Automated classification of neurological disorders of gait using spatio-temporal gait parameters

Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment outcomes. This study aims to determine the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern reco...

Full description

Saved in:
Bibliographic Details
Published inJournal of electromyography and kinesiology Vol. 25; no. 2; pp. 413 - 422
Main Authors Pradhan, Cauchy, Wuehr, Max, Akrami, Farhoud, Neuhaeusser, Maximilian, Huth, Sabrina, Brandt, Thomas, Jahn, Klaus, Schniepp, Roman
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2015
Subjects
Online AccessGet full text
ISSN1050-6411
1873-5711
1873-5711
DOI10.1016/j.jelekin.2015.01.004

Cover

Abstract Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment outcomes. This study aims to determine the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern recognition techniques. Clinically confirmed cases of phobic postural vertigo (N=30), cerebellar ataxia (N=30), progressive supranuclear palsy (N=30), bilateral vestibulopathy (N=30), as well as healthy subjects (N=30) were recruited for the study. 8 measurements with 136 variables using a GAITRite® sensor carpet were obtained from each subject. Subjects were randomly divided into two groups (training cases and validation cases). Sensitivity and specificity of k-nearest neighbor (KNN), naive-bayes classifier (NB), artificial neural network (ANN), and support vector machine (SVM) in classifying the validation cases were calculated. ANN and SVM had the highest overall sensitivity with 90.6% and 92.0% respectively, followed by NB (76.0%) and KNN (73.3%). SVM and ANN showed high false negative rates for bilateral vestibulopathy cases (20.0% and 26.0%); while KNN and NB had high false negative rates for progressive supranuclear palsy cases (76.7% and 40.0%). Automated pattern recognition systems are able to identify pathological gait patterns and establish clinical diagnosis with good accuracy. SVM and ANN in particular differentiate gait patterns of several distinct oto-neurological disorders of gait with high sensitivity and specificity compared to KNN and NB. Both SVM and ANN appear to be a reliable diagnostic and management tool for disorders of gait.
AbstractList Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment outcomes. This study aims to determine the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern recognition techniques.OBJECTIVEAutomated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment outcomes. This study aims to determine the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern recognition techniques.Clinically confirmed cases of phobic postural vertigo (N = 30), cerebellar ataxia (N = 30), progressive supranuclear palsy (N = 30), bilateral vestibulopathy (N = 30), as well as healthy subjects (N = 30) were recruited for the study. 8 measurements with 136 variables using a GAITRite(®) sensor carpet were obtained from each subject. Subjects were randomly divided into two groups (training cases and validation cases). Sensitivity and specificity of k-nearest neighbor (KNN), naive-bayes classifier (NB), artificial neural network (ANN), and support vector machine (SVM) in classifying the validation cases were calculated.METHODSClinically confirmed cases of phobic postural vertigo (N = 30), cerebellar ataxia (N = 30), progressive supranuclear palsy (N = 30), bilateral vestibulopathy (N = 30), as well as healthy subjects (N = 30) were recruited for the study. 8 measurements with 136 variables using a GAITRite(®) sensor carpet were obtained from each subject. Subjects were randomly divided into two groups (training cases and validation cases). Sensitivity and specificity of k-nearest neighbor (KNN), naive-bayes classifier (NB), artificial neural network (ANN), and support vector machine (SVM) in classifying the validation cases were calculated.ANN and SVM had the highest overall sensitivity with 90.6% and 92.0% respectively, followed by NB (76.0%) and KNN (73.3%). SVM and ANN showed high false negative rates for bilateral vestibulopathy cases (20.0% and 26.0%); while KNN and NB had high false negative rates for progressive supranuclear palsy cases (76.7% and 40.0%).RESULTSANN and SVM had the highest overall sensitivity with 90.6% and 92.0% respectively, followed by NB (76.0%) and KNN (73.3%). SVM and ANN showed high false negative rates for bilateral vestibulopathy cases (20.0% and 26.0%); while KNN and NB had high false negative rates for progressive supranuclear palsy cases (76.7% and 40.0%).Automated pattern recognition systems are able to identify pathological gait patterns and establish clinical diagnosis with good accuracy. SVM and ANN in particular differentiate gait patterns of several distinct oto-neurological disorders of gait with high sensitivity and specificity compared to KNN and NB. Both SVM and ANN appear to be a reliable diagnostic and management tool for disorders of gait.CONCLUSIONSAutomated pattern recognition systems are able to identify pathological gait patterns and establish clinical diagnosis with good accuracy. SVM and ANN in particular differentiate gait patterns of several distinct oto-neurological disorders of gait with high sensitivity and specificity compared to KNN and NB. Both SVM and ANN appear to be a reliable diagnostic and management tool for disorders of gait.
Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment outcomes. This study aims to determine the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern recognition techniques. Clinically confirmed cases of phobic postural vertigo (N = 30), cerebellar ataxia (N = 30), progressive supranuclear palsy (N = 30), bilateral vestibulopathy (N = 30), as well as healthy subjects (N = 30) were recruited for the study. 8 measurements with 136 variables using a GAITRite(®) sensor carpet were obtained from each subject. Subjects were randomly divided into two groups (training cases and validation cases). Sensitivity and specificity of k-nearest neighbor (KNN), naive-bayes classifier (NB), artificial neural network (ANN), and support vector machine (SVM) in classifying the validation cases were calculated. ANN and SVM had the highest overall sensitivity with 90.6% and 92.0% respectively, followed by NB (76.0%) and KNN (73.3%). SVM and ANN showed high false negative rates for bilateral vestibulopathy cases (20.0% and 26.0%); while KNN and NB had high false negative rates for progressive supranuclear palsy cases (76.7% and 40.0%). Automated pattern recognition systems are able to identify pathological gait patterns and establish clinical diagnosis with good accuracy. SVM and ANN in particular differentiate gait patterns of several distinct oto-neurological disorders of gait with high sensitivity and specificity compared to KNN and NB. Both SVM and ANN appear to be a reliable diagnostic and management tool for disorders of gait.
Abstract Objective Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment outcomes. This study aims to determine the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern recognition techniques. Methods Clinically confirmed cases of phobic postural vertigo ( N = 30), cerebellar ataxia ( N = 30), progressive supranuclear palsy ( N = 30), bilateral vestibulopathy ( N = 30), as well as healthy subjects ( N = 30) were recruited for the study. 8 measurements with 136 variables using a GAITRite® sensor carpet were obtained from each subject. Subjects were randomly divided into two groups (training cases and validation cases). Sensitivity and specificity of k-nearest neighbor (KNN), naive-bayes classifier (NB), artificial neural network (ANN), and support vector machine (SVM) in classifying the validation cases were calculated. Results ANN and SVM had the highest overall sensitivity with 90.6% and 92.0% respectively, followed by NB (76.0%) and KNN (73.3%). SVM and ANN showed high false negative rates for bilateral vestibulopathy cases (20.0% and 26.0%); while KNN and NB had high false negative rates for progressive supranuclear palsy cases (76.7% and 40.0%). Conclusions Automated pattern recognition systems are able to identify pathological gait patterns and establish clinical diagnosis with good accuracy. SVM and ANN in particular differentiate gait patterns of several distinct oto-neurological disorders of gait with high sensitivity and specificity compared to KNN and NB. Both SVM and ANN appear to be a reliable diagnostic and management tool for disorders of gait.
Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment outcomes. This study aims to determine the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern recognition techniques. Clinically confirmed cases of phobic postural vertigo (N=30), cerebellar ataxia (N=30), progressive supranuclear palsy (N=30), bilateral vestibulopathy (N=30), as well as healthy subjects (N=30) were recruited for the study. 8 measurements with 136 variables using a GAITRite® sensor carpet were obtained from each subject. Subjects were randomly divided into two groups (training cases and validation cases). Sensitivity and specificity of k-nearest neighbor (KNN), naive-bayes classifier (NB), artificial neural network (ANN), and support vector machine (SVM) in classifying the validation cases were calculated. ANN and SVM had the highest overall sensitivity with 90.6% and 92.0% respectively, followed by NB (76.0%) and KNN (73.3%). SVM and ANN showed high false negative rates for bilateral vestibulopathy cases (20.0% and 26.0%); while KNN and NB had high false negative rates for progressive supranuclear palsy cases (76.7% and 40.0%). Automated pattern recognition systems are able to identify pathological gait patterns and establish clinical diagnosis with good accuracy. SVM and ANN in particular differentiate gait patterns of several distinct oto-neurological disorders of gait with high sensitivity and specificity compared to KNN and NB. Both SVM and ANN appear to be a reliable diagnostic and management tool for disorders of gait.
Author Wuehr, Max
Pradhan, Cauchy
Neuhaeusser, Maximilian
Jahn, Klaus
Huth, Sabrina
Brandt, Thomas
Akrami, Farhoud
Schniepp, Roman
Author_xml – sequence: 1
  givenname: Cauchy
  surname: Pradhan
  fullname: Pradhan, Cauchy
  email: cauchypradhan@gmail.com
  organization: German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany
– sequence: 2
  givenname: Max
  surname: Wuehr
  fullname: Wuehr, Max
  organization: German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany
– sequence: 3
  givenname: Farhoud
  surname: Akrami
  fullname: Akrami, Farhoud
  organization: German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany
– sequence: 4
  givenname: Maximilian
  surname: Neuhaeusser
  fullname: Neuhaeusser, Maximilian
  organization: German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany
– sequence: 5
  givenname: Sabrina
  surname: Huth
  fullname: Huth, Sabrina
  organization: German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany
– sequence: 6
  givenname: Thomas
  surname: Brandt
  fullname: Brandt, Thomas
  organization: German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany
– sequence: 7
  givenname: Klaus
  surname: Jahn
  fullname: Jahn, Klaus
  organization: German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany
– sequence: 8
  givenname: Roman
  surname: Schniepp
  fullname: Schniepp, Roman
  organization: German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25725811$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1TAQhSNURB_wE0BZskmYieM4CEFVVbykSiyAtXHsyZXTJA62g9R_j9N7u6mELitbnu8c23PmPDuZ3UxZ9hKhRMDmzVAONNKtncsKkJeAJUD9JDvDVrCCC8STtAcORVMjnmbnIQwAKKCFZ9lpxUXFW8Sz7NfVGt2kIplcjyoE21utonVz7vp8ptW70e3S0ZgbG5w35MNW2Skb8zXYeZeHZeOLSNPifOLuS4vyaqKY6OfZ016NgV4c1ovs56ePP66_FDffPn-9vropNAcRC8N6rittOt0Kw0iYxnSMsEHTC4Oiqwm6hrO3Va27pmbUJJ4z1TDB2ho0YxfZ673v4t3vlUKUkw2axlHN5NYgUSR13QKvjqNNU9WMcRQJfXVA124iIxdvJ-Xv5EMDE_BuD2jvQvDUS23jfQOjV3aUCHKLSw7yEJfc4pKAMsWV1PyR-uGCY7rLvY5SR_9Y8jJoS7MmYz3pKI2zRx0-PHLQo523oG_pjsLgVj-nuCTKUEmQ37dR2iYJOQBUbPv4-38b_McD_gKS9NxO
CitedBy_id crossref_primary_10_3390_s19102401
crossref_primary_10_1016_j_humov_2015_07_009
crossref_primary_10_1016_j_physbeh_2019_112706
crossref_primary_10_1055_a_1822_3227
crossref_primary_10_1016_j_msard_2024_105465
crossref_primary_10_1016_j_gaitpost_2018_06_154
crossref_primary_10_1007_s15016_017_5788_4
crossref_primary_10_1016_j_autcon_2017_04_010
crossref_primary_10_1007_s13167_021_00236_3
crossref_primary_10_1007_s13246_019_00780_3
crossref_primary_10_3390_brainsci9020034
crossref_primary_10_1038_s41598_024_68402_x
crossref_primary_10_3389_fneur_2021_666458
crossref_primary_10_1123_jab_2019_0400
crossref_primary_10_1007_s00415_019_09458_y
crossref_primary_10_1186_s13036_023_00398_w
crossref_primary_10_1007_s00415_020_09931_z
crossref_primary_10_1007_s11517_016_1546_1
crossref_primary_10_1002_pmrj_12003
crossref_primary_10_1007_s00415_020_10078_0
crossref_primary_10_1038_s41598_018_22676_0
crossref_primary_10_1016_j_aei_2018_10_002
crossref_primary_10_1177_0954406219869974
crossref_primary_10_2196_26825
crossref_primary_10_3389_fneur_2021_681140
crossref_primary_10_1109_ACCESS_2022_3225521
crossref_primary_10_1016_j_msard_2021_103261
crossref_primary_10_1109_ACCESS_2020_3039885
crossref_primary_10_4103_aiao_aiao_9_23
crossref_primary_10_1055_a_2224_5894
crossref_primary_10_1109_JSEN_2018_2814994
crossref_primary_10_1016_j_bspc_2021_103321
crossref_primary_10_3390_s21227565
crossref_primary_10_1109_TNSRE_2020_2969649
crossref_primary_10_1007_s00415_019_09378_x
crossref_primary_10_1016_j_neubiorev_2016_03_035
crossref_primary_10_1016_j_parkreldis_2022_04_003
crossref_primary_10_1186_s13023_017_0644_y
crossref_primary_10_1177_18724981251318456
crossref_primary_10_1016_j_autcon_2018_09_010
crossref_primary_10_1055_a_1418_8476
crossref_primary_10_1016_j_cmpb_2021_106525
crossref_primary_10_1038_s41598_019_53656_7
crossref_primary_10_1080_19368623_2021_1835597
crossref_primary_10_1007_s42451_024_00648_1
crossref_primary_10_3389_fneur_2022_919777
crossref_primary_10_1123_jmpb_2021_0035
crossref_primary_10_1016_j_gaitpost_2016_10_021
crossref_primary_10_1016_j_ergon_2022_103404
crossref_primary_10_3389_fnagi_2018_00435
Cites_doi 10.1212/01.wnl.0000219042.60538.92
10.1007/s00221-002-1204-8
10.1007/s00415-011-6124-8
10.1007/s00221-009-1937-8
10.1016/S0966-6362(00)00094-1
10.1109/JBHI.2013.2287400
10.1186/1471-2377-12-116
10.1093/gerona/gls255
10.1007/s11910-007-0044-0
10.1002/mds.23978
10.1016/S0268-0033(97)00082-X
10.1007/s00221-012-3310-6
10.1109/TIP.2011.2160956
10.1007/s10439-005-2867-7
10.1007/BF00994018
10.1109/TBME.2006.883697
10.1109/TBME.2012.2212245
10.1016/0021-9290(93)90028-D
10.1093/brain/awm032
10.1109/TNSRE.2013.2239313
10.1093/brain/awl376
10.1109/IJCNN.2003.1223991
10.1109/ISIEA.2012.6496664
10.1016/S0003-2670(01)95359-0
10.1001/archneur.1988.00520310043015
10.1111/j.1749-6632.2009.03765.x
10.1007/s00415-009-5332-y
10.1212/WNL.46.6.1515
10.1093/bioinformatics/bti171
10.1016/j.clinph.2006.04.022
10.1016/j.patrec.2007.08.004
10.1016/j.gaitpost.2011.03.024
10.1007/s00415-004-0276-8
10.1016/S0966-6362(99)00047-8
10.1016/S0966-6362(96)01070-3
10.1016/j.gaitpost.2010.07.018
10.1371/journal.pone.0056956
10.1023/A:1007413511361
10.1097/BPO.0b013e3181558ade
10.1016/j.ijar.2003.06.001
10.1016/S1532-0464(03)00034-0
10.1109/TBME.2013.2264466
10.1007/BF00292236
10.1093/ptj/54.10.1059
10.1109/34.75512
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jelekin.2015.01.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-5711
EndPage 422
ExternalDocumentID 25725811
10_1016_j_jelekin_2015_01_004
S1050641115000231
1_s2_0_S1050641115000231
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
D-I
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OH.
OHT
OT.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TWZ
UPT
WUQ
YQT
Z5R
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c507t-d3f5c2cdbc87d3e7d6db3e161df7d17b4e0b653924cb643e63f553a6373840c33
IEDL.DBID .~1
ISSN 1050-6411
1873-5711
IngestDate Sun Sep 28 06:44:22 EDT 2025
Thu Oct 02 05:48:17 EDT 2025
Thu Apr 03 06:55:14 EDT 2025
Wed Oct 01 05:07:22 EDT 2025
Thu Apr 24 23:11:55 EDT 2025
Fri Feb 23 02:25:42 EST 2024
Sun Feb 23 10:18:45 EST 2025
Tue Oct 14 19:29:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Neurological disorders of gait
k-nearest neighbor (KNN)
Naive-bayes classifier (NB)
Pattern recognition
Artificial neural networks (ANN)
GAITRite
Support vector machines (SVM)
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-d3f5c2cdbc87d3e7d6db3e161df7d17b4e0b653924cb643e63f553a6373840c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25725811
PQID 1662433517
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1753948052
proquest_miscellaneous_1662433517
pubmed_primary_25725811
crossref_citationtrail_10_1016_j_jelekin_2015_01_004
crossref_primary_10_1016_j_jelekin_2015_01_004
elsevier_sciencedirect_doi_10_1016_j_jelekin_2015_01_004
elsevier_clinicalkeyesjournals_1_s2_0_S1050641115000231
elsevier_clinicalkey_doi_10_1016_j_jelekin_2015_01_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of electromyography and kinesiology
PublicationTitleAlternate J Electromyogr Kinesiol
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zingler, Weintz, Jahn, Huppert, Cnyrim, Brandt (b0275) 2009; 1164
Cortes, Vapnik (b0040) 1995; 20
Diehl C, Cauwenberghs G. SVM incremental learning, adaptation and optimization. In: Proceedings of international joint conference on neural networks (IJCNN). Portland (USA); 20–24 July 2003. p. 2685–90.
Wu, Lin, Weng (b0260) 2004; 5
Wang, Lin, Yang, Ho (b0250) 2012; 59
Hollman, McDade, Petersen (b0105) 2011; 34
Manap HH, Tahir NM, Abdullah R. Anomalous gait detection using Naive Bayes classifier. Industrial Electronics and Applications, IEEE Symposium. Bandung, Indonesia; 2012. p. 378–81.
Verghese, Holtzer, Lipton, Wang (b0235) 2009; 64
Wuehr, Schniepp, Pradhan, Ilmberger, Strupp, Brandt (b0265) 2013; 224
Aung, Thies, Kenney, Howard, Selles, Findlow (b0005) 2013; 21
Schmitz-Hübsch, du Montcel, Baliko, Berciano, Boesch, Depondt (b0195) 2006; 66
Egerton, Williams, Iansek (b0070) 2012; 12
Halmagyi, Curthoys (b0095) 1988; 45
Hallemans, Aerts (b0085) 2009; 198
Krafczyk, Tietze, Swoboda, Valkovic, Brandt (b0150) 2006; 117
Klucken, Barth, Kugler, Schlachetzki, Henze, Marxreiter (b0145) 2013; 8
Lafuente, Belda, Sanchez-Lacuesta, Soler, Prat (b0155) 1997; 13
Lord, Galna, Verghese, Coleman, Bum, Rochester (b0160) 2013; 68
Lu, Zhang (b0165) 2007; 28
Thompson (b0230) 2007; 7
Hand, Yu (b0100) 2001; 69
Verghese, Ambrose, Lipton, Wang (b0240) 2010; 257
Wang Z, Jiang M, Zhang Y. Children abnormal gait analysis based on SVM. In: Proceedings of the world congress on engineering and computer science. San Francisco (USA); 2009.
Duda, Hart, Stork (b0065) 2001
Raudys, Jain (b0190) 1991; 13
Sudarsky (b0215) 2001; 87
Barton, Lees (b0010) 1997; 5
Dreiseitl, Ohno-Machado (b0060) 2002; 35
Chau (b0030) 2001; 13
Nashner (b0180) 1972; 10
Hallemans, Ortibus, Meire, Aerts (b0090) 2010; 32
Demsar (b0045) 2006; 7
Hahn, Chou (b0080) 2005; 33
Bent, McFadyen, Inglis (b0015) 2002; 146
Stolze, Klebs, Zechlin, Baecker, Friege (b0210) 2004; 251
Ilg, Golla, Thier, Giese (b0130) 2007; 130
Sudha, Bhavani (b0220) 2012; 6
Huang, Moraga (b0125) 2004; 35
Domingos, Pazzani (b0055) 1997; 29
Jackson (b0135) 1991
Coomans, Massart (b0035) 1982; 136
Hua, Xiong, Lowey, Suh, Dougherty (b0115) 2005; 21
Xu, Huang, Zeng, Xu (b0270) 2012; 21
Wren, Do, Hara, Dorey, Kay, Otsuka (b0255) 2007; 27
Tang, Sazonov (b0225) 2014; 18
Hua, Lowey, Xiong, Dougherty (b0120) 2006; 7
Brandt (b0020) 1996; 46
Golbe, Ohman-Strickland (b0075) 2007; 130
Holzreiter, Kohle (b0110) 1993; 26
Miller, Beazer, Hahn (b0175) 2013; 60
Nelson (b0185) 1974; 54
Schutte, Narayanan, Stout, Selber, Gage, Schwartz (b0205) 2000; 11
Schniepp, Wuehr, Neuhaeusser, Kamenova, Dimitriadis, Klopstock (b0200) 2012; 27
Brandt, Strupp, Novozhilov, Krafczyk (b0025) 2012; 259
Kamruzzaman, Begg (b0140) 2006; 53
Holzreiter (10.1016/j.jelekin.2015.01.004_b0110) 1993; 26
Brandt (10.1016/j.jelekin.2015.01.004_b0025) 2012; 259
Domingos (10.1016/j.jelekin.2015.01.004_b0055) 1997; 29
Wu (10.1016/j.jelekin.2015.01.004_b0260) 2004; 5
Bent (10.1016/j.jelekin.2015.01.004_b0015) 2002; 146
Schutte (10.1016/j.jelekin.2015.01.004_b0205) 2000; 11
Jackson (10.1016/j.jelekin.2015.01.004_b0135) 1991
Verghese (10.1016/j.jelekin.2015.01.004_b0235) 2009; 64
Lafuente (10.1016/j.jelekin.2015.01.004_b0155) 1997; 13
Thompson (10.1016/j.jelekin.2015.01.004_b0230) 2007; 7
Coomans (10.1016/j.jelekin.2015.01.004_b0035) 1982; 136
Miller (10.1016/j.jelekin.2015.01.004_b0175) 2013; 60
Hua (10.1016/j.jelekin.2015.01.004_b0115) 2005; 21
Hahn (10.1016/j.jelekin.2015.01.004_b0080) 2005; 33
Kamruzzaman (10.1016/j.jelekin.2015.01.004_b0140) 2006; 53
Chau (10.1016/j.jelekin.2015.01.004_b0030) 2001; 13
Hollman (10.1016/j.jelekin.2015.01.004_b0105) 2011; 34
Xu (10.1016/j.jelekin.2015.01.004_b0270) 2012; 21
Halmagyi (10.1016/j.jelekin.2015.01.004_b0095) 1988; 45
Krafczyk (10.1016/j.jelekin.2015.01.004_b0150) 2006; 117
Cortes (10.1016/j.jelekin.2015.01.004_b0040) 1995; 20
Golbe (10.1016/j.jelekin.2015.01.004_b0075) 2007; 130
Aung (10.1016/j.jelekin.2015.01.004_b0005) 2013; 21
Huang (10.1016/j.jelekin.2015.01.004_b0125) 2004; 35
Lord (10.1016/j.jelekin.2015.01.004_b0160) 2013; 68
Dreiseitl (10.1016/j.jelekin.2015.01.004_b0060) 2002; 35
Brandt (10.1016/j.jelekin.2015.01.004_b0020) 1996; 46
Lu (10.1016/j.jelekin.2015.01.004_b0165) 2007; 28
Ilg (10.1016/j.jelekin.2015.01.004_b0130) 2007; 130
Wren (10.1016/j.jelekin.2015.01.004_b0255) 2007; 27
Hallemans (10.1016/j.jelekin.2015.01.004_b0090) 2010; 32
Hand (10.1016/j.jelekin.2015.01.004_b0100) 2001; 69
Wuehr (10.1016/j.jelekin.2015.01.004_b0265) 2013; 224
Duda (10.1016/j.jelekin.2015.01.004_b0065) 2001
Hallemans (10.1016/j.jelekin.2015.01.004_b0085) 2009; 198
Wang (10.1016/j.jelekin.2015.01.004_b0250) 2012; 59
Barton (10.1016/j.jelekin.2015.01.004_b0010) 1997; 5
Raudys (10.1016/j.jelekin.2015.01.004_b0190) 1991; 13
Schniepp (10.1016/j.jelekin.2015.01.004_b0200) 2012; 27
Tang (10.1016/j.jelekin.2015.01.004_b0225) 2014; 18
Nelson (10.1016/j.jelekin.2015.01.004_b0185) 1974; 54
Stolze (10.1016/j.jelekin.2015.01.004_b0210) 2004; 251
Sudha (10.1016/j.jelekin.2015.01.004_b0220) 2012; 6
Verghese (10.1016/j.jelekin.2015.01.004_b0240) 2010; 257
Hua (10.1016/j.jelekin.2015.01.004_b0120) 2006; 7
10.1016/j.jelekin.2015.01.004_b0050
10.1016/j.jelekin.2015.01.004_b0170
Schmitz-Hübsch (10.1016/j.jelekin.2015.01.004_b0195) 2006; 66
Zingler (10.1016/j.jelekin.2015.01.004_b0275) 2009; 1164
Nashner (10.1016/j.jelekin.2015.01.004_b0180) 1972; 10
10.1016/j.jelekin.2015.01.004_b0245
Sudarsky (10.1016/j.jelekin.2015.01.004_b0215) 2001; 87
Klucken (10.1016/j.jelekin.2015.01.004_b0145) 2013; 8
Egerton (10.1016/j.jelekin.2015.01.004_b0070) 2012; 12
Demsar (10.1016/j.jelekin.2015.01.004_b0045) 2006; 7
References_xml – reference: Manap HH, Tahir NM, Abdullah R. Anomalous gait detection using Naive Bayes classifier. Industrial Electronics and Applications, IEEE Symposium. Bandung, Indonesia; 2012. p. 378–81.
– volume: 27
  start-page: 765
  year: 2007
  end-page: 768
  ident: b0255
  article-title: Gillette Gait Index as a gait analysis summary measure: comparison with qualitative visual assessments of overall gait
  publication-title: J Pediatr Orthop
– volume: 146
  start-page: 490
  year: 2002
  end-page: 500
  ident: b0015
  article-title: Visual-vestibular interactions in postural control during the execution of a dynamic task
  publication-title: Exp Brain Res
– volume: 59
  start-page: 2884
  year: 2012
  end-page: 2892
  ident: b0250
  article-title: Walking pattern classification and walking distance estimation algorithms using gait phase information
  publication-title: IEEE Trans Biomed Eng
– volume: 6
  start-page: 19
  year: 2012
  end-page: 28
  ident: b0220
  article-title: Performance comparison of SVM and kNN in automatic classification of human gait patterns
  publication-title: Int J Comput
– volume: 18
  start-page: 309
  year: 2014
  end-page: 315
  ident: b0225
  article-title: Highly accurate recognition of human postures and activities through classification with rejection
  publication-title: IEEE J Biomed Health Inform
– volume: 87
  start-page: 111
  year: 2001
  end-page: 117
  ident: b0215
  article-title: Gait disorders: prevalence, morbidity, and etiology
  publication-title: Adv Neurol
– year: 2001
  ident: b0065
  article-title: Pattern classification
– reference: Wang Z, Jiang M, Zhang Y. Children abnormal gait analysis based on SVM. In: Proceedings of the world congress on engineering and computer science. San Francisco (USA); 2009.
– volume: 45
  start-page: 737
  year: 1988
  end-page: 739
  ident: b0095
  article-title: A clinical sign of canal paresis
  publication-title: Arch Neurol
– volume: 7
  start-page: 290
  year: 2007
  end-page: 294
  ident: b0230
  article-title: Higher level gait disorders
  publication-title: Curr Neurol Neurosci Rep
– volume: 11
  start-page: 25
  year: 2000
  end-page: 31
  ident: b0205
  article-title: An index for quantifying deviations from normal gait
  publication-title: Gait Posture
– volume: 13
  start-page: 216
  year: 1997
  end-page: 220
  ident: b0155
  article-title: Design and test of neural networks and statistical classifiers in computer-aided movement analysis: a case study on gait analysis
  publication-title: Clin Biomech
– volume: 251
  start-page: 79
  year: 2004
  end-page: 84
  ident: b0210
  article-title: Falls in frequent neurological diseases – prevalence, risk factors and aetiology
  publication-title: J Neurol
– volume: 35
  start-page: 352
  year: 2002
  end-page: 359
  ident: b0060
  article-title: Logistic regression and artificial neural network classification models: a methodology review
  publication-title: J Biomed Inform
– volume: 117
  start-page: 1692
  year: 2006
  end-page: 1698
  ident: b0150
  article-title: Artificial neural network: a new diagnostic posturographic tool for disorders of stance
  publication-title: Clin Neurophysiol
– volume: 224
  start-page: 287
  year: 2013
  end-page: 294
  ident: b0265
  article-title: Differential effects of absent visual feedback control on gait variability during different locomotion speeds
  publication-title: Exp Brain Res
– reference: Diehl C, Cauwenberghs G. SVM incremental learning, adaptation and optimization. In: Proceedings of international joint conference on neural networks (IJCNN). Portland (USA); 20–24 July 2003. p. 2685–90.
– volume: 259
  start-page: 182
  year: 2012
  end-page: 184
  ident: b0025
  article-title: Artificial neural network posturography detects the transition of vestibular neuritis to phobic postural vertigo
  publication-title: J Neurol
– volume: 136
  start-page: 15
  year: 1982
  end-page: 27
  ident: b0035
  article-title: Alternative k-nearest neighbour rules in supervised pattern recognition: Part 1. k-nearest neighbour classification by using alternative voting rules
  publication-title: Anal Chim Acta
– volume: 35
  start-page: 137
  year: 2004
  end-page: 161
  ident: b0125
  article-title: A diffusion-neural-network for learning from small samples
  publication-title: Int J Approx Reason
– volume: 33
  start-page: 811
  year: 2005
  end-page: 820
  ident: b0080
  article-title: A model for detecting balance impairment and estimating falls risk in the elderly
  publication-title: Ann Biomed Eng
– volume: 7
  start-page: 288
  year: 2006
  ident: b0120
  article-title: Noise-injected neural networks show promise for use on small-sample expression data
  publication-title: BMC Bioinform
– volume: 34
  start-page: 111
  year: 2011
  end-page: 118
  ident: b0105
  article-title: Normative spatiotemporal gait parameters in older adults
  publication-title: Gait Posture
– volume: 29
  start-page: 103
  year: 1997
  end-page: 137
  ident: b0055
  article-title: On the optimality of the simple Bayesian classifier under zero-one loss
  publication-title: Mach Learn
– volume: 53
  start-page: 2479
  year: 2006
  end-page: 2490
  ident: b0140
  article-title: Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait
  publication-title: IEEE Trans Biomed Eng
– volume: 13
  start-page: 49
  year: 2001
  end-page: 66
  ident: b0030
  article-title: A review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methods
  publication-title: Gait Posture
– volume: 13
  start-page: 252
  year: 1991
  end-page: 264
  ident: b0190
  article-title: Small sample size effects in statistical pattern recognition: recommendations for practitioners
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 21
  start-page: 316
  year: 2012
  end-page: 326
  ident: b0270
  article-title: Human gait recognition using patch distribution feature and locality-constrained group sparse representation
  publication-title: IEEE Trans Image Process
– volume: 130
  start-page: 786
  year: 2007
  end-page: 798
  ident: b0130
  article-title: Specific influences of cerebellar dysfunctions on gait
  publication-title: Brain
– volume: 68
  start-page: 820
  year: 2013
  end-page: 827
  ident: b0160
  article-title: Independent domains of gait in older adults and associated motor and nonmotor attributes: validation of a factor analysis approach
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 46
  start-page: 1515
  year: 1996
  end-page: 1519
  ident: b0020
  article-title: Phobic postural vertigo
  publication-title: Neurology
– volume: 12
  start-page: 116
  year: 2012
  ident: b0070
  article-title: Comparison of gait in progressive supranuclear palsy, Parkinson’s disease and healthy older adults
  publication-title: BMC Neurol
– volume: 64
  start-page: 891
  year: 2009
  end-page: 901
  ident: b0235
  article-title: Quantitative gait markers and incident fall risk in older adults
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 32
  start-page: 547
  year: 2010
  end-page: 551
  ident: b0090
  article-title: Low vision affects dynamic stability of gait
  publication-title: Gait Posture
– volume: 1164
  start-page: 505
  year: 2009
  end-page: 508
  ident: b0275
  article-title: Causative factors, epidemiology, and follow-up of bilateral vestibulopathy
  publication-title: Ann N Y Acad Sci
– volume: 5
  start-page: 28
  year: 1997
  end-page: 33
  ident: b0010
  article-title: An application of neural networks for distinguishing gait patterns on the basis of hip–knee joint angle diagrams
  publication-title: Gait Posture
– volume: 21
  start-page: 908
  year: 2013
  end-page: 916
  ident: b0005
  article-title: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 21
  start-page: 1509
  year: 2005
  end-page: 1515
  ident: b0115
  article-title: Optimal number of features as a function of sample size for various classification rules
  publication-title: BMC Bioinform
– volume: 26
  start-page: 645
  year: 1993
  end-page: 651
  ident: b0110
  article-title: Assessment of gait patterns using neural networks
  publication-title: J Biomech
– volume: 60
  start-page: 2745
  year: 2013
  end-page: 2750
  ident: b0175
  article-title: Myoelectric walking mode classification for transtibial amputees
  publication-title: IEEE Trans Biomed Eng
– volume: 66
  start-page: 1717
  year: 2006
  end-page: 1720
  ident: b0195
  article-title: Scale for the assessment and rating of ataxia: development of a new clinical scale
  publication-title: Neurology
– year: 1991
  ident: b0135
  article-title: A user’s guide to principal components
– volume: 54
  start-page: 1059
  year: 1974
  end-page: 1065
  ident: b0185
  article-title: Functional ambulation profile
  publication-title: Phys Ther
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b0045
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– volume: 257
  start-page: 392
  year: 2010
  end-page: 398
  ident: b0240
  article-title: Neurological gait abnormalities and risk of falls in older adults
  publication-title: J Neurol
– volume: 198
  start-page: 95
  year: 2009
  end-page: 106
  ident: b0085
  article-title: Effects of visual deprivation on intra-limb coordination during walking in children and adults
  publication-title: Exp Brain Res
– volume: 10
  start-page: 106
  year: 1972
  end-page: 110
  ident: b0180
  article-title: Vestibular postural control model
  publication-title: Kybernetik
– volume: 69
  start-page: 385
  year: 2001
  end-page: 399
  ident: b0100
  article-title: Idiot’s bayes – not so stupid after all?
  publication-title: Int Statist Rev
– volume: 8
  start-page: e56956
  year: 2013
  ident: b0145
  article-title: Unbiased and mobile gait analysis detects motor impairment in Parkinson’s disease
  publication-title: PLoS One
– volume: 27
  start-page: 125
  year: 2012
  end-page: 131
  ident: b0200
  article-title: Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure
  publication-title: Mov Disord
– volume: 28
  start-page: 2401
  year: 2007
  end-page: 2411
  ident: b0165
  article-title: Gait recognition for human identification based on ICA and fuzzy SVM through multiple views fusion
  publication-title: Pattern Recognitt Lett
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0040
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 130
  start-page: 1552
  year: 2007
  end-page: 1565
  ident: b0075
  article-title: A clinical rating scale for progressive supranuclear palsy
  publication-title: Brain
– volume: 5
  start-page: 975
  year: 2004
  end-page: 1005
  ident: b0260
  article-title: Probability estimates for multi-class classification by pairwise coupling
  publication-title: J Mach Learn Res
– volume: 66
  start-page: 1717
  issue: 11
  year: 2006
  ident: 10.1016/j.jelekin.2015.01.004_b0195
  article-title: Scale for the assessment and rating of ataxia: development of a new clinical scale
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000219042.60538.92
– volume: 146
  start-page: 490
  issue: 4
  year: 2002
  ident: 10.1016/j.jelekin.2015.01.004_b0015
  article-title: Visual-vestibular interactions in postural control during the execution of a dynamic task
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-002-1204-8
– volume: 259
  start-page: 182
  issue: 1
  year: 2012
  ident: 10.1016/j.jelekin.2015.01.004_b0025
  article-title: Artificial neural network posturography detects the transition of vestibular neuritis to phobic postural vertigo
  publication-title: J Neurol
  doi: 10.1007/s00415-011-6124-8
– volume: 198
  start-page: 95
  issue: 1
  year: 2009
  ident: 10.1016/j.jelekin.2015.01.004_b0085
  article-title: Effects of visual deprivation on intra-limb coordination during walking in children and adults
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-009-1937-8
– volume: 13
  start-page: 49
  issue: 1
  year: 2001
  ident: 10.1016/j.jelekin.2015.01.004_b0030
  article-title: A review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methods
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(00)00094-1
– volume: 18
  start-page: 309
  issue: 1
  year: 2014
  ident: 10.1016/j.jelekin.2015.01.004_b0225
  article-title: Highly accurate recognition of human postures and activities through classification with rejection
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2013.2287400
– volume: 12
  start-page: 116
  issue: 2
  year: 2012
  ident: 10.1016/j.jelekin.2015.01.004_b0070
  article-title: Comparison of gait in progressive supranuclear palsy, Parkinson’s disease and healthy older adults
  publication-title: BMC Neurol
  doi: 10.1186/1471-2377-12-116
– volume: 68
  start-page: 820
  issue: 7
  year: 2013
  ident: 10.1016/j.jelekin.2015.01.004_b0160
  article-title: Independent domains of gait in older adults and associated motor and nonmotor attributes: validation of a factor analysis approach
  publication-title: J Gerontol A Biol Sci Med Sci
  doi: 10.1093/gerona/gls255
– volume: 7
  start-page: 290
  issue: 4
  year: 2007
  ident: 10.1016/j.jelekin.2015.01.004_b0230
  article-title: Higher level gait disorders
  publication-title: Curr Neurol Neurosci Rep
  doi: 10.1007/s11910-007-0044-0
– volume: 27
  start-page: 125
  issue: 1
  year: 2012
  ident: 10.1016/j.jelekin.2015.01.004_b0200
  article-title: Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure
  publication-title: Mov Disord
  doi: 10.1002/mds.23978
– volume: 64
  start-page: 891
  issue: 8
  year: 2009
  ident: 10.1016/j.jelekin.2015.01.004_b0235
  article-title: Quantitative gait markers and incident fall risk in older adults
  publication-title: J Gerontol A Biol Sci Med Sci
– ident: 10.1016/j.jelekin.2015.01.004_b0245
– volume: 13
  start-page: 216
  issue: 3
  year: 1997
  ident: 10.1016/j.jelekin.2015.01.004_b0155
  article-title: Design and test of neural networks and statistical classifiers in computer-aided movement analysis: a case study on gait analysis
  publication-title: Clin Biomech
  doi: 10.1016/S0268-0033(97)00082-X
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.jelekin.2015.01.004_b0045
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– volume: 224
  start-page: 287
  issue: 2
  year: 2013
  ident: 10.1016/j.jelekin.2015.01.004_b0265
  article-title: Differential effects of absent visual feedback control on gait variability during different locomotion speeds
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-012-3310-6
– year: 2001
  ident: 10.1016/j.jelekin.2015.01.004_b0065
– volume: 21
  start-page: 316
  issue: 1
  year: 2012
  ident: 10.1016/j.jelekin.2015.01.004_b0270
  article-title: Human gait recognition using patch distribution feature and locality-constrained group sparse representation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2011.2160956
– volume: 33
  start-page: 811
  issue: 6
  year: 2005
  ident: 10.1016/j.jelekin.2015.01.004_b0080
  article-title: A model for detecting balance impairment and estimating falls risk in the elderly
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-005-2867-7
– volume: 6
  start-page: 19
  issue: 1
  year: 2012
  ident: 10.1016/j.jelekin.2015.01.004_b0220
  article-title: Performance comparison of SVM and kNN in automatic classification of human gait patterns
  publication-title: Int J Comput
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.jelekin.2015.01.004_b0040
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 53
  start-page: 2479
  issue: 12
  year: 2006
  ident: 10.1016/j.jelekin.2015.01.004_b0140
  article-title: Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.883697
– year: 1991
  ident: 10.1016/j.jelekin.2015.01.004_b0135
– volume: 69
  start-page: 385
  issue: 3
  year: 2001
  ident: 10.1016/j.jelekin.2015.01.004_b0100
  article-title: Idiot’s bayes – not so stupid after all?
  publication-title: Int Statist Rev
– volume: 87
  start-page: 111
  issue: 1
  year: 2001
  ident: 10.1016/j.jelekin.2015.01.004_b0215
  article-title: Gait disorders: prevalence, morbidity, and etiology
  publication-title: Adv Neurol
– volume: 59
  start-page: 2884
  issue: 10
  year: 2012
  ident: 10.1016/j.jelekin.2015.01.004_b0250
  article-title: Walking pattern classification and walking distance estimation algorithms using gait phase information
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2212245
– volume: 26
  start-page: 645
  issue: 6
  year: 1993
  ident: 10.1016/j.jelekin.2015.01.004_b0110
  article-title: Assessment of gait patterns using neural networks
  publication-title: J Biomech
  doi: 10.1016/0021-9290(93)90028-D
– volume: 5
  start-page: 975
  issue: 1
  year: 2004
  ident: 10.1016/j.jelekin.2015.01.004_b0260
  article-title: Probability estimates for multi-class classification by pairwise coupling
  publication-title: J Mach Learn Res
– volume: 130
  start-page: 1552
  issue: 6
  year: 2007
  ident: 10.1016/j.jelekin.2015.01.004_b0075
  article-title: A clinical rating scale for progressive supranuclear palsy
  publication-title: Brain
  doi: 10.1093/brain/awm032
– volume: 21
  start-page: 908
  issue: 6
  year: 2013
  ident: 10.1016/j.jelekin.2015.01.004_b0005
  article-title: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2013.2239313
– volume: 130
  start-page: 786
  issue: 3
  year: 2007
  ident: 10.1016/j.jelekin.2015.01.004_b0130
  article-title: Specific influences of cerebellar dysfunctions on gait
  publication-title: Brain
  doi: 10.1093/brain/awl376
– ident: 10.1016/j.jelekin.2015.01.004_b0050
  doi: 10.1109/IJCNN.2003.1223991
– ident: 10.1016/j.jelekin.2015.01.004_b0170
  doi: 10.1109/ISIEA.2012.6496664
– volume: 136
  start-page: 15
  issue: 1
  year: 1982
  ident: 10.1016/j.jelekin.2015.01.004_b0035
  article-title: Alternative k-nearest neighbour rules in supervised pattern recognition: Part 1. k-nearest neighbour classification by using alternative voting rules
  publication-title: Anal Chim Acta
  doi: 10.1016/S0003-2670(01)95359-0
– volume: 45
  start-page: 737
  issue: 7
  year: 1988
  ident: 10.1016/j.jelekin.2015.01.004_b0095
  article-title: A clinical sign of canal paresis
  publication-title: Arch Neurol
  doi: 10.1001/archneur.1988.00520310043015
– volume: 1164
  start-page: 505
  year: 2009
  ident: 10.1016/j.jelekin.2015.01.004_b0275
  article-title: Causative factors, epidemiology, and follow-up of bilateral vestibulopathy
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.2009.03765.x
– volume: 7
  start-page: 288
  issue: 274
  year: 2006
  ident: 10.1016/j.jelekin.2015.01.004_b0120
  article-title: Noise-injected neural networks show promise for use on small-sample expression data
  publication-title: BMC Bioinform
– volume: 257
  start-page: 392
  issue: 3
  year: 2010
  ident: 10.1016/j.jelekin.2015.01.004_b0240
  article-title: Neurological gait abnormalities and risk of falls in older adults
  publication-title: J Neurol
  doi: 10.1007/s00415-009-5332-y
– volume: 46
  start-page: 1515
  issue: 6
  year: 1996
  ident: 10.1016/j.jelekin.2015.01.004_b0020
  article-title: Phobic postural vertigo
  publication-title: Neurology
  doi: 10.1212/WNL.46.6.1515
– volume: 21
  start-page: 1509
  issue: 8
  year: 2005
  ident: 10.1016/j.jelekin.2015.01.004_b0115
  article-title: Optimal number of features as a function of sample size for various classification rules
  publication-title: BMC Bioinform
  doi: 10.1093/bioinformatics/bti171
– volume: 117
  start-page: 1692
  issue: 8
  year: 2006
  ident: 10.1016/j.jelekin.2015.01.004_b0150
  article-title: Artificial neural network: a new diagnostic posturographic tool for disorders of stance
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.04.022
– volume: 28
  start-page: 2401
  issue: 16
  year: 2007
  ident: 10.1016/j.jelekin.2015.01.004_b0165
  article-title: Gait recognition for human identification based on ICA and fuzzy SVM through multiple views fusion
  publication-title: Pattern Recognitt Lett
  doi: 10.1016/j.patrec.2007.08.004
– volume: 34
  start-page: 111
  issue: 1
  year: 2011
  ident: 10.1016/j.jelekin.2015.01.004_b0105
  article-title: Normative spatiotemporal gait parameters in older adults
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2011.03.024
– volume: 251
  start-page: 79
  issue: 1
  year: 2004
  ident: 10.1016/j.jelekin.2015.01.004_b0210
  article-title: Falls in frequent neurological diseases – prevalence, risk factors and aetiology
  publication-title: J Neurol
  doi: 10.1007/s00415-004-0276-8
– volume: 11
  start-page: 25
  year: 2000
  ident: 10.1016/j.jelekin.2015.01.004_b0205
  article-title: An index for quantifying deviations from normal gait
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(99)00047-8
– volume: 5
  start-page: 28
  issue: 1
  year: 1997
  ident: 10.1016/j.jelekin.2015.01.004_b0010
  article-title: An application of neural networks for distinguishing gait patterns on the basis of hip–knee joint angle diagrams
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(96)01070-3
– volume: 32
  start-page: 547
  issue: 4
  year: 2010
  ident: 10.1016/j.jelekin.2015.01.004_b0090
  article-title: Low vision affects dynamic stability of gait
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2010.07.018
– volume: 8
  start-page: e56956
  issue: 2
  year: 2013
  ident: 10.1016/j.jelekin.2015.01.004_b0145
  article-title: Unbiased and mobile gait analysis detects motor impairment in Parkinson’s disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0056956
– volume: 29
  start-page: 103
  issue: 2–3
  year: 1997
  ident: 10.1016/j.jelekin.2015.01.004_b0055
  article-title: On the optimality of the simple Bayesian classifier under zero-one loss
  publication-title: Mach Learn
  doi: 10.1023/A:1007413511361
– volume: 27
  start-page: 765
  issue: 7
  year: 2007
  ident: 10.1016/j.jelekin.2015.01.004_b0255
  article-title: Gillette Gait Index as a gait analysis summary measure: comparison with qualitative visual assessments of overall gait
  publication-title: J Pediatr Orthop
  doi: 10.1097/BPO.0b013e3181558ade
– volume: 35
  start-page: 137
  year: 2004
  ident: 10.1016/j.jelekin.2015.01.004_b0125
  article-title: A diffusion-neural-network for learning from small samples
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2003.06.001
– volume: 35
  start-page: 352
  issue: 5–6
  year: 2002
  ident: 10.1016/j.jelekin.2015.01.004_b0060
  article-title: Logistic regression and artificial neural network classification models: a methodology review
  publication-title: J Biomed Inform
  doi: 10.1016/S1532-0464(03)00034-0
– volume: 60
  start-page: 2745
  issue: 10
  year: 2013
  ident: 10.1016/j.jelekin.2015.01.004_b0175
  article-title: Myoelectric walking mode classification for transtibial amputees
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2264466
– volume: 10
  start-page: 106
  issue: 1
  year: 1972
  ident: 10.1016/j.jelekin.2015.01.004_b0180
  article-title: Vestibular postural control model
  publication-title: Kybernetik
  doi: 10.1007/BF00292236
– volume: 54
  start-page: 1059
  issue: 10
  year: 1974
  ident: 10.1016/j.jelekin.2015.01.004_b0185
  article-title: Functional ambulation profile
  publication-title: Phys Ther
  doi: 10.1093/ptj/54.10.1059
– volume: 13
  start-page: 252
  issue: 3
  year: 1991
  ident: 10.1016/j.jelekin.2015.01.004_b0190
  article-title: Small sample size effects in statistical pattern recognition: recommendations for practitioners
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.75512
SSID ssj0017080
Score 2.3565857
Snippet Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment...
Abstract Objective Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 413
SubjectTerms Aged
Aged, 80 and over
Algorithms
Artificial Intelligence
Artificial neural networks (ANN)
Bayes Theorem
Female
Gait - physiology
GAITRite
Humans
k-nearest neighbor (KNN)
Male
Middle Aged
Muscle, Skeletal - physiology
Naive-bayes classifier (NB)
Nervous System Diseases - classification
Nervous System Diseases - diagnosis
Nervous System Diseases - physiopathology
Neural Networks (Computer)
Neurological disorders of gait
Pattern recognition
Pattern Recognition, Automated - methods
Physical Medicine and Rehabilitation
Principal Component Analysis - methods
Reproducibility of Results
Support Vector Machine
Support vector machines (SVM)
Time Factors
Title Automated classification of neurological disorders of gait using spatio-temporal gait parameters
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1050641115000231
https://www.clinicalkey.es/playcontent/1-s2.0-S1050641115000231
https://dx.doi.org/10.1016/j.jelekin.2015.01.004
https://www.ncbi.nlm.nih.gov/pubmed/25725811
https://www.proquest.com/docview/1662433517
https://www.proquest.com/docview/1753948052
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5711
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017080
  issn: 1050-6411
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Freedom Collection
  customDbUrl:
  eissn: 1873-5711
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017080
  issn: 1050-6411
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-5711
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017080
  issn: 1050-6411
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-5711
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017080
  issn: 1050-6411
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5711
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017080
  issn: 1050-6411
  databaseCode: AKRWK
  dateStart: 19910101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4huHCpyqN0KSBXqrhlN46dOBxXCLRtVS6AxM2NHQftdsmiZvfAhd_OjOMsQryqHpN4ZGtiz3yTzHwD8E2glyTOlSgxhY0k1ejmiT2KDDqrsnIFt4YCxV9n2ehS_rhKr1bguKuFobTKYPtbm-6tdbgzCNoc3I7Hg3NEBuhPOUEa8jy-gl0q6mLQv1-meXAV5y0jQYphEo5-rOIZTPoTNO1_xkSDylv2ztCv7QX_9Br-9H7o9CN8CACSDds1bsCKqzdha1hj8Hxzxw6ZT-n038q34PdwgXcRTZbMEkqmtCD_JtisYp7JMlg-VgYSzoaeXBfjOaOE-GvW-ITrKBBYTdtHRBd-Q2k0zTZcnp5cHI-i0FIhsgj85lEpqtQmtjQ2V6VwitpJCYeor6xUyZWRLjZEVptIaxCruAzHp6LIiP9IxlaIT7Baz2r3GVhChxnxkuUGURiXRsYFL1QsncCgLat6IDtFahv4xqntxVR3iWUTHfSvSf865hr134P-Uuy2Jdx4TyDr3pLuqknR_ml0Ce8JqpcEXRNOcaO5bhId62c7rQf5UvLJZv2XSb92G0njQaa_M0XtZgucLMsSKUTK1RtjMLg8ktSFogc77S5cKgltb5LmnO_-_-K-wDpdtYlJe7A6_7tw-4i55ubAH6oDWBt-_zk6ewABaCsL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB1V5UAvCEgLoXwsEuLmxPthr3OMIqIAaS-0Um-Ld72uElonwsmhF347M_Y6CNFSxNW7I1vj3Zk39ts3AO8kZknSXImEzV2k6IxuJtwospisitLn3FkqFE9O09m5-nSRXOzBpDsLQ7TKEPvbmN5E63BlGLw5XC8Wwy-IDDCfcoI0lHmwBHqgEqGpAhv82PE8uI6zVpIgwToJp_86xjNcDpYY278tSAeVt_KdoWHbLQnqLgDaJKLpY3gUECQbtw_5BPZ89RR64wqr5-sb9p41nM7mY3kPvo63eBXhZMEcwWTiBTWvgq1K1khZhtDHiqDCWdPIZb7YMGLEX7K6YVxHQcHqqh0ivfBr4tHUh3A-_XA2mUWhp0LkEPltokKWiROusC7ThfSa-klJj7CvKHXBtVU-tqRWK5SzCFZ8ivMTmackgKRiJ-UR7Feryj8HJmg3I2By3CIM48qqOOe5jpWXWLWlZR9U50jjguA49b24Mh2zbGmC_w3538TcoP_7MNiZrVvFjfsM0u4tme44KQZAgznhPkN9m6GvwzauDTe1MLH5Y6n1IdtZ_rZa_-Wmb7uFZHAn0--ZvPKrLd4sTYWSMuH6L3OwuhwpakPRh2ftKtw5CYOvSDLOX_z_w72Bh7Ozk7mZfzz9fAwHNNKylF7C_ub71r9CALaxr5sN9hOo7Syg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+classification+of+neurological+disorders+of+gait+using+spatio-temporal+gait+parameters&rft.jtitle=Journal+of+electromyography+and+kinesiology&rft.au=Pradhan%2C+Cauchy&rft.au=Wuehr%2C+Max&rft.au=Akrami%2C+Farhoud&rft.au=Neuhaeusser%2C+Maximilian&rft.date=2015-04-01&rft.eissn=1873-5711&rft.volume=25&rft.issue=2&rft.spage=413&rft_id=info:doi/10.1016%2Fj.jelekin.2015.01.004&rft_id=info%3Apmid%2F25725811&rft.externalDocID=25725811
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10506411%2FS1050641115X00034%2Fcov150h.gif