Application of data-driven models to predict the dimensions of flow separation zone

In this research, the effect of a submerged multiple-vane system on the dimensions of flow separation zone (DFSZ) is assessed via 192 measured datasets. The vanes’ shape comprised two segments, curved and flat plates which are located in the connection of main channel to the lateral intake channel w...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 30; no. 24; pp. 65572 - 65586
Main Authors Gharehbaghi, Amin, Ghasemlounia, Redvan, Latif, Sarmad Dashti, Haghiabi, Amir Hamzeh, Parsaie, Abbas
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1614-7499
0944-1344
1614-7499
DOI10.1007/s11356-023-27024-y

Cover

Abstract In this research, the effect of a submerged multiple-vane system on the dimensions of flow separation zone (DFSZ) is assessed via 192 measured datasets. The vanes’ shape comprised two segments, curved and flat plates which are located in the connection of main channel to the lateral intake channel with an angle of 55°. In this direction, a butterfly’s array for the vanes’ arrangement along with different main controlling factors such as distances of vanes along the flow ( δ l ), degree of curvature ( β ), and angles of attack to the local primary flow direction ( θ ) is utilized. Through capturing photos and utilizing AutoCAD and SURFER software, maximum relative length and width are calculated. Based on the experimental measurements, maximum percentage reduction of DFSZ, in comparison with the controlled test (without submerged vanes), is obtained with θ  = 30°, β  = 34°, and δ l  = 10 cm with value of 78 and 76%, respectively. Moreover, several data-driven models, namely, gene expression programming (GEP), support vector regression (SVR), and a robust hybrid SVR with an ant colony optimization algorithm (ACO) (i.e., hybrid SVR-ACO model), are developed in order to predict DFSZ via the operative dimensionless variables realized by Spearman’s rho and Pearson’s coefficient processes. In accordance with the statistical metrics, model grading process, scatter plot, and the hybrid SVR(RBF)-ACO model are preferred as the best and most precise model to predict maximum relative length and width with a total grade ( TG ) of 6.75 and 5.8, respectively. The generated algebraic formula for DFSZ under the optimal scenario of GEP is equated with the corresponding measured ones and the results are within 0–10%.
AbstractList In this research, the effect of a submerged multiple-vane system on the dimensions of flow separation zone (DFSZ) is assessed via 192 measured datasets. The vanes’ shape comprised two segments, curved and flat plates which are located in the connection of main channel to the lateral intake channel with an angle of 55°. In this direction, a butterfly’s array for the vanes’ arrangement along with different main controlling factors such as distances of vanes along the flow ( δ l ), degree of curvature ( β ), and angles of attack to the local primary flow direction ( θ ) is utilized. Through capturing photos and utilizing AutoCAD and SURFER software, maximum relative length and width are calculated. Based on the experimental measurements, maximum percentage reduction of DFSZ, in comparison with the controlled test (without submerged vanes), is obtained with θ  = 30°, β  = 34°, and δ l  = 10 cm with value of 78 and 76%, respectively. Moreover, several data-driven models, namely, gene expression programming (GEP), support vector regression (SVR), and a robust hybrid SVR with an ant colony optimization algorithm (ACO) (i.e., hybrid SVR-ACO model), are developed in order to predict DFSZ via the operative dimensionless variables realized by Spearman’s rho and Pearson’s coefficient processes. In accordance with the statistical metrics, model grading process, scatter plot, and the hybrid SVR(RBF)-ACO model are preferred as the best and most precise model to predict maximum relative length and width with a total grade ( TG ) of 6.75 and 5.8, respectively. The generated algebraic formula for DFSZ under the optimal scenario of GEP is equated with the corresponding measured ones and the results are within 0–10%.
In this research, the effect of a submerged multiple-vane system on the dimensions of flow separation zone (DFSZ) is assessed via 192 measured datasets. The vanes' shape comprised two segments, curved and flat plates which are located in the connection of main channel to the lateral intake channel with an angle of 55°. In this direction, a butterfly's array for the vanes' arrangement along with different main controlling factors such as distances of vanes along the flow (δ ), degree of curvature (β), and angles of attack to the local primary flow direction (θ) is utilized. Through capturing photos and utilizing AutoCAD and SURFER software, maximum relative length and width are calculated. Based on the experimental measurements, maximum percentage reduction of DFSZ, in comparison with the controlled test (without submerged vanes), is obtained with θ = 30°, β = 34°, and δ  = 10 cm with value of 78 and 76%, respectively. Moreover, several data-driven models, namely, gene expression programming (GEP), support vector regression (SVR), and a robust hybrid SVR with an ant colony optimization algorithm (ACO) (i.e., hybrid SVR-ACO model), are developed in order to predict DFSZ via the operative dimensionless variables realized by Spearman's rho and Pearson's coefficient processes. In accordance with the statistical metrics, model grading process, scatter plot, and the hybrid SVR(RBF)-ACO model are preferred as the best and most precise model to predict maximum relative length and width with a total grade (TG) of 6.75 and 5.8, respectively. The generated algebraic formula for DFSZ under the optimal scenario of GEP is equated with the corresponding measured ones and the results are within 0-10%.
In this research, the effect of a submerged multiple-vane system on the dimensions of flow separation zone (DFSZ) is assessed via 192 measured datasets. The vanes’ shape comprised two segments, curved and flat plates which are located in the connection of main channel to the lateral intake channel with an angle of 55°. In this direction, a butterfly’s array for the vanes’ arrangement along with different main controlling factors such as distances of vanes along the flow (δl), degree of curvature (β), and angles of attack to the local primary flow direction (θ) is utilized. Through capturing photos and utilizing AutoCAD and SURFER software, maximum relative length and width are calculated. Based on the experimental measurements, maximum percentage reduction of DFSZ, in comparison with the controlled test (without submerged vanes), is obtained with θ = 30°, β = 34°, and δl = 10 cm with value of 78 and 76%, respectively. Moreover, several data-driven models, namely, gene expression programming (GEP), support vector regression (SVR), and a robust hybrid SVR with an ant colony optimization algorithm (ACO) (i.e., hybrid SVR-ACO model), are developed in order to predict DFSZ via the operative dimensionless variables realized by Spearman’s rho and Pearson’s coefficient processes. In accordance with the statistical metrics, model grading process, scatter plot, and the hybrid SVR(RBF)-ACO model are preferred as the best and most precise model to predict maximum relative length and width with a total grade (TG) of 6.75 and 5.8, respectively. The generated algebraic formula for DFSZ under the optimal scenario of GEP is equated with the corresponding measured ones and the results are within 0–10%.
In this research, the effect of a submerged multiple-vane system on the dimensions of flow separation zone (DFSZ) is assessed via 192 measured datasets. The vanes' shape comprised two segments, curved and flat plates which are located in the connection of main channel to the lateral intake channel with an angle of 55°. In this direction, a butterfly's array for the vanes' arrangement along with different main controlling factors such as distances of vanes along the flow (δl), degree of curvature (β), and angles of attack to the local primary flow direction (θ) is utilized. Through capturing photos and utilizing AutoCAD and SURFER software, maximum relative length and width are calculated. Based on the experimental measurements, maximum percentage reduction of DFSZ, in comparison with the controlled test (without submerged vanes), is obtained with θ = 30°, β = 34°, and δl = 10 cm with value of 78 and 76%, respectively. Moreover, several data-driven models, namely, gene expression programming (GEP), support vector regression (SVR), and a robust hybrid SVR with an ant colony optimization algorithm (ACO) (i.e., hybrid SVR-ACO model), are developed in order to predict DFSZ via the operative dimensionless variables realized by Spearman's rho and Pearson's coefficient processes. In accordance with the statistical metrics, model grading process, scatter plot, and the hybrid SVR(RBF)-ACO model are preferred as the best and most precise model to predict maximum relative length and width with a total grade (TG) of 6.75 and 5.8, respectively. The generated algebraic formula for DFSZ under the optimal scenario of GEP is equated with the corresponding measured ones and the results are within 0-10%.In this research, the effect of a submerged multiple-vane system on the dimensions of flow separation zone (DFSZ) is assessed via 192 measured datasets. The vanes' shape comprised two segments, curved and flat plates which are located in the connection of main channel to the lateral intake channel with an angle of 55°. In this direction, a butterfly's array for the vanes' arrangement along with different main controlling factors such as distances of vanes along the flow (δl), degree of curvature (β), and angles of attack to the local primary flow direction (θ) is utilized. Through capturing photos and utilizing AutoCAD and SURFER software, maximum relative length and width are calculated. Based on the experimental measurements, maximum percentage reduction of DFSZ, in comparison with the controlled test (without submerged vanes), is obtained with θ = 30°, β = 34°, and δl = 10 cm with value of 78 and 76%, respectively. Moreover, several data-driven models, namely, gene expression programming (GEP), support vector regression (SVR), and a robust hybrid SVR with an ant colony optimization algorithm (ACO) (i.e., hybrid SVR-ACO model), are developed in order to predict DFSZ via the operative dimensionless variables realized by Spearman's rho and Pearson's coefficient processes. In accordance with the statistical metrics, model grading process, scatter plot, and the hybrid SVR(RBF)-ACO model are preferred as the best and most precise model to predict maximum relative length and width with a total grade (TG) of 6.75 and 5.8, respectively. The generated algebraic formula for DFSZ under the optimal scenario of GEP is equated with the corresponding measured ones and the results are within 0-10%.
In this research, the effect of a submerged multiple-vane system on the dimensions of flow separation zone (DFSZ) is assessed via 192 measured datasets. The vanes’ shape comprised two segments, curved and flat plates which are located in the connection of main channel to the lateral intake channel with an angle of 55°. In this direction, a butterfly’s array for the vanes’ arrangement along with different main controlling factors such as distances of vanes along the flow (δₗ), degree of curvature (β), and angles of attack to the local primary flow direction (θ) is utilized. Through capturing photos and utilizing AutoCAD and SURFER software, maximum relative length and width are calculated. Based on the experimental measurements, maximum percentage reduction of DFSZ, in comparison with the controlled test (without submerged vanes), is obtained with θ = 30°, β = 34°, and δₗ = 10 cm with value of 78 and 76%, respectively. Moreover, several data-driven models, namely, gene expression programming (GEP), support vector regression (SVR), and a robust hybrid SVR with an ant colony optimization algorithm (ACO) (i.e., hybrid SVR-ACO model), are developed in order to predict DFSZ via the operative dimensionless variables realized by Spearman’s rho and Pearson’s coefficient processes. In accordance with the statistical metrics, model grading process, scatter plot, and the hybrid SVR(RBF)-ACO model are preferred as the best and most precise model to predict maximum relative length and width with a total grade (TG) of 6.75 and 5.8, respectively. The generated algebraic formula for DFSZ under the optimal scenario of GEP is equated with the corresponding measured ones and the results are within 0–10%.
In this research, the effect of a submerged multiple-vane system on the dimensions of flow separation zone (DFSZ) is assessed via 192 measured datasets. The vanes’ shape comprised two segments, curved and flat plates which are located in the connection of main channel to the lateral intake channel with an angle of 55°. In this direction, a butterfly’s array for the vanes’ arrangement along with different main controlling factors such as distances of vanes along the flow (δl), degree of curvature (β), and angles of attack to the local primary flow direction (θ) is utilized. Through capturing photos and utilizing AutoCAD and SURFER software, maximum relative length and width are calculated. Based on the experimental measurements, maximum percentage reduction of DFSZ, in comparison with the controlled test (without submerged vanes), is obtained with θ = 30°, β = 34°, and δl = 10 cm with value of 78 and 76%, respectively. Moreover, several data-driven models, namely, gene expression programming (GEP), support vector regression (SVR), and a robust hybrid SVR with an ant colony optimization algorithm (ACO) (i.e., hybrid SVR-ACO model), are developed in order to predict DFSZ via the operative dimensionless variables realized by Spearman’s rho and Pearson’s coefficient processes. In accordance with the statistical metrics, model grading process, scatter plot, and the hybrid SVR(RBF)-ACO model are preferred as the best and most precise model to predict maximum relative length and width with a total grade (TG) of 6.75 and 5.8, respectively. The generated algebraic formula for DFSZ under the optimal scenario of GEP is equated with the corresponding measured ones and the results are within 0–10%.
Author Haghiabi, Amir Hamzeh
Gharehbaghi, Amin
Parsaie, Abbas
Latif, Sarmad Dashti
Ghasemlounia, Redvan
Author_xml – sequence: 1
  givenname: Amin
  surname: Gharehbaghi
  fullname: Gharehbaghi, Amin
  organization: Faculty of Engineering, Dept. of Civil Engineering, Hasan Kalyoncu University
– sequence: 2
  givenname: Redvan
  orcidid: 0000-0003-1796-4562
  surname: Ghasemlounia
  fullname: Ghasemlounia, Redvan
  organization: Faculty of Engineering, Dept. of Civil Engineering, Istanbul Gedik Univ
– sequence: 3
  givenname: Sarmad Dashti
  orcidid: 0000-0002-0417-3545
  surname: Latif
  fullname: Latif, Sarmad Dashti
  email: Sarmad.latif@komar.edu.iq
  organization: Civil Engineering Department, College of Engineering, Komar University of Science and Technology, Kurdistan Region
– sequence: 4
  givenname: Amir Hamzeh
  surname: Haghiabi
  fullname: Haghiabi, Amir Hamzeh
  organization: Department of Water Science and Engineering, Faculty of Agriculture and Natural Resources, Lorestan University
– sequence: 5
  givenname: Abbas
  surname: Parsaie
  fullname: Parsaie, Abbas
  organization: Department of Hydraulic Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37085682$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1TAURS1URB_wAwxQJCZMUvyIE2eEqoqXVIlBYWyd2Cetq8QOdtLq9utxmwt9DEpHjpy1t47X2Sc7Pngk5C2jh4zS5mNiTMi6pFyUvKG8KjcvyB6rWVU2Vdvu3PveJfspXVDKacubV2RXNFTJWvE9cno0TYMzMLvgi9AXFmYobXSX6IsxWBxSMYdiimidmYv5HAvrRvQp4-mG74dwVSScIK4V13nE1-RlD0PCN9vzgPz68vnn8bfy5MfX78dHJ6WRVM0lE50BCUJIQy1voTIAppWVEkA7Y1lds47bvrY9cMR8WVcgJUNkFgxVnTggYu1d_ASbKxgGPUU3QtxoRvWNIr0q0lmRvlWkNzn1aU1NSzeiNejnCHfJAE4__OPduT4Ll7mQcVZxlRs-bBti-L1gmvXoksFhAI9hSVowKZiqWcP_i3JFJeWtoFVG3z9CL8ISfRaYKSaoymJYpt7dn_7f2H83mgG1AiaGlCL22rj5djf5MW542gx_FH2Wzu0SUob9Gca7sZ9I_QFyydal
CitedBy_id crossref_primary_10_1007_s12145_024_01650_7
crossref_primary_10_2166_hydro_2024_242
crossref_primary_10_2166_wpt_2024_108
Cites_doi 10.1016/S1001-6058(16)60783-7
10.48550/arXiv.cs/0102027
10.1016/j.agwat.2020.106145
10.1061/(ASCE)0733-9429(1999)125:8(862)
10.1007/s11269-022-03339-2
10.1061/(asce)0733-9429(1991)117:3(267)
10.1061/(ASCE)IR.1943-4774.0001646
10.1002/hyp.6323
10.1162/106454699568728
10.1080/00221689309498877
10.1016/j.ijsrc.2019.07.002
10.1061/9780784409817
10.1002/ird.207
10.1061/(asce)hy.1943-7900.0000212
10.1007/s11069-021-04839-x
10.1007/s11356-020-10421-y
10.1061/(asce)1084-0699(2007)12:5(532)
10.1016/j.jhydrol.2006.01.021
10.18280/ijdne.150505
10.1061/(ASCE)0733-9429(1996)122:6(353)
10.1007/s13762-021-03139-y
10.1109/72.641472
10.1016/j.applthermaleng.2016.10.181
10.1061/(asce)0733-9429(2007)133:10(1135)
10.1016/j.jher.2017.10.005
10.1061/(ASCE)0733-9429(1991)117:3(284)
10.1080/19942060.2018.1526119
10.1007/s11269-016-1463-y
10.1016/j.wse.2017.10.001
10.1109/3477.484436
10.1023/B:STCO.0000035301.49549.88
10.18280/ijsdp.160310
10.1016/j.asej.2021.06.009
10.1061/(ASCE)0733-9429(1990)116:1(119)
10.24107/ijeas.255030
10.1016/j.solener.2015.03.015
10.1061/(ASCE)0733-9429(1999)125:10(1051)
10.1016/j.compfluid.2020.104745
10.1016/j.measurement.2014.08.007
10.1038/s41598-022-06969-z
10.1016/j.compag.2021.106568
10.1016/j.amc.2015.10.070
10.1061/(asce)0733-9429(2009)135:3(209)
10.3390/w11030582
10.1016/j.jher.2016.05.003
10.1016/j.jhydrol.2022.128262
10.1007/s13369-016-2258-4
10.1061/(asce)0733-9429(1986)112:12(1164)
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright Springer Nature B.V. May 2023
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
– notice: Copyright Springer Nature B.V. May 2023
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1007/s11356-023-27024-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest ABI/INFORM Global
ProQuest Health & Medical Collection
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
AGRICOLA
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 65586
ExternalDocumentID 10.1007/s11356-023-27024-y
PMC10121428
37085682
10_1007_s11356_023_27024_y
Genre Journal Article
GroupedDBID ---
-Y2
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
ZMTXR
~02
~KM
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PJZUB
PPXIY
PUEGO
-5A
-5G
-5~
-BR
-EM
-~C
3V.
AAAVM
ADINQ
CGR
CUY
CVF
ECM
EIF
GQ6
GROUPED_ABI_INFORM_COMPLETE
NPM
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c508t-13bca5a335c0d29a4caac95483a0bcd1661b2df6dfa2ee3a064a551ee1dac08b3
IEDL.DBID AGYKE
ISSN 1614-7499
0944-1344
IngestDate Sun Oct 26 04:16:01 EDT 2025
Tue Sep 30 17:14:56 EDT 2025
Fri Sep 05 10:42:28 EDT 2025
Thu Sep 04 16:26:13 EDT 2025
Tue Oct 07 06:27:13 EDT 2025
Wed Feb 19 02:23:16 EST 2025
Thu Apr 24 22:58:41 EDT 2025
Wed Oct 01 06:33:49 EDT 2025
Thu Apr 10 08:02:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Data-driven models
Submerged vanes
Dimensions of flow separation zone
Lateral intake
Butterflies array
Language English
License 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-13bca5a335c0d29a4caac95483a0bcd1661b2df6dfa2ee3a064a551ee1dac08b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Responsible Editor: Marcus Schulz
ORCID 0000-0003-1796-4562
0000-0002-0417-3545
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s11356-023-27024-y.pdf
PMID 37085682
PQID 2813084831
PQPubID 54208
PageCount 15
ParticipantIDs unpaywall_primary_10_1007_s11356_023_27024_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10121428
proquest_miscellaneous_3153186172
proquest_miscellaneous_2805029304
proquest_journals_2813084831
pubmed_primary_37085682
crossref_citationtrail_10_1007_s11356_023_27024_y
crossref_primary_10_1007_s11356_023_27024_y
springer_journals_10_1007_s11356_023_27024_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References SM Borghei (27024_CR3) 1999; 125
27024_CR20
SD Latif (27024_CR18) 2021; 16
M Dorigo (27024_CR5) 1999; 5
L Olatomiwa (27024_CR33) 2015; 115
27024_CR19
AS Ramamurthy (27024_CR38) 2007; 133
BF Ziyad Sami (27024_CR50) 2022; 12
S Lawrence (27024_CR22) 1997; 8
HT Ouyang (27024_CR35) 2016; 13
BT Nakato (27024_CR28) 1990; 116
B Mohammadi (27024_CR24) 2020; 237
YM Tofiq (27024_CR43) 2022
B Sui (27024_CR41) 2017; 29
27024_CR7
27024_CR8
27024_CR1
H Karami (27024_CR14) 2017; 10
A Keshavarzi (27024_CR16) 2005; 54
27024_CR27
27024_CR2
27024_CR26
27024_CR29
R Ghasemlounia (27024_CR12) 2021; 191
Y Wang (27024_CR45) 1993; 31
AJ Odgaard (27024_CR32) 1991; 117
A Gharehbaghi (27024_CR9) 2016; 8
AH Zaji (27024_CR49) 2016; 274
H Sharma (27024_CR39) 2020; 35
PS Yu (27024_CR47) 2006; 328
S Mehdizadeh (27024_CR23) 2017; 112
B Kaya (27024_CR15) 2012; 27
27024_CR36
A Gharehbaghi (27024_CR11) 2022; 612
27024_CR37
AJ Smola (27024_CR40) 2004
M Ehteram (27024_CR6) 2020
M Dorigo (27024_CR4) 1996; 26
Ö Kişi (27024_CR17) 2007; 12
B Vaheddoost (27024_CR44) 2016; 30
E Momeni (27024_CR25) 2014; 57
27024_CR46
A Gharehbaghi (27024_CR10) 2017; 42
AJ Odgaard (27024_CR31) 1991; 117
AJ Odgaard (27024_CR30) 1988; 112
SD Latif (27024_CR21) 2021
27024_CR48
UP Gupta (27024_CR13) 2010; 136
H-T Ouyang (27024_CR34) 2009; 135
P TahereiGhazvinei (27024_CR42) 2018; 12
References_xml – volume: 29
  start-page: 716
  year: 2017
  ident: 27024_CR41
  publication-title: J Hydrodyn
  doi: 10.1016/S1001-6058(16)60783-7
– ident: 27024_CR7
  doi: 10.48550/arXiv.cs/0102027
– volume: 237
  start-page: 106145
  year: 2020
  ident: 27024_CR24
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2020.106145
– ident: 27024_CR1
  doi: 10.1061/(ASCE)0733-9429(1999)125:8(862)
– year: 2022
  ident: 27024_CR43
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-022-03339-2
– volume: 117
  start-page: 267
  year: 1991
  ident: 27024_CR31
  publication-title: J Hydraul Eng
  doi: 10.1061/(asce)0733-9429(1991)117:3(267)
– ident: 27024_CR8
  doi: 10.1061/(ASCE)IR.1943-4774.0001646
– ident: 27024_CR36
  doi: 10.1002/hyp.6323
– volume: 5
  start-page: 137
  year: 1999
  ident: 27024_CR5
  publication-title: Artif Life
  doi: 10.1162/106454699568728
– volume: 31
  start-page: 549
  year: 1993
  ident: 27024_CR45
  publication-title: J Hydraul Res
  doi: 10.1080/00221689309498877
– volume: 35
  start-page: 42
  year: 2020
  ident: 27024_CR39
  publication-title: Int J Sediment Res
  doi: 10.1016/j.ijsrc.2019.07.002
– ident: 27024_CR29
  doi: 10.1061/9780784409817
– volume: 54
  start-page: 543
  year: 2005
  ident: 27024_CR16
  publication-title: Irrig Drain
  doi: 10.1002/ird.207
– volume: 136
  start-page: 651
  year: 2010
  ident: 27024_CR13
  publication-title: J Hydraul Eng
  doi: 10.1061/(asce)hy.1943-7900.0000212
– ident: 27024_CR20
  doi: 10.1007/s11069-021-04839-x
– year: 2020
  ident: 27024_CR6
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-10421-y
– volume: 12
  start-page: 532
  year: 2007
  ident: 27024_CR17
  publication-title: J Hydrol Eng
  doi: 10.1061/(asce)1084-0699(2007)12:5(532)
– volume: 328
  start-page: 704
  year: 2006
  ident: 27024_CR47
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2006.01.021
– ident: 27024_CR19
  doi: 10.18280/ijdne.150505
– ident: 27024_CR46
  doi: 10.1061/(ASCE)0733-9429(1996)122:6(353)
– ident: 27024_CR27
  doi: 10.1007/s13762-021-03139-y
– volume: 8
  start-page: 1507
  year: 1997
  ident: 27024_CR22
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/72.641472
– volume: 112
  start-page: 1097
  year: 2017
  ident: 27024_CR23
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.10.181
– volume: 133
  start-page: 1135
  year: 2007
  ident: 27024_CR38
  publication-title: J Hydraul Eng
  doi: 10.1061/(asce)0733-9429(2007)133:10(1135)
– ident: 27024_CR48
  doi: 10.1016/j.jher.2017.10.005
– volume: 117
  start-page: 284
  year: 1991
  ident: 27024_CR32
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(1991)117:3(284)
– volume: 12
  start-page: 738
  year: 2018
  ident: 27024_CR42
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2018.1526119
– volume: 30
  start-page: 4951
  year: 2016
  ident: 27024_CR44
  publication-title: Iran Water Resour Manag
  doi: 10.1007/s11269-016-1463-y
– volume: 10
  start-page: 246
  year: 2017
  ident: 27024_CR14
  publication-title: Water Sci Eng
  doi: 10.1016/j.wse.2017.10.001
– volume: 26
  start-page: 29
  year: 1996
  ident: 27024_CR4
  publication-title: IEEE Trans Syst Man, Cybern Part B Cybern
  doi: 10.1109/3477.484436
– volume-title: A tutorial on support vector regression
  year: 2004
  ident: 27024_CR40
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 16
  start-page: 497
  year: 2021
  ident: 27024_CR18
  publication-title: Int J Sustain Dev Plan
  doi: 10.18280/ijsdp.160310
– year: 2021
  ident: 27024_CR21
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2021.06.009
– volume: 116
  start-page: 119
  year: 1990
  ident: 27024_CR28
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(1990)116:1(119)
– volume: 8
  start-page: 1
  year: 2016
  ident: 27024_CR9
  publication-title: Int J Eng Appl Sci
  doi: 10.24107/ijeas.255030
– volume: 115
  start-page: 632
  year: 2015
  ident: 27024_CR33
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2015.03.015
– volume: 125
  start-page: 1051
  issue: 10
  year: 1999
  ident: 27024_CR3
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(1999)125:10(1051)
– ident: 27024_CR26
  doi: 10.1016/j.compfluid.2020.104745
– volume: 57
  start-page: 122
  year: 2014
  ident: 27024_CR25
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2014.08.007
– volume: 12
  start-page: 1
  year: 2022
  ident: 27024_CR50
  publication-title: Taiwan Sci Rep
  doi: 10.1038/s41598-022-06969-z
– volume: 191
  start-page: 106568
  year: 2021
  ident: 27024_CR12
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2021.106568
– volume: 274
  start-page: 14
  year: 2016
  ident: 27024_CR49
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2015.10.070
– volume: 135
  start-page: 209
  year: 2009
  ident: 27024_CR34
  publication-title: J Hydraul Eng
  doi: 10.1061/(asce)0733-9429(2009)135:3(209)
– volume: 27
  start-page: 26
  year: 2012
  ident: 27024_CR15
  publication-title: J Fac Eng Archit Gazi Univ
– ident: 27024_CR37
  doi: 10.3390/w11030582
– volume: 13
  start-page: 14
  year: 2016
  ident: 27024_CR35
  publication-title: J Hydro-Environment Res
  doi: 10.1016/j.jher.2016.05.003
– volume: 612
  start-page: 128262
  year: 2022
  ident: 27024_CR11
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2022.128262
– volume: 42
  start-page: 999
  year: 2017
  ident: 27024_CR10
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-016-2258-4
– volume: 112
  start-page: 1164
  year: 1988
  ident: 27024_CR30
  publication-title: J Hydraul Eng
  doi: 10.1061/(asce)0733-9429(1986)112:12(1164)
– ident: 27024_CR2
SSID ssj0020927
Score 2.3972151
Snippet In this research, the effect of a submerged multiple-vane system on the dimensions of flow separation zone (DFSZ) is assessed via 192 measured datasets. The...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 65572
SubjectTerms Algorithms
Angle of attack
Ant colony optimization
Aquatic Pollution
Artificial intelligence
Atmospheric Protection/Air Quality Control/Air Pollution
butterflies
Civil engineering
computer software
data collection
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental science
Flat plates
Flow separation
Gene expression
hybrids
Hydraulics
Intake channels
Laboratories
Mathematical models
Optimization
regression analysis
Research Article
Robustness (mathematics)
Sediments
Software
Statistical analysis
Support vector machines
system optimization
Vanes
Waste Water Technology
Water Management
Water Pollution Control
Water quality
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AA9IF4FQ0GLxI2u8HrXjn1AqKBUFYcIAZV6s9b7UJEiO8SJqvTXM-MnUUXENTtZOTszO188M98AvKOYHXqRce2nmiMiTrjGMMStFr7QqZHCNVW-8-TiUn29iq8OYN73wlBZZX8nNhe1rQy9I_8QpXjbpiqV4tPyN6epUZRd7Udo6G60gv3YUIzdg8OImLEmcPh5Nv_2ffgLFmbtENdMKS6kUl0bTdtMJ2RMBbmy6dFSfLsbqu7gz7tllEMu9Qjub8ql3t7oxeKvcHX-CB52OJOdtYbxGA5c-QSOZ2NbGy52fl0_hR9nYx6bVZ5R3Si3K7oJWTMrp2brii1XlNVZM8SMzNJUAHrTVpO8X1Q3rHYtjzhucVuV7hlcns9-frng3bgFbhCl0VD6wuhYSxmb0EaZVkZrQ3xwUoeFsQIjeRFZn1ivI-fww0RpPGznhNUmTAt5DJMSt38BzOMOLs5Q0yYhCnudJM5HPplGFhGNjQMQ_cnmpuMip5EYi3xkUSZt5KiNvNFGvg3g_fCdZcvEsVf6pFdY3nllnY82FMDbYRn9iZIkunTVhmTQeBEDherfMhLDhEgJ-wXwvLWB4ZHkFEFskuJKumMdgwDxee-ulL-uG15volojArwATntDGp993089HYztP07m5f6TeQUPIvKBpqbzBCbr1ca9Rty1Lt50zvQH_6cqhw
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE48C4ECjISN-rtOk682eMKWlUcKiRYqZwixw-BWCWrTVbV9tczkydLoQJxzUws2xl7PmVmvgF4Qz574sWMaz_VHBGx4hrdELda-EwnRgpXZ_meq7NF9OEivtiD910tTJ3t3oUkm5oGYmnKq-OV9cdD4ZuQMSXPyrqeKuLbMYpvwb6KEZGPYH9x_nH-pabZiyIuZN3TFbFNxKeI8Nvamd8PtOufroHO67mTfQD1Ltze5Cu9vdTL5U8-6vQ-uG51TWrK9_Gmysbm6hfix_9d_gO414JYNm-s7iHsufwRHJwMNXMobC-N8jF8mg9BclZ4Rkmp3K7pmmV1I56SVQVbrSlkVDEEpMxSywH6jVeSvl8Wl6x0DUk5DnFV5O4JLE5PPr87420vB24QAlLH-8zoWEsZm4kNZzoyWhsim5N6khkrECZkofXKeh06hw9VpBHMOSesNpMkkwcwynH4Z8A8juDiGZqRUcSPr5VyPvRqGlqESzYOQHRfMDUt0Tn121imA0Uz7V-K-5fW-5duA3jbv7NqaD5u1D7sDCNtj3yZhgnCgQQXJAJ43YvxsFIERueu2JAOngwEWJPozzoSfZBICFgG8LSxtX5KcooIWSUoSXassFcgsvBdSf7ta00aTjxuxK4XwFFnX8Pcb1rqUW_Uf7Ezz_9N_QXcCcmK6wTSQxhV6417iSCvyl61Z_gHXM5KKg
  priority: 102
  providerName: Unpaywall
Title Application of data-driven models to predict the dimensions of flow separation zone
URI https://link.springer.com/article/10.1007/s11356-023-27024-y
https://www.ncbi.nlm.nih.gov/pubmed/37085682
https://www.proquest.com/docview/2813084831
https://www.proquest.com/docview/2805029304
https://www.proquest.com/docview/3153186172
https://pubmed.ncbi.nlm.nih.gov/PMC10121428
https://link.springer.com/content/pdf/10.1007/s11356-023-27024-y.pdf
UnpaywallVersion publishedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1614-7499
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7R9AAcyrPUUKpF4kZdef3O0VQpFUhRBURKT9Z6HyoisqPYUZX-emb8JBQqekmU3fHKu5nd-eyZ-QbgPdlsx_CxLUwkbETEoS3QDNlKcJOJWHpc11G-0_B85n-eB_M2Kazsot07l2R9Ug_JbtwLKGDWq3OofHuzA7s139YIdpNPl18m_YOWM3ajNkHm71duG6FbyPJ2gGTvJX0MD9f5UmyuxWLxmyE6ewKzbgpN_MnPk3WVncibP9gd7zvHp7DXIlOWNKr0DB7o_DnsT4ZEOOxsT4LyBXxLBs83KwyjSFNbrejsZHV1nZJVBVuuyA9UMUSZTFEdAXo3V5K8WRTXrNQN8zgOcVPk-iXMzibfT8_ttkCDLRHXURn7TIpAeF4gHeWOhS-FkMQg5wknk4qj7c9cZUJlhKs1Noa-QISmNVdCOnHm7cMox-EPgBkcQQdj1A0ZEum9CENtXBNGrkIMpAILePePpbJlL6ciGot04F2mtUtx7dJ67dKNBR_6a5YNd8ed0oedIqTtPi5TN0YbH-OEuAXv-m7cgeRWEbku1iSD6o6oyfH_LeOhYeExoUULXjW61d-SFyHsDWPsibe0rhcgBvDtnvzHVc0ETuRsRJlnwXGnT8O93zXV416J_2NlXt9v9DfwyCUNrqNCD2FUrdb6LSK3KjuCnWge4Wd8yo_aTYvfHyfTi6_YOnMT_DWbXiSXvwDsAULD
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcEK-CocAiwYla2Ltrxz4gVJVWKS290Eq9mfU-BFJkhzhRFH4Uv5EZP4kqIi69eidrZ-f12fMCeEM-O3Bh6is3Uj4i4thX6IZ8o0KXq0SL0NZZvufx-FJ-voqutuB3VwtDaZWdTawNtSk1fSN_zxO0tolMRPhx-tOnqVEUXe1GaDRicWpXS3xlqz6cfEL-vuX8-OjicOy3UwV8jWCEZq_nWkVKiEgHhqdKaqU0tT0TKsi1CdFh5dy42DjFrcWLsVQIK6wNjdJBkgvc9xbcloKPyBAkh31KCQ_SZkRsKiXeRsq2SKcp1QtFROm-oq4Ak_5q3RFeQ7fXkzT7SO1d2FkUU7VaqsnkL2d4fB_utSiWHTRi9wC2bPEQdo-GojlcbK1G9Qi-HgxRclY6RlmpvpmRnWX1JJ6KzUs2nVHMaM4QkTJDMwfoO15F9G5SLlllmy7luMWvsrCP4fJGjn0Xtgvc_ikwhzvYKEU50jE1yFdxbB138YgbxEsm8iDsTjbTbadzGrgxyYYezcSNDLmR1dzIVh68638zbfp8bKTe6xiWtTpfZYOEevC6X0ZtpRCMKmy5IBpUDURYgfw3jUAnFCaELD140shA_0hihBA5TnAlWZOOnoC6ha-vFD--113DqZEbtdfzYL8TpOHZN_3V_V7Y_uNknm0-mVewM774cpadnZyfPoc7nPShzh7dg-35bGFfIMKb5y9rtWLw7ab1-A_qEWKq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7UClofxFtttOoI-mRDk8zk9iBSbJfWShG0sG9xMhcqLMm62WVZf5q_znNydSkuvvQ1c3aSnXP7knMDeEM-27N-6kobSxcRceRKdEOulr7NZaK4b-os34vo9FJ8GofjLfjd1cJQWmVnE2tDrUtF38gPgwStbSIS7h_aNi3iy_How_SnSxOkKNLajdNoROTcrJb4-la9PztGXr8NgtHJt4-nbjthwFUITGgOe65kKDkPlaeDVAolpaIWaFx6udI-Oq880DbSVgbG4MVISIQYxvhaKi_JOe57C27HnKeUThiPh5c9L23GxaZC4G2EaAt2mrI9n4eU-svrajDhrtad4jWkez1hs4_a3oO7i2IqV0s5mfzlGEcP4H6LaNlRI4IPYcsUj2D3ZCigw8XWglSP4evREDFnpWWUoerqGdlcVk_lqdi8ZNMZxY_mDNEp0zR_gL7pVURvJ-WSVabpWI5b_CoL8wQub-TYd2G7wO33gFncwYQpypSKqFm-jCJjAxvFgUbspEMH_O5kM9V2PafhG5Ns6NdM3MiQG1nNjWzlwLv-N9Om58dG6v2OYVmr_1U2SKsDr_tl1FwKx8jClAuiQTVBtOWJf9NwdEh-QijTgaeNDPSPxGOEy1GCK8madPQE1Dl8faX4cVV3EKembtRqz4GDTpCGZ9_0Vw96YfuPk3m2-WRewR3U4Ozz2cX5c9gJSB3qRNJ92J7PFuYFgr15_rLWKgbfb1qN_wD87GcZ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE48C4ECjISN-rtOk682eMKWlUcKiRYqZwixw-BWCWrTVbV9tczkydLoQJxzUws2xl7PmVmvgF4Qz574sWMaz_VHBGx4hrdELda-EwnRgpXZ_meq7NF9OEivtiD910tTJ3t3oUkm5oGYmnKq-OV9cdD4ZuQMSXPyrqeKuLbMYpvwb6KEZGPYH9x_nH-pabZiyIuZN3TFbFNxKeI8Nvamd8PtOufroHO67mTfQD1Ltze5Cu9vdTL5U8-6vQ-uG51TWrK9_Gmysbm6hfix_9d_gO414JYNm-s7iHsufwRHJwMNXMobC-N8jF8mg9BclZ4Rkmp3K7pmmV1I56SVQVbrSlkVDEEpMxSywH6jVeSvl8Wl6x0DUk5DnFV5O4JLE5PPr87420vB24QAlLH-8zoWEsZm4kNZzoyWhsim5N6khkrECZkofXKeh06hw9VpBHMOSesNpMkkwcwynH4Z8A8juDiGZqRUcSPr5VyPvRqGlqESzYOQHRfMDUt0Tn121imA0Uz7V-K-5fW-5duA3jbv7NqaD5u1D7sDCNtj3yZhgnCgQQXJAJ43YvxsFIERueu2JAOngwEWJPozzoSfZBICFgG8LSxtX5KcooIWSUoSXassFcgsvBdSf7ta00aTjxuxK4XwFFnX8Pcb1rqUW_Uf7Ezz_9N_QXcCcmK6wTSQxhV6417iSCvyl61Z_gHXM5KKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+data-driven+models+to+predict+the+dimensions+of+flow+separation+zone&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Gharehbaghi%2C+Amin&rft.au=Ghasemlounia%2C+Redvan&rft.au=Latif%2C+Sarmad+Dashti&rft.au=Haghiabi%2C+Amir+Hamzeh&rft.date=2023-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0944-1344&rft.eissn=1614-7499&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1007%2Fs11356-023-27024-y&rft_id=info%3Apmid%2F37085682&rft.externalDocID=PMC10121428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon