CVDF DYNAMIC—A Dynamic Fuzzy Testing Sample Generation Framework Based on BI-LSTM and Genetic Algorithm

As one of the most effective methods of vulnerability mining, fuzzy testing has scalability and complex path detection ability. Fuzzy testing sample generation is the key step of fuzzy testing, and the quality of sample directly determines the vulnerability mining ability of fuzzy tester. At present...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 3; p. 1265
Main Authors Ma, Mingrui, Han, Lansheng, Qian, Yekui
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 07.02.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22031265

Cover

Abstract As one of the most effective methods of vulnerability mining, fuzzy testing has scalability and complex path detection ability. Fuzzy testing sample generation is the key step of fuzzy testing, and the quality of sample directly determines the vulnerability mining ability of fuzzy tester. At present, the known sample generation methods focus on code coverage or seed mutation under a critical execution path, so it is difficult to take both into account. Therefore, based on the idea of ensemble learning in artificial intelligence, we propose a fuzzy testing sample generation framework named CVDF DYNAMIC, which is based on genetic algorithm and BI-LSTM neural network. The main purpose of CVDF DYNAMIC is to generate fuzzy testing samples with both code coverage and path depth detection ability. CVDF DYNAMIC generates its own test case sets through BI-LSTM neural network and genetic algorithm. Then, we integrate the two sample sets through the idea of ensemble learning to obtain a sample set with both code coverage and vulnerability mining ability for a critical execution path of the program. In order to improve the efficiency of fuzzy testing, we use heuristic genetic algorithm to simplify the integrated sample set. We also innovatively put forward the evaluation index of path depth detection ability (pdda), which can effectively measure the vulnerability mining ability of the generated test case set under the critical execution path of the program. Finally, we compare CVDF DYNAMIC with some existing fuzzy testing tools and scientific research results and further propose the future improvement ideas of CVDF DYNAMIC.
AbstractList As one of the most effective methods of vulnerability mining, fuzzy testing has scalability and complex path detection ability. Fuzzy testing sample generation is the key step of fuzzy testing, and the quality of sample directly determines the vulnerability mining ability of fuzzy tester. At present, the known sample generation methods focus on code coverage or seed mutation under a critical execution path, so it is difficult to take both into account. Therefore, based on the idea of ensemble learning in artificial intelligence, we propose a fuzzy testing sample generation framework named CVDF DYNAMIC, which is based on genetic algorithm and BI-LSTM neural network. The main purpose of CVDF DYNAMIC is to generate fuzzy testing samples with both code coverage and path depth detection ability. CVDF DYNAMIC generates its own test case sets through BI-LSTM neural network and genetic algorithm. Then, we integrate the two sample sets through the idea of ensemble learning to obtain a sample set with both code coverage and vulnerability mining ability for a critical execution path of the program. In order to improve the efficiency of fuzzy testing, we use heuristic genetic algorithm to simplify the integrated sample set. We also innovatively put forward the evaluation index of path depth detection ability (pdda), which can effectively measure the vulnerability mining ability of the generated test case set under the critical execution path of the program. Finally, we compare CVDF DYNAMIC with some existing fuzzy testing tools and scientific research results and further propose the future improvement ideas of CVDF DYNAMIC.
As one of the most effective methods of vulnerability mining, fuzzy testing has scalability and complex path detection ability. Fuzzy testing sample generation is the key step of fuzzy testing, and the quality of sample directly determines the vulnerability mining ability of fuzzy tester. At present, the known sample generation methods focus on code coverage or seed mutation under a critical execution path, so it is difficult to take both into account. Therefore, based on the idea of ensemble learning in artificial intelligence, we propose a fuzzy testing sample generation framework named CVDF DYNAMIC, which is based on genetic algorithm and BI-LSTM neural network. The main purpose of CVDF DYNAMIC is to generate fuzzy testing samples with both code coverage and path depth detection ability. CVDF DYNAMIC generates its own test case sets through BI-LSTM neural network and genetic algorithm. Then, we integrate the two sample sets through the idea of ensemble learning to obtain a sample set with both code coverage and vulnerability mining ability for a critical execution path of the program. In order to improve the efficiency of fuzzy testing, we use heuristic genetic algorithm to simplify the integrated sample set. We also innovatively put forward the evaluation index of path depth detection ability (pdda), which can effectively measure the vulnerability mining ability of the generated test case set under the critical execution path of the program. Finally, we compare CVDF DYNAMIC with some existing fuzzy testing tools and scientific research results and further propose the future improvement ideas of CVDF DYNAMIC.As one of the most effective methods of vulnerability mining, fuzzy testing has scalability and complex path detection ability. Fuzzy testing sample generation is the key step of fuzzy testing, and the quality of sample directly determines the vulnerability mining ability of fuzzy tester. At present, the known sample generation methods focus on code coverage or seed mutation under a critical execution path, so it is difficult to take both into account. Therefore, based on the idea of ensemble learning in artificial intelligence, we propose a fuzzy testing sample generation framework named CVDF DYNAMIC, which is based on genetic algorithm and BI-LSTM neural network. The main purpose of CVDF DYNAMIC is to generate fuzzy testing samples with both code coverage and path depth detection ability. CVDF DYNAMIC generates its own test case sets through BI-LSTM neural network and genetic algorithm. Then, we integrate the two sample sets through the idea of ensemble learning to obtain a sample set with both code coverage and vulnerability mining ability for a critical execution path of the program. In order to improve the efficiency of fuzzy testing, we use heuristic genetic algorithm to simplify the integrated sample set. We also innovatively put forward the evaluation index of path depth detection ability (pdda), which can effectively measure the vulnerability mining ability of the generated test case set under the critical execution path of the program. Finally, we compare CVDF DYNAMIC with some existing fuzzy testing tools and scientific research results and further propose the future improvement ideas of CVDF DYNAMIC.
Audience Academic
Author Qian, Yekui
Ma, Mingrui
Han, Lansheng
AuthorAffiliation 1 School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; jkpathfinder@hust.edu.cn
2 PLA Army Academy of Artillery and Air Defense, Zhengzhou 450052, China; scienceart2021@163.com
AuthorAffiliation_xml – name: 2 PLA Army Academy of Artillery and Air Defense, Zhengzhou 450052, China; scienceart2021@163.com
– name: 1 School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; jkpathfinder@hust.edu.cn
Author_xml – sequence: 1
  givenname: Mingrui
  orcidid: 0000-0002-2073-6424
  surname: Ma
  fullname: Ma, Mingrui
– sequence: 2
  givenname: Lansheng
  surname: Han
  fullname: Han, Lansheng
– sequence: 3
  givenname: Yekui
  surname: Qian
  fullname: Qian, Yekui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35162011$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9u1DAQxiNURP_AgRdAkbgA0ra24zjJpdJ2ly0rbeHQBYlTNEnGWy-JvTgJ1fbEQ_CEPAnT3bJqK4R88Gj88-eZz3MY7FlnMQhecnYcRRk7aYVgERcqfhIccCnkIKXE3r14Pzhs2yVjIoqi9FmwH8VcCcb5QWBGX8aTcPz14_BiOvr989cwHK8tNKYMJ_3NzTqcY9sZuwgvoVnVGJ6jRQ-dcTaceGjw2vlv4Rm0WIWUOpsOZpfzixBstSE7khnWC-dNd9U8D55qqFt8cbcfBZ8n7-ejD4PZp_PpaDgblDFLuwGHRMZaUcy1UCiU0olOVMagTLVUWYFM86ISDFGLRKGslCp0BWma8TImH46C6Va3crDMV9404Ne5A5NvEs4vcvBUWY250iVwGRXIRSSrQhRQqBgl50KLChWQ1rutVm9XsL6Gut4Jcpbfep_vvCf4dAuv-qLBqkTbeagfVPDwxJqrfOF-5GkqWSwkCby5E_Due0_G541pS6xrsOj6NhdKZExFWZIS-voRunS9t-TrLUWAkiwh6nhLLYC6NVY7erekVSH9MM2QNpQfJilXLFOJoAuv7rewq_3vvBDwdguU3rWtR_1fP04esaXpNrNDVZj6Hzf-AL8p3Lg
CitedBy_id crossref_primary_10_3390_s22145105
Cites_doi 10.1109/ICSE-Companion.2019.00096
10.1109/SP.2019.00069
10.1109/SP.2018.00046
10.1109/SP40000.2020.00117
10.1109/SP40001.2021.00109
10.1145/2810103.2813604
10.1109/SP.2019.00052
10.1109/DSA52907.2021.00054
10.1109/SP40000.2020.00063
10.1109/TSE.2017.2785841
10.1109/MCC.2017.9
10.1016/j.cose.2021.102368
10.1109/ACCESS.2019.2903291
10.1016/j.cose.2021.102242
10.1360/N112018-00331
10.1109/ACCESS.2020.3045078
10.1109/IALP.2018.8629158
10.1109/ASE.2017.8115618
10.1162/evco_a_00237
10.1109/SP40001.2021.00071
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s22031265
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: Proquest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_6fca143be1234db2bab65e4112f2de6a
10.3390/s22031265
PMC8840524
A781609672
35162011
10_3390_s22031265
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 6217071437,62072200,62127808
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c508t-1a745f65081f26e266f7f7690ac8f469be0f1bd20eef276e4d66bfda8891c5203
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Fri Oct 03 12:46:05 EDT 2025
Sun Oct 26 02:53:46 EDT 2025
Tue Sep 30 16:57:40 EDT 2025
Fri Sep 05 08:23:40 EDT 2025
Tue Oct 07 07:12:29 EDT 2025
Mon Oct 20 17:11:28 EDT 2025
Thu Apr 03 06:56:53 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
Thu Oct 16 04:24:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords genetic algorithm
deep learning
Bi-LSTM neural network
fuzzy testing sample generation
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-1a745f65081f26e266f7f7690ac8f469be0f1bd20eef276e4d66bfda8891c5203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2073-6424
OpenAccessLink https://doaj.org/article/6fca143be1234db2bab65e4112f2de6a
PMID 35162011
PQID 2627836407
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_6fca143be1234db2bab65e4112f2de6a
unpaywall_primary_10_3390_s22031265
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8840524
proquest_miscellaneous_2629063978
proquest_journals_2627836407
gale_infotracacademiconefile_A781609672
pubmed_primary_35162011
crossref_primary_10_3390_s22031265
crossref_citationtrail_10_3390_s22031265
PublicationCentury 2000
PublicationDate 20220207
PublicationDateYYYYMMDD 2022-02-07
PublicationDate_xml – month: 2
  year: 2022
  text: 20220207
  day: 7
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Liang (ref_3) 2019; 18
Alyahya (ref_37) 2019; 27
Li (ref_18) 2021; 48
Ma (ref_20) 2016; 56
ref_35
Xu (ref_14) 2019; 36
ref_10
ref_32
ref_31
ref_30
Liu (ref_33) 2021; 9
Mollah (ref_34) 2017; 4
Lin (ref_36) 2016; 43
ref_19
Zhang (ref_11) 2016; 43
Yang (ref_16) 2018; 29
ref_17
ref_38
ref_15
Stephens (ref_23) 2016; 16
Zhao (ref_39) 2019; 49
Wang (ref_8) 2019; 7
ref_25
Lin (ref_9) 2021; 105
ref_24
Borzacchiello (ref_2) 2021; 108
ref_22
ref_21
ref_42
ref_41
ref_40
Xie (ref_13) 2019; 30
Zhang (ref_12) 2020; 5
ref_29
ref_28
ref_27
ref_26
Zou (ref_1) 2018; 58
ref_5
ref_4
ref_7
Bohme (ref_6) 2019; 5
References_xml – ident: ref_7
– ident: ref_28
– ident: ref_19
  doi: 10.1109/ICSE-Companion.2019.00096
– ident: ref_30
– volume: 58
  start-page: 1079
  year: 2018
  ident: ref_1
  article-title: From automation to intelligence: Survey of research on vulnerability discovery technique
  publication-title: J. Tsinghua Univ. (Sci. Technol.)
– ident: ref_5
– ident: ref_32
– ident: ref_15
  doi: 10.1109/SP.2019.00069
– ident: ref_10
  doi: 10.1109/SP.2018.00046
– ident: ref_21
  doi: 10.1109/SP40000.2020.00117
– ident: ref_26
  doi: 10.1109/SP40001.2021.00109
– volume: 56
  start-page: 478
  year: 2016
  ident: ref_20
  article-title: Improved fuzzy analysis methods
  publication-title: J. Tsinghua Univ. (Sci. Technol.)
– ident: ref_40
– volume: 48
  start-page: 7
  year: 2021
  ident: ref_18
  article-title: SymFuzz: Vulnerability Detection Technology under Complex Path Conditions
  publication-title: Comput. Sci.
– volume: 5
  start-page: 1
  year: 2020
  ident: ref_12
  article-title: Sensitive Region Prediction based on neuralnetwork in Fuzzy Test Algorithm Research
  publication-title: J. Cyber Secur.
– ident: ref_22
  doi: 10.1145/2810103.2813604
– ident: ref_24
  doi: 10.1109/SP.2019.00052
– ident: ref_42
– ident: ref_35
  doi: 10.1109/DSA52907.2021.00054
– volume: 30
  start-page: 3071
  year: 2019
  ident: ref_13
  article-title: Hybrid testing based on symbolic execution and fuzzing
  publication-title: Ruan Jian Xue Bao/J. Softw.
– volume: 43
  start-page: 5
  year: 2016
  ident: ref_11
  article-title: Survey of Fuzz Testing Technology
  publication-title: Comput. Sci.
– ident: ref_4
  doi: 10.1109/SP40000.2020.00063
– ident: ref_31
– ident: ref_29
– volume: 43
  start-page: 168
  year: 2016
  ident: ref_36
  article-title: An Adaptive Memetic Algorithm for Solving the Set Covering Problem
  publication-title: J. Zhejiang Univ. (Sci. Ed.)
– ident: ref_27
– volume: 36
  start-page: 2679
  year: 2019
  ident: ref_14
  article-title: Generation of fuzzing test case based on recurrent neural networks
  publication-title: Appl. Res. Comput.
– volume: 5
  start-page: 489
  year: 2019
  ident: ref_6
  article-title: Coverage-Based Greybox Fuzzing as Markov Chain
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2017.2785841
– volume: 4
  start-page: 34
  year: 2017
  ident: ref_34
  article-title: Secure data sharing and searching at the edge of cloud-assisted internet of things
  publication-title: IEEE Cloud Comput.
  doi: 10.1109/MCC.2017.9
– volume: 108
  start-page: 102368
  year: 2021
  ident: ref_2
  article-title: FUZZOLIC: Mixing fuzzing and concolic execution
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102368
– volume: 7
  start-page: 36340
  year: 2019
  ident: ref_8
  article-title: NeuFuzz: Efficient Fuzzing with Deep Neural Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903291
– volume: 16
  start-page: 21
  year: 2016
  ident: ref_23
  article-title: Driller: Augmenting Fuzzing Through Selective Symbolic Execution
  publication-title: NDSS
– ident: ref_41
– volume: 105
  start-page: 102242
  year: 2021
  ident: ref_9
  article-title: A priority based path searching method for improving hybrid fuzzing
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102242
– volume: 49
  start-page: 1159
  year: 2019
  ident: ref_39
  article-title: Prediction of protein function based on 0–1 matrix decomposition
  publication-title: Sci. Sin. Inf. Sci.
  doi: 10.1360/N112018-00331
– volume: 9
  start-page: 4566
  year: 2021
  ident: ref_33
  article-title: Privacy and Security Issues in Deep Learning: A Survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3045078
– ident: ref_38
  doi: 10.1109/IALP.2018.8629158
– volume: 29
  start-page: 1258
  year: 2018
  ident: ref_16
  article-title: Programmable fuzzing technology
  publication-title: Ruan Jian Xue Bao/J. Softw.
– ident: ref_17
  doi: 10.1109/ASE.2017.8115618
– volume: 27
  start-page: 47
  year: 2019
  ident: ref_37
  article-title: Landscape Analysis of a Class of NP-Hard Binary Packing Problems
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00237
– volume: 18
  start-page: 2675
  year: 2019
  ident: ref_3
  article-title: DeepFuzzer: Accelerated Deep Greybox Fuzzing
  publication-title: IEEE Trans. Dependable Secur. Comput.
– ident: ref_25
  doi: 10.1109/SP40001.2021.00071
SSID ssj0023338
Score 2.3559275
Snippet As one of the most effective methods of vulnerability mining, fuzzy testing has scalability and complex path detection ability. Fuzzy testing sample generation...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1265
SubjectTerms Algorithms
Approximation
Artificial Intelligence
Bi-LSTM neural network
Critical path
deep learning
Efficiency
Forecasting
Fuzzy Logic
fuzzy testing sample generation
genetic algorithm
Genetic algorithms
Heuristic
Learning
Mutation
Neural networks
Neural Networks, Computer
Software
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZKegAOiDcLBZmHBJdVs16v7R4QSppGBdEI0Ra1p5WfaaWwCW0i1J74EfxCfgkz-yLhdbVnd-15eGbW9jeEvEiFkcKiBLiwMfdWxdpZHjOvJNdOJZrh5eS9kdg95O-OsqM1MmruwuCxymZNLBdqN7X4j3yTCawJgdtOb2ZfYqwahburTQkNXZdWcK9LiLErZJ0hMlaHrPd3Rh8-tilYChlZhS-UQrK_ec4YKDVDz7LklUrw_j-X6CUf9fv5yauLYqYvvurJZMk5DW-SG3VUSXuVGtwia764Ta4vYQ3eIafbnwZDOjge9YDxP75979FBVYyeDheXlxf0AOE2ijHd14gXTCs4apQaHTbnt2gfXJ6j0NR_G7_fP9ijunAlJXyW9iZj4Nf85PNdcjjcOdjejes6C7GF8GweJ1ryLGColgQmPLjsIIOEtFlbFSB9Nr4bEuNY1_vApPDcCWGC00ptJTYDDt4jnWJa-AeEJqkx8LDuKq94mnrT9RJeCGLPtAvcR-RVw-fc1iDkWAtjkkMygiLJW5FE5FlLOquQN_5G1EdhtQQIll02TM_GeW17uQhWQ1hoPHhp7gwz2ojMc4g0A3Ne6Ii8RFHnaNIwGKvrmwkwJQTHyntSJQJSPckistFoQ17b-nn-SzMj8rTtBivFrRdd-OmipNkq91BVRO5XytOOOc0SgWFYROSKWq1MarWnOD0pkcAVpOcZ4xF53irgv3n18P-Df0SuMbzagSfS5QbpzM8W_jEEXHPzpLain09PK1w
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwEB4tywE4IP4JLMj8SHAJNI5juweE2i3VguhetkXLKbITu1uppEu3FXRPPARPyJMwk6RRC8uNqz1J7JlxZj7Z_gbgeSytkhlZQMgsFC7TockzEXKnlTC5jgyny8mDQ3kwEh-Ok-MdWNfYrBV4diG0o3pSo_n01fevq7e44N8Q4kTI_vqMc3RNLpNLcBkDVJsqOAxEs5nAY4RhFanQtvhWKCoZ-__-L28Epj8PTV5ZFqdm9c1MpxsRqX8DrtepJOtUtr8JO664Bdc2CAZvw2T_U6_Pep8PO6jtXz9-dlivqkDP-svz8xUbEsdGMWZHhkiCWcVBTaZi_fWhLdbFOJczbOq-Dz8eDQfMFHkpiZ9lnel4Np8sTr7cgVH_3XD_IKyLK4QZ5mSLMDJKJJ7ys8hz6TBOe-UVYmWTaY-Y2bqWj2zOW855rqQTuZTW50brdpQlqMG7sFvMCncfWBRbiw-blnZaxLGzLafwhWjrxOReuABervWcZjXzOBXAmKaIQMgkaWOSAJ42oqcV3cZFQl0yViNADNllw2w-TusFl0qfGcwFrcPQLHLLrbEycQLTS89zJ00AL8jUKXkWDiYz9XUEnBIxYqUdpSOJ-E7xAPbW3pCu_TPlkkqU0C5oAE-ablyatN9iCjdbljLtcuNUB3Cvcp5mzHESScq9AlBbbrU1qe2eYnJS0n9rxOQJFwE8axzw37p68D909RCucrr1QYfV1R7sLuZL9whzsYV9XK6033McM7E
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagewAOvB-BBZmHBJdsG8dx3BNKt1QLYiuk7aLdU_CzW1HSqg_Q9sSP4BfySxgnbtQuICFxTDJ5uDP2fFPPfIPQi5jJlCmnAcpUSI3iodCKhsTwlArNI0FccfJhnx0c03cnyYnvczr3aZUQio_KRdpVYYXgwVpNQppxMyIsaU61ff3V_5UEUJ_GnFHevox2WAJgvIF2jvsfstOypsjfXPEJxRDcN-dwGLvHbHmhkqz_9yV5wyddzJe8siym4vybGI83nFHvBvq0HkaVg_J5b7mQe2p1geHxP8Z5E133QBVnlWXdQpdMcRtd26AvvING-x-7Pdw97Wegy5_ff2S4W_W3x73lanWOB47BoxjiI-EoiHHFcO0MAffWKWG4A15UYzjVeRu-PxocYlHoUhJei7PxcDIbLc6-3EXHvTeD_YPQt24IFSC-RRiJlCbWob_IEmYABdjUphCJC8UtROTStGwkNWkZY0nKDNWMSasF5-1IJaCke6hRTArzAOEolhJuFi1uOI1jI1smhQeCJSVCW2oC9Gqtylx5XnPXXmOcQ3zjtJ7XWg_Qs1p0WpF5_Emo4-yhFnD82-WJyWyY--mcM6sEIE1pwPFTLYkUkiWGAni1RBsmAvTSWVPuVgn4GCV8sQMMyfFt5VnKIwbRY0oCtLs2uNwvH_OcMNcAxe2xBuhpfRkmvtvNEYWZLEuZdrktywN0v7LP-pvjJGIO2QUo3bLcrUFtXylGZyW5OIeIPyE0QM9rG__7b_Xwn6QeoavEFY24XPd0FzUWs6V5DFBuIZ_46foLpj1CiQ
  priority: 102
  providerName: Unpaywall
Title CVDF DYNAMIC—A Dynamic Fuzzy Testing Sample Generation Framework Based on BI-LSTM and Genetic Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/35162011
https://www.proquest.com/docview/2627836407
https://www.proquest.com/docview/2629063978
https://pubmed.ncbi.nlm.nih.gov/PMC8840524
https://www.mdpi.com/1424-8220/22/3/1265/pdf?version=1644386489
https://doaj.org/article/6fca143be1234db2bab65e4112f2de6a
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BOQCHijcpZWUeElyiJo5je4_ZbkNB7Kqiu2h7iuzEbldaslW7K9Se-BH8Qn4J4yQb7fIQFy45OJPEnhln5pPtbwBeR1wLnjsLMJ77zOTSV0XOfGqkYKqQoaLucPJgyA_H7MMknqyV-nJ7wmp64Fpxe9zmCmO6NviLZYWmWmkeG4ZpgqWF4VVqFMjuCkw1UCtC5FXzCEUI6vcuKUXnpS6CrEWfiqT_91_xWiz6dZ_k7WV5rq6-qtlsLQil92C7yR5JUvf6Ptww5QO4u8Yp-BCm-5_7KemfDBNU8I9v3xPSr4vOk3R5fX1FRo5Wozwlx8rxApOadtpZh6SrfVqkh6GtINjUe-9_PB4NiCqLShI_S5LZ6fxiujj78gjG6cFo_9Bv6in4OaZhCz9UgsXWpWShpdxgaLbCCoTHKpcWYbI2gQ11QQNjLBXcsIJzbQslZTfMY9TgY9gq56V5CiSMtMaHVSCNZFFkdGAEvhDNG6vCMuPB25Wes7whG3c1L2YZgg5nkqw1iQcvW9HzmmHjT0I9Z6xWwJFiVw3oKlnjKtm_XMWDN87UmZu62JlcNScQcEiOBCtLhAw5QjpBPdhdeUPWzOnLjHJXlcQtfHrwor2Ns9EtsajSzJeVTLdaK5UePKmdp-1zFIfcpVseiA232hjU5p1yelYxfkuE4TFlHrxqHfDvutr5H7p6BneoO-jh9qeLXdhaXCzNc0y_FroDN8VE4FWm7zpwq3cwPPrUqWYfXgdMYtt4eJSc_ATrWTRG
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LctMwFNWUsigsGN4YCojXwMZTW5YlZ8EwTkMmoUk2TZmwMpItp50JTmiS6aQrPoLv4KP4Eu71qwmvXbf2tS3pHt2HJZ1LyEtPaCli1AAXsc1NHNgqibnNTCC5SgJXMTyc3B-IzhH_MPJHW-RHdRYGt1VWNjE31Mk0xn_ke0xgTQhcdno3-2pj1ShcXa1KaBSwODCrM0jZ5m-7LdDvK8ba74f7HbusKmDHEIwsbFdJ7qcYmLgpEwYcVCpTCUmiioMUkkVtnNTVCXOMSZkUhidC6DRRQdBwY585Hrz3CrnKPbAlMH_k6CLB8yDfK9iLPK_h7M0ZSLsM_daaz8tLA_zpANY84O-7M3eW2UytztRksub62jfJjTJmpWEBsltky2S3yfU1JsM75GT_Y6tNW58GIaj157fvIW0Vpe5pe3l-vqJDJPPIxvRQIRsxLciuERO0Xe0Oo01wqAmFS82u3Tsc9qnKklwSPkvDyRi0sTj-cpccXcp43yPb2TQzDwh1Pa3hYeUEJuCeZ7RjJLwQQOWrJOXGIm-qcY7ikuIcK21MIkh1UCVRrRKLPK9FZwWvx9-EmqisWgCpuPML09NxVM7sSKSxgqBTG4gBeKKZVlr4hkMcm7LECGWR16jqCA0GNCZW5bkH6BJSb0WhDFwBiaRkFtmt0BCVlmQeXeDeIs_q22ADcGFHZWa6zGUa-QptYJH7BXjqNnu-KzDIs4jcgNVGpzbvZCfHOc94AMm_z7hFXtQA_PdYPfx_45-Snc6w34t63cHBI3KN4SES3Psud8n24nRpHkNot9BP8vlEyefLnsC_ABBUYZ0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkLg8IO4EBpib4CVq4iS2-4BQuxJtbKuQ1k3lKdiJ3U0qaVlbTd0TP4Jfw8_hl3BOkmYtt7e9xieJ43OPj79DyMuAa8FT5EDIUzc0qXRVloYuM1KEKpO-Yng4ea_Ltw7CD_2ov0Z-LM7CYFnlwiYWhjobpfiPvME49oTAbaeGrcoiPnbid-OvLnaQwp3WRTuNUkR2zPwU0rfJ2-0O8PoVY_H73uaWW3UYcFMITKaur0QYWQxSfMu4AWdlhRWQMKpUWkgctfGsrzPmGWOZ4CbMONc2U1I2_TRiXgDPvUQuiyBoYjmh6J8newHkfiWSEQx6jQkDap-hD1vyf0WbgD-dwZI3_L1S8-osH6v5qRoOl9xgfJPcqOJX2ioF7hZZM_ltcn0J1fAOOd487MS086nbAhb__Pa9RTtl23saz87O5rSHwB75gO4rRCamJfA1ygeNF5VitA3ONaNwqb3t7u739qjKs4ISXktbwwFwY3r05S45uJD1vkfW81FuHhDqB1rDzcqTRoZBYLRnBDwQBCxSmQ2NQ94s1jlJK7hz7LoxTCDtQZYkNUsc8rwmHZcYH38jaiOzagKE5S4ujE4GSaXlCbepggBUG4gHwkwzrTSPTAgxrWWZ4cohr5HVCRoPmEyqqjMQ8EkIw5W0hPQ5JJWCOWRjIQ1JZVUmybkOOORZPQz2ADd5VG5Gs4KmWezWSofcL4WnnnMQ-RwDPoeIFbFa-ajVkfz4qMAclxIiexY65EUtgP9eq4f_n_xTcgVUN9nd7u48ItcYnifBMnixQdanJzPzGKK8qX5SqBMlny9af38BuV5l4A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagewAOvB-BBZmHBJdsG8dx3BNKt1QLYiuk7aLdU_CzW1HSqg_Q9sSP4BfySxgnbtQuICFxTDJ5uDP2fFPPfIPQi5jJlCmnAcpUSI3iodCKhsTwlArNI0FccfJhnx0c03cnyYnvczr3aZUQio_KRdpVYYXgwVpNQppxMyIsaU61ff3V_5UEUJ_GnFHevox2WAJgvIF2jvsfstOypsjfXPEJxRDcN-dwGLvHbHmhkqz_9yV5wyddzJe8siym4vybGI83nFHvBvq0HkaVg_J5b7mQe2p1geHxP8Z5E133QBVnlWXdQpdMcRtd26AvvING-x-7Pdw97Wegy5_ff2S4W_W3x73lanWOB47BoxjiI-EoiHHFcO0MAffWKWG4A15UYzjVeRu-PxocYlHoUhJei7PxcDIbLc6-3EXHvTeD_YPQt24IFSC-RRiJlCbWob_IEmYABdjUphCJC8UtROTStGwkNWkZY0nKDNWMSasF5-1IJaCke6hRTArzAOEolhJuFi1uOI1jI1smhQeCJSVCW2oC9Gqtylx5XnPXXmOcQ3zjtJ7XWg_Qs1p0WpF5_Emo4-yhFnD82-WJyWyY--mcM6sEIE1pwPFTLYkUkiWGAni1RBsmAvTSWVPuVgn4GCV8sQMMyfFt5VnKIwbRY0oCtLs2uNwvH_OcMNcAxe2xBuhpfRkmvtvNEYWZLEuZdrktywN0v7LP-pvjJGIO2QUo3bLcrUFtXylGZyW5OIeIPyE0QM9rG__7b_Xwn6QeoavEFY24XPd0FzUWs6V5DFBuIZ_46foLpj1CiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CVDF+DYNAMIC%E2%80%94A+Dynamic+Fuzzy+Testing+Sample+Generation+Framework+Based+on+BI-LSTM+and+Genetic+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mingrui+Ma&rft.au=Lansheng+Han&rft.au=Yekui+Qian&rft.date=2022-02-07&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=3&rft.spage=1265&rft_id=info:doi/10.3390%2Fs22031265&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6fca143be1234db2bab65e4112f2de6a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon