-dot cellular automata publication-title: J. Low Power Electron. doi: 10.1166/jolpe.2014.1320 – ident: ref_50 – volume: 32 start-page: 1150 year: 2019 ident: ref_37 article-title: A Majority Gate Based RAM Cell design with Least Feature Size in QCA publication-title: Gazi Univ. J. Sci. doi: 10.35378/gujs.500724 – volume: 11 start-page: 135 year: 2017 ident: ref_26 article-title: Design of non-restoring divider in quantum-dot cellular automata technology publication-title: IET Circuits Devices Syst. doi: 10.1049/iet-cds.2016.0071 – volume: 46 start-page: 147 year: 2019 ident: ref_40 article-title: Optimal design of RAM cell using novel 2:1 multiplexer in QCA technology publication-title: Circuit World doi: 10.1108/CW-06-2019-0062 – volume: 78 start-page: 449 year: 2019 ident: ref_34 article-title: 4-Bit serial shift register with reset ability and 4-bit LFSR in QCA technology using minimum number of cells and delay publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2019.08.002 – volume: 60 start-page: 2400 year: 2021 ident: ref_35 article-title: An Efficient Design of Parallel and Serial Shift Registers Based on Quantum-Dot Cellular Automata publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-020-04558-2 |
SSID | ssj0023338 |
Score | 2.4086642 |
Snippet | In this study, we propose a quantum structure of an associative memory cell for effective data learning based on artificial intelligence. For effective... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 19 |
SubjectTerms | Artificial Intelligence artificial intelligent learning Cellular Automata Circuits Computing Methodologies content addressable memory Deep learning Design Electronics low-power QCA circuits Machine learning Memory (Computers) nanotechnology Neural networks Quantum computing Quantum dots Quantum Theory quantum-dot cellular automata |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT-WAKJ-hpTIICS5Wk9hJ7GO63aqgFlFEpd4if5ZKSxbRrFD_Dr-UGSebbgQSF6ScEmvleMYzbzae9wh5A0ZNtdec2eAMEyK1zBgIhtwiF2ZwVkSNpbOP5cmF-HBZXG5IfeGZsJ4euF-4gyK3RVC5DtpyAckXEDgULfDDSL0F4AOjb6rSdTE1lFocKq-eR4hDUX9wA0AbyYbUJPtEkv4_Q_FGLpqek9xIPMcPyYMBMdK6n-kOuefbR-T-Bo_gY_IrttGyU32Lypv0fFbTyDrVdqx2LqqcmIWnZ3iq9pbO_GJB41EBerr8yT6hThqdj3I4NP5J2Pc7UIC0tH7PDiHXOXqkO00HQtYrqltHP0c9LnBWet3S8xVYafWN9kIROGR-10X3hFwcz7_MTtggvsAsYLaOZUYGBWtnPNdWSFup0htX6mBywU0h0zwIV1SqcIoLYcuQFVpB-EsLaWUpM_6UbLXL1j8n1JtgKge4KxgpjAjKZYWxgcvUSJ9pmZB3a6M0dmAmR4GMRQMVCtqvGe2XkNfj0O89HcffBh2iZccByKAdb4BfNYNfNf_yq4S8Rb9ocJ_DZKwe2hXglZAxq6krZKYDsCkSsrd2nWYIADdNXgF0xK-0aUJejY9h6-L3GN365aofo6DAFmVCnvWeNs6ZA27CKyHVxAcnLzV90l5_jfTgSiLJpHzxP1Zhl2zn2O-R5RBO98hW92PlXwIK68x-3HC_ATiDMQM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELXK9gIHxDeBggxCgovVJHayzgGh7LJVQe2qrajUW-TPUmlJSpsV6t_hlzLjZNNdgZBySubgZMbjN7HnPULegVNj5RRnxlvNhIgN0xqSITfIhemtEUFj6XCe75-Kr2fZ2RaZr3ph8FjlKieGRG0bg__Id1Oot1Pc9oo_Xf5kqBqFu6srCQ3VSyvYj4Fi7A7ZhpScxSOyPZnNj06GEoxDRdbxC3Eo9nevAYAjCVGxsSoF8v6_U_TaGrV5fnJtQdp7QO73SJKWnesfki1XPyL31vgFH5Pfob2WHagbVOSkx9OSBjaqumWltUH9RC8cPcTTtjd06hYLGo4Q0IPmFztC_TQ6G2RyaPh52PVBUIC6tPzCJrAGWvpZtYr2RK3nVNWWngSdLghielHT4yV4b_mDdgISaDK77a57Qk73Zt-m-6wXZWAGsFzLEi19Ad9OO66MkGZc5E7bXHmdCq4zGade2GxcZLbgQpjcJ5kqIC3GmTQylwl_SkZ1U7vnhDrt9dgCHvNaCi18YZNMG89lrKVLlIzIh5VTKtMzlqNwxqKCygX9Vw3-i8jbwfSyo-n4l9EEPTsYILN2uNFcnVf9RK2y1GS-SJVXhgsAe1DxQZEMgYxUbwB2I_Ie46LC-Q-DMapvY4BXQiatqhwjYx2AUBGRnVXoVH1iuK5uwzgib4bHMKVxn0bVrll2NgUU3iKPyLMu0oYxc8BTeEVkvBGDGy-1-aS--B5owwuJ5JPyxf-H9ZLcTbHDI0khge6QUXu1dK8Ad7X6dT-Z_gB4DjAE priority: 102 providerName: ProQuest |
Title | Multi-Layered QCA Content-Addressable Memory Cell Using Low-Power Electronic Interaction for AI-Based Data Learning and Retrieval in Quantum Computing Environment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36616616 https://www.proquest.com/docview/2761203510 https://www.proquest.com/docview/2761984046 https://pubmed.ncbi.nlm.nih.gov/PMC9824378 https://doaj.org/article/52c5f92afac34515862721fdb5043932 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF71cYED4l1DiRaEBJcFP9b2-oBQEhIKaqu2IlJu1j5LpeBAmgjyd_ilzKwdE4sekCIf4olie2Z3vvHufB8hL8GpobQyYdoZxTgPNVMKJsNEIxemM5p7jaWT0-xowj9P0-kO2WhsNg_w-sbSDvWkJovZm18_1u9hwL_DihNK9rfXAKORSqjYJft-mQh38PF2MSFOEi9ojT1dDPJhWBMMdX_aSUuevf_fOXorSXU3UG5lpPFdcqeBkrRf-_4e2bHVfXJ7i2DwAfnt-2vZsVyjJCc9H_app6OqlqxvjJc_UTNLT3C77ZoO7WxG_R4Cejz_yc5QQI2OWp0c6t8e1o0QFLAu7X9iA0iChn6QS0kbptZLKitDL7xQF0Qxvaro-Qrct_pGawUJNBn9ba97SCbj0ZfhEWtUGZgGMLdkkRKugGenbCI1FzovMqtMJp2KeaJSEcaOmzQvUlMknOvMRaksYF4MU6FFJqLkEdmr5pU9INQqp3IDgMwpwRV3hYlSpV0iQiVsJEVAXm-cUuqGshyVM2YllC7ov7L1X0BetKbfa56Om4wG6NnWAKm1_RfzxWXZjNQyjXXqilg6qRMOaA9KPqiSIZKR6w3QbkBeYVyUGJJwMVo2fQxwS0ilVfZzpKwDFMoDcrgJnXIT2GWcA6bE5dswIM_b0zCmcaFGVna-qm0KqLx5FpDHdaS115wAoMJPQPJODHZuqnumuvrqecMLgeyT4sl__O9TcivGPo8ohmn0kOwtFyv7DNDXUvXIbj7N4SjGH3tkfzA6Pbvo-TcZPT_q_gDHhzMs |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VdAEsEOVpKGVAINhY9WPsjBcVStJUCU2itmql7sw8S6XglCZRld_hQ_g27h07biIQu0pZxVfJWPc9M_ccQj6AUgNhROwrq6XPWKB8KSEYxgqxMK1WzHEsDUdp74x9PU_ON8jv5SwMXqtcxkQXqPVE4R75bgT9doTHXsGXq58-skbh6eqSQkNU1Ap6z0GMVYMdh2ZxAy3cdK-_D_r-GEUH3dNOz69YBnwFxcnMDyW3GXT-0sRCMa6aWWqkToWVEYtlwoPIMp00s0RnMWMqtWEiMvDzIOGKpzyM4XfvkU2GGygNstnujo5O6pYvhg6wxDOK4S92p1DwI-hRtpYFHVnA3ylhJSeu39dcSYAHj8mjqnKlrdLUtsiGKZ6Qhyt4hk_JLzfO6w_EAhlA6XGnRR36VTHzW1o7thU5NnSIt3sXtGPGY-quLNDB5MY_Qr422q1peajbrCznLiiU1rTV99uQczXdFzNBK2DYCyoKTU8cLxg4Db0s6PEcrGX-g5aEFSjSvZ3me0bO7kQ9z0mjmBTmJaFGWtnUUP9ZyZlkNtNhIpWNeSC5CQX3yOelUnJVIaQjUcc4h04J9ZfX-vPI-1r0qoQF-ZdQGzVbCyCSt_ticn2RV4EhTyKV2CwSVqiYQXEJHSY05eA4CC0HxbVHPqFd5BhvYDFKVGMT8EqI3JW3moiQh9bnke2l6eRVIJrmt27jkXf1YwgheC4kCjOZlzIZNPos9ciL0tLqNcdQv-HHI801G1x7qfUnxeV3B1OecQS75K_-v6y35H7vdDjIB_3R4WvyIMLpkjCC4L1NGrPruXkDNd9M7lSORcm3u_blP3oWa8k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IN4YCiwIBBcrfqzt9QGhNA81NK1aRKXczD7bSqlTmkRV_g4_g1_HzNpxEoG4VcopO0rWmsfOeGe-j5D3oNRAGBH7ymrpMxYoX0oIhrFCLEyrFXMcSweH6d4J-zpKRlvk93IWBtsqlzHRBWo9UfiOvBVBvR3htVfQsnVbxFG3_-Xyp48MUnjTuqTTqExk3yyuoXybfh50Qdcfoqjf-97Z82uGAV9BYjLzQ8ltDlW_NLFQjKssT43UqbAyYrFMeBBZppMsT3QeM6ZSGyYiBx8PEq54ysMYfvcWuZ3BItJGZKNVsRdD7VchGcXwB60ppPoId5RvnH-OJuDvw2DtNNzs1Fw7-voPyP06Z6Xtysgeki1TPiL31pAMH5NfbpDXH4oFcn_S406bOtyrcua3tXY8K3Js6AH29S5ox4zH1DUr0OHk2j9Cpjbaawh5qHtNWU1cUEiqaXvg78Jpq2lXzAStIWFPqSg1_eYYwcBd6HlJj-dgJ_MLWlFVoEhvNcf3hJzciHKeku1yUprnhBppZaYh87OSM8lsrsNEKhvzQHITCu6RT0ulFKrGRkeKjnEBNRLqr2j055F3jehlBQjyL6Fd1GwjgBje7ovJ1WlRh4QiiVRi80hYoWIGaSXUllCOg8sgqByk1R75iHZRYKSBzShRD0zAIyFmV9HOEBsP0l3mkZ2l6RR1CJoWK4fxyNtmGYIH3giJ0kzmlUwOJT5LPfKssrRmzzFkbvjxSLZhgxsPtblSnp85gPKcI8wlf_H_bb0hd8CDi-HgcP8luRvhWEkYQdTeIduzq7l5BcneTL52XkXJj5t24z-Tamll |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Layered+QCA+Content-Addressable+Memory+Cell+Using+Low-Power+Electronic+Interaction+for+AI-Based+Data+Learning+and+Retrieval+in+Quantum+Computing+Environment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jeon%2C+Jun-Cheol&rft.au=Almatrood%2C+Amjad&rft.au=Kim%2C+Hyun-Il&rft.date=2022-12-20&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=1&rft_id=info:doi/10.3390%2Fs23010019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |