CVDF DYNAMIC—A Dynamic Fuzzy Testing Sample Generation Framework Based on BI-LSTM and Genetic Algorithm
As one of the most effective methods of vulnerability mining, fuzzy testing has scalability and complex path detection ability. Fuzzy testing sample generation is the key step of fuzzy testing, and the quality of sample directly determines the vulnerability mining ability of fuzzy tester. At present...
        Saved in:
      
    
          | Published in | Sensors (Basel, Switzerland) Vol. 22; no. 3; p. 1265 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        07.02.2022
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1424-8220 1424-8220  | 
| DOI | 10.3390/s22031265 | 
Cover
| Abstract | As one of the most effective methods of vulnerability mining, fuzzy testing has scalability and complex path detection ability. Fuzzy testing sample generation is the key step of fuzzy testing, and the quality of sample directly determines the vulnerability mining ability of fuzzy tester. At present, the known sample generation methods focus on code coverage or seed mutation under a critical execution path, so it is difficult to take both into account. Therefore, based on the idea of ensemble learning in artificial intelligence, we propose a fuzzy testing sample generation framework named CVDF DYNAMIC, which is based on genetic algorithm and BI-LSTM neural network. The main purpose of CVDF DYNAMIC is to generate fuzzy testing samples with both code coverage and path depth detection ability. CVDF DYNAMIC generates its own test case sets through BI-LSTM neural network and genetic algorithm. Then, we integrate the two sample sets through the idea of ensemble learning to obtain a sample set with both code coverage and vulnerability mining ability for a critical execution path of the program. In order to improve the efficiency of fuzzy testing, we use heuristic genetic algorithm to simplify the integrated sample set. We also innovatively put forward the evaluation index of path depth detection ability (pdda), which can effectively measure the vulnerability mining ability of the generated test case set under the critical execution path of the program. Finally, we compare CVDF DYNAMIC with some existing fuzzy testing tools and scientific research results and further propose the future improvement ideas of CVDF DYNAMIC. | 
    
|---|---|
| AbstractList | As one of the most effective methods of vulnerability mining, fuzzy testing has scalability and complex path detection ability. Fuzzy testing sample generation is the key step of fuzzy testing, and the quality of sample directly determines the vulnerability mining ability of fuzzy tester. At present, the known sample generation methods focus on code coverage or seed mutation under a critical execution path, so it is difficult to take both into account. Therefore, based on the idea of ensemble learning in artificial intelligence, we propose a fuzzy testing sample generation framework named CVDF DYNAMIC, which is based on genetic algorithm and BI-LSTM neural network. The main purpose of CVDF DYNAMIC is to generate fuzzy testing samples with both code coverage and path depth detection ability. CVDF DYNAMIC generates its own test case sets through BI-LSTM neural network and genetic algorithm. Then, we integrate the two sample sets through the idea of ensemble learning to obtain a sample set with both code coverage and vulnerability mining ability for a critical execution path of the program. In order to improve the efficiency of fuzzy testing, we use heuristic genetic algorithm to simplify the integrated sample set. We also innovatively put forward the evaluation index of path depth detection ability (pdda), which can effectively measure the vulnerability mining ability of the generated test case set under the critical execution path of the program. Finally, we compare CVDF DYNAMIC with some existing fuzzy testing tools and scientific research results and further propose the future improvement ideas of CVDF DYNAMIC. As one of the most effective methods of vulnerability mining, fuzzy testing has scalability and complex path detection ability. Fuzzy testing sample generation is the key step of fuzzy testing, and the quality of sample directly determines the vulnerability mining ability of fuzzy tester. At present, the known sample generation methods focus on code coverage or seed mutation under a critical execution path, so it is difficult to take both into account. Therefore, based on the idea of ensemble learning in artificial intelligence, we propose a fuzzy testing sample generation framework named CVDF DYNAMIC, which is based on genetic algorithm and BI-LSTM neural network. The main purpose of CVDF DYNAMIC is to generate fuzzy testing samples with both code coverage and path depth detection ability. CVDF DYNAMIC generates its own test case sets through BI-LSTM neural network and genetic algorithm. Then, we integrate the two sample sets through the idea of ensemble learning to obtain a sample set with both code coverage and vulnerability mining ability for a critical execution path of the program. In order to improve the efficiency of fuzzy testing, we use heuristic genetic algorithm to simplify the integrated sample set. We also innovatively put forward the evaluation index of path depth detection ability (pdda), which can effectively measure the vulnerability mining ability of the generated test case set under the critical execution path of the program. Finally, we compare CVDF DYNAMIC with some existing fuzzy testing tools and scientific research results and further propose the future improvement ideas of CVDF DYNAMIC.As one of the most effective methods of vulnerability mining, fuzzy testing has scalability and complex path detection ability. Fuzzy testing sample generation is the key step of fuzzy testing, and the quality of sample directly determines the vulnerability mining ability of fuzzy tester. At present, the known sample generation methods focus on code coverage or seed mutation under a critical execution path, so it is difficult to take both into account. Therefore, based on the idea of ensemble learning in artificial intelligence, we propose a fuzzy testing sample generation framework named CVDF DYNAMIC, which is based on genetic algorithm and BI-LSTM neural network. The main purpose of CVDF DYNAMIC is to generate fuzzy testing samples with both code coverage and path depth detection ability. CVDF DYNAMIC generates its own test case sets through BI-LSTM neural network and genetic algorithm. Then, we integrate the two sample sets through the idea of ensemble learning to obtain a sample set with both code coverage and vulnerability mining ability for a critical execution path of the program. In order to improve the efficiency of fuzzy testing, we use heuristic genetic algorithm to simplify the integrated sample set. We also innovatively put forward the evaluation index of path depth detection ability (pdda), which can effectively measure the vulnerability mining ability of the generated test case set under the critical execution path of the program. Finally, we compare CVDF DYNAMIC with some existing fuzzy testing tools and scientific research results and further propose the future improvement ideas of CVDF DYNAMIC.  | 
    
| Audience | Academic | 
    
| Author | Qian, Yekui Ma, Mingrui Han, Lansheng  | 
    
| AuthorAffiliation | 1 School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; jkpathfinder@hust.edu.cn 2 PLA Army Academy of Artillery and Air Defense, Zhengzhou 450052, China; scienceart2021@163.com  | 
    
| AuthorAffiliation_xml | – name: 2 PLA Army Academy of Artillery and Air Defense, Zhengzhou 450052, China; scienceart2021@163.com – name: 1 School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; jkpathfinder@hust.edu.cn  | 
    
| Author_xml | – sequence: 1 givenname: Mingrui orcidid: 0000-0002-2073-6424 surname: Ma fullname: Ma, Mingrui – sequence: 2 givenname: Lansheng surname: Han fullname: Han, Lansheng – sequence: 3 givenname: Yekui surname: Qian fullname: Qian, Yekui  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35162011$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9ks9u1DAQxiNURP_AgRdAkbgA0ra24zjJpdJ2ly0rbeHQBYlTNEnGWy-JvTgJ1fbEQ_CEPAnT3bJqK4R88Gj88-eZz3MY7FlnMQhecnYcRRk7aYVgERcqfhIccCnkIKXE3r14Pzhs2yVjIoqi9FmwH8VcCcb5QWBGX8aTcPz14_BiOvr989cwHK8tNKYMJ_3NzTqcY9sZuwgvoVnVGJ6jRQ-dcTaceGjw2vlv4Rm0WIWUOpsOZpfzixBstSE7khnWC-dNd9U8D55qqFt8cbcfBZ8n7-ejD4PZp_PpaDgblDFLuwGHRMZaUcy1UCiU0olOVMagTLVUWYFM86ISDFGLRKGslCp0BWma8TImH46C6Va3crDMV9404Ne5A5NvEs4vcvBUWY250iVwGRXIRSSrQhRQqBgl50KLChWQ1rutVm9XsL6Gut4Jcpbfep_vvCf4dAuv-qLBqkTbeagfVPDwxJqrfOF-5GkqWSwkCby5E_Due0_G541pS6xrsOj6NhdKZExFWZIS-voRunS9t-TrLUWAkiwh6nhLLYC6NVY7erekVSH9MM2QNpQfJilXLFOJoAuv7rewq_3vvBDwdguU3rWtR_1fP04esaXpNrNDVZj6Hzf-AL8p3Lg | 
    
| CitedBy_id | crossref_primary_10_3390_s22145105 | 
    
| Cites_doi | 10.1109/ICSE-Companion.2019.00096 10.1109/SP.2019.00069 10.1109/SP.2018.00046 10.1109/SP40000.2020.00117 10.1109/SP40001.2021.00109 10.1145/2810103.2813604 10.1109/SP.2019.00052 10.1109/DSA52907.2021.00054 10.1109/SP40000.2020.00063 10.1109/TSE.2017.2785841 10.1109/MCC.2017.9 10.1016/j.cose.2021.102368 10.1109/ACCESS.2019.2903291 10.1016/j.cose.2021.102242 10.1360/N112018-00331 10.1109/ACCESS.2020.3045078 10.1109/IALP.2018.8629158 10.1109/ASE.2017.8115618 10.1162/evco_a_00237 10.1109/SP40001.2021.00071  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022  | 
    
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/s22031265 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: Proquest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1424-8220 | 
    
| ExternalDocumentID | oai_doaj_org_article_6fca143be1234db2bab65e4112f2de6a 10.3390/s22031265 PMC8840524 A781609672 35162011 10_3390_s22031265  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 6217071437,62072200,62127808  | 
    
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c508t-1a745f65081f26e266f7f7690ac8f469be0f1bd20eef276e4d66bfda8891c5203 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 1424-8220 | 
    
| IngestDate | Fri Oct 03 12:46:05 EDT 2025 Sun Oct 26 02:53:46 EDT 2025 Tue Sep 30 16:57:40 EDT 2025 Fri Sep 05 08:23:40 EDT 2025 Tue Oct 07 07:12:29 EDT 2025 Mon Oct 20 17:11:28 EDT 2025 Thu Apr 03 06:56:53 EDT 2025 Thu Apr 24 22:59:52 EDT 2025 Thu Oct 16 04:24:21 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | genetic algorithm deep learning Bi-LSTM neural network fuzzy testing sample generation  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c508t-1a745f65081f26e266f7f7690ac8f469be0f1bd20eef276e4d66bfda8891c5203 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-2073-6424 | 
    
| OpenAccessLink | https://doaj.org/article/6fca143be1234db2bab65e4112f2de6a | 
    
| PMID | 35162011 | 
    
| PQID | 2627836407 | 
    
| PQPubID | 2032333 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6fca143be1234db2bab65e4112f2de6a unpaywall_primary_10_3390_s22031265 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8840524 proquest_miscellaneous_2629063978 proquest_journals_2627836407 gale_infotracacademiconefile_A781609672 pubmed_primary_35162011 crossref_primary_10_3390_s22031265 crossref_citationtrail_10_3390_s22031265  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220207 | 
    
| PublicationDateYYYYMMDD | 2022-02-07 | 
    
| PublicationDate_xml | – month: 2 year: 2022 text: 20220207 day: 7  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Sensors (Basel, Switzerland) | 
    
| PublicationTitleAlternate | Sensors (Basel) | 
    
| PublicationYear | 2022 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Liang (ref_3) 2019; 18 Alyahya (ref_37) 2019; 27 Li (ref_18) 2021; 48 Ma (ref_20) 2016; 56 ref_35 Xu (ref_14) 2019; 36 ref_10 ref_32 ref_31 ref_30 Liu (ref_33) 2021; 9 Mollah (ref_34) 2017; 4 Lin (ref_36) 2016; 43 ref_19 Zhang (ref_11) 2016; 43 Yang (ref_16) 2018; 29 ref_17 ref_38 ref_15 Stephens (ref_23) 2016; 16 Zhao (ref_39) 2019; 49 Wang (ref_8) 2019; 7 ref_25 Lin (ref_9) 2021; 105 ref_24 Borzacchiello (ref_2) 2021; 108 ref_22 ref_21 ref_42 ref_41 ref_40 Xie (ref_13) 2019; 30 Zhang (ref_12) 2020; 5 ref_29 ref_28 ref_27 ref_26 Zou (ref_1) 2018; 58 ref_5 ref_4 ref_7 Bohme (ref_6) 2019; 5  | 
    
| References_xml | – ident: ref_7 – ident: ref_28 – ident: ref_19 doi: 10.1109/ICSE-Companion.2019.00096 – ident: ref_30 – volume: 58 start-page: 1079 year: 2018 ident: ref_1 article-title: From automation to intelligence: Survey of research on vulnerability discovery technique publication-title: J. Tsinghua Univ. (Sci. Technol.) – ident: ref_5 – ident: ref_32 – ident: ref_15 doi: 10.1109/SP.2019.00069 – ident: ref_10 doi: 10.1109/SP.2018.00046 – ident: ref_21 doi: 10.1109/SP40000.2020.00117 – ident: ref_26 doi: 10.1109/SP40001.2021.00109 – volume: 56 start-page: 478 year: 2016 ident: ref_20 article-title: Improved fuzzy analysis methods publication-title: J. Tsinghua Univ. (Sci. Technol.) – ident: ref_40 – volume: 48 start-page: 7 year: 2021 ident: ref_18 article-title: SymFuzz: Vulnerability Detection Technology under Complex Path Conditions publication-title: Comput. Sci. – volume: 5 start-page: 1 year: 2020 ident: ref_12 article-title: Sensitive Region Prediction based on neuralnetwork in Fuzzy Test Algorithm Research publication-title: J. Cyber Secur. – ident: ref_22 doi: 10.1145/2810103.2813604 – ident: ref_24 doi: 10.1109/SP.2019.00052 – ident: ref_42 – ident: ref_35 doi: 10.1109/DSA52907.2021.00054 – volume: 30 start-page: 3071 year: 2019 ident: ref_13 article-title: Hybrid testing based on symbolic execution and fuzzing publication-title: Ruan Jian Xue Bao/J. Softw. – volume: 43 start-page: 5 year: 2016 ident: ref_11 article-title: Survey of Fuzz Testing Technology publication-title: Comput. Sci. – ident: ref_4 doi: 10.1109/SP40000.2020.00063 – ident: ref_31 – ident: ref_29 – volume: 43 start-page: 168 year: 2016 ident: ref_36 article-title: An Adaptive Memetic Algorithm for Solving the Set Covering Problem publication-title: J. Zhejiang Univ. (Sci. Ed.) – ident: ref_27 – volume: 36 start-page: 2679 year: 2019 ident: ref_14 article-title: Generation of fuzzing test case based on recurrent neural networks publication-title: Appl. Res. Comput. – volume: 5 start-page: 489 year: 2019 ident: ref_6 article-title: Coverage-Based Greybox Fuzzing as Markov Chain publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2017.2785841 – volume: 4 start-page: 34 year: 2017 ident: ref_34 article-title: Secure data sharing and searching at the edge of cloud-assisted internet of things publication-title: IEEE Cloud Comput. doi: 10.1109/MCC.2017.9 – volume: 108 start-page: 102368 year: 2021 ident: ref_2 article-title: FUZZOLIC: Mixing fuzzing and concolic execution publication-title: Comput. Secur. doi: 10.1016/j.cose.2021.102368 – volume: 7 start-page: 36340 year: 2019 ident: ref_8 article-title: NeuFuzz: Efficient Fuzzing with Deep Neural Network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2903291 – volume: 16 start-page: 21 year: 2016 ident: ref_23 article-title: Driller: Augmenting Fuzzing Through Selective Symbolic Execution publication-title: NDSS – ident: ref_41 – volume: 105 start-page: 102242 year: 2021 ident: ref_9 article-title: A priority based path searching method for improving hybrid fuzzing publication-title: Comput. Secur. doi: 10.1016/j.cose.2021.102242 – volume: 49 start-page: 1159 year: 2019 ident: ref_39 article-title: Prediction of protein function based on 0–1 matrix decomposition publication-title: Sci. Sin. Inf. Sci. doi: 10.1360/N112018-00331 – volume: 9 start-page: 4566 year: 2021 ident: ref_33 article-title: Privacy and Security Issues in Deep Learning: A Survey publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3045078 – ident: ref_38 doi: 10.1109/IALP.2018.8629158 – volume: 29 start-page: 1258 year: 2018 ident: ref_16 article-title: Programmable fuzzing technology publication-title: Ruan Jian Xue Bao/J. Softw. – ident: ref_17 doi: 10.1109/ASE.2017.8115618 – volume: 27 start-page: 47 year: 2019 ident: ref_37 article-title: Landscape Analysis of a Class of NP-Hard Binary Packing Problems publication-title: Evol. Comput. doi: 10.1162/evco_a_00237 – volume: 18 start-page: 2675 year: 2019 ident: ref_3 article-title: DeepFuzzer: Accelerated Deep Greybox Fuzzing publication-title: IEEE Trans. Dependable Secur. Comput. – ident: ref_25 doi: 10.1109/SP40001.2021.00071  | 
    
| SSID | ssj0023338 | 
    
| Score | 2.3559275 | 
    
| Snippet | As one of the most effective methods of vulnerability mining, fuzzy testing has scalability and complex path detection ability. Fuzzy testing sample generation... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 1265 | 
    
| SubjectTerms | Algorithms Approximation Artificial Intelligence Bi-LSTM neural network Critical path deep learning Efficiency Forecasting Fuzzy Logic fuzzy testing sample generation genetic algorithm Genetic algorithms Heuristic Learning Mutation Neural networks Neural Networks, Computer Software  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZKegAOiDcLBZmHBJdVs16v7R4QSppGBdEI0Ra1p5WfaaWwCW0i1J74EfxCfgkz-yLhdbVnd-15eGbW9jeEvEiFkcKiBLiwMfdWxdpZHjOvJNdOJZrh5eS9kdg95O-OsqM1MmruwuCxymZNLBdqN7X4j3yTCawJgdtOb2ZfYqwahburTQkNXZdWcK9LiLErZJ0hMlaHrPd3Rh8-tilYChlZhS-UQrK_ec4YKDVDz7LklUrw_j-X6CUf9fv5yauLYqYvvurJZMk5DW-SG3VUSXuVGtwia764Ta4vYQ3eIafbnwZDOjge9YDxP75979FBVYyeDheXlxf0AOE2ijHd14gXTCs4apQaHTbnt2gfXJ6j0NR_G7_fP9ijunAlJXyW9iZj4Nf85PNdcjjcOdjejes6C7GF8GweJ1ryLGColgQmPLjsIIOEtFlbFSB9Nr4bEuNY1_vApPDcCWGC00ptJTYDDt4jnWJa-AeEJqkx8LDuKq94mnrT9RJeCGLPtAvcR-RVw-fc1iDkWAtjkkMygiLJW5FE5FlLOquQN_5G1EdhtQQIll02TM_GeW17uQhWQ1hoPHhp7gwz2ojMc4g0A3Ne6Ii8RFHnaNIwGKvrmwkwJQTHyntSJQJSPckistFoQ17b-nn-SzMj8rTtBivFrRdd-OmipNkq91BVRO5XytOOOc0SgWFYROSKWq1MarWnOD0pkcAVpOcZ4xF53irgv3n18P-Df0SuMbzagSfS5QbpzM8W_jEEXHPzpLain09PK1w priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwEB4tywE4IP4JLMj8SHAJNI5juweE2i3VguhetkXLKbITu1uppEu3FXRPPARPyJMwk6RRC8uNqz1J7JlxZj7Z_gbgeSytkhlZQMgsFC7TockzEXKnlTC5jgyny8mDQ3kwEh-Ok-MdWNfYrBV4diG0o3pSo_n01fevq7e44N8Q4kTI_vqMc3RNLpNLcBkDVJsqOAxEs5nAY4RhFanQtvhWKCoZ-__-L28Epj8PTV5ZFqdm9c1MpxsRqX8DrtepJOtUtr8JO664Bdc2CAZvw2T_U6_Pep8PO6jtXz9-dlivqkDP-svz8xUbEsdGMWZHhkiCWcVBTaZi_fWhLdbFOJczbOq-Dz8eDQfMFHkpiZ9lnel4Np8sTr7cgVH_3XD_IKyLK4QZ5mSLMDJKJJ7ys8hz6TBOe-UVYmWTaY-Y2bqWj2zOW855rqQTuZTW50brdpQlqMG7sFvMCncfWBRbiw-blnZaxLGzLafwhWjrxOReuABervWcZjXzOBXAmKaIQMgkaWOSAJ42oqcV3cZFQl0yViNADNllw2w-TusFl0qfGcwFrcPQLHLLrbEycQLTS89zJ00AL8jUKXkWDiYz9XUEnBIxYqUdpSOJ-E7xAPbW3pCu_TPlkkqU0C5oAE-ablyatN9iCjdbljLtcuNUB3Cvcp5mzHESScq9AlBbbrU1qe2eYnJS0n9rxOQJFwE8axzw37p68D909RCucrr1QYfV1R7sLuZL9whzsYV9XK6033McM7E priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagewAOvB-BBZmHBJdsG8dx3BNKt1QLYiuk7aLdU_CzW1HSqg_Q9sSP4BfySxgnbtQuICFxTDJ5uDP2fFPPfIPQi5jJlCmnAcpUSI3iodCKhsTwlArNI0FccfJhnx0c03cnyYnvczr3aZUQio_KRdpVYYXgwVpNQppxMyIsaU61ff3V_5UEUJ_GnFHevox2WAJgvIF2jvsfstOypsjfXPEJxRDcN-dwGLvHbHmhkqz_9yV5wyddzJe8siym4vybGI83nFHvBvq0HkaVg_J5b7mQe2p1geHxP8Z5E133QBVnlWXdQpdMcRtd26AvvING-x-7Pdw97Wegy5_ff2S4W_W3x73lanWOB47BoxjiI-EoiHHFcO0MAffWKWG4A15UYzjVeRu-PxocYlHoUhJei7PxcDIbLc6-3EXHvTeD_YPQt24IFSC-RRiJlCbWob_IEmYABdjUphCJC8UtROTStGwkNWkZY0nKDNWMSasF5-1IJaCke6hRTArzAOEolhJuFi1uOI1jI1smhQeCJSVCW2oC9Gqtylx5XnPXXmOcQ3zjtJ7XWg_Qs1p0WpF5_Emo4-yhFnD82-WJyWyY--mcM6sEIE1pwPFTLYkUkiWGAni1RBsmAvTSWVPuVgn4GCV8sQMMyfFt5VnKIwbRY0oCtLs2uNwvH_OcMNcAxe2xBuhpfRkmvtvNEYWZLEuZdrktywN0v7LP-pvjJGIO2QUo3bLcrUFtXylGZyW5OIeIPyE0QM9rG__7b_Xwn6QeoavEFY24XPd0FzUWs6V5DFBuIZ_46foLpj1CiQ priority: 102 providerName: Unpaywall  | 
    
| Title | CVDF DYNAMIC—A Dynamic Fuzzy Testing Sample Generation Framework Based on BI-LSTM and Genetic Algorithm | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35162011 https://www.proquest.com/docview/2627836407 https://www.proquest.com/docview/2629063978 https://pubmed.ncbi.nlm.nih.gov/PMC8840524 https://www.mdpi.com/1424-8220/22/3/1265/pdf?version=1644386489 https://doaj.org/article/6fca143be1234db2bab65e4112f2de6a  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 22 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BOQCHijcpZWUeElyiJo5je4_ZbkNB7Kqiu2h7iuzEbldaslW7K9Se-BH8Qn4J4yQb7fIQFy45OJPEnhln5pPtbwBeR1wLnjsLMJ77zOTSV0XOfGqkYKqQoaLucPJgyA_H7MMknqyV-nJ7wmp64Fpxe9zmCmO6NviLZYWmWmkeG4ZpgqWF4VVqFMjuCkw1UCtC5FXzCEUI6vcuKUXnpS6CrEWfiqT_91_xWiz6dZ_k7WV5rq6-qtlsLQil92C7yR5JUvf6Ptww5QO4u8Yp-BCm-5_7KemfDBNU8I9v3xPSr4vOk3R5fX1FRo5Wozwlx8rxApOadtpZh6SrfVqkh6GtINjUe-9_PB4NiCqLShI_S5LZ6fxiujj78gjG6cFo_9Bv6in4OaZhCz9UgsXWpWShpdxgaLbCCoTHKpcWYbI2gQ11QQNjLBXcsIJzbQslZTfMY9TgY9gq56V5CiSMtMaHVSCNZFFkdGAEvhDNG6vCMuPB25Wes7whG3c1L2YZgg5nkqw1iQcvW9HzmmHjT0I9Z6xWwJFiVw3oKlnjKtm_XMWDN87UmZu62JlcNScQcEiOBCtLhAw5QjpBPdhdeUPWzOnLjHJXlcQtfHrwor2Ns9EtsajSzJeVTLdaK5UePKmdp-1zFIfcpVseiA232hjU5p1yelYxfkuE4TFlHrxqHfDvutr5H7p6BneoO-jh9qeLXdhaXCzNc0y_FroDN8VE4FWm7zpwq3cwPPrUqWYfXgdMYtt4eJSc_ATrWTRG | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LctMwFNWUsigsGN4YCojXwMZTW5YlZ8EwTkMmoUk2TZmwMpItp50JTmiS6aQrPoLv4KP4Eu71qwmvXbf2tS3pHt2HJZ1LyEtPaCli1AAXsc1NHNgqibnNTCC5SgJXMTyc3B-IzhH_MPJHW-RHdRYGt1VWNjE31Mk0xn_ke0xgTQhcdno3-2pj1ShcXa1KaBSwODCrM0jZ5m-7LdDvK8ba74f7HbusKmDHEIwsbFdJ7qcYmLgpEwYcVCpTCUmiioMUkkVtnNTVCXOMSZkUhidC6DRRQdBwY585Hrz3CrnKPbAlMH_k6CLB8yDfK9iLPK_h7M0ZSLsM_daaz8tLA_zpANY84O-7M3eW2UytztRksub62jfJjTJmpWEBsltky2S3yfU1JsM75GT_Y6tNW58GIaj157fvIW0Vpe5pe3l-vqJDJPPIxvRQIRsxLciuERO0Xe0Oo01wqAmFS82u3Tsc9qnKklwSPkvDyRi0sTj-cpccXcp43yPb2TQzDwh1Pa3hYeUEJuCeZ7RjJLwQQOWrJOXGIm-qcY7ikuIcK21MIkh1UCVRrRKLPK9FZwWvx9-EmqisWgCpuPML09NxVM7sSKSxgqBTG4gBeKKZVlr4hkMcm7LECGWR16jqCA0GNCZW5bkH6BJSb0WhDFwBiaRkFtmt0BCVlmQeXeDeIs_q22ADcGFHZWa6zGUa-QptYJH7BXjqNnu-KzDIs4jcgNVGpzbvZCfHOc94AMm_z7hFXtQA_PdYPfx_45-Snc6w34t63cHBI3KN4SES3Psud8n24nRpHkNot9BP8vlEyefLnsC_ABBUYZ0 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkLg8IO4EBpib4CVq4iS2-4BQuxJtbKuQ1k3lKdiJ3U0qaVlbTd0TP4Jfw8_hl3BOkmYtt7e9xieJ43OPj79DyMuAa8FT5EDIUzc0qXRVloYuM1KEKpO-Yng4ea_Ltw7CD_2ov0Z-LM7CYFnlwiYWhjobpfiPvME49oTAbaeGrcoiPnbid-OvLnaQwp3WRTuNUkR2zPwU0rfJ2-0O8PoVY_H73uaWW3UYcFMITKaur0QYWQxSfMu4AWdlhRWQMKpUWkgctfGsrzPmGWOZ4CbMONc2U1I2_TRiXgDPvUQuiyBoYjmh6J8newHkfiWSEQx6jQkDap-hD1vyf0WbgD-dwZI3_L1S8-osH6v5qRoOl9xgfJPcqOJX2ioF7hZZM_ltcn0J1fAOOd487MS086nbAhb__Pa9RTtl23saz87O5rSHwB75gO4rRCamJfA1ygeNF5VitA3ONaNwqb3t7u739qjKs4ISXktbwwFwY3r05S45uJD1vkfW81FuHhDqB1rDzcqTRoZBYLRnBDwQBCxSmQ2NQ94s1jlJK7hz7LoxTCDtQZYkNUsc8rwmHZcYH38jaiOzagKE5S4ujE4GSaXlCbepggBUG4gHwkwzrTSPTAgxrWWZ4cohr5HVCRoPmEyqqjMQ8EkIw5W0hPQ5JJWCOWRjIQ1JZVUmybkOOORZPQz2ADd5VG5Gs4KmWezWSofcL4WnnnMQ-RwDPoeIFbFa-ajVkfz4qMAclxIiexY65EUtgP9eq4f_n_xTcgVUN9nd7u48ItcYnifBMnixQdanJzPzGKK8qX5SqBMlny9af38BuV5l4A | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagewAOvB-BBZmHBJdsG8dx3BNKt1QLYiuk7aLdU_CzW1HSqg_Q9sSP4BfySxgnbtQuICFxTDJ5uDP2fFPPfIPQi5jJlCmnAcpUSI3iodCKhsTwlArNI0FccfJhnx0c03cnyYnvczr3aZUQio_KRdpVYYXgwVpNQppxMyIsaU61ff3V_5UEUJ_GnFHevox2WAJgvIF2jvsfstOypsjfXPEJxRDcN-dwGLvHbHmhkqz_9yV5wyddzJe8siym4vybGI83nFHvBvq0HkaVg_J5b7mQe2p1geHxP8Z5E133QBVnlWXdQpdMcRtd26AvvING-x-7Pdw97Wegy5_ff2S4W_W3x73lanWOB47BoxjiI-EoiHHFcO0MAffWKWG4A15UYzjVeRu-PxocYlHoUhJei7PxcDIbLc6-3EXHvTeD_YPQt24IFSC-RRiJlCbWob_IEmYABdjUphCJC8UtROTStGwkNWkZY0nKDNWMSasF5-1IJaCke6hRTArzAOEolhJuFi1uOI1jI1smhQeCJSVCW2oC9Gqtylx5XnPXXmOcQ3zjtJ7XWg_Qs1p0WpF5_Emo4-yhFnD82-WJyWyY--mcM6sEIE1pwPFTLYkUkiWGAni1RBsmAvTSWVPuVgn4GCV8sQMMyfFt5VnKIwbRY0oCtLs2uNwvH_OcMNcAxe2xBuhpfRkmvtvNEYWZLEuZdrktywN0v7LP-pvjJGIO2QUo3bLcrUFtXylGZyW5OIeIPyE0QM9rG__7b_Xwn6QeoavEFY24XPd0FzUWs6V5DFBuIZ_46foLpj1CiQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CVDF+DYNAMIC%E2%80%94A+Dynamic+Fuzzy+Testing+Sample+Generation+Framework+Based+on+BI-LSTM+and+Genetic+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mingrui+Ma&rft.au=Lansheng+Han&rft.au=Yekui+Qian&rft.date=2022-02-07&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=3&rft.spage=1265&rft_id=info:doi/10.3390%2Fs22031265&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6fca143be1234db2bab65e4112f2de6a | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |