Multi-Layered QCA Content-Addressable Memory Cell Using Low-Power Electronic Interaction for AI-Based Data Learning and Retrieval in Quantum Computing Environment

In this study, we propose a quantum structure of an associative memory cell for effective data learning based on artificial intelligence. For effective learning of related data, content-based retrieval and storage rather than memory address is essential. A content-addressable memory (CAM), which is...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 1; p. 19
Main Authors Jeon, Jun-Cheol, Almatrood, Amjad, Kim, Hyun-Il
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.12.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23010019

Cover

Abstract In this study, we propose a quantum structure of an associative memory cell for effective data learning based on artificial intelligence. For effective learning of related data, content-based retrieval and storage rather than memory address is essential. A content-addressable memory (CAM), which is an efficient memory cell structure for this purpose, in a quantum computing environment, is designed based on quantum-dot cellular automata (QCA). A CAM cell is composed of a memory unit that stores information, a match unit that performs a search, and a structure, using an XOR gate or an XNOR gate in the match unit, that shows good performance. In this study, we designed an XNOR gate with a multilayer structure based on electron interactions and proposed a QCA-based CAM cell using it. The area and time efficiency are verified through a simulation using QCADesigner, and the quantum cost of the proposed XOR gate and CAM cell were reduced by at least 70% and 15%, respectively, when compared to the latest research. In addition, we physically proved the potential energy owing to the interaction between the electrons inside the QCA cell. We also proposed an additional CAM circuit targeting the reduction in energy dissipation that overcomes the best available designs. The simulation and calculation of power dissipation are performed by QCADesigner-E and it is confirmed that more than 27% is reduced.
AbstractList In this study, we propose a quantum structure of an associative memory cell for effective data learning based on artificial intelligence. For effective learning of related data, content-based retrieval and storage rather than memory address is essential. A content-addressable memory (CAM), which is an efficient memory cell structure for this purpose, in a quantum computing environment, is designed based on quantum-dot cellular automata (QCA). A CAM cell is composed of a memory unit that stores information, a match unit that performs a search, and a structure, using an XOR gate or an XNOR gate in the match unit, that shows good performance. In this study, we designed an XNOR gate with a multilayer structure based on electron interactions and proposed a QCA-based CAM cell using it. The area and time efficiency are verified through a simulation using QCADesigner, and the quantum cost of the proposed XOR gate and CAM cell were reduced by at least 70% and 15%, respectively, when compared to the latest research. In addition, we physically proved the potential energy owing to the interaction between the electrons inside the QCA cell. We also proposed an additional CAM circuit targeting the reduction in energy dissipation that overcomes the best available designs. The simulation and calculation of power dissipation are performed by QCADesigner-E and it is confirmed that more than 27% is reduced.
In this study, we propose a quantum structure of an associative memory cell for effective data learning based on artificial intelligence. For effective learning of related data, content-based retrieval and storage rather than memory address is essential. A content-addressable memory (CAM), which is an efficient memory cell structure for this purpose, in a quantum computing environment, is designed based on quantum-dot cellular automata (QCA). A CAM cell is composed of a memory unit that stores information, a match unit that performs a search, and a structure, using an XOR gate or an XNOR gate in the match unit, that shows good performance. In this study, we designed an XNOR gate with a multilayer structure based on electron interactions and proposed a QCA-based CAM cell using it. The area and time efficiency are verified through a simulation using QCADesigner, and the quantum cost of the proposed XOR gate and CAM cell were reduced by at least 70% and 15%, respectively, when compared to the latest research. In addition, we physically proved the potential energy owing to the interaction between the electrons inside the QCA cell. We also proposed an additional CAM circuit targeting the reduction in energy dissipation that overcomes the best available designs. The simulation and calculation of power dissipation are performed by QCADesigner-E and it is confirmed that more than 27% is reduced.In this study, we propose a quantum structure of an associative memory cell for effective data learning based on artificial intelligence. For effective learning of related data, content-based retrieval and storage rather than memory address is essential. A content-addressable memory (CAM), which is an efficient memory cell structure for this purpose, in a quantum computing environment, is designed based on quantum-dot cellular automata (QCA). A CAM cell is composed of a memory unit that stores information, a match unit that performs a search, and a structure, using an XOR gate or an XNOR gate in the match unit, that shows good performance. In this study, we designed an XNOR gate with a multilayer structure based on electron interactions and proposed a QCA-based CAM cell using it. The area and time efficiency are verified through a simulation using QCADesigner, and the quantum cost of the proposed XOR gate and CAM cell were reduced by at least 70% and 15%, respectively, when compared to the latest research. In addition, we physically proved the potential energy owing to the interaction between the electrons inside the QCA cell. We also proposed an additional CAM circuit targeting the reduction in energy dissipation that overcomes the best available designs. The simulation and calculation of power dissipation are performed by QCADesigner-E and it is confirmed that more than 27% is reduced.
Audience Academic
Author Jeon, Jun-Cheol
Almatrood, Amjad
Kim, Hyun-Il
AuthorAffiliation 2 Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
1 Department of Convergence Science, Kongju National University, Gongju 32588, Republic of Korea
AuthorAffiliation_xml – name: 2 Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
– name: 1 Department of Convergence Science, Kongju National University, Gongju 32588, Republic of Korea
Author_xml – sequence: 1
  givenname: Jun-Cheol
  orcidid: 0000-0002-0243-9063
  surname: Jeon
  fullname: Jeon, Jun-Cheol
– sequence: 2
  givenname: Amjad
  surname: Almatrood
  fullname: Almatrood, Amjad
– sequence: 3
  givenname: Hyun-Il
  surname: Kim
  fullname: Kim, Hyun-Il
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36616616$$D View this record in MEDLINE/PubMed
BookMark eNptkstuEzEUhkeoiF5gwQsgS2xgMa2vE3uDFEKASKmgiK5HZzye4GjGDrYnVV-HJ8VpStRWyJZs2d_5z0X_aXHkvDNF8Zrgc8YUvoiUYYIxUc-KE8IpLyWl-OjB_bg4jXGNMWWMyRfFMasqstsnxZ_LsU-2XMKtCaZFV7MpmnmXjEvltG2DiRGa3qBLM_hwi2am79F1tG6Flv6m_O5vTEDz3ugUvLMaLXJkAJ2sd6jzAU0X5UeIWfcTJEBLA8HtYsG16IdJwZot9Mg6dDWCS-OQUw-bMe2QudvarDnkQl4Wzzvoo3l1f54V15_nP2dfy-W3L4vZdFlqgWUqSSM7lafRGAaaSz1RlWnaCrqGctYIiWnHWzFRolWMc111RICiRGEhtawkYWfFYq_beljXm2AHCLe1B1vfPfiwqiEkq3tTC6pFpyh0oBkXRMiKTijp2kZgzhSjWevDXmszNoNpdW4jQP9I9PGPs7_qld_WSuZqJzILvLsXCP73aGKqBxt1Hj8448dY00lFlOSYVxl9-wRd-zG4PKo7imImCM7U-Z5aQW7Aus7nvDqv1gxWZz91Nr9PJ7wSjDPBc8Cbhy0cav_nnQy83wM6-BiD6Q4IwfXOl_XBl5m9eMJqm2Dnk1yF7f8T8RcOj-Ny
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e35926
crossref_primary_10_3390_electronics12194093
crossref_primary_10_3390_nano14171460
crossref_primary_10_3390_app13189998
crossref_primary_10_1016_j_mseb_2023_117040
Cites_doi 10.1016/j.neunet.2019.01.004
10.1016/j.mee.2019.03.015
10.1016/j.physb.2018.02.024
10.1109/4.32008
10.1007/s11227-021-03913-2
10.1016/j.mee.2019.111197
10.3390/electronics10161885
10.1007/s10773-018-3840-1
10.1109/IDT.2008.4802475
10.1016/j.mee.2016.06.009
10.1016/j.mejo.2015.03.020
10.4236/cs.2013.42020
10.1109/CADS.2017.8310671
10.1016/j.micpro.2019.102927
10.3390/nano12030540
10.1016/j.compeleceng.2017.09.019
10.1007/s11227-019-02962-y
10.1016/j.ssel.2019.11.004
10.1109/TNANO.2003.820815
10.1016/j.micpro.2017.03.009
10.1016/j.compeleceng.2020.106658
10.1166/sl.2019.4117
10.1016/j.jcss.2014.04.012
10.1142/S0218126618501153
10.1166/jctn.2013.2773
10.1007/s11227-020-03341-8
10.3390/electronics9061036
10.3390/s22093541
10.1088/0957-4484/4/1/004
10.1016/j.ijleo.2021.168409
10.1016/j.micpro.2016.09.015
10.1166/jctn.2010.1517
10.1007/s10773-019-04261-x
10.1166/jolpe.2014.1320
10.35378/gujs.500724
10.1049/iet-cds.2016.0071
10.1108/CW-06-2019-0062
10.1016/j.compeleceng.2019.08.002
10.1007/s10773-020-04558-2
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23010019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_52c5f92afac34515862721fdb5043932
PMC9824378
A746534354
36616616
10_3390_s23010019
Genre Journal Article
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GrantInformation_xml – fundername: Institute for Information and Communications Technology Promotion
  grantid: 2020-0-00126
– fundername: Al Jouf University
  grantid: DSR-2021-02-03100
– fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP)
– fundername: Korean Government through MSIT
  grantid: 2020-0-00126
– fundername: Deanship of Scientific Research at Jouf University
  grantid: DSR-2021-02-03100
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c508t-1b8f9390be3ac48c796ebd6afb243b5802f4d5795d9344c6f15a9219058c86813
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:20:03 EDT 2025
Thu Aug 21 18:38:09 EDT 2025
Thu Sep 04 18:15:45 EDT 2025
Sat Aug 23 13:04:18 EDT 2025
Tue Jun 10 21:00:12 EDT 2025
Wed Feb 19 02:25:21 EST 2025
Tue Jul 01 01:19:38 EDT 2025
Thu Apr 24 22:53:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords nanotechnology
quantum-dot cellular automata
content addressable memory
artificial intelligent learning
quantum computing
low-power QCA circuits
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-1b8f9390be3ac48c796ebd6afb243b5802f4d5795d9344c6f15a9219058c86813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0243-9063
OpenAccessLink https://www.proquest.com/docview/2761203510?pq-origsite=%requestingapplication%&accountid=15518
PMID 36616616
PQID 2761203510
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_52c5f92afac34515862721fdb5043932
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9824378
proquest_miscellaneous_2761984046
proquest_journals_2761203510
gale_infotracacademiconefile_A746534354
pubmed_primary_36616616
crossref_primary_10_3390_s23010019
crossref_citationtrail_10_3390_s23010019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221220
PublicationDateYYYYMMDD 2022-12-20
PublicationDate_xml – month: 12
  year: 2022
  text: 20221220
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Khosroshahy (ref_12) 2017; 50
Beigh (ref_9) 2013; 4
Seyedi (ref_19) 2022; 251
Chabi (ref_14) 2017; 49
ref_51
Almatrood (ref_27) 2018; 2018
Navi (ref_48) 2010; 7
Mustafa (ref_11) 2013; 51
ref_17
Ahmadpour (ref_43) 2022; 78
Sardinha (ref_44) 2015; 46
Erniyazov (ref_23) 2019; 211
Roshan (ref_34) 2019; 78
Liu (ref_2) 2019; 113
ref_25
Chabi (ref_16) 2014; 2014
Sandhu (ref_37) 2019; 32
Bahar (ref_39) 2019; 17
Kaviya (ref_33) 2019; 6
ref_28
Safoev (ref_15) 2020; 222
Senthilnathan (ref_32) 2020; 85
Heydari (ref_38) 2019; 58
Ziaur (ref_41) 2019; 1
Ajitha (ref_10) 2015; 5
Hashemi (ref_7) 2013; 10
Jeon (ref_18) 2021; 77
Lent (ref_6) 1993; 4
Jeon (ref_31) 2019; 76
ref_36
Roshan (ref_29) 2018; 57
Verleysen (ref_1) 1989; 24
Chudasama (ref_24) 2018; 65
Kianpour (ref_20) 2014; 80
Song (ref_42) 2020; 67
Shahidinejad (ref_21) 2012; 403
Mohammadi (ref_26) 2017; 11
Sasamal (ref_30) 2019; 670
Fan (ref_35) 2021; 60
Walus (ref_49) 2004; 3
ref_46
Poorhosseini (ref_13) 2017; 27
Sadoghifar (ref_47) 2018; 537
Angizi (ref_8) 2014; 10
ref_3
Safoev (ref_22) 2020; 72
Majeed (ref_40) 2019; 46
Heikalabad (ref_45) 2016; 163
ref_5
ref_4
References_xml – volume: 113
  start-page: 41
  year: 2019
  ident: ref_2
  article-title: Deep associative neural network for associative memory based on unsupervised representation learning
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.01.004
– volume: 211
  start-page: 37
  year: 2019
  ident: ref_23
  article-title: Carry save adder and carry look ahead adder using inverter chain based coplanar QCA full adder for low energy dissipation
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2019.03.015
– volume: 537
  start-page: 202
  year: 2018
  ident: ref_47
  article-title: A Content-Addressable Memory structure using quantum cells in nanotechnology with energy dissipation analysis
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2018.02.024
– ident: ref_51
– volume: 24
  start-page: 562
  year: 1989
  ident: ref_1
  article-title: Neural Networks for High-Storage Content-Addressable Memory: VLSI Circuit and Learning Algorithm
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/4.32008
– volume: 5
  start-page: 22
  year: 2015
  ident: ref_10
  article-title: An efficient design of XOR gate and its applications using QCA
  publication-title: I-Manag. J. Electron. Eng.
– volume: 78
  start-page: 1672
  year: 2022
  ident: ref_43
  article-title: Efficient designs of quantum-dot cellular automata multiplexer and RAM with physical proof along with power analysis
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-03913-2
– volume: 222
  start-page: 111197
  year: 2020
  ident: ref_15
  article-title: A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2019.111197
– ident: ref_17
  doi: 10.3390/electronics10161885
– volume: 51
  start-page: 60
  year: 2013
  ident: ref_11
  article-title: Design and implementation of quantum cellular automata based novel parity generator and checker circuits with minimum complexity and cell count
  publication-title: Indian J. Pure Appl. Phys.
– volume: 57
  start-page: 3223
  year: 2018
  ident: ref_29
  article-title: Novel D Latches and D Flip-Flops with Set and Reset Ability in QCA Nanotechnology Using Minimum Cells and Area
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-018-3840-1
– volume: 67
  start-page: 3397
  year: 2020
  ident: ref_42
  article-title: An Ultra-Low Cost Multilayer RAM in Quantum-Dot Cellular Automata
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– ident: ref_5
  doi: 10.1109/IDT.2008.4802475
– volume: 163
  start-page: 140
  year: 2016
  ident: ref_45
  article-title: Content addressable memory cell in quantum-dot cellular automata
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2016.06.009
– volume: 46
  start-page: 563
  year: 2015
  ident: ref_44
  article-title: TCAM/CAM-QCA:(Ternary) Content Addressable Memory using Quantum-dot Cellular Automata
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2015.03.020
– ident: ref_4
– volume: 4
  start-page: 147
  year: 2013
  ident: ref_9
  article-title: Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA)
  publication-title: Circuits Syst.
  doi: 10.4236/cs.2013.42020
– ident: ref_46
  doi: 10.1109/CADS.2017.8310671
– volume: 2018
  start-page: 348
  year: 2018
  ident: ref_27
  article-title: QCA circuit design of n-bit non-restoring binary array divider
  publication-title: J. Eng.
– volume: 403
  start-page: 3392
  year: 2012
  ident: ref_21
  article-title: Design of first adder/subtractor using quantum-dot cellular automata
  publication-title: Adv. Mater. Res.
– volume: 72
  start-page: 102927
  year: 2020
  ident: ref_22
  article-title: Design of high-performance QCA incrementer/decrementer circuit based on adder/subtractor methodology
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2019.102927
– ident: ref_28
  doi: 10.3390/nano12030540
– volume: 6
  start-page: 2019
  year: 2019
  ident: ref_33
  article-title: Design of Linear Feedback Shift Register in Quantum Dot Cellular Automata
  publication-title: Int. J. Inf. Comput. Sci.
– volume: 65
  start-page: 527
  year: 2018
  ident: ref_24
  article-title: An efficient design of Vedic multiplier using ripple carry adder in Quantum-dot Cellular Automata
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.09.019
– volume: 76
  start-page: 6438
  year: 2019
  ident: ref_31
  article-title: Low Complexity QCA Universal Shift Register Design Using Multiplexer and D Flip-Flop Based on Electronic Correlations
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-019-02962-y
– volume: 1
  start-page: 73
  year: 2019
  ident: ref_41
  article-title: Analysis and modeling of sequential circuits in QCA nano computing: RAM and SISO register study
  publication-title: Solid State Electron. Lett.
  doi: 10.1016/j.ssel.2019.11.004
– volume: 3
  start-page: 26
  year: 2004
  ident: ref_49
  article-title: QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2003.820815
– volume: 50
  start-page: 154
  year: 2017
  ident: ref_12
  article-title: Quantum-dot cellular automata circuits with reduced external fixed inputs
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2017.03.009
– volume: 85
  start-page: 106658
  year: 2020
  ident: ref_32
  article-title: Power-efficient implementation of pseudo-random number generator using quantum dot cellular automata-based D flip flop
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2020.106658
– volume: 17
  start-page: 595
  year: 2019
  ident: ref_39
  article-title: A New Structure for Random Access Memory Using Quantum-Dot Cellular Automata
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2019.4117
– ident: ref_3
– volume: 80
  start-page: 1404
  year: 2014
  ident: ref_20
  article-title: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2014.04.012
– volume: 27
  start-page: 1850115
  year: 2017
  ident: ref_13
  article-title: A fault-tolerant and efficient XOR structure for modular design of complex QCA circuits
  publication-title: J. Circuits Syst. Comput.
  doi: 10.1142/S0218126618501153
– volume: 10
  start-page: 798
  year: 2013
  ident: ref_7
  article-title: New quantum dot cellular automata cell arrangements
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2013.2773
– volume: 2014
  start-page: 463967
  year: 2014
  ident: ref_16
  article-title: Efficient QCA exclusive-or and multiplexer circuits based on a nano electronic compatible designing approach
  publication-title: Int. Sch. Res. Not.
– volume: 77
  start-page: 1562
  year: 2021
  ident: ref_18
  article-title: Designing nanotechnology QCA–multiplexer using majority function-based NAND for quantum computing
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-020-03341-8
– ident: ref_25
  doi: 10.3390/electronics9061036
– volume: 670
  start-page: 233
  year: 2019
  ident: ref_30
  article-title: Design of QCA-Based D Flip Flop and Memory Cell Using Rotated Majority Gate, Smart Innovations in Communication and Computational Sciences
  publication-title: Adcances Intell. Syst. Comput.
– ident: ref_36
  doi: 10.3390/s22093541
– volume: 4
  start-page: 49
  year: 1993
  ident: ref_6
  article-title: Quantum cellular automata
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/4/1/004
– volume: 251
  start-page: 168409
  year: 2022
  ident: ref_19
  article-title: An efficient structure for designing a nano-scale fault-tolerant 2:1 multiplexer based on quantum-dot cellular automata
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.168409
– volume: 49
  start-page: 127
  year: 2017
  ident: ref_14
  article-title: Towards ultra-efficient QCA reversible circuits
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2016.09.015
– volume: 7
  start-page: 1546
  year: 2010
  ident: ref_48
  article-title: Five-Input Majority Gate, a New Device for Quantum-Dot Cellular Automata
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2010.1517
– volume: 58
  start-page: 3961
  year: 2019
  ident: ref_38
  article-title: A Cost-Aware Efficient RAM Structure Based on Quantum-Dot Cellular Automata Nanotechnology
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-019-04261-x
– volume: 10
  start-page: 259
  year: 2014
  ident: ref_8
  article-title: Novel robust single layer wire crossing approach for exclusive OR sum of products logic design with quantum-dot cellular automata
  publication-title: J. Low Power Electron.
  doi: 10.1166/jolpe.2014.1320
– ident: ref_50
– volume: 32
  start-page: 1150
  year: 2019
  ident: ref_37
  article-title: A Majority Gate Based RAM Cell design with Least Feature Size in QCA
  publication-title: Gazi Univ. J. Sci.
  doi: 10.35378/gujs.500724
– volume: 11
  start-page: 135
  year: 2017
  ident: ref_26
  article-title: Design of non-restoring divider in quantum-dot cellular automata technology
  publication-title: IET Circuits Devices Syst.
  doi: 10.1049/iet-cds.2016.0071
– volume: 46
  start-page: 147
  year: 2019
  ident: ref_40
  article-title: Optimal design of RAM cell using novel 2:1 multiplexer in QCA technology
  publication-title: Circuit World
  doi: 10.1108/CW-06-2019-0062
– volume: 78
  start-page: 449
  year: 2019
  ident: ref_34
  article-title: 4-Bit serial shift register with reset ability and 4-bit LFSR in QCA technology using minimum number of cells and delay
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2019.08.002
– volume: 60
  start-page: 2400
  year: 2021
  ident: ref_35
  article-title: An Efficient Design of Parallel and Serial Shift Registers Based on Quantum-Dot Cellular Automata
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-020-04558-2
SSID ssj0023338
Score 2.4086642
Snippet In this study, we propose a quantum structure of an associative memory cell for effective data learning based on artificial intelligence. For effective...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 19
SubjectTerms Artificial Intelligence
artificial intelligent learning
Cellular Automata
Circuits
Computing Methodologies
content addressable memory
Deep learning
Design
Electronics
low-power QCA circuits
Machine learning
Memory (Computers)
nanotechnology
Neural networks
Quantum computing
Quantum dots
Quantum Theory
quantum-dot cellular automata
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT-WAKJ-hpTIICS5Wk9hJ7GO63aqgFlFEpd4if5ZKSxbRrFD_Dr-UGSebbgQSF6ScEmvleMYzbzae9wh5A0ZNtdec2eAMEyK1zBgIhtwiF2ZwVkSNpbOP5cmF-HBZXG5IfeGZsJ4euF-4gyK3RVC5DtpyAckXEDgULfDDSL0F4AOjb6rSdTE1lFocKq-eR4hDUX9wA0AbyYbUJPtEkv4_Q_FGLpqek9xIPMcPyYMBMdK6n-kOuefbR-T-Bo_gY_IrttGyU32Lypv0fFbTyDrVdqx2LqqcmIWnZ3iq9pbO_GJB41EBerr8yT6hThqdj3I4NP5J2Pc7UIC0tH7PDiHXOXqkO00HQtYrqltHP0c9LnBWet3S8xVYafWN9kIROGR-10X3hFwcz7_MTtggvsAsYLaOZUYGBWtnPNdWSFup0htX6mBywU0h0zwIV1SqcIoLYcuQFVpB-EsLaWUpM_6UbLXL1j8n1JtgKge4KxgpjAjKZYWxgcvUSJ9pmZB3a6M0dmAmR4GMRQMVCtqvGe2XkNfj0O89HcffBh2iZccByKAdb4BfNYNfNf_yq4S8Rb9ocJ_DZKwe2hXglZAxq6krZKYDsCkSsrd2nWYIADdNXgF0xK-0aUJejY9h6-L3GN365aofo6DAFmVCnvWeNs6ZA27CKyHVxAcnLzV90l5_jfTgSiLJpHzxP1Zhl2zn2O-R5RBO98hW92PlXwIK68x-3HC_ATiDMQM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELXK9gIHxDeBggxCgovVJHayzgGh7LJVQe2qrajUW-TPUmlJSpsV6t_hlzLjZNNdgZBySubgZMbjN7HnPULegVNj5RRnxlvNhIgN0xqSITfIhemtEUFj6XCe75-Kr2fZ2RaZr3ph8FjlKieGRG0bg__Id1Oot1Pc9oo_Xf5kqBqFu6srCQ3VSyvYj4Fi7A7ZhpScxSOyPZnNj06GEoxDRdbxC3Eo9nevAYAjCVGxsSoF8v6_U_TaGrV5fnJtQdp7QO73SJKWnesfki1XPyL31vgFH5Pfob2WHagbVOSkx9OSBjaqumWltUH9RC8cPcTTtjd06hYLGo4Q0IPmFztC_TQ6G2RyaPh52PVBUIC6tPzCJrAGWvpZtYr2RK3nVNWWngSdLghielHT4yV4b_mDdgISaDK77a57Qk73Zt-m-6wXZWAGsFzLEi19Ad9OO66MkGZc5E7bXHmdCq4zGade2GxcZLbgQpjcJ5kqIC3GmTQylwl_SkZ1U7vnhDrt9dgCHvNaCi18YZNMG89lrKVLlIzIh5VTKtMzlqNwxqKCygX9Vw3-i8jbwfSyo-n4l9EEPTsYILN2uNFcnVf9RK2y1GS-SJVXhgsAe1DxQZEMgYxUbwB2I_Ie46LC-Q-DMapvY4BXQiatqhwjYx2AUBGRnVXoVH1iuK5uwzgib4bHMKVxn0bVrll2NgUU3iKPyLMu0oYxc8BTeEVkvBGDGy-1-aS--B5owwuJ5JPyxf-H9ZLcTbHDI0khge6QUXu1dK8Ad7X6dT-Z_gB4DjAE
  priority: 102
  providerName: ProQuest
Title Multi-Layered QCA Content-Addressable Memory Cell Using Low-Power Electronic Interaction for AI-Based Data Learning and Retrieval in Quantum Computing Environment
URI https://www.ncbi.nlm.nih.gov/pubmed/36616616
https://www.proquest.com/docview/2761203510
https://www.proquest.com/docview/2761984046
https://pubmed.ncbi.nlm.nih.gov/PMC9824378
https://doaj.org/article/52c5f92afac34515862721fdb5043932
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF71cYED4l1DiRaEBJcFP9b2-oBQEhIKaqu2IlJu1j5LpeBAmgjyd_ilzKwdE4sekCIf4olie2Z3vvHufB8hL8GpobQyYdoZxTgPNVMKJsNEIxemM5p7jaWT0-xowj9P0-kO2WhsNg_w-sbSDvWkJovZm18_1u9hwL_DihNK9rfXAKORSqjYJft-mQh38PF2MSFOEi9ojT1dDPJhWBMMdX_aSUuevf_fOXorSXU3UG5lpPFdcqeBkrRf-_4e2bHVfXJ7i2DwAfnt-2vZsVyjJCc9H_app6OqlqxvjJc_UTNLT3C77ZoO7WxG_R4Cejz_yc5QQI2OWp0c6t8e1o0QFLAu7X9iA0iChn6QS0kbptZLKitDL7xQF0Qxvaro-Qrct_pGawUJNBn9ba97SCbj0ZfhEWtUGZgGMLdkkRKugGenbCI1FzovMqtMJp2KeaJSEcaOmzQvUlMknOvMRaksYF4MU6FFJqLkEdmr5pU9INQqp3IDgMwpwRV3hYlSpV0iQiVsJEVAXm-cUuqGshyVM2YllC7ov7L1X0BetKbfa56Om4wG6NnWAKm1_RfzxWXZjNQyjXXqilg6qRMOaA9KPqiSIZKR6w3QbkBeYVyUGJJwMVo2fQxwS0ilVfZzpKwDFMoDcrgJnXIT2GWcA6bE5dswIM_b0zCmcaFGVna-qm0KqLx5FpDHdaS115wAoMJPQPJODHZuqnumuvrqecMLgeyT4sl__O9TcivGPo8ohmn0kOwtFyv7DNDXUvXIbj7N4SjGH3tkfzA6Pbvo-TcZPT_q_gDHhzMs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VdAEsEOVpKGVAINhY9WPsjBcVStJUCU2itmql7sw8S6XglCZRld_hQ_g27h07biIQu0pZxVfJWPc9M_ccQj6AUgNhROwrq6XPWKB8KSEYxgqxMK1WzHEsDUdp74x9PU_ON8jv5SwMXqtcxkQXqPVE4R75bgT9doTHXsGXq58-skbh6eqSQkNU1Ap6z0GMVYMdh2ZxAy3cdK-_D_r-GEUH3dNOz69YBnwFxcnMDyW3GXT-0sRCMa6aWWqkToWVEYtlwoPIMp00s0RnMWMqtWEiMvDzIOGKpzyM4XfvkU2GGygNstnujo5O6pYvhg6wxDOK4S92p1DwI-hRtpYFHVnA3ylhJSeu39dcSYAHj8mjqnKlrdLUtsiGKZ6Qhyt4hk_JLzfO6w_EAhlA6XGnRR36VTHzW1o7thU5NnSIt3sXtGPGY-quLNDB5MY_Qr422q1peajbrCznLiiU1rTV99uQczXdFzNBK2DYCyoKTU8cLxg4Db0s6PEcrGX-g5aEFSjSvZ3me0bO7kQ9z0mjmBTmJaFGWtnUUP9ZyZlkNtNhIpWNeSC5CQX3yOelUnJVIaQjUcc4h04J9ZfX-vPI-1r0qoQF-ZdQGzVbCyCSt_ticn2RV4EhTyKV2CwSVqiYQXEJHSY05eA4CC0HxbVHPqFd5BhvYDFKVGMT8EqI3JW3moiQh9bnke2l6eRVIJrmt27jkXf1YwgheC4kCjOZlzIZNPos9ciL0tLqNcdQv-HHI801G1x7qfUnxeV3B1OecQS75K_-v6y35H7vdDjIB_3R4WvyIMLpkjCC4L1NGrPruXkDNd9M7lSORcm3u_blP3oWa8k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IN4YCiwIBBcrfqzt9QGhNA81NK1aRKXczD7bSqlTmkRV_g4_g1_HzNpxEoG4VcopO0rWmsfOeGe-j5D3oNRAGBH7ymrpMxYoX0oIhrFCLEyrFXMcSweH6d4J-zpKRlvk93IWBtsqlzHRBWo9UfiOvBVBvR3htVfQsnVbxFG3_-Xyp48MUnjTuqTTqExk3yyuoXybfh50Qdcfoqjf-97Z82uGAV9BYjLzQ8ltDlW_NLFQjKssT43UqbAyYrFMeBBZppMsT3QeM6ZSGyYiBx8PEq54ysMYfvcWuZ3BItJGZKNVsRdD7VchGcXwB60ppPoId5RvnH-OJuDvw2DtNNzs1Fw7-voPyP06Z6Xtysgeki1TPiL31pAMH5NfbpDXH4oFcn_S406bOtyrcua3tXY8K3Js6AH29S5ox4zH1DUr0OHk2j9Cpjbaawh5qHtNWU1cUEiqaXvg78Jpq2lXzAStIWFPqSg1_eYYwcBd6HlJj-dgJ_MLWlFVoEhvNcf3hJzciHKeku1yUprnhBppZaYh87OSM8lsrsNEKhvzQHITCu6RT0ulFKrGRkeKjnEBNRLqr2j055F3jehlBQjyL6Fd1GwjgBje7ovJ1WlRh4QiiVRi80hYoWIGaSXUllCOg8sgqByk1R75iHZRYKSBzShRD0zAIyFmV9HOEBsP0l3mkZ2l6RR1CJoWK4fxyNtmGYIH3giJ0kzmlUwOJT5LPfKssrRmzzFkbvjxSLZhgxsPtblSnp85gPKcI8wlf_H_bb0hd8CDi-HgcP8luRvhWEkYQdTeIduzq7l5BcneTL52XkXJj5t24z-Tamll
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Layered+QCA+Content-Addressable+Memory+Cell+Using+Low-Power+Electronic+Interaction+for+AI-Based+Data+Learning+and+Retrieval+in+Quantum+Computing+Environment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jeon%2C+Jun-Cheol&rft.au=Almatrood%2C+Amjad&rft.au=Kim%2C+Hyun-Il&rft.date=2022-12-20&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=1&rft_id=info:doi/10.3390%2Fs23010019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon