Automated classification of neurological disorders of gait using spatio-temporal gait parameters
Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment outcomes. This study aims to determine the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern reco...
Saved in:
| Published in | Journal of electromyography and kinesiology Vol. 25; no. 2; pp. 413 - 422 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
01.04.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1050-6411 1873-5711 1873-5711 |
| DOI | 10.1016/j.jelekin.2015.01.004 |
Cover
| Abstract | Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment outcomes. This study aims to determine the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern recognition techniques.
Clinically confirmed cases of phobic postural vertigo (N=30), cerebellar ataxia (N=30), progressive supranuclear palsy (N=30), bilateral vestibulopathy (N=30), as well as healthy subjects (N=30) were recruited for the study. 8 measurements with 136 variables using a GAITRite® sensor carpet were obtained from each subject. Subjects were randomly divided into two groups (training cases and validation cases). Sensitivity and specificity of k-nearest neighbor (KNN), naive-bayes classifier (NB), artificial neural network (ANN), and support vector machine (SVM) in classifying the validation cases were calculated.
ANN and SVM had the highest overall sensitivity with 90.6% and 92.0% respectively, followed by NB (76.0%) and KNN (73.3%). SVM and ANN showed high false negative rates for bilateral vestibulopathy cases (20.0% and 26.0%); while KNN and NB had high false negative rates for progressive supranuclear palsy cases (76.7% and 40.0%).
Automated pattern recognition systems are able to identify pathological gait patterns and establish clinical diagnosis with good accuracy. SVM and ANN in particular differentiate gait patterns of several distinct oto-neurological disorders of gait with high sensitivity and specificity compared to KNN and NB. Both SVM and ANN appear to be a reliable diagnostic and management tool for disorders of gait. |
|---|---|
| AbstractList | Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment outcomes. This study aims to determine the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern recognition techniques.OBJECTIVEAutomated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment outcomes. This study aims to determine the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern recognition techniques.Clinically confirmed cases of phobic postural vertigo (N = 30), cerebellar ataxia (N = 30), progressive supranuclear palsy (N = 30), bilateral vestibulopathy (N = 30), as well as healthy subjects (N = 30) were recruited for the study. 8 measurements with 136 variables using a GAITRite(®) sensor carpet were obtained from each subject. Subjects were randomly divided into two groups (training cases and validation cases). Sensitivity and specificity of k-nearest neighbor (KNN), naive-bayes classifier (NB), artificial neural network (ANN), and support vector machine (SVM) in classifying the validation cases were calculated.METHODSClinically confirmed cases of phobic postural vertigo (N = 30), cerebellar ataxia (N = 30), progressive supranuclear palsy (N = 30), bilateral vestibulopathy (N = 30), as well as healthy subjects (N = 30) were recruited for the study. 8 measurements with 136 variables using a GAITRite(®) sensor carpet were obtained from each subject. Subjects were randomly divided into two groups (training cases and validation cases). Sensitivity and specificity of k-nearest neighbor (KNN), naive-bayes classifier (NB), artificial neural network (ANN), and support vector machine (SVM) in classifying the validation cases were calculated.ANN and SVM had the highest overall sensitivity with 90.6% and 92.0% respectively, followed by NB (76.0%) and KNN (73.3%). SVM and ANN showed high false negative rates for bilateral vestibulopathy cases (20.0% and 26.0%); while KNN and NB had high false negative rates for progressive supranuclear palsy cases (76.7% and 40.0%).RESULTSANN and SVM had the highest overall sensitivity with 90.6% and 92.0% respectively, followed by NB (76.0%) and KNN (73.3%). SVM and ANN showed high false negative rates for bilateral vestibulopathy cases (20.0% and 26.0%); while KNN and NB had high false negative rates for progressive supranuclear palsy cases (76.7% and 40.0%).Automated pattern recognition systems are able to identify pathological gait patterns and establish clinical diagnosis with good accuracy. SVM and ANN in particular differentiate gait patterns of several distinct oto-neurological disorders of gait with high sensitivity and specificity compared to KNN and NB. Both SVM and ANN appear to be a reliable diagnostic and management tool for disorders of gait.CONCLUSIONSAutomated pattern recognition systems are able to identify pathological gait patterns and establish clinical diagnosis with good accuracy. SVM and ANN in particular differentiate gait patterns of several distinct oto-neurological disorders of gait with high sensitivity and specificity compared to KNN and NB. Both SVM and ANN appear to be a reliable diagnostic and management tool for disorders of gait. Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment outcomes. This study aims to determine the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern recognition techniques. Clinically confirmed cases of phobic postural vertigo (N = 30), cerebellar ataxia (N = 30), progressive supranuclear palsy (N = 30), bilateral vestibulopathy (N = 30), as well as healthy subjects (N = 30) were recruited for the study. 8 measurements with 136 variables using a GAITRite(®) sensor carpet were obtained from each subject. Subjects were randomly divided into two groups (training cases and validation cases). Sensitivity and specificity of k-nearest neighbor (KNN), naive-bayes classifier (NB), artificial neural network (ANN), and support vector machine (SVM) in classifying the validation cases were calculated. ANN and SVM had the highest overall sensitivity with 90.6% and 92.0% respectively, followed by NB (76.0%) and KNN (73.3%). SVM and ANN showed high false negative rates for bilateral vestibulopathy cases (20.0% and 26.0%); while KNN and NB had high false negative rates for progressive supranuclear palsy cases (76.7% and 40.0%). Automated pattern recognition systems are able to identify pathological gait patterns and establish clinical diagnosis with good accuracy. SVM and ANN in particular differentiate gait patterns of several distinct oto-neurological disorders of gait with high sensitivity and specificity compared to KNN and NB. Both SVM and ANN appear to be a reliable diagnostic and management tool for disorders of gait. Abstract Objective Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment outcomes. This study aims to determine the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern recognition techniques. Methods Clinically confirmed cases of phobic postural vertigo ( N = 30), cerebellar ataxia ( N = 30), progressive supranuclear palsy ( N = 30), bilateral vestibulopathy ( N = 30), as well as healthy subjects ( N = 30) were recruited for the study. 8 measurements with 136 variables using a GAITRite® sensor carpet were obtained from each subject. Subjects were randomly divided into two groups (training cases and validation cases). Sensitivity and specificity of k-nearest neighbor (KNN), naive-bayes classifier (NB), artificial neural network (ANN), and support vector machine (SVM) in classifying the validation cases were calculated. Results ANN and SVM had the highest overall sensitivity with 90.6% and 92.0% respectively, followed by NB (76.0%) and KNN (73.3%). SVM and ANN showed high false negative rates for bilateral vestibulopathy cases (20.0% and 26.0%); while KNN and NB had high false negative rates for progressive supranuclear palsy cases (76.7% and 40.0%). Conclusions Automated pattern recognition systems are able to identify pathological gait patterns and establish clinical diagnosis with good accuracy. SVM and ANN in particular differentiate gait patterns of several distinct oto-neurological disorders of gait with high sensitivity and specificity compared to KNN and NB. Both SVM and ANN appear to be a reliable diagnostic and management tool for disorders of gait. Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment outcomes. This study aims to determine the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern recognition techniques. Clinically confirmed cases of phobic postural vertigo (N=30), cerebellar ataxia (N=30), progressive supranuclear palsy (N=30), bilateral vestibulopathy (N=30), as well as healthy subjects (N=30) were recruited for the study. 8 measurements with 136 variables using a GAITRite® sensor carpet were obtained from each subject. Subjects were randomly divided into two groups (training cases and validation cases). Sensitivity and specificity of k-nearest neighbor (KNN), naive-bayes classifier (NB), artificial neural network (ANN), and support vector machine (SVM) in classifying the validation cases were calculated. ANN and SVM had the highest overall sensitivity with 90.6% and 92.0% respectively, followed by NB (76.0%) and KNN (73.3%). SVM and ANN showed high false negative rates for bilateral vestibulopathy cases (20.0% and 26.0%); while KNN and NB had high false negative rates for progressive supranuclear palsy cases (76.7% and 40.0%). Automated pattern recognition systems are able to identify pathological gait patterns and establish clinical diagnosis with good accuracy. SVM and ANN in particular differentiate gait patterns of several distinct oto-neurological disorders of gait with high sensitivity and specificity compared to KNN and NB. Both SVM and ANN appear to be a reliable diagnostic and management tool for disorders of gait. |
| Author | Wuehr, Max Pradhan, Cauchy Neuhaeusser, Maximilian Jahn, Klaus Huth, Sabrina Brandt, Thomas Akrami, Farhoud Schniepp, Roman |
| Author_xml | – sequence: 1 givenname: Cauchy surname: Pradhan fullname: Pradhan, Cauchy email: cauchypradhan@gmail.com organization: German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany – sequence: 2 givenname: Max surname: Wuehr fullname: Wuehr, Max organization: German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany – sequence: 3 givenname: Farhoud surname: Akrami fullname: Akrami, Farhoud organization: German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany – sequence: 4 givenname: Maximilian surname: Neuhaeusser fullname: Neuhaeusser, Maximilian organization: German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany – sequence: 5 givenname: Sabrina surname: Huth fullname: Huth, Sabrina organization: German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany – sequence: 6 givenname: Thomas surname: Brandt fullname: Brandt, Thomas organization: German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany – sequence: 7 givenname: Klaus surname: Jahn fullname: Jahn, Klaus organization: German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany – sequence: 8 givenname: Roman surname: Schniepp fullname: Schniepp, Roman organization: German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25725811$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1TAQhSNURB_wE0BZskmYieM4CEFVVbykSiyAtXHsyZXTJA62g9R_j9N7u6mELitbnu8c23PmPDuZ3UxZ9hKhRMDmzVAONNKtncsKkJeAJUD9JDvDVrCCC8STtAcORVMjnmbnIQwAKKCFZ9lpxUXFW8Sz7NfVGt2kIplcjyoE21utonVz7vp8ptW70e3S0ZgbG5w35MNW2Skb8zXYeZeHZeOLSNPifOLuS4vyaqKY6OfZ016NgV4c1ovs56ePP66_FDffPn-9vropNAcRC8N6rittOt0Kw0iYxnSMsEHTC4Oiqwm6hrO3Va27pmbUJJ4z1TDB2ho0YxfZ673v4t3vlUKUkw2axlHN5NYgUSR13QKvjqNNU9WMcRQJfXVA124iIxdvJ-Xv5EMDE_BuD2jvQvDUS23jfQOjV3aUCHKLSw7yEJfc4pKAMsWV1PyR-uGCY7rLvY5SR_9Y8jJoS7MmYz3pKI2zRx0-PHLQo523oG_pjsLgVj-nuCTKUEmQ37dR2iYJOQBUbPv4-38b_McD_gKS9NxO |
| CitedBy_id | crossref_primary_10_3390_s19102401 crossref_primary_10_1016_j_humov_2015_07_009 crossref_primary_10_1016_j_physbeh_2019_112706 crossref_primary_10_1055_a_1822_3227 crossref_primary_10_1016_j_msard_2024_105465 crossref_primary_10_1016_j_gaitpost_2018_06_154 crossref_primary_10_1007_s15016_017_5788_4 crossref_primary_10_1016_j_autcon_2017_04_010 crossref_primary_10_1007_s13167_021_00236_3 crossref_primary_10_1007_s13246_019_00780_3 crossref_primary_10_3390_brainsci9020034 crossref_primary_10_1038_s41598_024_68402_x crossref_primary_10_3389_fneur_2021_666458 crossref_primary_10_1123_jab_2019_0400 crossref_primary_10_1007_s00415_019_09458_y crossref_primary_10_1186_s13036_023_00398_w crossref_primary_10_1007_s00415_020_09931_z crossref_primary_10_1007_s11517_016_1546_1 crossref_primary_10_1002_pmrj_12003 crossref_primary_10_1007_s00415_020_10078_0 crossref_primary_10_1038_s41598_018_22676_0 crossref_primary_10_1016_j_aei_2018_10_002 crossref_primary_10_1177_0954406219869974 crossref_primary_10_2196_26825 crossref_primary_10_3389_fneur_2021_681140 crossref_primary_10_1109_ACCESS_2022_3225521 crossref_primary_10_1016_j_msard_2021_103261 crossref_primary_10_1109_ACCESS_2020_3039885 crossref_primary_10_4103_aiao_aiao_9_23 crossref_primary_10_1055_a_2224_5894 crossref_primary_10_1109_JSEN_2018_2814994 crossref_primary_10_1016_j_bspc_2021_103321 crossref_primary_10_3390_s21227565 crossref_primary_10_1109_TNSRE_2020_2969649 crossref_primary_10_1007_s00415_019_09378_x crossref_primary_10_1016_j_neubiorev_2016_03_035 crossref_primary_10_1016_j_parkreldis_2022_04_003 crossref_primary_10_1186_s13023_017_0644_y crossref_primary_10_1177_18724981251318456 crossref_primary_10_1016_j_autcon_2018_09_010 crossref_primary_10_1055_a_1418_8476 crossref_primary_10_1016_j_cmpb_2021_106525 crossref_primary_10_1038_s41598_019_53656_7 crossref_primary_10_1080_19368623_2021_1835597 crossref_primary_10_1007_s42451_024_00648_1 crossref_primary_10_3389_fneur_2022_919777 crossref_primary_10_1123_jmpb_2021_0035 crossref_primary_10_1016_j_gaitpost_2016_10_021 crossref_primary_10_1016_j_ergon_2022_103404 crossref_primary_10_3389_fnagi_2018_00435 |
| Cites_doi | 10.1212/01.wnl.0000219042.60538.92 10.1007/s00221-002-1204-8 10.1007/s00415-011-6124-8 10.1007/s00221-009-1937-8 10.1016/S0966-6362(00)00094-1 10.1109/JBHI.2013.2287400 10.1186/1471-2377-12-116 10.1093/gerona/gls255 10.1007/s11910-007-0044-0 10.1002/mds.23978 10.1016/S0268-0033(97)00082-X 10.1007/s00221-012-3310-6 10.1109/TIP.2011.2160956 10.1007/s10439-005-2867-7 10.1007/BF00994018 10.1109/TBME.2006.883697 10.1109/TBME.2012.2212245 10.1016/0021-9290(93)90028-D 10.1093/brain/awm032 10.1109/TNSRE.2013.2239313 10.1093/brain/awl376 10.1109/IJCNN.2003.1223991 10.1109/ISIEA.2012.6496664 10.1016/S0003-2670(01)95359-0 10.1001/archneur.1988.00520310043015 10.1111/j.1749-6632.2009.03765.x 10.1007/s00415-009-5332-y 10.1212/WNL.46.6.1515 10.1093/bioinformatics/bti171 10.1016/j.clinph.2006.04.022 10.1016/j.patrec.2007.08.004 10.1016/j.gaitpost.2011.03.024 10.1007/s00415-004-0276-8 10.1016/S0966-6362(99)00047-8 10.1016/S0966-6362(96)01070-3 10.1016/j.gaitpost.2010.07.018 10.1371/journal.pone.0056956 10.1023/A:1007413511361 10.1097/BPO.0b013e3181558ade 10.1016/j.ijar.2003.06.001 10.1016/S1532-0464(03)00034-0 10.1109/TBME.2013.2264466 10.1007/BF00292236 10.1093/ptj/54.10.1059 10.1109/34.75512 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.jelekin.2015.01.004 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1873-5711 |
| EndPage | 422 |
| ExternalDocumentID | 25725811 10_1016_j_jelekin_2015_01_004 S1050641115000231 1_s2_0_S1050641115000231 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 D-I DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K TWZ UPT WUQ YQT Z5R ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU LCYCR AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c507t-d3f5c2cdbc87d3e7d6db3e161df7d17b4e0b653924cb643e63f553a6373840c33 |
| IEDL.DBID | .~1 |
| ISSN | 1050-6411 1873-5711 |
| IngestDate | Sun Sep 28 06:44:22 EDT 2025 Thu Oct 02 05:48:17 EDT 2025 Thu Apr 03 06:55:14 EDT 2025 Wed Oct 01 05:07:22 EDT 2025 Thu Apr 24 23:11:55 EDT 2025 Fri Feb 23 02:25:42 EST 2024 Sun Feb 23 10:18:45 EST 2025 Tue Oct 14 19:29:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Neurological disorders of gait k-nearest neighbor (KNN) Naive-bayes classifier (NB) Pattern recognition Artificial neural networks (ANN) GAITRite Support vector machines (SVM) |
| Language | English |
| License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c507t-d3f5c2cdbc87d3e7d6db3e161df7d17b4e0b653924cb643e63f553a6373840c33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 25725811 |
| PQID | 1662433517 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1753948052 proquest_miscellaneous_1662433517 pubmed_primary_25725811 crossref_citationtrail_10_1016_j_jelekin_2015_01_004 crossref_primary_10_1016_j_jelekin_2015_01_004 elsevier_sciencedirect_doi_10_1016_j_jelekin_2015_01_004 elsevier_clinicalkeyesjournals_1_s2_0_S1050641115000231 elsevier_clinicalkey_doi_10_1016_j_jelekin_2015_01_004 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-04-01 |
| PublicationDateYYYYMMDD | 2015-04-01 |
| PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of electromyography and kinesiology |
| PublicationTitleAlternate | J Electromyogr Kinesiol |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zingler, Weintz, Jahn, Huppert, Cnyrim, Brandt (b0275) 2009; 1164 Cortes, Vapnik (b0040) 1995; 20 Diehl C, Cauwenberghs G. SVM incremental learning, adaptation and optimization. In: Proceedings of international joint conference on neural networks (IJCNN). Portland (USA); 20–24 July 2003. p. 2685–90. Wu, Lin, Weng (b0260) 2004; 5 Wang, Lin, Yang, Ho (b0250) 2012; 59 Hollman, McDade, Petersen (b0105) 2011; 34 Manap HH, Tahir NM, Abdullah R. Anomalous gait detection using Naive Bayes classifier. Industrial Electronics and Applications, IEEE Symposium. Bandung, Indonesia; 2012. p. 378–81. Verghese, Holtzer, Lipton, Wang (b0235) 2009; 64 Wuehr, Schniepp, Pradhan, Ilmberger, Strupp, Brandt (b0265) 2013; 224 Aung, Thies, Kenney, Howard, Selles, Findlow (b0005) 2013; 21 Schmitz-Hübsch, du Montcel, Baliko, Berciano, Boesch, Depondt (b0195) 2006; 66 Egerton, Williams, Iansek (b0070) 2012; 12 Halmagyi, Curthoys (b0095) 1988; 45 Hallemans, Aerts (b0085) 2009; 198 Krafczyk, Tietze, Swoboda, Valkovic, Brandt (b0150) 2006; 117 Klucken, Barth, Kugler, Schlachetzki, Henze, Marxreiter (b0145) 2013; 8 Lafuente, Belda, Sanchez-Lacuesta, Soler, Prat (b0155) 1997; 13 Lord, Galna, Verghese, Coleman, Bum, Rochester (b0160) 2013; 68 Lu, Zhang (b0165) 2007; 28 Thompson (b0230) 2007; 7 Hand, Yu (b0100) 2001; 69 Verghese, Ambrose, Lipton, Wang (b0240) 2010; 257 Wang Z, Jiang M, Zhang Y. Children abnormal gait analysis based on SVM. In: Proceedings of the world congress on engineering and computer science. San Francisco (USA); 2009. Duda, Hart, Stork (b0065) 2001 Raudys, Jain (b0190) 1991; 13 Sudarsky (b0215) 2001; 87 Barton, Lees (b0010) 1997; 5 Dreiseitl, Ohno-Machado (b0060) 2002; 35 Chau (b0030) 2001; 13 Nashner (b0180) 1972; 10 Hallemans, Ortibus, Meire, Aerts (b0090) 2010; 32 Demsar (b0045) 2006; 7 Hahn, Chou (b0080) 2005; 33 Bent, McFadyen, Inglis (b0015) 2002; 146 Stolze, Klebs, Zechlin, Baecker, Friege (b0210) 2004; 251 Ilg, Golla, Thier, Giese (b0130) 2007; 130 Sudha, Bhavani (b0220) 2012; 6 Huang, Moraga (b0125) 2004; 35 Domingos, Pazzani (b0055) 1997; 29 Jackson (b0135) 1991 Coomans, Massart (b0035) 1982; 136 Hua, Xiong, Lowey, Suh, Dougherty (b0115) 2005; 21 Xu, Huang, Zeng, Xu (b0270) 2012; 21 Wren, Do, Hara, Dorey, Kay, Otsuka (b0255) 2007; 27 Tang, Sazonov (b0225) 2014; 18 Hua, Lowey, Xiong, Dougherty (b0120) 2006; 7 Brandt (b0020) 1996; 46 Golbe, Ohman-Strickland (b0075) 2007; 130 Holzreiter, Kohle (b0110) 1993; 26 Miller, Beazer, Hahn (b0175) 2013; 60 Nelson (b0185) 1974; 54 Schutte, Narayanan, Stout, Selber, Gage, Schwartz (b0205) 2000; 11 Schniepp, Wuehr, Neuhaeusser, Kamenova, Dimitriadis, Klopstock (b0200) 2012; 27 Brandt, Strupp, Novozhilov, Krafczyk (b0025) 2012; 259 Kamruzzaman, Begg (b0140) 2006; 53 Holzreiter (10.1016/j.jelekin.2015.01.004_b0110) 1993; 26 Brandt (10.1016/j.jelekin.2015.01.004_b0025) 2012; 259 Domingos (10.1016/j.jelekin.2015.01.004_b0055) 1997; 29 Wu (10.1016/j.jelekin.2015.01.004_b0260) 2004; 5 Bent (10.1016/j.jelekin.2015.01.004_b0015) 2002; 146 Schutte (10.1016/j.jelekin.2015.01.004_b0205) 2000; 11 Jackson (10.1016/j.jelekin.2015.01.004_b0135) 1991 Verghese (10.1016/j.jelekin.2015.01.004_b0235) 2009; 64 Lafuente (10.1016/j.jelekin.2015.01.004_b0155) 1997; 13 Thompson (10.1016/j.jelekin.2015.01.004_b0230) 2007; 7 Coomans (10.1016/j.jelekin.2015.01.004_b0035) 1982; 136 Miller (10.1016/j.jelekin.2015.01.004_b0175) 2013; 60 Hua (10.1016/j.jelekin.2015.01.004_b0115) 2005; 21 Hahn (10.1016/j.jelekin.2015.01.004_b0080) 2005; 33 Kamruzzaman (10.1016/j.jelekin.2015.01.004_b0140) 2006; 53 Chau (10.1016/j.jelekin.2015.01.004_b0030) 2001; 13 Hollman (10.1016/j.jelekin.2015.01.004_b0105) 2011; 34 Xu (10.1016/j.jelekin.2015.01.004_b0270) 2012; 21 Halmagyi (10.1016/j.jelekin.2015.01.004_b0095) 1988; 45 Krafczyk (10.1016/j.jelekin.2015.01.004_b0150) 2006; 117 Cortes (10.1016/j.jelekin.2015.01.004_b0040) 1995; 20 Golbe (10.1016/j.jelekin.2015.01.004_b0075) 2007; 130 Aung (10.1016/j.jelekin.2015.01.004_b0005) 2013; 21 Huang (10.1016/j.jelekin.2015.01.004_b0125) 2004; 35 Lord (10.1016/j.jelekin.2015.01.004_b0160) 2013; 68 Dreiseitl (10.1016/j.jelekin.2015.01.004_b0060) 2002; 35 Brandt (10.1016/j.jelekin.2015.01.004_b0020) 1996; 46 Lu (10.1016/j.jelekin.2015.01.004_b0165) 2007; 28 Ilg (10.1016/j.jelekin.2015.01.004_b0130) 2007; 130 Wren (10.1016/j.jelekin.2015.01.004_b0255) 2007; 27 Hallemans (10.1016/j.jelekin.2015.01.004_b0090) 2010; 32 Hand (10.1016/j.jelekin.2015.01.004_b0100) 2001; 69 Wuehr (10.1016/j.jelekin.2015.01.004_b0265) 2013; 224 Duda (10.1016/j.jelekin.2015.01.004_b0065) 2001 Hallemans (10.1016/j.jelekin.2015.01.004_b0085) 2009; 198 Wang (10.1016/j.jelekin.2015.01.004_b0250) 2012; 59 Barton (10.1016/j.jelekin.2015.01.004_b0010) 1997; 5 Raudys (10.1016/j.jelekin.2015.01.004_b0190) 1991; 13 Schniepp (10.1016/j.jelekin.2015.01.004_b0200) 2012; 27 Tang (10.1016/j.jelekin.2015.01.004_b0225) 2014; 18 Nelson (10.1016/j.jelekin.2015.01.004_b0185) 1974; 54 Stolze (10.1016/j.jelekin.2015.01.004_b0210) 2004; 251 Sudha (10.1016/j.jelekin.2015.01.004_b0220) 2012; 6 Verghese (10.1016/j.jelekin.2015.01.004_b0240) 2010; 257 Hua (10.1016/j.jelekin.2015.01.004_b0120) 2006; 7 10.1016/j.jelekin.2015.01.004_b0050 10.1016/j.jelekin.2015.01.004_b0170 Schmitz-Hübsch (10.1016/j.jelekin.2015.01.004_b0195) 2006; 66 Zingler (10.1016/j.jelekin.2015.01.004_b0275) 2009; 1164 Nashner (10.1016/j.jelekin.2015.01.004_b0180) 1972; 10 10.1016/j.jelekin.2015.01.004_b0245 Sudarsky (10.1016/j.jelekin.2015.01.004_b0215) 2001; 87 Klucken (10.1016/j.jelekin.2015.01.004_b0145) 2013; 8 Egerton (10.1016/j.jelekin.2015.01.004_b0070) 2012; 12 Demsar (10.1016/j.jelekin.2015.01.004_b0045) 2006; 7 |
| References_xml | – reference: Manap HH, Tahir NM, Abdullah R. Anomalous gait detection using Naive Bayes classifier. Industrial Electronics and Applications, IEEE Symposium. Bandung, Indonesia; 2012. p. 378–81. – volume: 27 start-page: 765 year: 2007 end-page: 768 ident: b0255 article-title: Gillette Gait Index as a gait analysis summary measure: comparison with qualitative visual assessments of overall gait publication-title: J Pediatr Orthop – volume: 146 start-page: 490 year: 2002 end-page: 500 ident: b0015 article-title: Visual-vestibular interactions in postural control during the execution of a dynamic task publication-title: Exp Brain Res – volume: 59 start-page: 2884 year: 2012 end-page: 2892 ident: b0250 article-title: Walking pattern classification and walking distance estimation algorithms using gait phase information publication-title: IEEE Trans Biomed Eng – volume: 6 start-page: 19 year: 2012 end-page: 28 ident: b0220 article-title: Performance comparison of SVM and kNN in automatic classification of human gait patterns publication-title: Int J Comput – volume: 18 start-page: 309 year: 2014 end-page: 315 ident: b0225 article-title: Highly accurate recognition of human postures and activities through classification with rejection publication-title: IEEE J Biomed Health Inform – volume: 87 start-page: 111 year: 2001 end-page: 117 ident: b0215 article-title: Gait disorders: prevalence, morbidity, and etiology publication-title: Adv Neurol – year: 2001 ident: b0065 article-title: Pattern classification – reference: Wang Z, Jiang M, Zhang Y. Children abnormal gait analysis based on SVM. In: Proceedings of the world congress on engineering and computer science. San Francisco (USA); 2009. – volume: 45 start-page: 737 year: 1988 end-page: 739 ident: b0095 article-title: A clinical sign of canal paresis publication-title: Arch Neurol – volume: 7 start-page: 290 year: 2007 end-page: 294 ident: b0230 article-title: Higher level gait disorders publication-title: Curr Neurol Neurosci Rep – volume: 11 start-page: 25 year: 2000 end-page: 31 ident: b0205 article-title: An index for quantifying deviations from normal gait publication-title: Gait Posture – volume: 13 start-page: 216 year: 1997 end-page: 220 ident: b0155 article-title: Design and test of neural networks and statistical classifiers in computer-aided movement analysis: a case study on gait analysis publication-title: Clin Biomech – volume: 251 start-page: 79 year: 2004 end-page: 84 ident: b0210 article-title: Falls in frequent neurological diseases – prevalence, risk factors and aetiology publication-title: J Neurol – volume: 35 start-page: 352 year: 2002 end-page: 359 ident: b0060 article-title: Logistic regression and artificial neural network classification models: a methodology review publication-title: J Biomed Inform – volume: 117 start-page: 1692 year: 2006 end-page: 1698 ident: b0150 article-title: Artificial neural network: a new diagnostic posturographic tool for disorders of stance publication-title: Clin Neurophysiol – volume: 224 start-page: 287 year: 2013 end-page: 294 ident: b0265 article-title: Differential effects of absent visual feedback control on gait variability during different locomotion speeds publication-title: Exp Brain Res – reference: Diehl C, Cauwenberghs G. SVM incremental learning, adaptation and optimization. In: Proceedings of international joint conference on neural networks (IJCNN). Portland (USA); 20–24 July 2003. p. 2685–90. – volume: 259 start-page: 182 year: 2012 end-page: 184 ident: b0025 article-title: Artificial neural network posturography detects the transition of vestibular neuritis to phobic postural vertigo publication-title: J Neurol – volume: 136 start-page: 15 year: 1982 end-page: 27 ident: b0035 article-title: Alternative k-nearest neighbour rules in supervised pattern recognition: Part 1. k-nearest neighbour classification by using alternative voting rules publication-title: Anal Chim Acta – volume: 35 start-page: 137 year: 2004 end-page: 161 ident: b0125 article-title: A diffusion-neural-network for learning from small samples publication-title: Int J Approx Reason – volume: 33 start-page: 811 year: 2005 end-page: 820 ident: b0080 article-title: A model for detecting balance impairment and estimating falls risk in the elderly publication-title: Ann Biomed Eng – volume: 7 start-page: 288 year: 2006 ident: b0120 article-title: Noise-injected neural networks show promise for use on small-sample expression data publication-title: BMC Bioinform – volume: 34 start-page: 111 year: 2011 end-page: 118 ident: b0105 article-title: Normative spatiotemporal gait parameters in older adults publication-title: Gait Posture – volume: 29 start-page: 103 year: 1997 end-page: 137 ident: b0055 article-title: On the optimality of the simple Bayesian classifier under zero-one loss publication-title: Mach Learn – volume: 53 start-page: 2479 year: 2006 end-page: 2490 ident: b0140 article-title: Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait publication-title: IEEE Trans Biomed Eng – volume: 13 start-page: 49 year: 2001 end-page: 66 ident: b0030 article-title: A review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methods publication-title: Gait Posture – volume: 13 start-page: 252 year: 1991 end-page: 264 ident: b0190 article-title: Small sample size effects in statistical pattern recognition: recommendations for practitioners publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 21 start-page: 316 year: 2012 end-page: 326 ident: b0270 article-title: Human gait recognition using patch distribution feature and locality-constrained group sparse representation publication-title: IEEE Trans Image Process – volume: 130 start-page: 786 year: 2007 end-page: 798 ident: b0130 article-title: Specific influences of cerebellar dysfunctions on gait publication-title: Brain – volume: 68 start-page: 820 year: 2013 end-page: 827 ident: b0160 article-title: Independent domains of gait in older adults and associated motor and nonmotor attributes: validation of a factor analysis approach publication-title: J Gerontol A Biol Sci Med Sci – volume: 46 start-page: 1515 year: 1996 end-page: 1519 ident: b0020 article-title: Phobic postural vertigo publication-title: Neurology – volume: 12 start-page: 116 year: 2012 ident: b0070 article-title: Comparison of gait in progressive supranuclear palsy, Parkinson’s disease and healthy older adults publication-title: BMC Neurol – volume: 64 start-page: 891 year: 2009 end-page: 901 ident: b0235 article-title: Quantitative gait markers and incident fall risk in older adults publication-title: J Gerontol A Biol Sci Med Sci – volume: 32 start-page: 547 year: 2010 end-page: 551 ident: b0090 article-title: Low vision affects dynamic stability of gait publication-title: Gait Posture – volume: 1164 start-page: 505 year: 2009 end-page: 508 ident: b0275 article-title: Causative factors, epidemiology, and follow-up of bilateral vestibulopathy publication-title: Ann N Y Acad Sci – volume: 5 start-page: 28 year: 1997 end-page: 33 ident: b0010 article-title: An application of neural networks for distinguishing gait patterns on the basis of hip–knee joint angle diagrams publication-title: Gait Posture – volume: 21 start-page: 908 year: 2013 end-page: 916 ident: b0005 article-title: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 21 start-page: 1509 year: 2005 end-page: 1515 ident: b0115 article-title: Optimal number of features as a function of sample size for various classification rules publication-title: BMC Bioinform – volume: 26 start-page: 645 year: 1993 end-page: 651 ident: b0110 article-title: Assessment of gait patterns using neural networks publication-title: J Biomech – volume: 60 start-page: 2745 year: 2013 end-page: 2750 ident: b0175 article-title: Myoelectric walking mode classification for transtibial amputees publication-title: IEEE Trans Biomed Eng – volume: 66 start-page: 1717 year: 2006 end-page: 1720 ident: b0195 article-title: Scale for the assessment and rating of ataxia: development of a new clinical scale publication-title: Neurology – year: 1991 ident: b0135 article-title: A user’s guide to principal components – volume: 54 start-page: 1059 year: 1974 end-page: 1065 ident: b0185 article-title: Functional ambulation profile publication-title: Phys Ther – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b0045 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – volume: 257 start-page: 392 year: 2010 end-page: 398 ident: b0240 article-title: Neurological gait abnormalities and risk of falls in older adults publication-title: J Neurol – volume: 198 start-page: 95 year: 2009 end-page: 106 ident: b0085 article-title: Effects of visual deprivation on intra-limb coordination during walking in children and adults publication-title: Exp Brain Res – volume: 10 start-page: 106 year: 1972 end-page: 110 ident: b0180 article-title: Vestibular postural control model publication-title: Kybernetik – volume: 69 start-page: 385 year: 2001 end-page: 399 ident: b0100 article-title: Idiot’s bayes – not so stupid after all? publication-title: Int Statist Rev – volume: 8 start-page: e56956 year: 2013 ident: b0145 article-title: Unbiased and mobile gait analysis detects motor impairment in Parkinson’s disease publication-title: PLoS One – volume: 27 start-page: 125 year: 2012 end-page: 131 ident: b0200 article-title: Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure publication-title: Mov Disord – volume: 28 start-page: 2401 year: 2007 end-page: 2411 ident: b0165 article-title: Gait recognition for human identification based on ICA and fuzzy SVM through multiple views fusion publication-title: Pattern Recognitt Lett – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0040 article-title: Support-vector networks publication-title: Mach Learn – volume: 130 start-page: 1552 year: 2007 end-page: 1565 ident: b0075 article-title: A clinical rating scale for progressive supranuclear palsy publication-title: Brain – volume: 5 start-page: 975 year: 2004 end-page: 1005 ident: b0260 article-title: Probability estimates for multi-class classification by pairwise coupling publication-title: J Mach Learn Res – volume: 66 start-page: 1717 issue: 11 year: 2006 ident: 10.1016/j.jelekin.2015.01.004_b0195 article-title: Scale for the assessment and rating of ataxia: development of a new clinical scale publication-title: Neurology doi: 10.1212/01.wnl.0000219042.60538.92 – volume: 146 start-page: 490 issue: 4 year: 2002 ident: 10.1016/j.jelekin.2015.01.004_b0015 article-title: Visual-vestibular interactions in postural control during the execution of a dynamic task publication-title: Exp Brain Res doi: 10.1007/s00221-002-1204-8 – volume: 259 start-page: 182 issue: 1 year: 2012 ident: 10.1016/j.jelekin.2015.01.004_b0025 article-title: Artificial neural network posturography detects the transition of vestibular neuritis to phobic postural vertigo publication-title: J Neurol doi: 10.1007/s00415-011-6124-8 – volume: 198 start-page: 95 issue: 1 year: 2009 ident: 10.1016/j.jelekin.2015.01.004_b0085 article-title: Effects of visual deprivation on intra-limb coordination during walking in children and adults publication-title: Exp Brain Res doi: 10.1007/s00221-009-1937-8 – volume: 13 start-page: 49 issue: 1 year: 2001 ident: 10.1016/j.jelekin.2015.01.004_b0030 article-title: A review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methods publication-title: Gait Posture doi: 10.1016/S0966-6362(00)00094-1 – volume: 18 start-page: 309 issue: 1 year: 2014 ident: 10.1016/j.jelekin.2015.01.004_b0225 article-title: Highly accurate recognition of human postures and activities through classification with rejection publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2013.2287400 – volume: 12 start-page: 116 issue: 2 year: 2012 ident: 10.1016/j.jelekin.2015.01.004_b0070 article-title: Comparison of gait in progressive supranuclear palsy, Parkinson’s disease and healthy older adults publication-title: BMC Neurol doi: 10.1186/1471-2377-12-116 – volume: 68 start-page: 820 issue: 7 year: 2013 ident: 10.1016/j.jelekin.2015.01.004_b0160 article-title: Independent domains of gait in older adults and associated motor and nonmotor attributes: validation of a factor analysis approach publication-title: J Gerontol A Biol Sci Med Sci doi: 10.1093/gerona/gls255 – volume: 7 start-page: 290 issue: 4 year: 2007 ident: 10.1016/j.jelekin.2015.01.004_b0230 article-title: Higher level gait disorders publication-title: Curr Neurol Neurosci Rep doi: 10.1007/s11910-007-0044-0 – volume: 27 start-page: 125 issue: 1 year: 2012 ident: 10.1016/j.jelekin.2015.01.004_b0200 article-title: Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure publication-title: Mov Disord doi: 10.1002/mds.23978 – volume: 64 start-page: 891 issue: 8 year: 2009 ident: 10.1016/j.jelekin.2015.01.004_b0235 article-title: Quantitative gait markers and incident fall risk in older adults publication-title: J Gerontol A Biol Sci Med Sci – ident: 10.1016/j.jelekin.2015.01.004_b0245 – volume: 13 start-page: 216 issue: 3 year: 1997 ident: 10.1016/j.jelekin.2015.01.004_b0155 article-title: Design and test of neural networks and statistical classifiers in computer-aided movement analysis: a case study on gait analysis publication-title: Clin Biomech doi: 10.1016/S0268-0033(97)00082-X – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.jelekin.2015.01.004_b0045 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – volume: 224 start-page: 287 issue: 2 year: 2013 ident: 10.1016/j.jelekin.2015.01.004_b0265 article-title: Differential effects of absent visual feedback control on gait variability during different locomotion speeds publication-title: Exp Brain Res doi: 10.1007/s00221-012-3310-6 – year: 2001 ident: 10.1016/j.jelekin.2015.01.004_b0065 – volume: 21 start-page: 316 issue: 1 year: 2012 ident: 10.1016/j.jelekin.2015.01.004_b0270 article-title: Human gait recognition using patch distribution feature and locality-constrained group sparse representation publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2011.2160956 – volume: 33 start-page: 811 issue: 6 year: 2005 ident: 10.1016/j.jelekin.2015.01.004_b0080 article-title: A model for detecting balance impairment and estimating falls risk in the elderly publication-title: Ann Biomed Eng doi: 10.1007/s10439-005-2867-7 – volume: 6 start-page: 19 issue: 1 year: 2012 ident: 10.1016/j.jelekin.2015.01.004_b0220 article-title: Performance comparison of SVM and kNN in automatic classification of human gait patterns publication-title: Int J Comput – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.jelekin.2015.01.004_b0040 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1007/BF00994018 – volume: 53 start-page: 2479 issue: 12 year: 2006 ident: 10.1016/j.jelekin.2015.01.004_b0140 article-title: Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.883697 – year: 1991 ident: 10.1016/j.jelekin.2015.01.004_b0135 – volume: 69 start-page: 385 issue: 3 year: 2001 ident: 10.1016/j.jelekin.2015.01.004_b0100 article-title: Idiot’s bayes – not so stupid after all? publication-title: Int Statist Rev – volume: 87 start-page: 111 issue: 1 year: 2001 ident: 10.1016/j.jelekin.2015.01.004_b0215 article-title: Gait disorders: prevalence, morbidity, and etiology publication-title: Adv Neurol – volume: 59 start-page: 2884 issue: 10 year: 2012 ident: 10.1016/j.jelekin.2015.01.004_b0250 article-title: Walking pattern classification and walking distance estimation algorithms using gait phase information publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2212245 – volume: 26 start-page: 645 issue: 6 year: 1993 ident: 10.1016/j.jelekin.2015.01.004_b0110 article-title: Assessment of gait patterns using neural networks publication-title: J Biomech doi: 10.1016/0021-9290(93)90028-D – volume: 5 start-page: 975 issue: 1 year: 2004 ident: 10.1016/j.jelekin.2015.01.004_b0260 article-title: Probability estimates for multi-class classification by pairwise coupling publication-title: J Mach Learn Res – volume: 130 start-page: 1552 issue: 6 year: 2007 ident: 10.1016/j.jelekin.2015.01.004_b0075 article-title: A clinical rating scale for progressive supranuclear palsy publication-title: Brain doi: 10.1093/brain/awm032 – volume: 21 start-page: 908 issue: 6 year: 2013 ident: 10.1016/j.jelekin.2015.01.004_b0005 article-title: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2013.2239313 – volume: 130 start-page: 786 issue: 3 year: 2007 ident: 10.1016/j.jelekin.2015.01.004_b0130 article-title: Specific influences of cerebellar dysfunctions on gait publication-title: Brain doi: 10.1093/brain/awl376 – ident: 10.1016/j.jelekin.2015.01.004_b0050 doi: 10.1109/IJCNN.2003.1223991 – ident: 10.1016/j.jelekin.2015.01.004_b0170 doi: 10.1109/ISIEA.2012.6496664 – volume: 136 start-page: 15 issue: 1 year: 1982 ident: 10.1016/j.jelekin.2015.01.004_b0035 article-title: Alternative k-nearest neighbour rules in supervised pattern recognition: Part 1. k-nearest neighbour classification by using alternative voting rules publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(01)95359-0 – volume: 45 start-page: 737 issue: 7 year: 1988 ident: 10.1016/j.jelekin.2015.01.004_b0095 article-title: A clinical sign of canal paresis publication-title: Arch Neurol doi: 10.1001/archneur.1988.00520310043015 – volume: 1164 start-page: 505 year: 2009 ident: 10.1016/j.jelekin.2015.01.004_b0275 article-title: Causative factors, epidemiology, and follow-up of bilateral vestibulopathy publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.2009.03765.x – volume: 7 start-page: 288 issue: 274 year: 2006 ident: 10.1016/j.jelekin.2015.01.004_b0120 article-title: Noise-injected neural networks show promise for use on small-sample expression data publication-title: BMC Bioinform – volume: 257 start-page: 392 issue: 3 year: 2010 ident: 10.1016/j.jelekin.2015.01.004_b0240 article-title: Neurological gait abnormalities and risk of falls in older adults publication-title: J Neurol doi: 10.1007/s00415-009-5332-y – volume: 46 start-page: 1515 issue: 6 year: 1996 ident: 10.1016/j.jelekin.2015.01.004_b0020 article-title: Phobic postural vertigo publication-title: Neurology doi: 10.1212/WNL.46.6.1515 – volume: 21 start-page: 1509 issue: 8 year: 2005 ident: 10.1016/j.jelekin.2015.01.004_b0115 article-title: Optimal number of features as a function of sample size for various classification rules publication-title: BMC Bioinform doi: 10.1093/bioinformatics/bti171 – volume: 117 start-page: 1692 issue: 8 year: 2006 ident: 10.1016/j.jelekin.2015.01.004_b0150 article-title: Artificial neural network: a new diagnostic posturographic tool for disorders of stance publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2006.04.022 – volume: 28 start-page: 2401 issue: 16 year: 2007 ident: 10.1016/j.jelekin.2015.01.004_b0165 article-title: Gait recognition for human identification based on ICA and fuzzy SVM through multiple views fusion publication-title: Pattern Recognitt Lett doi: 10.1016/j.patrec.2007.08.004 – volume: 34 start-page: 111 issue: 1 year: 2011 ident: 10.1016/j.jelekin.2015.01.004_b0105 article-title: Normative spatiotemporal gait parameters in older adults publication-title: Gait Posture doi: 10.1016/j.gaitpost.2011.03.024 – volume: 251 start-page: 79 issue: 1 year: 2004 ident: 10.1016/j.jelekin.2015.01.004_b0210 article-title: Falls in frequent neurological diseases – prevalence, risk factors and aetiology publication-title: J Neurol doi: 10.1007/s00415-004-0276-8 – volume: 11 start-page: 25 year: 2000 ident: 10.1016/j.jelekin.2015.01.004_b0205 article-title: An index for quantifying deviations from normal gait publication-title: Gait Posture doi: 10.1016/S0966-6362(99)00047-8 – volume: 5 start-page: 28 issue: 1 year: 1997 ident: 10.1016/j.jelekin.2015.01.004_b0010 article-title: An application of neural networks for distinguishing gait patterns on the basis of hip–knee joint angle diagrams publication-title: Gait Posture doi: 10.1016/S0966-6362(96)01070-3 – volume: 32 start-page: 547 issue: 4 year: 2010 ident: 10.1016/j.jelekin.2015.01.004_b0090 article-title: Low vision affects dynamic stability of gait publication-title: Gait Posture doi: 10.1016/j.gaitpost.2010.07.018 – volume: 8 start-page: e56956 issue: 2 year: 2013 ident: 10.1016/j.jelekin.2015.01.004_b0145 article-title: Unbiased and mobile gait analysis detects motor impairment in Parkinson’s disease publication-title: PLoS One doi: 10.1371/journal.pone.0056956 – volume: 29 start-page: 103 issue: 2–3 year: 1997 ident: 10.1016/j.jelekin.2015.01.004_b0055 article-title: On the optimality of the simple Bayesian classifier under zero-one loss publication-title: Mach Learn doi: 10.1023/A:1007413511361 – volume: 27 start-page: 765 issue: 7 year: 2007 ident: 10.1016/j.jelekin.2015.01.004_b0255 article-title: Gillette Gait Index as a gait analysis summary measure: comparison with qualitative visual assessments of overall gait publication-title: J Pediatr Orthop doi: 10.1097/BPO.0b013e3181558ade – volume: 35 start-page: 137 year: 2004 ident: 10.1016/j.jelekin.2015.01.004_b0125 article-title: A diffusion-neural-network for learning from small samples publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2003.06.001 – volume: 35 start-page: 352 issue: 5–6 year: 2002 ident: 10.1016/j.jelekin.2015.01.004_b0060 article-title: Logistic regression and artificial neural network classification models: a methodology review publication-title: J Biomed Inform doi: 10.1016/S1532-0464(03)00034-0 – volume: 60 start-page: 2745 issue: 10 year: 2013 ident: 10.1016/j.jelekin.2015.01.004_b0175 article-title: Myoelectric walking mode classification for transtibial amputees publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2013.2264466 – volume: 10 start-page: 106 issue: 1 year: 1972 ident: 10.1016/j.jelekin.2015.01.004_b0180 article-title: Vestibular postural control model publication-title: Kybernetik doi: 10.1007/BF00292236 – volume: 54 start-page: 1059 issue: 10 year: 1974 ident: 10.1016/j.jelekin.2015.01.004_b0185 article-title: Functional ambulation profile publication-title: Phys Ther doi: 10.1093/ptj/54.10.1059 – volume: 13 start-page: 252 issue: 3 year: 1991 ident: 10.1016/j.jelekin.2015.01.004_b0190 article-title: Small sample size effects in statistical pattern recognition: recommendations for practitioners publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.75512 |
| SSID | ssj0017080 |
| Score | 2.3565857 |
| Snippet | Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment... Abstract Objective Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 413 |
| SubjectTerms | Aged Aged, 80 and over Algorithms Artificial Intelligence Artificial neural networks (ANN) Bayes Theorem Female Gait - physiology GAITRite Humans k-nearest neighbor (KNN) Male Middle Aged Muscle, Skeletal - physiology Naive-bayes classifier (NB) Nervous System Diseases - classification Nervous System Diseases - diagnosis Nervous System Diseases - physiopathology Neural Networks (Computer) Neurological disorders of gait Pattern recognition Pattern Recognition, Automated - methods Physical Medicine and Rehabilitation Principal Component Analysis - methods Reproducibility of Results Support Vector Machine Support vector machines (SVM) Time Factors |
| Title | Automated classification of neurological disorders of gait using spatio-temporal gait parameters |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1050641115000231 https://www.clinicalkey.es/playcontent/1-s2.0-S1050641115000231 https://dx.doi.org/10.1016/j.jelekin.2015.01.004 https://www.ncbi.nlm.nih.gov/pubmed/25725811 https://www.proquest.com/docview/1662433517 https://www.proquest.com/docview/1753948052 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5711 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017080 issn: 1050-6411 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Freedom Collection customDbUrl: eissn: 1873-5711 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017080 issn: 1050-6411 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-5711 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017080 issn: 1050-6411 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-5711 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017080 issn: 1050-6411 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5711 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017080 issn: 1050-6411 databaseCode: AKRWK dateStart: 19910101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4huHCpyqN0KSBXqrhlN46dOBxXCLRtVS6AxM2NHQftdsmiZvfAhd_OjOMsQryqHpN4ZGtiz3yTzHwD8E2glyTOlSgxhY0k1ejmiT2KDDqrsnIFt4YCxV9n2ehS_rhKr1bguKuFobTKYPtbm-6tdbgzCNoc3I7Hg3NEBuhPOUEa8jy-gl0q6mLQv1-meXAV5y0jQYphEo5-rOIZTPoTNO1_xkSDylv2ztCv7QX_9Br-9H7o9CN8CACSDds1bsCKqzdha1hj8Hxzxw6ZT-n038q34PdwgXcRTZbMEkqmtCD_JtisYp7JMlg-VgYSzoaeXBfjOaOE-GvW-ITrKBBYTdtHRBd-Q2k0zTZcnp5cHI-i0FIhsgj85lEpqtQmtjQ2V6VwitpJCYeor6xUyZWRLjZEVptIaxCruAzHp6LIiP9IxlaIT7Baz2r3GVhChxnxkuUGURiXRsYFL1QsncCgLat6IDtFahv4xqntxVR3iWUTHfSvSf865hr134P-Uuy2Jdx4TyDr3pLuqknR_ml0Ce8JqpcEXRNOcaO5bhId62c7rQf5UvLJZv2XSb92G0njQaa_M0XtZgucLMsSKUTK1RtjMLg8ktSFogc77S5cKgltb5LmnO_-_-K-wDpdtYlJe7A6_7tw-4i55ubAH6oDWBt-_zk6ewABaCsL |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB1V5UAvCEgLoXwsEuLmxPthr3OMIqIAaS-0Um-Ld72uElonwsmhF347M_Y6CNFSxNW7I1vj3Zk39ts3AO8kZknSXImEzV2k6IxuJtwospisitLn3FkqFE9O09m5-nSRXOzBpDsLQ7TKEPvbmN5E63BlGLw5XC8Wwy-IDDCfcoI0lHmwBHqgEqGpAhv82PE8uI6zVpIgwToJp_86xjNcDpYY278tSAeVt_KdoWHbLQnqLgDaJKLpY3gUECQbtw_5BPZ89RR64wqr5-sb9p41nM7mY3kPvo63eBXhZMEcwWTiBTWvgq1K1khZhtDHiqDCWdPIZb7YMGLEX7K6YVxHQcHqqh0ivfBr4tHUh3A-_XA2mUWhp0LkEPltokKWiROusC7ThfSa-klJj7CvKHXBtVU-tqRWK5SzCFZ8ivMTmackgKRiJ-UR7Feryj8HJmg3I2By3CIM48qqOOe5jpWXWLWlZR9U50jjguA49b24Mh2zbGmC_w3538TcoP_7MNiZrVvFjfsM0u4tme44KQZAgznhPkN9m6GvwzauDTe1MLH5Y6n1IdtZ_rZa_-Wmb7uFZHAn0--ZvPKrLd4sTYWSMuH6L3OwuhwpakPRh2ftKtw5CYOvSDLOX_z_w72Bh7Ozk7mZfzz9fAwHNNKylF7C_ub71r9CALaxr5sN9hOo7Syg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+classification+of+neurological+disorders+of+gait+using+spatio-temporal+gait+parameters&rft.jtitle=Journal+of+electromyography+and+kinesiology&rft.au=Pradhan%2C+Cauchy&rft.au=Wuehr%2C+Max&rft.au=Akrami%2C+Farhoud&rft.au=Neuhaeusser%2C+Maximilian&rft.date=2015-04-01&rft.eissn=1873-5711&rft.volume=25&rft.issue=2&rft.spage=413&rft_id=info:doi/10.1016%2Fj.jelekin.2015.01.004&rft_id=info%3Apmid%2F25725811&rft.externalDocID=25725811 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10506411%2FS1050641115X00034%2Fcov150h.gif |