The Pine Cone Optimization Algorithm (PCOA)
The present study introduces a novel nature-inspired optimizer called the Pine Cone Optimization algorithm (PCOA) for solving science and engineering problems. PCOA is designed based on the different mechanisms of pine tree reproduction, including pollination and pine cone dispersal by gravity and a...
Saved in:
| Published in | Biomimetics (Basel, Switzerland) Vol. 9; no. 2; p. 91 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
01.02.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2313-7673 2313-7673 |
| DOI | 10.3390/biomimetics9020091 |
Cover
| Abstract | The present study introduces a novel nature-inspired optimizer called the Pine Cone Optimization algorithm (PCOA) for solving science and engineering problems. PCOA is designed based on the different mechanisms of pine tree reproduction, including pollination and pine cone dispersal by gravity and animals. It employs new and powerful operators to simulate the mentioned mechanisms. The performance of PCOA is analyzed using classic benchmark functions, CEC017 and CEC2019 as mathematical problems and CEC2006 and CEC2011 as engineering design problems. In terms of accuracy, the results show the superiority of PCOA to well-known algorithms (PSO, DE, and WOA) and new algorithms (AVOA, RW_GWO, HHO, and GBO). The results of PCOA are competitive with state-of-the-art algorithms (LSHADE and EBOwithCMAR). In terms of convergence speed and time complexity, the results of PCOA are reasonable. According to the Friedman test, PCOA’s rank is 1.68 and 9.42 percent better than EBOwithCMAR (second-best algorithm) and LSHADE (third-best algorithm), respectively. The authors recommend PCOA for science, engineering, and industrial societies for solving complex optimization problems. |
|---|---|
| AbstractList | The present study introduces a novel nature-inspired optimizer called the Pine Cone Optimization algorithm (PCOA) for solving science and engineering problems. PCOA is designed based on the different mechanisms of pine tree reproduction, including pollination and pine cone dispersal by gravity and animals. It employs new and powerful operators to simulate the mentioned mechanisms. The performance of PCOA is analyzed using classic benchmark functions, CEC017 and CEC2019 as mathematical problems and CEC2006 and CEC2011 as engineering design problems. In terms of accuracy, the results show the superiority of PCOA to well-known algorithms (PSO, DE, and WOA) and new algorithms (AVOA, RW_GWO, HHO, and GBO). The results of PCOA are competitive with state-of-the-art algorithms (LSHADE and EBOwithCMAR). In terms of convergence speed and time complexity, the results of PCOA are reasonable. According to the Friedman test, PCOA's rank is 1.68 and 9.42 percent better than EBOwithCMAR (second-best algorithm) and LSHADE (third-best algorithm), respectively. The authors recommend PCOA for science, engineering, and industrial societies for solving complex optimization problems.The present study introduces a novel nature-inspired optimizer called the Pine Cone Optimization algorithm (PCOA) for solving science and engineering problems. PCOA is designed based on the different mechanisms of pine tree reproduction, including pollination and pine cone dispersal by gravity and animals. It employs new and powerful operators to simulate the mentioned mechanisms. The performance of PCOA is analyzed using classic benchmark functions, CEC017 and CEC2019 as mathematical problems and CEC2006 and CEC2011 as engineering design problems. In terms of accuracy, the results show the superiority of PCOA to well-known algorithms (PSO, DE, and WOA) and new algorithms (AVOA, RW_GWO, HHO, and GBO). The results of PCOA are competitive with state-of-the-art algorithms (LSHADE and EBOwithCMAR). In terms of convergence speed and time complexity, the results of PCOA are reasonable. According to the Friedman test, PCOA's rank is 1.68 and 9.42 percent better than EBOwithCMAR (second-best algorithm) and LSHADE (third-best algorithm), respectively. The authors recommend PCOA for science, engineering, and industrial societies for solving complex optimization problems. The present study introduces a novel nature-inspired optimizer called the Pine Cone Optimization algorithm (PCOA) for solving science and engineering problems. PCOA is designed based on the different mechanisms of pine tree reproduction, including pollination and pine cone dispersal by gravity and animals. It employs new and powerful operators to simulate the mentioned mechanisms. The performance of PCOA is analyzed using classic benchmark functions, CEC017 and CEC2019 as mathematical problems and CEC2006 and CEC2011 as engineering design problems. In terms of accuracy, the results show the superiority of PCOA to well-known algorithms (PSO, DE, and WOA) and new algorithms (AVOA, RW_GWO, HHO, and GBO). The results of PCOA are competitive with state-of-the-art algorithms (LSHADE and EBOwithCMAR). In terms of convergence speed and time complexity, the results of PCOA are reasonable. According to the Friedman test, PCOA’s rank is 1.68 and 9.42 percent better than EBOwithCMAR (second-best algorithm) and LSHADE (third-best algorithm), respectively. The authors recommend PCOA for science, engineering, and industrial societies for solving complex optimization problems. |
| Audience | Academic |
| Author | Farzin, Saeed Valikhan Anaraki, Mahdi |
| Author_xml | – sequence: 1 givenname: Mahdi orcidid: 0000-0002-4820-5393 surname: Valikhan Anaraki fullname: Valikhan Anaraki, Mahdi – sequence: 2 givenname: Saeed orcidid: 0000-0003-4209-9558 surname: Farzin fullname: Farzin, Saeed |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38392137$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl1rFDEUhoNUbK39A17IgDcV2XqSzOTjcln8KBS2F_U6JJmTbZaZyZqZQeqvN-3WqlVEcpFweN73fOU5ORjSgIS8pHDGuYZ3LqY-9jhFP2pgAJo-IUeMU76QQvKDX96H5GQctwBAtWjqGp6RQ664ZpTLI_L26hqryzhgtSr-1Xo3xT5-s1NMQ7XsNinH6bqvTi9X6-WbF-RpsN2IJ_f3Mfn84f3V6tPiYv3xfLW8WPgG1LSgOgjKuG9F3aAPVjjwbd2EgChsw6yQWgAER1tBXdCaOc5RWUTOdJDS8WNyvvdtk92aXY69zTcm2WjuAilvjM2l8Q5NDcg0IFUh2Boa7mStmQy2caFxDrB48b3XPOzszVfbdQ-GFMztJM2fkyyq071ql9OXGcfJ9HH02HV2wDSPhlPFlNTAWUFfP0K3ac5DmY9hmkMDwCT_SW1sqToOIU3Z-ltTs5SqBi6UUoU6-wtVTot99GU_IZb4b4JX98ln12P70NqP_RaA7QGf0zhmDP_XvXok8nG6-xKlnNj9S_odSj3Ldw |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2025_110343 crossref_primary_10_3103_S1060992X24700838 crossref_primary_10_1016_j_apm_2025_116008 crossref_primary_10_1007_s12083_024_01894_6 crossref_primary_10_1016_j_asej_2024_102955 crossref_primary_10_2166_hydro_2024_264 crossref_primary_10_53759_7669_jmc202404073 |
| Cites_doi | 10.1287/ijoc.1.3.190 10.1016/j.eswa.2011.04.126 10.4141/cjps2011-020 10.1016/j.knosys.2019.105190 10.1109/CEC.2014.6900380 10.3390/biomimetics8060508 10.1016/j.engappai.2019.103300 10.1111/j.1365-2907.1983.tb00270.x 10.2307/3545911 10.1016/j.eswa.2021.115079 10.3390/sym9100203 10.1006/anbo.1999.0882 10.1039/C5RA21708C 10.1109/CEC.2017.7969336 10.1007/978-3-319-46173-1 10.1007/s00707-009-0270-4 10.3390/biomimetics8080619 10.1016/j.engappai.2019.08.025 10.1007/s00500-019-03949-w 10.1016/j.matcom.2021.12.010 10.1177/003754970107600201 10.3390/biomimetics8060507 10.1016/j.cie.2021.107224 10.1016/j.matcom.2022.12.027 10.3390/sym11081049 10.1016/S0169-5347(02)02540-5 10.1016/j.future.2019.02.028 10.1016/j.eij.2020.08.003 10.1016/j.ecoinf.2006.07.003 10.1007/s12065-022-00742-x 10.1016/j.knosys.2022.110011 10.1016/j.eswa.2015.04.055 10.1016/j.engappai.2018.04.021 10.3390/biomimetics8060470 10.1007/978-3-642-32894-7_27 10.1016/j.advengsoft.2013.12.007 10.1016/j.swevo.2011.02.002 10.1023/A:1008202821328 10.1109/CONECCT52877.2021.9622704 10.1016/j.cnsns.2012.05.010 10.1016/j.engappai.2019.103249 10.1016/j.asoc.2021.107140 10.1016/j.knosys.2023.110305 10.1007/s00521-022-07761-w 10.1007/s00521-015-1870-7 10.1109/CEC.2017.7969524 10.3390/sym10060210 10.1109/4235.585893 10.3390/sym11070876 10.1016/j.neucom.2023.02.010 10.1108/02644401211235834 10.3390/sym15101873 10.1016/j.advengsoft.2016.01.008 10.7551/mitpress/1090.001.0001 10.1109/ACCESS.2023.3328248 10.1007/s11227-022-04959-6 10.1016/j.eswa.2023.121597 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 ADTOC UNPAY DOA |
| DOI | 10.3390/biomimetics9020091 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Physics |
| EISSN | 2313-7673 |
| ExternalDocumentID | oai_doaj_org_article_40e290e18ffa4053b74927fa5bf5bb0e 10.3390/biomimetics9020091 A784036888 38392137 10_3390_biomimetics9020091 |
| Genre | Journal Article |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | 53G 8FE 8FH AADQD AAFWJ AAYXX ABDBF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM ABUWG AZQEC COVID DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO ADTOC UNPAY |
| ID | FETCH-LOGICAL-c508t-19f6123cd645ecfa6b0cd45ffee6a52a679600fb1d61bf992b33e8aee329f77b3 |
| IEDL.DBID | BENPR |
| ISSN | 2313-7673 |
| IngestDate | Fri Oct 03 12:51:16 EDT 2025 Sun Oct 26 02:47:45 EDT 2025 Fri Sep 05 17:48:26 EDT 2025 Sun Jul 13 04:30:08 EDT 2025 Mon Oct 20 22:49:11 EDT 2025 Mon Oct 20 16:56:48 EDT 2025 Mon Jul 21 05:51:30 EDT 2025 Thu Apr 24 23:01:07 EDT 2025 Thu Oct 16 04:26:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | pine tree optimization pine cone nature-inspired engineering problems mathematical benchmark functions swarm intelligence |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c508t-19f6123cd645ecfa6b0cd45ffee6a52a679600fb1d61bf992b33e8aee329f77b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4209-9558 0000-0002-4820-5393 |
| OpenAccessLink | https://www.proquest.com/docview/2930500273?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 38392137 |
| PQID | 2930500273 |
| PQPubID | 2055439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_40e290e18ffa4053b74927fa5bf5bb0e unpaywall_primary_10_3390_biomimetics9020091 proquest_miscellaneous_3182879032 proquest_journals_2930500273 gale_infotracmisc_A784036888 gale_infotracacademiconefile_A784036888 pubmed_primary_38392137 crossref_primary_10_3390_biomimetics9020091 crossref_citationtrail_10_3390_biomimetics9020091 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Biomimetics (Basel, Switzerland) |
| PublicationTitleAlternate | Biomimetics (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Mahmoodabadi (ref_48) 2023; 16 Hayyolalam (ref_5) 2020; 87 Ahmadianfar (ref_66) 2021; 181 Faramarzi (ref_65) 2020; 191 Yang (ref_12) 2012; 29 Alimoradi (ref_46) 2022; 194 ref_58 Mirjalili (ref_26) 2016; 27 ref_11 ref_10 Cheraghalipour (ref_45) 2018; 72 ref_19 Heidari (ref_16) 2019; 97 ref_59 Mirrashid (ref_32) 2023; 264 ref_60 Gandomi (ref_13) 2012; 17 Bardsiri (ref_30) 2019; 86 Kiran (ref_44) 2015; 42 Benkman (ref_54) 1995; 73 ref_23 Su (ref_28) 2023; 532 ref_21 Wolpert (ref_1) 1997; 1 Mirjalili (ref_14) 2014; 69 ref_20 ref_64 Burczyk (ref_52) 1996; 77 Offord (ref_53) 1999; 84 ref_63 Rahman (ref_6) 2021; 22 Glover (ref_29) 1989; 1 Nematollahi (ref_61) 2020; 24 Bello (ref_49) 2016; 6 Moller (ref_56) 1983; 13 Derrac (ref_67) 2011; 1 Culley (ref_50) 2002; 17 Zhu (ref_34) 2024; 237 Alyasseri (ref_31) 2020; 33 Xue (ref_18) 2023; 79 ref_35 Dehghani (ref_17) 2023; 259 ref_33 Mehrabian (ref_42) 2006; 1 Geem (ref_4) 2001; 76 Mirjalili (ref_15) 2016; 95 Storn (ref_3) 1997; 11 Karami (ref_27) 2021; 156 Zhao (ref_62) 2020; 87 ref_39 ref_38 ref_37 Kaveh (ref_24) 2010; 213 Kaveh (ref_47) 2023; 208 Sun (ref_57) 2021; 103 Alatas (ref_25) 2011; 38 Dehghani (ref_36) 2020; 13 ref_43 Anaraki (ref_22) 2023; 11 ref_41 ref_40 Lu (ref_51) 2011; 91 ref_2 Sulaiman (ref_7) 2023; 35 Baker (ref_55) 2020; 56 ref_9 ref_8 |
| References_xml | – ident: ref_9 – volume: 1 start-page: 190 year: 1989 ident: ref_29 article-title: Tabu Search—Part I publication-title: ORSA J. Comput. doi: 10.1287/ijoc.1.3.190 – volume: 38 start-page: 13170 year: 2011 ident: ref_25 article-title: ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.126 – volume: 91 start-page: 897 year: 2011 ident: ref_51 article-title: Adaptation of male reproductive structures to wind pollination in gymnosperms: Cones and pollen grains publication-title: Can. J. Plant Sci. doi: 10.4141/cjps2011-020 – volume: 191 start-page: 105190 year: 2020 ident: ref_65 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105190 – ident: ref_64 doi: 10.1109/CEC.2014.6900380 – ident: ref_33 doi: 10.3390/biomimetics8060508 – ident: ref_23 – volume: 56 start-page: 107 year: 2020 ident: ref_55 article-title: Mathematics in the Garden: Arranging Sweetcorn Plants for Maximum Pollination publication-title: Math. Today – ident: ref_58 – volume: 87 start-page: 103300 year: 2020 ident: ref_62 article-title: Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103300 – volume: 13 start-page: 81 year: 1983 ident: ref_56 article-title: Foods and foraging behaviour of Red (Sciurus vulgaris) and Grey (Sciurus carolinensis) squirrels publication-title: Mammal Rev. doi: 10.1111/j.1365-2907.1983.tb00270.x – volume: 73 start-page: 221 year: 1995 ident: ref_54 article-title: Wind dispersal capacity of pine seeds and the evolution of different seed dispersal modes in pines publication-title: Oikos doi: 10.2307/3545911 – volume: 181 start-page: 115079 year: 2021 ident: ref_66 article-title: RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115079 – ident: ref_38 doi: 10.3390/sym9100203 – volume: 84 start-page: 1 year: 1999 ident: ref_53 article-title: Sexual reproduction and early plant growth of the Wollemi pine (Wollemia nobilis), a rare and threatened Australian conifer publication-title: Ann. Bot. doi: 10.1006/anbo.1999.0882 – volume: 6 start-page: 1800 year: 2016 ident: ref_49 article-title: Renewable pine cone biomass derived carbon materials for supercapacitor application publication-title: RSC Adv. doi: 10.1039/C5RA21708C – ident: ref_60 doi: 10.1109/CEC.2017.7969336 – ident: ref_10 – ident: ref_35 doi: 10.1007/978-3-319-46173-1 – volume: 213 start-page: 267 year: 2010 ident: ref_24 article-title: A novel heuristic optimization method: Charged system search publication-title: Acta Mech. doi: 10.1007/s00707-009-0270-4 – ident: ref_20 doi: 10.3390/biomimetics8080619 – volume: 86 start-page: 165 year: 2019 ident: ref_30 article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.08.025 – volume: 24 start-page: 1117 year: 2020 ident: ref_61 article-title: A novel meta-heuristic optimization method based on golden ratio in nature publication-title: Soft Comput. doi: 10.1007/s00500-019-03949-w – volume: 194 start-page: 629 year: 2022 ident: ref_46 article-title: Trees Social Relations Optimization Algorithm: A new Swarm-Based metaheuristic technique to solve continuous and discrete optimization problems publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2021.12.010 – ident: ref_59 – volume: 76 start-page: 60 year: 2001 ident: ref_4 article-title: A New Heuristic Optimization Algorithm: Harmony Search publication-title: Simulation doi: 10.1177/003754970107600201 – ident: ref_21 doi: 10.3390/biomimetics8060507 – volume: 156 start-page: 107224 year: 2021 ident: ref_27 article-title: Flow Direction Algorithm (FDA): A Novel Optimization Approach for Solving Optimization Problems publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107224 – volume: 33 start-page: 5011 year: 2020 ident: ref_31 article-title: Coronavirus herd immunity optimizer (CHIO) publication-title: Neural Comput. Appl. – volume: 208 start-page: 95 year: 2023 ident: ref_47 article-title: Orchard Algorithm (OA): A new meta-heuristic algorithm for solving discrete and continuous optimization problems publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2022.12.027 – ident: ref_40 doi: 10.3390/sym11081049 – volume: 17 start-page: 361 year: 2002 ident: ref_50 article-title: The evolution of wind pollination in angiosperms publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(02)02540-5 – volume: 97 start-page: 849 year: 2019 ident: ref_16 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 22 start-page: 213 year: 2021 ident: ref_6 article-title: A new evolutionary algorithm: Learner performance based behavior algorithm publication-title: Egypt. Inform. J. doi: 10.1016/j.eij.2020.08.003 – volume: 1 start-page: 355 year: 2006 ident: ref_42 article-title: A novel numerical optimization algorithm inspired from weed colonization publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2006.07.003 – volume: 16 start-page: 1325 year: 2023 ident: ref_48 article-title: Tree optimization algorithm (TOA): A novel metaheuristic approach for solving mathematical test functions and engineering problems publication-title: Evol. Intell. doi: 10.1007/s12065-022-00742-x – ident: ref_11 – volume: 259 start-page: 110011 year: 2023 ident: ref_17 article-title: Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.110011 – volume: 42 start-page: 6686 year: 2015 ident: ref_44 article-title: TSA: Tree-seed algorithm for continuous optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.04.055 – volume: 72 start-page: 393 year: 2018 ident: ref_45 article-title: Tree Growth Algorithm (TGA): A novel approach for solving optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.04.021 – ident: ref_19 doi: 10.3390/biomimetics8060470 – ident: ref_43 doi: 10.1007/978-3-642-32894-7_27 – volume: 69 start-page: 46 year: 2014 ident: ref_14 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 1 start-page: 3 year: 2011 ident: ref_67 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 11 start-page: 341 year: 1997 ident: ref_3 article-title: Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – ident: ref_37 doi: 10.1109/CONECCT52877.2021.9622704 – volume: 17 start-page: 4831 year: 2012 ident: ref_13 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2012.05.010 – volume: 87 start-page: 103249 year: 2020 ident: ref_5 article-title: Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103249 – volume: 103 start-page: 107140 year: 2021 ident: ref_57 article-title: An improved atom search optimization with dynamic opposite learning and heterogeneous comprehensive learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107140 – volume: 264 start-page: 110305 year: 2023 ident: ref_32 article-title: Incomprehensible but Intelligible-in-time logics: Theory and optimization algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110305 – volume: 35 start-page: 487 year: 2023 ident: ref_7 article-title: Evolutionary mating algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07761-w – volume: 27 start-page: 495 year: 2016 ident: ref_26 article-title: Multi-Verse Optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – ident: ref_63 doi: 10.1109/CEC.2017.7969524 – ident: ref_39 doi: 10.3390/sym10060210 – volume: 1 start-page: 67 year: 1997 ident: ref_1 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – ident: ref_41 doi: 10.3390/sym11070876 – volume: 77 start-page: 251 year: 1996 ident: ref_52 article-title: Mating patterns and pollen dispersal in a natural knobcone pine (Pinus attenuate Lemmon.) stand publication-title: Heredity – volume: 532 start-page: 183 year: 2023 ident: ref_28 article-title: RIME: A physics-based optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.02.010 – volume: 29 start-page: 464 year: 2012 ident: ref_12 article-title: Bat algorithm: A novel approach for global engineering optimization publication-title: Eng. Comput. doi: 10.1108/02644401211235834 – ident: ref_8 doi: 10.3390/sym15101873 – volume: 95 start-page: 51 year: 2016 ident: ref_15 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref_2 doi: 10.7551/mitpress/1090.001.0001 – volume: 11 start-page: 122069 year: 2023 ident: ref_22 article-title: Humboldt Squid Optimization Algorithm (HSOA): A Novel Nature-Inspired Technique for Solving Optimization Problems publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3328248 – volume: 79 start-page: 7305 year: 2023 ident: ref_18 article-title: Dung beetle optimizer: A new meta-heuristic algorithm for global optimization publication-title: J. Supercomput. doi: 10.1007/s11227-022-04959-6 – volume: 13 start-page: 514 year: 2020 ident: ref_36 article-title: Football Game Based Optimization: An Application to Solve Energy Commitment Problem publication-title: Int. J. Intell. Eng. Syst. – volume: 237 start-page: 121597 year: 2024 ident: ref_34 article-title: Human memory optimization algorithm: A memory-inspired optimizer for global optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121597 |
| SSID | ssj0001965440 |
| Score | 2.3810282 |
| Snippet | The present study introduces a novel nature-inspired optimizer called the Pine Cone Optimization algorithm (PCOA) for solving science and engineering problems.... |
| SourceID | doaj unpaywall proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 91 |
| SubjectTerms | Algorithms Analysis Chemistry Design engineering problems Evaluation Exploitation Genetic algorithms mathematical benchmark functions Mathematical optimization nature-inspired optimization Optimization algorithms Physics pine cone pine tree Pollination Researchers Seeds Trees |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hXuCCKOUjUFCQEB-CqHZsJ-tjWFFVSNAeqNSbZSdjKNrNVt1dVf33zCRptKtKwIFLDomjxC9jzxtn5hngNZJbtxF15ouGApRGqMz73GYRlTYBJ2QkvA759VtxdKq_nJmzja2-OCeslwfugTvQAnMrUE5i9EQuVCi1zcvoTYgmBIE8-4qJ3QimfvWiL0Zr0VfJKIrrD7ia_XzOhYFLK_iXgNzyRJ1g_-1pecMv3V23F_76ys9mGw7o8AHcH5hjWvVvvAt3sH0Ie1VLUfP8On2Tdrmc3SL5HnAiRXpCBDKdLuhwTPPCfCi4TKvZj8Xl-ernPH13Mj2u3j-C08PP36dH2bAtQlYTm1pl0kbWTKmbQhusoy-CqBttYkQsvMk9rwwJEYNsChmitXlQCiceUeU2lmVQj2GnpYc_hVRq72UsNCoKi6wlTKPuKIYyRUCRJyBvIHL1oBnOW1fMHMUODKu7DWsCH8Z7LnrFjD-2_sTIjy1Z7bo7QTbgBhtwf7OBBN7yd3M8Jun1aj-UFlAnWd3KVWRw5Kkp2E9gf6sljaV6-_LNl3fDWF46IkTCdLo_CbwaL_OdnJ_W4mK9dDQzUuhphSLInvQWM3ZJMQeVqkzg42hC_4DMs_-BzHO4lxML69PM92FndbnGF8SiVuFlN2B-A8V3GJ0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLam7gFeuA1YYKAgIS6CLHZ8SSwhoVAxTUhsfaDSeECRndijok2rNgWNX89x4kYrkxDwkofYVnw5Pv7OyTmfEXpq4FiX1rBIiQoMlArTSKlERtZQxrXJQEicH_LjiTgesw9n_GwHvdnkwriwSjDFJ62SBuxBo1SkNJZxEksSLyr79rv3IzneF4Dj0mWY7woOSHyAdscno_xze5-cb9nlyVCw7GOXzz6ZudTAlcTupwDZOotayv6rivnSyXRtXS_UxQ81nV46go5uoi-bzneRJ98O140-LH_-xuv4v6O7hW54bBrmnTDdRjumvoP28hrs8tlF-Cxso0VbN_wecqEa4Qggajicw-MUNM_Mp3SG-fR8vpw0X2fhi9HwNH95F42P3n8aHkf-4oWoBLzWRERax8pSVoJxU1olNC4rxq01RiieKOd7wthqUgmirZSJptRkyhiaSJummt5Dgxo-vo9CwpQiVjBDwfCSkmtrWQtiKBfa4CRAZLMERelZyd3lGNMCrBO3bMXVZQvQq77NouPk-GPtd25l-5qOT7t9MV-eF357FgybRGJDMmsVQFiqUyaT1CroL9camwA9d3JRuF0P3SuVT16AQTr-rCIHkQYskGVZgA62asJuLbeLN5JVeG2xKgByYd4yCwXoSV_sWroIuNrM16sCdC8YtxJTmLL7nUT2Q6IO5RKaBuh1L6J_MTMP_q36Q3Q9AUTXhawfoEGzXJtHgMga_dhvvF9QvC-o priority: 102 providerName: Unpaywall |
| Title | The Pine Cone Optimization Algorithm (PCOA) |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38392137 https://www.proquest.com/docview/2930500273 https://www.proquest.com/docview/3182879032 https://www.mdpi.com/2313-7673/9/2/91/pdf?version=1706862915 https://doaj.org/article/40e290e18ffa4053b74927fa5bf5bb0e |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: ABDBF dateStart: 20220601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: BENPR dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9swED-6hNF9GVu6h7cueDD2YDWVLfmhD2M4WUMZLA1jge6TkWypGyRO1iSM_ve78yNtKJR9McSSiXw63ct3vwN4Y1CtS2uEp6ICHZSCcU-pQHrWcBFqkyCTUBzy2zg6nYqv5-H5HozbWhhKq2xlYiWoi0VOMfJjVEssrNBXPi__eNQ1ir6uti00VNNaofhUQYzdg25AyFgd6A5OxpPv11EXGYVCsLp6hqO_f0xV7r_nVDC4kow-Ffg7GqoC8r8trm_oq_1NuVRXf9VsdkMxjR7Bw8aidNOaBR7Dnil7cJCW6E3Pr9y3bpXjWQXPe7A_bPu79eB-NZCvDoDSLtwJmpvucIGXM5Qi86Y8001nF0iF9a-5-34yPEs_PIHp6OTH8NRrmih4Odpea8-XlhBW8iISocmtijTLCxFaa0ykwkBRHIkxq_0i8rWVMtCcm0QZwwNp41jzp9Ap8c-fg-sLpXwbCcPRiZIy1NaKyiDhYaQNCxzwW8JleYMwTo0uZhl6GkTs7DaxHfi4fWZZ42vcOXtA-7GdSdjY1Y3F5UXWHLVMMBNIZvzEWoXmKNexkEFsFa431JoZB97RbmZ0gnF5uWoKEfAlCQsrS5E9Ua8nSeLA4c5M3KB8d7jlh6w5-avsmk8deL0dpicpm600i80qQzmKjqpkHEn2rOaj7Stxslh9HjtwtGWs_6DMi7vX8hIeBGiN1enmh9BZX27MK7Sm1roP3XTwZTDqN0elX0Ul8Nd0PEl__gMhPyEE |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bTtsw9IiBpu5l2sou2diWSbtqi3BiJ40f0FQ6UBlQKgQSb56d2GxSb6OtUH9u37Zz0qRQIaG98JKH2Emc43P3uQC8syjWpbMi0EmOBkrOeKB1JANnuYiNTRFJyA952Enap-LHWXy2An-rXBgKq6x4YsGo82FGPvJNFEssLqqvfBv9CahrFJ2uVi00dNlaId8qSoyViR37dnaJJtx4a-877vf7KNrdOWm1g7LLQJChcjIJQumoBEmWJyK2mdOJYVkuYuesTXQcaXK0MOZMmCehcVJGhnObamt5JF2jYTi-9x6sCS4kGn9r2zud7vGVl0cmsRBsnq3DuWSblFX_u08JimPJ6GgiXJKIReOAm-LhmnysTQcjPbvUvd41Qbj7CB6WGqzfnKPcY1ixgzqsNwdovfdn_ge_iCktnPV1qLWqfnJ1uF8MZON1oDAPv4vqrd8a4uUIuVa_TAf1m71zhPrkV9__1G0dNT8_gdM7AedTWB3gx5-DHwqtQ5cIy9FokzI2zolCAeJxYiyLPAgrwKmsrGhOjTV6Ci0bAra6CWwPviyeGc3redw6e5v2YzGTanEXN4YX56okbSWYjSSzYeqcRvWXm4aQUcNpXG9sDLMefKTdVMQxcHmZLhMf8Cep9pZqIjmgHpGmqQcbSzNxg7Ll4QofVMlpxuqKLjx4uximJyl6bmCH07FCvo2GsWQcQfZsjkeLX-KkIYe84cHXBWL9B2Re3L6WN1BrnxweqIO9zv5LeBChJjgPdd-A1cnF1L5CTW5iXpfk4sPPu6bQf9agWz8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9GhsgvGCoOMSGBAkrmJRndhJ44cJdd2qjUFXISbtzbMTeyD1xtpq6i_yVZyTJt2qSRMve8lD7CTO8bn7XADeWhTr0lkR6CRHAyVnPNA6koGzXMTGpogk5If83kn2j8XXk_hkBf5WuTAUVlnxxIJR58OMfOR1FEssLqqv1F0ZFtHdbX8Z_QmogxSdtFbtNHTZZiHfLsqNlUkeh3Z2gebcePtgF_f-XRS193629oOy40CQoaIyCULpqBxJlicitpnTiWFZLmLnrE10HGlyujDmTJgnoXFSRoZzm2preSRdo2E4vvcOrNHhFzKJtZ29TvfHpcdHJrEQbJ65w7lkdcqw_92nZMWxZHRMES5Jx6KJwHVRcUVWrk8HIz270L3eFaHYfggPSm3Wb87R7xGs2EENNpoDtOT7M_-9X8SXFo77Gqy3qt5yNbhbDGTjDaCQD7-Lqq7fGuLlCDlYv0wN9Zu9M4T65Fff_9htHTU_PYbjWwHnE1gd4MefgR8KrUOXCMvRgJMyNs6JQhnicWIsizwIK8CprKxuTk02egqtHAK2ug5sDz4vnhnNa3vcOHuH9mMxk-pyFzeG52eqJHMlmI0ks2HqnEZVmJuGkFHDaVxvbAyzHnyg3VTEPXB5mS6TIPAnqQ6XaiJpoE6RpqkHm0szcYOy5eEKH1TJdcbqkkY8eLMYpicpkm5gh9OxQh6ORrJkHEH2dI5Hi1_ipC2HvOHB1gKx_gMyz29ey2u4h5Sqvh10Dl_A_QiVwnnU-yasTs6n9iUqdRPzqqQWH05vm0D_AfYhX24 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLam7gFeuA1YYKAgIS6CLHZ8SSwhoVAxTUhsfaDSeECRndijok2rNgWNX89x4kYrkxDwkofYVnw5Pv7OyTmfEXpq4FiX1rBIiQoMlArTSKlERtZQxrXJQEicH_LjiTgesw9n_GwHvdnkwriwSjDFJ62SBuxBo1SkNJZxEksSLyr79rv3IzneF4Dj0mWY7woOSHyAdscno_xze5-cb9nlyVCw7GOXzz6ZudTAlcTupwDZOotayv6rivnSyXRtXS_UxQ81nV46go5uoi-bzneRJ98O140-LH_-xuv4v6O7hW54bBrmnTDdRjumvoP28hrs8tlF-Cxso0VbN_wecqEa4Qggajicw-MUNM_Mp3SG-fR8vpw0X2fhi9HwNH95F42P3n8aHkf-4oWoBLzWRERax8pSVoJxU1olNC4rxq01RiieKOd7wthqUgmirZSJptRkyhiaSJummt5Dgxo-vo9CwpQiVjBDwfCSkmtrWQtiKBfa4CRAZLMERelZyd3lGNMCrBO3bMXVZQvQq77NouPk-GPtd25l-5qOT7t9MV-eF357FgybRGJDMmsVQFiqUyaT1CroL9camwA9d3JRuF0P3SuVT16AQTr-rCIHkQYskGVZgA62asJuLbeLN5JVeG2xKgByYd4yCwXoSV_sWroIuNrM16sCdC8YtxJTmLL7nUT2Q6IO5RKaBuh1L6J_MTMP_q36Q3Q9AUTXhawfoEGzXJtHgMga_dhvvF9QvC-o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Pine+Cone+Optimization+Algorithm+%28PCOA%29&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Valikhan+Anaraki%2C+Mahdi&rft.au=Farzin%2C+Saeed&rft.date=2024-02-01&rft.issn=2313-7673&rft.eissn=2313-7673&rft.volume=9&rft.issue=2&rft_id=info:doi/10.3390%2Fbiomimetics9020091&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon |