Cysteine Catabolism: A Novel Metabolic Pathway Contributing to Glioblastoma Growth

The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography–based mass spectrometry on a tot...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 74; no. 3; pp. 787 - 796
Main Authors Prabhu, Antony, Sarcar, Bhaswati, Kahali, Soumen, Yuan, Zhigang, Johnson, Joseph J., Adam, Klaus-Peter, Kensicki, Elizabeth, Chinnaiyan, Prakash
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 01.02.2014
Subjects
Online AccessGet full text
ISSN0008-5472
1538-7445
1538-7445
DOI10.1158/0008-5472.CAN-13-1423

Cover

Abstract The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography–based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis. Cancer Res; 74(3); 787–96. ©2013 AACR.
AbstractList The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography–based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis.
The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography-based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis.The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography-based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis.
The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography–based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis. Cancer Res; 74(3); 787–96. ©2013 AACR.
The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography-based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis.
Author Johnson, Joseph J.
Chinnaiyan, Prakash
Sarcar, Bhaswati
Adam, Klaus-Peter
Kensicki, Elizabeth
Prabhu, Antony
Yuan, Zhigang
Kahali, Soumen
AuthorAffiliation 1 Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
5 Metabolon, Inc., Durham, North Carolina
4 Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
2 Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
3 Advanced Microscopy Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
AuthorAffiliation_xml – name: 4 Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
– name: 1 Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
– name: 3 Advanced Microscopy Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
– name: 5 Metabolon, Inc., Durham, North Carolina
– name: 2 Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
Author_xml – sequence: 1
  givenname: Antony
  surname: Prabhu
  fullname: Prabhu, Antony
– sequence: 2
  givenname: Bhaswati
  surname: Sarcar
  fullname: Sarcar, Bhaswati
– sequence: 3
  givenname: Soumen
  surname: Kahali
  fullname: Kahali, Soumen
– sequence: 4
  givenname: Zhigang
  surname: Yuan
  fullname: Yuan, Zhigang
– sequence: 5
  givenname: Joseph J.
  surname: Johnson
  fullname: Johnson, Joseph J.
– sequence: 6
  givenname: Klaus-Peter
  surname: Adam
  fullname: Adam, Klaus-Peter
– sequence: 7
  givenname: Elizabeth
  surname: Kensicki
  fullname: Kensicki, Elizabeth
– sequence: 8
  givenname: Prakash
  surname: Chinnaiyan
  fullname: Chinnaiyan, Prakash
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28376886$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24351290$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhoO02G31Jyi5EbyZms-ZREFYBt0KbRXR63Amk-lGMpM6ybbsv3eGXbfWm16FJM_7npDnFB0NcXAIvaLknFKp3hFCVCFFxc7r5XVBeUEF48_QgkquikoIeYQWB-YEnab0a9pKSuRzdMIEl5RpskDf623Kzg8O15ChicGn_j1e4ut45wK-crszi79BXt_DFtdxyKNvNtkPNzhHvAo-NgFSjj3g1Rjv8_oFOu4gJPdyv56hn58__agvisuvqy_18rKwklS56FoOstIKGNdWtwDWOpCNlIQ1VtLKlda1IHXbkrJqtSC6c65sQHS6tVw1_Ax93PXebpretdZNL4Ngbkffw7g1Ebx5fDP4tbmJd0ZWrGRSTAVv9wVj_L1xKZveJ-tCgMHFTTJUaE0ZV1pN6Ot_Zx2G_P3ICXizByBZCN0Ig_XpgVO8KpUqJ07uODvGlEbXHRBKzCzWzNLMLM1MYg3lZhY75T78l7M-Q_azDvDhifQfDUWqfA
CODEN CNREA8
CitedBy_id crossref_primary_10_1016_j_jbiotec_2016_12_001
crossref_primary_10_1371_journal_pone_0184213
crossref_primary_10_1111_dote_12496
crossref_primary_10_1021_acssuschemeng_1c02627
crossref_primary_10_3109_10641963_2015_1060995
crossref_primary_10_1371_journal_pone_0214872
crossref_primary_10_1016_j_reumae_2021_03_010
crossref_primary_10_1186_s12935_025_03721_1
crossref_primary_10_3390_cancers13122900
crossref_primary_10_3389_fphys_2015_00382
crossref_primary_10_1536_ihj_16_124
crossref_primary_10_1080_10715762_2016_1235787
crossref_primary_10_3390_molecules28237699
crossref_primary_10_3389_fneur_2021_716195
crossref_primary_10_1016_j_biopha_2022_113923
crossref_primary_10_1038_s41420_020_00398_5
crossref_primary_10_2217_bmm_2017_0372
crossref_primary_10_3390_ijms24065546
crossref_primary_10_1016_j_celrep_2022_110800
crossref_primary_10_1007_s00726_014_1843_7
crossref_primary_10_5798_dicletip_574893
crossref_primary_10_1016_j_jss_2020_07_001
crossref_primary_10_46332_aemj_1093184
crossref_primary_10_1371_journal_pone_0113546
crossref_primary_10_12677_ACM_2022_124495
crossref_primary_10_1002_mc_22694
crossref_primary_10_1016_j_reuma_2021_03_007
crossref_primary_10_1111_jog_14301
crossref_primary_10_33808_clinexphealthsci_814301
crossref_primary_10_3389_fonc_2020_00717
crossref_primary_10_1016_j_smallrumres_2023_107023
crossref_primary_10_16899_jcm_571633
crossref_primary_10_1007_s00262_019_02347_3
crossref_primary_10_1371_journal_pone_0194785
crossref_primary_10_1007_s00296_017_3914_z
crossref_primary_10_1016_j_tibs_2015_01_004
crossref_primary_10_1111_coa_12701
crossref_primary_10_1179_1351000214Y_0000000106
crossref_primary_10_1016_j_gendis_2021_12_023
crossref_primary_10_1007_s13760_016_0598_1
crossref_primary_10_1158_1078_0432_CCR_17_1222
crossref_primary_10_1186_s40170_018_0175_6
crossref_primary_10_1038_s41416_020_01156_1
crossref_primary_10_1021_acs_jproteome_0c00243
crossref_primary_10_18621_eurj_414367
crossref_primary_10_1093_neuonc_noy185
crossref_primary_10_1080_13510002_2016_1180100
crossref_primary_10_3390_ani13101620
crossref_primary_10_3389_fmars_2022_813961
crossref_primary_10_1590_s1677_5538_ibju_2016_0114
crossref_primary_10_1038_jp_2015_81
crossref_primary_10_3390_molecules26113321
crossref_primary_10_1007_s10792_017_0513_7
crossref_primary_10_4103_0028_3886_370461
crossref_primary_10_1186_s13148_021_01163_w
crossref_primary_10_4292_wjgpt_v8_i2_120
crossref_primary_10_1177_0145561320926336
crossref_primary_10_1016_j_ccell_2015_12_004
crossref_primary_10_18632_oncotarget_19705
crossref_primary_10_1007_s11060_023_04329_z
crossref_primary_10_1111_ijcp_13998
crossref_primary_10_1371_journal_pone_0144862
crossref_primary_10_1007_s13760_020_01410_6
crossref_primary_10_1016_j_neuroscience_2016_01_027
crossref_primary_10_1177_0960327120930057
crossref_primary_10_1007_s10792_017_0444_3
crossref_primary_10_1021_acs_analchem_0c04457
crossref_primary_10_1073_pnas_2317343121
crossref_primary_10_1007_s11693_015_9183_9
crossref_primary_10_1016_j_mce_2015_11_002
crossref_primary_10_3109_02713683_2016_1141965
crossref_primary_10_1111_iep_12222
crossref_primary_10_1016_j_comppsych_2016_11_003
crossref_primary_10_1371_journal_pone_0148628
crossref_primary_10_1016_j_clinbiochem_2014_09_026
crossref_primary_10_1016_j_jpsychires_2021_05_084
crossref_primary_10_1245_s10434_018_6865_z
crossref_primary_10_1016_j_cytogfr_2021_10_002
crossref_primary_10_35440_hutfd_1068150
crossref_primary_10_1371_journal_pone_0211108
crossref_primary_10_1093_neuonc_nou369
crossref_primary_10_1007_s00404_021_06252_y
crossref_primary_10_22391_fppc_470360
crossref_primary_10_5799_jmid_790291
crossref_primary_10_1080_13813455_2020_1773505
crossref_primary_10_17546_msd_488247
crossref_primary_10_1172_jci_insight_99676
crossref_primary_10_26453_otjhs_849494
crossref_primary_10_1016_j_preghy_2016_09_003
crossref_primary_10_1245_s10434_018_07105_w
crossref_primary_10_38053_agtd_687618
Cites_doi 10.1056/NEJMoa043330
10.1016/0006-8993(82)90839-3
10.1073/pnas.1106704108
10.1002/jnr.1130
10.1056/NEJMra0708126
10.1093/neuonc/noq075
10.1038/nature08617
10.1016/S0014-5793(97)00669-8
10.1371/journal.pone.0044951
10.1186/1471-2407-10-247
10.1126/science.281.5381.1309
10.1002/glia.21176
10.1023/A:1025665820001
10.1158/0008-5472.CAN-12-1572-T
10.1016/j.stem.2009.03.014
10.1523/JNEUROSCI.5258-04.2005
10.1158/1535-7163.MCT-11-0469
10.3171/jns.1996.84.3.0449
10.1046/j.1471-4159.1998.71020827.x
10.1186/1758-2946-2-9
10.1126/scitranslmed.3000677
10.1016/S0006-8993(01)02342-3
10.1056/NEJMoa0808710
10.1186/2049-3002-1-7
10.1085/jgp.8.6.519
10.1006/abio.1994.1335
10.1038/nature07385
10.1158/1078-0432.CCR-11-0687
10.1159/000111347
10.1038/nm0901-1010
10.1038/nature10860
10.1074/jbc.M110.161190
10.1002/cncr.26321
10.1073/pnas.1530509100
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/0008-5472.CAN-13-1423
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 796
ExternalDocumentID PMC5726254
24351290
28376886
10_1158_0008_5472_CAN_13_1423
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA076292
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WH7
WOQ
YKV
YZZ
.55
.GJ
3O-
8WZ
A6W
AFFNX
AI.
C1A
D0S
IQODW
J5H
MVM
OHT
UDS
VH1
WHG
X7M
XJT
ZCG
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c507t-fd3a5798a239c9daaccea5b5502bc517e6ceda59dd067d9409fee6ba4f9dc38b3
ISSN 0008-5472
1538-7445
IngestDate Thu Aug 21 14:07:25 EDT 2025
Fri Sep 05 08:12:38 EDT 2025
Thu Apr 03 06:57:54 EDT 2025
Wed Apr 02 07:18:31 EDT 2025
Tue Jul 01 04:18:04 EDT 2025
Thu Apr 24 22:51:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Sulfur containing aminoacid
Malignant glioma
Nervous system diseases
Thiol
Cysteine
Growth
Central nervous system disease
Glioblastoma
Catabolism
Metabolic pathway
Malignant tumor
Cancer
Language English
License CC BY 4.0
Permissions: To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c507t-fd3a5798a239c9daaccea5b5502bc517e6ceda59dd067d9409fee6ba4f9dc38b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
A. Prabhu and B. Sarcar contributed equally to this work.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5726254
PMID 24351290
PQID 1499123898
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5726254
proquest_miscellaneous_1499123898
pubmed_primary_24351290
pascalfrancis_primary_28376886
crossref_primary_10_1158_0008_5472_CAN_13_1423
crossref_citationtrail_10_1158_0008_5472_CAN_13_1423
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2014
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References Brand (2022061704594190600_bib10) 1998; 71
Shanker (2022061704594190600_bib11) 2001; 902
Warburg (2022061704594190600_bib6) 1924; 152
Anso (2022061704594190600_bib30) 2013; 1
Lu (2022061704594190600_bib4) 2012; 483
Yan (2022061704594190600_bib5) 2009; 360
Recasens (2022061704594190600_bib29) 1982; 239
Pollard (2022061704594190600_bib20) 2009; 4
Sandulache (2022061704594190600_bib31) 2012; 118
Michelakis (2022061704594190600_bib23) 2010; 2
Dehaven (2022061704594190600_bib15) 2010; 2
Salvioli (2022061704594190600_bib24) 1997; 411
Wen (2022061704594190600_bib2) 2008; 359
2022061704594190600_bib16
Ogunrinu (2022061704594190600_bib14) 2010; 285
Warburg (2022061704594190600_bib7) 1927; 8
Koglin (2022061704594190600_bib28) 2011; 17
Padma (2022061704594190600_bib8) 2003; 64
Parsons (2022061704594190600_bib35) 2001; 65
Chung (2022061704594190600_bib13) 2005; 25
Stupp (2022061704594190600_bib1) 2005; 352
Santhosh-Kumar (2022061704594190600_bib18) 1994; 220
Negendank (2022061704594190600_bib25) 1996; 84
Takano (2022061704594190600_bib27) 2001; 7
Storey (2022061704594190600_bib17) 2003; 100
Brait (2022061704594190600_bib33) 2012; 7
Srinivasan (2022061704594190600_bib26) 2010; 12
Vlashi (2022061704594190600_bib32) 2011; 108
Seib (2022061704594190600_bib21) 2011; 59
Sarcar (2022061704594190600_bib19) 2011; 10
TCGA (2022061704594190600_bib36) 2008; 455
Dang (2022061704594190600_bib3) 2009; 462
Chinnaiyan (2022061704594190600_bib9) 2012; 72
Brand (2022061704594190600_bib12) 1993; 15
Dietrich (2022061704594190600_bib34) 2010; 10
Green (2022061704594190600_bib22) 1998; 281
References_xml – volume: 352
  start-page: 987
  year: 2005
  ident: 2022061704594190600_bib1
  article-title: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa043330
– volume: 239
  start-page: 153
  year: 1982
  ident: 2022061704594190600_bib29
  article-title: Evidence for cysteine sulfinate as a neurotransmitter
  publication-title: Brain Res
  doi: 10.1016/0006-8993(82)90839-3
– volume: 108
  start-page: 16062
  year: 2011
  ident: 2022061704594190600_bib32
  article-title: Metabolic state of glioma stem cells and nontumorigenic cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1106704108
– volume: 65
  start-page: 78
  year: 2001
  ident: 2022061704594190600_bib35
  article-title: Cysteine dioxygenase: regional localisation of protein and mRNA in rat brain
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.1130
– volume: 359
  start-page: 492
  year: 2008
  ident: 2022061704594190600_bib2
  article-title: Malignant gliomas in adults
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra0708126
– volume: 12
  start-page: 1152
  year: 2010
  ident: 2022061704594190600_bib26
  article-title: Ex vivo MR spectroscopic measure differentiates tumor from treatment effects in GBM
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noq075
– volume: 462
  start-page: 739
  year: 2009
  ident: 2022061704594190600_bib3
  article-title: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
  publication-title: Nature
  doi: 10.1038/nature08617
– volume: 411
  start-page: 77
  year: 1997
  ident: 2022061704594190600_bib24
  article-title: JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(97)00669-8
– volume: 7
  start-page: e44951
  year: 2012
  ident: 2022061704594190600_bib33
  article-title: Cysteine dioxygenase 1 is a tumor suppressor gene silenced by promoter methylation in multiple human cancers
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0044951
– volume: 10
  start-page: 247
  year: 2010
  ident: 2022061704594190600_bib34
  article-title: CDO1 promoter methylation is a biomarker for outcome prediction of anthracycline treated, estrogen receptor-positive, lymph node-positive breast cancer patients
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-10-247
– volume: 281
  start-page: 1309
  year: 1998
  ident: 2022061704594190600_bib22
  article-title: Mitochondria and apoptosis
  publication-title: Science
  doi: 10.1126/science.281.5381.1309
– volume: 59
  start-page: 1387
  year: 2011
  ident: 2022061704594190600_bib21
  article-title: Regulation of the system x(C)- cystine/glutamate exchanger by intracellular glutathione levels in rat astrocyte primary cultures
  publication-title: Glia
  doi: 10.1002/glia.21176
– volume: 64
  start-page: 227
  year: 2003
  ident: 2022061704594190600_bib8
  article-title: Prediction of pathology and survival by FDG PET in gliomas
  publication-title: J Neuro-Oncol
  doi: 10.1023/A:1025665820001
– volume: 72
  start-page: 5778
  year: 2012
  ident: 2022061704594190600_bib9
  article-title: The metabolomic signature of malignant glioma reflects accelerated anabolic metabolism
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-1572-T
– volume: 4
  start-page: 568
  year: 2009
  ident: 2022061704594190600_bib20
  article-title: Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.03.014
– volume: 25
  start-page: 7101
  year: 2005
  ident: 2022061704594190600_bib13
  article-title: Inhibition of cystine uptake disrupts the growth of primary brain tumors
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5258-04.2005
– volume: 10
  start-page: 2405
  year: 2011
  ident: 2022061704594190600_bib19
  article-title: Targeting radiation-induced G(2) checkpoint activation with the Wee-1 inhibitor MK-1775 in glioblastoma cell lines
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-11-0469
– volume: 84
  start-page: 449
  year: 1996
  ident: 2022061704594190600_bib25
  article-title: Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study
  publication-title: J Neurosurg
  doi: 10.3171/jns.1996.84.3.0449
– ident: 2022061704594190600_bib16
– volume: 71
  start-page: 827
  year: 1998
  ident: 2022061704594190600_bib10
  article-title: Metabolism of cysteine in astroglial cells: synthesis of hypotaurine and taurine
  publication-title: J Neurochem
  doi: 10.1046/j.1471-4159.1998.71020827.x
– volume: 2
  start-page: 9
  year: 2010
  ident: 2022061704594190600_bib15
  article-title: Organization of GC/MS and LC/MS metabolomics data into chemical libraries
  publication-title: J Cheminform
  doi: 10.1186/1758-2946-2-9
– volume: 2
  start-page: 31ra4
  year: 2010
  ident: 2022061704594190600_bib23
  article-title: Metabolic modulation of glioblastoma with dichloroacetate
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3000677
– volume: 902
  start-page: 156
  year: 2001
  ident: 2022061704594190600_bib11
  article-title: The uptake of cysteine in cultured primary astrocytes and neurons
  publication-title: Brain Res
  doi: 10.1016/S0006-8993(01)02342-3
– volume: 360
  start-page: 765
  year: 2009
  ident: 2022061704594190600_bib5
  article-title: IDH1 and IDH2 mutations in gliomas
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0808710
– volume: 1
  start-page: 7
  year: 2013
  ident: 2022061704594190600_bib30
  article-title: Metabolic changes in cancer cells upon suppression of MYC
  publication-title: Cancer Metab
  doi: 10.1186/2049-3002-1-7
– volume: 8
  start-page: 519
  year: 1927
  ident: 2022061704594190600_bib7
  article-title: The metabolism of tumors in the body
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.8.6.519
– volume: 220
  start-page: 249
  year: 1994
  ident: 2022061704594190600_bib18
  article-title: Measurement of excitatory sulfur amino acids, cysteine sulfinic acid, cysteic acid, homocysteine sulfinic acid, and homocysteic acid in serum by stable isotope dilution gas chromatography-mass spectrometry and selected ion monitoring
  publication-title: Anal Biochem
  doi: 10.1006/abio.1994.1335
– volume: 455
  start-page: 1061
  year: 2008
  ident: 2022061704594190600_bib36
  article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways
  publication-title: Nature
  doi: 10.1038/nature07385
– volume: 17
  start-page: 6000
  year: 2011
  ident: 2022061704594190600_bib28
  article-title: Specific PET imaging of xC- transporter activity using a (1)(8)F-labeled glutamate derivative reveals a dominant pathway in tumor metabolism
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-11-0687
– volume: 15
  start-page: 289
  year: 1993
  ident: 2022061704594190600_bib12
  article-title: Multinuclear NMR studies on the energy metabolism of glial and neuronal cells
  publication-title: Dev Neurosci
  doi: 10.1159/000111347
– volume: 152
  start-page: 309
  year: 1924
  ident: 2022061704594190600_bib6
  article-title: Uber den stoffwechsel der carcinomzelle
  publication-title: Biochem Zeitschr
– volume: 7
  start-page: 1010
  year: 2001
  ident: 2022061704594190600_bib27
  article-title: Glutamate release promotes growth of malignant gliomas
  publication-title: Nat Med
  doi: 10.1038/nm0901-1010
– volume: 483
  start-page: 474
  year: 2012
  ident: 2022061704594190600_bib4
  article-title: IDH mutation impairs histone demethylation and results in a block to cell differentiation
  publication-title: Nature
  doi: 10.1038/nature10860
– volume: 285
  start-page: 37716
  year: 2010
  ident: 2022061704594190600_bib14
  article-title: Hypoxia increases the dependence of glioma cells on glutathione
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.161190
– volume: 118
  start-page: 711
  year: 2012
  ident: 2022061704594190600_bib31
  article-title: Individualizing antimetabolic treatment strategies for head and neck squamous cell carcinoma based on TP53 mutational status
  publication-title: Cancer
  doi: 10.1002/cncr.26321
– volume: 100
  start-page: 9440
  year: 2003
  ident: 2022061704594190600_bib17
  article-title: Statistical significance for genomewide studies
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1530509100
SSID ssj0005105
Score 2.4605503
Snippet The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 787
SubjectTerms Animals
Antineoplastic agents
Biological and medical sciences
Brain Neoplasms - genetics
Brain Neoplasms - metabolism
Brain Neoplasms - pathology
Cell Line, Tumor
Cysteine - analogs & derivatives
Cysteine - metabolism
Cysteine - pharmacology
Cysteine Dioxygenase - antagonists & inhibitors
Cysteine Dioxygenase - genetics
Cysteine Dioxygenase - metabolism
Disease Models, Animal
Enzyme Activation - drug effects
Gene Expression
Glioblastoma - genetics
Glioblastoma - metabolism
Glioblastoma - pathology
Humans
Medical sciences
Metabolic Networks and Pathways
Mice
Mice, Knockout
Mitochondria - drug effects
Mitochondria - metabolism
Multiple tumors. Solid tumors. Tumors in childhood (general aspects)
Neoplasm Grading
Neurology
Pharmacology. Drug treatments
Pyruvate Dehydrogenase Complex - metabolism
Tumor Burden - drug effects
Tumor Burden - genetics
Tumors
Tumors of the nervous system. Phacomatoses
Title Cysteine Catabolism: A Novel Metabolic Pathway Contributing to Glioblastoma Growth
URI https://www.ncbi.nlm.nih.gov/pubmed/24351290
https://www.proquest.com/docview/1499123898
https://pubmed.ncbi.nlm.nih.gov/PMC5726254
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSAgJTVxHuUxG4q1KWRI7iXkbFWhC2gRskwYvke24TaUuqdqUafx6zomdS6GIy0tUJXUS5ft8fI59zmdCXnERgN2T3OMq4h4LdOgp6JCeynQ4CUWilMEC5-OT6OicfbjgF70VU6wuqdRIf99aV_I_qMI5wBWrZP8B2famcAJ-A75wBITh-FcYj1GGGd1EnIRR5dxlUchhUX4zWBViz2pUT82v5LVNTK93uMIiqXI4nc9KBf5zVV7K4RQi8irve6tjpMRy6ASB8nrF16Zu1KZlPh_1JhI-LqXK106QoCzaqfpTaGqzuN_mcnUFr94aeZlLW519WoKJbGn6ZW1nZb_ms6l0I6ubmPBZk8uM40pnTGNm5SIba2v35HGsCnumM7YD768mnSc2BzLxOIuD0fjwxPNDz2e2TrkH8-KyxjkADxBn17oRrs07bC7dJLeCGHwtXMT_1KnLo7Ppqrzgqa-3PhPVo91dNlyZuwu5gl41sduhbItXfk677fkxZ_fIrgtA6KFl031ywxQPyO1jl2LxkHxuSEU7Ur2hktaUoi2lqKMU7VOKViXtU4paSj0i5-_fnY2PPLfxhqchPKi8SRZKHotEBqHQIpNSayO5gmA2UJr7sYm0ySQXWQa-TibYgZgYEynJJgK6eKLCx2SnKAvzhFBmDuJAGcE108xAcIp6ggydZmYi40cDwppvmGqnSo-bo8zTOjrlCWZHJCmikAIKqR-miMKAjNpmCyvL8qcG-xsAta1Q_SlKEniRlw1iKVhYXDaThSnXK2gOMRR4tiIZkD2LYNfaUWFA4g1s2z-gevvmlWKW1yruPA6igLOnv73nM3Kn61bPyU61XJsX4AFXar-m7Q9Bu69P
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cysteine+catabolism%3A+a+novel+metabolic+pathway+contributing+to+glioblastoma+growth&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Prabhu%2C+Antony&rft.au=Sarcar%2C+Bhaswati&rft.au=Kahali%2C+Soumen&rft.au=Yuan%2C+Zhigang&rft.date=2014-02-01&rft.eissn=1538-7445&rft.volume=74&rft.issue=3&rft.spage=787&rft_id=info:doi/10.1158%2F0008-5472.CAN-13-1423&rft_id=info%3Apmid%2F24351290&rft.externalDocID=24351290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon