Cysteine Catabolism: A Novel Metabolic Pathway Contributing to Glioblastoma Growth
The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography–based mass spectrometry on a tot...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 74; no. 3; pp. 787 - 796 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.02.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0008-5472 1538-7445 1538-7445 |
DOI | 10.1158/0008-5472.CAN-13-1423 |
Cover
Abstract | The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography–based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis. Cancer Res; 74(3); 787–96. ©2013 AACR. |
---|---|
AbstractList | The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography–based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed
in vivo
abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis. The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography-based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis.The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography-based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis. The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography–based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis. Cancer Res; 74(3); 787–96. ©2013 AACR. The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography-based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis. |
Author | Johnson, Joseph J. Chinnaiyan, Prakash Sarcar, Bhaswati Adam, Klaus-Peter Kensicki, Elizabeth Prabhu, Antony Yuan, Zhigang Kahali, Soumen |
AuthorAffiliation | 1 Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 5 Metabolon, Inc., Durham, North Carolina 4 Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 2 Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 3 Advanced Microscopy Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida |
AuthorAffiliation_xml | – name: 4 Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida – name: 1 Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida – name: 3 Advanced Microscopy Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida – name: 5 Metabolon, Inc., Durham, North Carolina – name: 2 Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida |
Author_xml | – sequence: 1 givenname: Antony surname: Prabhu fullname: Prabhu, Antony – sequence: 2 givenname: Bhaswati surname: Sarcar fullname: Sarcar, Bhaswati – sequence: 3 givenname: Soumen surname: Kahali fullname: Kahali, Soumen – sequence: 4 givenname: Zhigang surname: Yuan fullname: Yuan, Zhigang – sequence: 5 givenname: Joseph J. surname: Johnson fullname: Johnson, Joseph J. – sequence: 6 givenname: Klaus-Peter surname: Adam fullname: Adam, Klaus-Peter – sequence: 7 givenname: Elizabeth surname: Kensicki fullname: Kensicki, Elizabeth – sequence: 8 givenname: Prakash surname: Chinnaiyan fullname: Chinnaiyan, Prakash |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28376886$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24351290$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rFDEUhoO02G31Jyi5EbyZms-ZREFYBt0KbRXR63Amk-lGMpM6ybbsv3eGXbfWm16FJM_7npDnFB0NcXAIvaLknFKp3hFCVCFFxc7r5XVBeUEF48_QgkquikoIeYQWB-YEnab0a9pKSuRzdMIEl5RpskDf623Kzg8O15ChicGn_j1e4ut45wK-crszi79BXt_DFtdxyKNvNtkPNzhHvAo-NgFSjj3g1Rjv8_oFOu4gJPdyv56hn58__agvisuvqy_18rKwklS56FoOstIKGNdWtwDWOpCNlIQ1VtLKlda1IHXbkrJqtSC6c65sQHS6tVw1_Ax93PXebpretdZNL4Ngbkffw7g1Ebx5fDP4tbmJd0ZWrGRSTAVv9wVj_L1xKZveJ-tCgMHFTTJUaE0ZV1pN6Ot_Zx2G_P3ICXizByBZCN0Ig_XpgVO8KpUqJ07uODvGlEbXHRBKzCzWzNLMLM1MYg3lZhY75T78l7M-Q_azDvDhifQfDUWqfA |
CODEN | CNREA8 |
CitedBy_id | crossref_primary_10_1016_j_jbiotec_2016_12_001 crossref_primary_10_1371_journal_pone_0184213 crossref_primary_10_1111_dote_12496 crossref_primary_10_1021_acssuschemeng_1c02627 crossref_primary_10_3109_10641963_2015_1060995 crossref_primary_10_1371_journal_pone_0214872 crossref_primary_10_1016_j_reumae_2021_03_010 crossref_primary_10_1186_s12935_025_03721_1 crossref_primary_10_3390_cancers13122900 crossref_primary_10_3389_fphys_2015_00382 crossref_primary_10_1536_ihj_16_124 crossref_primary_10_1080_10715762_2016_1235787 crossref_primary_10_3390_molecules28237699 crossref_primary_10_3389_fneur_2021_716195 crossref_primary_10_1016_j_biopha_2022_113923 crossref_primary_10_1038_s41420_020_00398_5 crossref_primary_10_2217_bmm_2017_0372 crossref_primary_10_3390_ijms24065546 crossref_primary_10_1016_j_celrep_2022_110800 crossref_primary_10_1007_s00726_014_1843_7 crossref_primary_10_5798_dicletip_574893 crossref_primary_10_1016_j_jss_2020_07_001 crossref_primary_10_46332_aemj_1093184 crossref_primary_10_1371_journal_pone_0113546 crossref_primary_10_12677_ACM_2022_124495 crossref_primary_10_1002_mc_22694 crossref_primary_10_1016_j_reuma_2021_03_007 crossref_primary_10_1111_jog_14301 crossref_primary_10_33808_clinexphealthsci_814301 crossref_primary_10_3389_fonc_2020_00717 crossref_primary_10_1016_j_smallrumres_2023_107023 crossref_primary_10_16899_jcm_571633 crossref_primary_10_1007_s00262_019_02347_3 crossref_primary_10_1371_journal_pone_0194785 crossref_primary_10_1007_s00296_017_3914_z crossref_primary_10_1016_j_tibs_2015_01_004 crossref_primary_10_1111_coa_12701 crossref_primary_10_1179_1351000214Y_0000000106 crossref_primary_10_1016_j_gendis_2021_12_023 crossref_primary_10_1007_s13760_016_0598_1 crossref_primary_10_1158_1078_0432_CCR_17_1222 crossref_primary_10_1186_s40170_018_0175_6 crossref_primary_10_1038_s41416_020_01156_1 crossref_primary_10_1021_acs_jproteome_0c00243 crossref_primary_10_18621_eurj_414367 crossref_primary_10_1093_neuonc_noy185 crossref_primary_10_1080_13510002_2016_1180100 crossref_primary_10_3390_ani13101620 crossref_primary_10_3389_fmars_2022_813961 crossref_primary_10_1590_s1677_5538_ibju_2016_0114 crossref_primary_10_1038_jp_2015_81 crossref_primary_10_3390_molecules26113321 crossref_primary_10_1007_s10792_017_0513_7 crossref_primary_10_4103_0028_3886_370461 crossref_primary_10_1186_s13148_021_01163_w crossref_primary_10_4292_wjgpt_v8_i2_120 crossref_primary_10_1177_0145561320926336 crossref_primary_10_1016_j_ccell_2015_12_004 crossref_primary_10_18632_oncotarget_19705 crossref_primary_10_1007_s11060_023_04329_z crossref_primary_10_1111_ijcp_13998 crossref_primary_10_1371_journal_pone_0144862 crossref_primary_10_1007_s13760_020_01410_6 crossref_primary_10_1016_j_neuroscience_2016_01_027 crossref_primary_10_1177_0960327120930057 crossref_primary_10_1007_s10792_017_0444_3 crossref_primary_10_1021_acs_analchem_0c04457 crossref_primary_10_1073_pnas_2317343121 crossref_primary_10_1007_s11693_015_9183_9 crossref_primary_10_1016_j_mce_2015_11_002 crossref_primary_10_3109_02713683_2016_1141965 crossref_primary_10_1111_iep_12222 crossref_primary_10_1016_j_comppsych_2016_11_003 crossref_primary_10_1371_journal_pone_0148628 crossref_primary_10_1016_j_clinbiochem_2014_09_026 crossref_primary_10_1016_j_jpsychires_2021_05_084 crossref_primary_10_1245_s10434_018_6865_z crossref_primary_10_1016_j_cytogfr_2021_10_002 crossref_primary_10_35440_hutfd_1068150 crossref_primary_10_1371_journal_pone_0211108 crossref_primary_10_1093_neuonc_nou369 crossref_primary_10_1007_s00404_021_06252_y crossref_primary_10_22391_fppc_470360 crossref_primary_10_5799_jmid_790291 crossref_primary_10_1080_13813455_2020_1773505 crossref_primary_10_17546_msd_488247 crossref_primary_10_1172_jci_insight_99676 crossref_primary_10_26453_otjhs_849494 crossref_primary_10_1016_j_preghy_2016_09_003 crossref_primary_10_1245_s10434_018_07105_w crossref_primary_10_38053_agtd_687618 |
Cites_doi | 10.1056/NEJMoa043330 10.1016/0006-8993(82)90839-3 10.1073/pnas.1106704108 10.1002/jnr.1130 10.1056/NEJMra0708126 10.1093/neuonc/noq075 10.1038/nature08617 10.1016/S0014-5793(97)00669-8 10.1371/journal.pone.0044951 10.1186/1471-2407-10-247 10.1126/science.281.5381.1309 10.1002/glia.21176 10.1023/A:1025665820001 10.1158/0008-5472.CAN-12-1572-T 10.1016/j.stem.2009.03.014 10.1523/JNEUROSCI.5258-04.2005 10.1158/1535-7163.MCT-11-0469 10.3171/jns.1996.84.3.0449 10.1046/j.1471-4159.1998.71020827.x 10.1186/1758-2946-2-9 10.1126/scitranslmed.3000677 10.1016/S0006-8993(01)02342-3 10.1056/NEJMoa0808710 10.1186/2049-3002-1-7 10.1085/jgp.8.6.519 10.1006/abio.1994.1335 10.1038/nature07385 10.1158/1078-0432.CCR-11-0687 10.1159/000111347 10.1038/nm0901-1010 10.1038/nature10860 10.1074/jbc.M110.161190 10.1002/cncr.26321 10.1073/pnas.1530509100 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1158/0008-5472.CAN-13-1423 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 796 |
ExternalDocumentID | PMC5726254 24351290 28376886 10_1158_0008_5472_CAN_13_1423 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA076292 |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ .55 .GJ 3O- 8WZ A6W AFFNX AI. C1A D0S IQODW J5H MVM OHT UDS VH1 WHG X7M XJT ZCG ZGI CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c507t-fd3a5798a239c9daaccea5b5502bc517e6ceda59dd067d9409fee6ba4f9dc38b3 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Thu Aug 21 14:07:25 EDT 2025 Fri Sep 05 08:12:38 EDT 2025 Thu Apr 03 06:57:54 EDT 2025 Wed Apr 02 07:18:31 EDT 2025 Tue Jul 01 04:18:04 EDT 2025 Thu Apr 24 22:51:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Sulfur containing aminoacid Malignant glioma Nervous system diseases Thiol Cysteine Growth Central nervous system disease Glioblastoma Catabolism Metabolic pathway Malignant tumor Cancer |
Language | English |
License | CC BY 4.0 Permissions: To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c507t-fd3a5798a239c9daaccea5b5502bc517e6ceda59dd067d9409fee6ba4f9dc38b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 A. Prabhu and B. Sarcar contributed equally to this work. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5726254 |
PMID | 24351290 |
PQID | 1499123898 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5726254 proquest_miscellaneous_1499123898 pubmed_primary_24351290 pascalfrancis_primary_28376886 crossref_primary_10_1158_0008_5472_CAN_13_1423 crossref_citationtrail_10_1158_0008_5472_CAN_13_1423 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-01 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2014 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | Brand (2022061704594190600_bib10) 1998; 71 Shanker (2022061704594190600_bib11) 2001; 902 Warburg (2022061704594190600_bib6) 1924; 152 Anso (2022061704594190600_bib30) 2013; 1 Lu (2022061704594190600_bib4) 2012; 483 Yan (2022061704594190600_bib5) 2009; 360 Recasens (2022061704594190600_bib29) 1982; 239 Pollard (2022061704594190600_bib20) 2009; 4 Sandulache (2022061704594190600_bib31) 2012; 118 Michelakis (2022061704594190600_bib23) 2010; 2 Dehaven (2022061704594190600_bib15) 2010; 2 Salvioli (2022061704594190600_bib24) 1997; 411 Wen (2022061704594190600_bib2) 2008; 359 2022061704594190600_bib16 Ogunrinu (2022061704594190600_bib14) 2010; 285 Warburg (2022061704594190600_bib7) 1927; 8 Koglin (2022061704594190600_bib28) 2011; 17 Padma (2022061704594190600_bib8) 2003; 64 Parsons (2022061704594190600_bib35) 2001; 65 Chung (2022061704594190600_bib13) 2005; 25 Stupp (2022061704594190600_bib1) 2005; 352 Santhosh-Kumar (2022061704594190600_bib18) 1994; 220 Negendank (2022061704594190600_bib25) 1996; 84 Takano (2022061704594190600_bib27) 2001; 7 Storey (2022061704594190600_bib17) 2003; 100 Brait (2022061704594190600_bib33) 2012; 7 Srinivasan (2022061704594190600_bib26) 2010; 12 Vlashi (2022061704594190600_bib32) 2011; 108 Seib (2022061704594190600_bib21) 2011; 59 Sarcar (2022061704594190600_bib19) 2011; 10 TCGA (2022061704594190600_bib36) 2008; 455 Dang (2022061704594190600_bib3) 2009; 462 Chinnaiyan (2022061704594190600_bib9) 2012; 72 Brand (2022061704594190600_bib12) 1993; 15 Dietrich (2022061704594190600_bib34) 2010; 10 Green (2022061704594190600_bib22) 1998; 281 |
References_xml | – volume: 352 start-page: 987 year: 2005 ident: 2022061704594190600_bib1 article-title: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma publication-title: N Engl J Med doi: 10.1056/NEJMoa043330 – volume: 239 start-page: 153 year: 1982 ident: 2022061704594190600_bib29 article-title: Evidence for cysteine sulfinate as a neurotransmitter publication-title: Brain Res doi: 10.1016/0006-8993(82)90839-3 – volume: 108 start-page: 16062 year: 2011 ident: 2022061704594190600_bib32 article-title: Metabolic state of glioma stem cells and nontumorigenic cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1106704108 – volume: 65 start-page: 78 year: 2001 ident: 2022061704594190600_bib35 article-title: Cysteine dioxygenase: regional localisation of protein and mRNA in rat brain publication-title: J Neurosci Res doi: 10.1002/jnr.1130 – volume: 359 start-page: 492 year: 2008 ident: 2022061704594190600_bib2 article-title: Malignant gliomas in adults publication-title: N Engl J Med doi: 10.1056/NEJMra0708126 – volume: 12 start-page: 1152 year: 2010 ident: 2022061704594190600_bib26 article-title: Ex vivo MR spectroscopic measure differentiates tumor from treatment effects in GBM publication-title: Neuro Oncol doi: 10.1093/neuonc/noq075 – volume: 462 start-page: 739 year: 2009 ident: 2022061704594190600_bib3 article-title: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate publication-title: Nature doi: 10.1038/nature08617 – volume: 411 start-page: 77 year: 1997 ident: 2022061704594190600_bib24 article-title: JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis publication-title: FEBS Lett doi: 10.1016/S0014-5793(97)00669-8 – volume: 7 start-page: e44951 year: 2012 ident: 2022061704594190600_bib33 article-title: Cysteine dioxygenase 1 is a tumor suppressor gene silenced by promoter methylation in multiple human cancers publication-title: PLoS ONE doi: 10.1371/journal.pone.0044951 – volume: 10 start-page: 247 year: 2010 ident: 2022061704594190600_bib34 article-title: CDO1 promoter methylation is a biomarker for outcome prediction of anthracycline treated, estrogen receptor-positive, lymph node-positive breast cancer patients publication-title: BMC Cancer doi: 10.1186/1471-2407-10-247 – volume: 281 start-page: 1309 year: 1998 ident: 2022061704594190600_bib22 article-title: Mitochondria and apoptosis publication-title: Science doi: 10.1126/science.281.5381.1309 – volume: 59 start-page: 1387 year: 2011 ident: 2022061704594190600_bib21 article-title: Regulation of the system x(C)- cystine/glutamate exchanger by intracellular glutathione levels in rat astrocyte primary cultures publication-title: Glia doi: 10.1002/glia.21176 – volume: 64 start-page: 227 year: 2003 ident: 2022061704594190600_bib8 article-title: Prediction of pathology and survival by FDG PET in gliomas publication-title: J Neuro-Oncol doi: 10.1023/A:1025665820001 – volume: 72 start-page: 5778 year: 2012 ident: 2022061704594190600_bib9 article-title: The metabolomic signature of malignant glioma reflects accelerated anabolic metabolism publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-1572-T – volume: 4 start-page: 568 year: 2009 ident: 2022061704594190600_bib20 article-title: Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.03.014 – volume: 25 start-page: 7101 year: 2005 ident: 2022061704594190600_bib13 article-title: Inhibition of cystine uptake disrupts the growth of primary brain tumors publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5258-04.2005 – volume: 10 start-page: 2405 year: 2011 ident: 2022061704594190600_bib19 article-title: Targeting radiation-induced G(2) checkpoint activation with the Wee-1 inhibitor MK-1775 in glioblastoma cell lines publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-11-0469 – volume: 84 start-page: 449 year: 1996 ident: 2022061704594190600_bib25 article-title: Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study publication-title: J Neurosurg doi: 10.3171/jns.1996.84.3.0449 – ident: 2022061704594190600_bib16 – volume: 71 start-page: 827 year: 1998 ident: 2022061704594190600_bib10 article-title: Metabolism of cysteine in astroglial cells: synthesis of hypotaurine and taurine publication-title: J Neurochem doi: 10.1046/j.1471-4159.1998.71020827.x – volume: 2 start-page: 9 year: 2010 ident: 2022061704594190600_bib15 article-title: Organization of GC/MS and LC/MS metabolomics data into chemical libraries publication-title: J Cheminform doi: 10.1186/1758-2946-2-9 – volume: 2 start-page: 31ra4 year: 2010 ident: 2022061704594190600_bib23 article-title: Metabolic modulation of glioblastoma with dichloroacetate publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3000677 – volume: 902 start-page: 156 year: 2001 ident: 2022061704594190600_bib11 article-title: The uptake of cysteine in cultured primary astrocytes and neurons publication-title: Brain Res doi: 10.1016/S0006-8993(01)02342-3 – volume: 360 start-page: 765 year: 2009 ident: 2022061704594190600_bib5 article-title: IDH1 and IDH2 mutations in gliomas publication-title: N Engl J Med doi: 10.1056/NEJMoa0808710 – volume: 1 start-page: 7 year: 2013 ident: 2022061704594190600_bib30 article-title: Metabolic changes in cancer cells upon suppression of MYC publication-title: Cancer Metab doi: 10.1186/2049-3002-1-7 – volume: 8 start-page: 519 year: 1927 ident: 2022061704594190600_bib7 article-title: The metabolism of tumors in the body publication-title: J Gen Physiol doi: 10.1085/jgp.8.6.519 – volume: 220 start-page: 249 year: 1994 ident: 2022061704594190600_bib18 article-title: Measurement of excitatory sulfur amino acids, cysteine sulfinic acid, cysteic acid, homocysteine sulfinic acid, and homocysteic acid in serum by stable isotope dilution gas chromatography-mass spectrometry and selected ion monitoring publication-title: Anal Biochem doi: 10.1006/abio.1994.1335 – volume: 455 start-page: 1061 year: 2008 ident: 2022061704594190600_bib36 article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways publication-title: Nature doi: 10.1038/nature07385 – volume: 17 start-page: 6000 year: 2011 ident: 2022061704594190600_bib28 article-title: Specific PET imaging of xC- transporter activity using a (1)(8)F-labeled glutamate derivative reveals a dominant pathway in tumor metabolism publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-11-0687 – volume: 15 start-page: 289 year: 1993 ident: 2022061704594190600_bib12 article-title: Multinuclear NMR studies on the energy metabolism of glial and neuronal cells publication-title: Dev Neurosci doi: 10.1159/000111347 – volume: 152 start-page: 309 year: 1924 ident: 2022061704594190600_bib6 article-title: Uber den stoffwechsel der carcinomzelle publication-title: Biochem Zeitschr – volume: 7 start-page: 1010 year: 2001 ident: 2022061704594190600_bib27 article-title: Glutamate release promotes growth of malignant gliomas publication-title: Nat Med doi: 10.1038/nm0901-1010 – volume: 483 start-page: 474 year: 2012 ident: 2022061704594190600_bib4 article-title: IDH mutation impairs histone demethylation and results in a block to cell differentiation publication-title: Nature doi: 10.1038/nature10860 – volume: 285 start-page: 37716 year: 2010 ident: 2022061704594190600_bib14 article-title: Hypoxia increases the dependence of glioma cells on glutathione publication-title: J Biol Chem doi: 10.1074/jbc.M110.161190 – volume: 118 start-page: 711 year: 2012 ident: 2022061704594190600_bib31 article-title: Individualizing antimetabolic treatment strategies for head and neck squamous cell carcinoma based on TP53 mutational status publication-title: Cancer doi: 10.1002/cncr.26321 – volume: 100 start-page: 9440 year: 2003 ident: 2022061704594190600_bib17 article-title: Statistical significance for genomewide studies publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1530509100 |
SSID | ssj0005105 |
Score | 2.4605503 |
Snippet | The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 787 |
SubjectTerms | Animals Antineoplastic agents Biological and medical sciences Brain Neoplasms - genetics Brain Neoplasms - metabolism Brain Neoplasms - pathology Cell Line, Tumor Cysteine - analogs & derivatives Cysteine - metabolism Cysteine - pharmacology Cysteine Dioxygenase - antagonists & inhibitors Cysteine Dioxygenase - genetics Cysteine Dioxygenase - metabolism Disease Models, Animal Enzyme Activation - drug effects Gene Expression Glioblastoma - genetics Glioblastoma - metabolism Glioblastoma - pathology Humans Medical sciences Metabolic Networks and Pathways Mice Mice, Knockout Mitochondria - drug effects Mitochondria - metabolism Multiple tumors. Solid tumors. Tumors in childhood (general aspects) Neoplasm Grading Neurology Pharmacology. Drug treatments Pyruvate Dehydrogenase Complex - metabolism Tumor Burden - drug effects Tumor Burden - genetics Tumors Tumors of the nervous system. Phacomatoses |
Title | Cysteine Catabolism: A Novel Metabolic Pathway Contributing to Glioblastoma Growth |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24351290 https://www.proquest.com/docview/1499123898 https://pubmed.ncbi.nlm.nih.gov/PMC5726254 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSAgJTVxHuUxG4q1KWRI7iXkbFWhC2gRskwYvke24TaUuqdqUafx6zomdS6GIy0tUJXUS5ft8fI59zmdCXnERgN2T3OMq4h4LdOgp6JCeynQ4CUWilMEC5-OT6OicfbjgF70VU6wuqdRIf99aV_I_qMI5wBWrZP8B2famcAJ-A75wBITh-FcYj1GGGd1EnIRR5dxlUchhUX4zWBViz2pUT82v5LVNTK93uMIiqXI4nc9KBf5zVV7K4RQi8irve6tjpMRy6ASB8nrF16Zu1KZlPh_1JhI-LqXK106QoCzaqfpTaGqzuN_mcnUFr94aeZlLW519WoKJbGn6ZW1nZb_ms6l0I6ubmPBZk8uM40pnTGNm5SIba2v35HGsCnumM7YD768mnSc2BzLxOIuD0fjwxPNDz2e2TrkH8-KyxjkADxBn17oRrs07bC7dJLeCGHwtXMT_1KnLo7Ppqrzgqa-3PhPVo91dNlyZuwu5gl41sduhbItXfk677fkxZ_fIrgtA6KFl031ywxQPyO1jl2LxkHxuSEU7Ur2hktaUoi2lqKMU7VOKViXtU4paSj0i5-_fnY2PPLfxhqchPKi8SRZKHotEBqHQIpNSayO5gmA2UJr7sYm0ySQXWQa-TibYgZgYEynJJgK6eKLCx2SnKAvzhFBmDuJAGcE108xAcIp6ggydZmYi40cDwppvmGqnSo-bo8zTOjrlCWZHJCmikAIKqR-miMKAjNpmCyvL8qcG-xsAta1Q_SlKEniRlw1iKVhYXDaThSnXK2gOMRR4tiIZkD2LYNfaUWFA4g1s2z-gevvmlWKW1yruPA6igLOnv73nM3Kn61bPyU61XJsX4AFXar-m7Q9Bu69P |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cysteine+catabolism%3A+a+novel+metabolic+pathway+contributing+to+glioblastoma+growth&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Prabhu%2C+Antony&rft.au=Sarcar%2C+Bhaswati&rft.au=Kahali%2C+Soumen&rft.au=Yuan%2C+Zhigang&rft.date=2014-02-01&rft.eissn=1538-7445&rft.volume=74&rft.issue=3&rft.spage=787&rft_id=info:doi/10.1158%2F0008-5472.CAN-13-1423&rft_id=info%3Apmid%2F24351290&rft.externalDocID=24351290 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |