Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets

Background High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 14; no. Suppl 9; p. S1
Main Authors Xu, Xiao, Zhang, Yuanhao, Williams, Jennie, Antoniou, Eric, McCombie, W Richard, Wu, Song, Zhu, Wei, Davidson, Nicholas O, Denoya, Paula, Li, Ellen
Format Journal Article
LanguageEnglish
Published London BioMed Central 28.06.2013
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-14-S9-S1

Cover

Abstract Background High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results between the two platforms. The objective of this study was to compare parallel paired-end RNA-Seq and microarray data generated on 5-azadeoxy-cytidine (5-Aza) treated HT-29 colon cancer cells with an additional simulation study. Methods We first performed general correlation analysis comparing gene expression profiles on both platforms. An Errors-In-Variables (EIV) regression model was subsequently applied to assess proportional and fixed biases between the two technologies. Then several existing algorithms, designed for DEG identification in RNA-Seq and microarray data, were applied to compare the cross-platform overlaps with respect to DEG lists, which were further validated using qRT-PCR assays on selected genes. Functional analyses were subsequently conducted using Ingenuity Pathway Analysis (IPA). Results Pearson and Spearman correlation coefficients between the RNA-Seq and microarray data each exceeded 0.80, with 66%~68% overlap of genes on both platforms. The EIV regression model indicated the existence of both fixed and proportional biases between the two platforms. The DESeq and baySeq algorithms (RNA-Seq) and the SAM and eBayes algorithms (microarray) achieved the highest cross-platform overlap rate in DEG results from both experimental and simulated datasets. DESeq method exhibited a better control on the false discovery rate than baySeq on the simulated dataset although it performed slightly inferior to baySeq in the sensitivity test. RNA-Seq and qRT-PCR, but not microarray data, confirmed the expected reversal of SPARC gene suppression after treating HT-29 cells with 5-Aza. Thirty-three IPA canonical pathways were identified by both microarray and RNA-Seq data, 152 pathways by RNA-Seq data only, and none by microarray data only. Conclusions These results suggest that RNA-Seq has advantages over microarray in identification of DEGs with the most consistent results generated from DESeq and SAM methods. The EIV regression model reveals both fixed and proportional biases between RNA-Seq and microarray. This may explain in part the lower cross-platform overlap in DEG lists compared to those in detectable genes.
AbstractList Background High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results between the two platforms. The objective of this study was to compare parallel paired-end RNA-Seq and microarray data generated on 5-azadeoxy-cytidine (5-Aza) treated HT-29 colon cancer cells with an additional simulation study. Methods We first performed general correlation analysis comparing gene expression profiles on both platforms. An Errors-In-Variables (EIV) regression model was subsequently applied to assess proportional and fixed biases between the two technologies. Then several existing algorithms, designed for DEG identification in RNA-Seq and microarray data, were applied to compare the cross-platform overlaps with respect to DEG lists, which were further validated using qRT-PCR assays on selected genes. Functional analyses were subsequently conducted using Ingenuity Pathway Analysis (IPA). Results Pearson and Spearman correlation coefficients between the RNA-Seq and microarray data each exceeded 0.80, with 66%~68% overlap of genes on both platforms. The EIV regression model indicated the existence of both fixed and proportional biases between the two platforms. The DESeq and baySeq algorithms (RNA-Seq) and the SAM and eBayes algorithms (microarray) achieved the highest cross-platform overlap rate in DEG results from both experimental and simulated datasets. DESeq method exhibited a better control on the false discovery rate than baySeq on the simulated dataset although it performed slightly inferior to baySeq in the sensitivity test. RNA-Seq and qRT-PCR, but not microarray data, confirmed the expected reversal of SPARC gene suppression after treating HT-29 cells with 5-Aza. Thirty-three IPA canonical pathways were identified by both microarray and RNA-Seq data, 152 pathways by RNA-Seq data only, and none by microarray data only. Conclusions These results suggest that RNA-Seq has advantages over microarray in identification of DEGs with the most consistent results generated from DESeq and SAM methods. The EIV regression model reveals both fixed and proportional biases between RNA-Seq and microarray. This may explain in part the lower cross-platform overlap in DEG lists compared to those in detectable genes.
High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results between the two platforms. The objective of this study was to compare parallel paired-end RNA-Seq and microarray data generated on 5-azadeoxy-cytidine (5-Aza) treated HT-29 colon cancer cells with an additional simulation study. We first performed general correlation analysis comparing gene expression profiles on both platforms. An Errors-In-Variables (EIV) regression model was subsequently applied to assess proportional and fixed biases between the two technologies. Then several existing algorithms, designed for DEG identification in RNA-Seq and microarray data, were applied to compare the cross-platform overlaps with respect to DEG lists, which were further validated using qRT-PCR assays on selected genes. Functional analyses were subsequently conducted using Ingenuity Pathway Analysis (IPA). Pearson and Spearman correlation coefficients between the RNA-Seq and microarray data each exceeded 0.80, with 66%~68% overlap of genes on both platforms. The EIV regression model indicated the existence of both fixed and proportional biases between the two platforms. The DESeq and baySeq algorithms (RNA-Seq) and the SAM and eBayes algorithms (microarray) achieved the highest cross-platform overlap rate in DEG results from both experimental and simulated datasets. DESeq method exhibited a better control on the false discovery rate than baySeq on the simulated dataset although it performed slightly inferior to baySeq in the sensitivity test. RNA-Seq and qRT-PCR, but not microarray data, confirmed the expected reversal of SPARC gene suppression after treating HT-29 cells with 5-Aza. Thirty-three IPA canonical pathways were identified by both microarray and RNA-Seq data, 152 pathways by RNA-Seq data only, and none by microarray data only. These results suggest that RNA-Seq has advantages over microarray in identification of DEGs with the most consistent results generated from DESeq and SAM methods. The EIV regression model reveals both fixed and proportional biases between RNA-Seq and microarray. This may explain in part the lower cross-platform overlap in DEG lists compared to those in detectable genes.
Background: High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results between the two platforms. The objective of this study was to compare parallel paired-end RNA-Seq and microarray data generated on 5-azadeoxy-cytidine (5-Aza) treated HT-29 colon cancer cells with an additional simulation study. Methods: We first performed general correlation analysis comparing gene expression profiles on both platforms. An Errors-In-Variables (EIV) regression model was subsequently applied to assess proportional and fixed biases between the two technologies. Then several existing algorithms, designed for DEG identification in RNA-Seq and microarray data, were applied to compare the cross-platform overlaps with respect to DEG lists, which were further validated using qRT-PCR assays on selected genes. Functional analyses were subsequently conducted using Ingenuity Pathway Analysis (IPA). Results: Pearson and Spearman correlation coefficients between the RNA-Seq and microarray data each exceeded 0.80, with 66%~68% overlap of genes on both platforms. The EIV regression model indicated the existence of both fixed and proportional biases between the two platforms. The DESeq and baySeq algorithms (RNA-Seq) and the SAM and eBayes algorithms (microarray) achieved the highest cross-platform overlap rate in DEG results from both experimental and simulated datasets. DESeq method exhibited a better control on the false discovery rate than baySeq on the simulated dataset although it performed slightly inferior to baySeq in the sensitivity test. RNA-Seq and qRT-PCR, but not microarray data, confirmed the expected reversal of SPARC gene suppression after treating HT-29 cells with 5-Aza. Thirty-three IPA canonical pathways were identified by both microarray and RNA-Seq data, 152 pathways by RNA-Seq data only, and none by microarray data only. Conclusions: These results suggest that RNA-Seq has advantages over microarray in identification of DEGs with the most consistent results generated from DESeq and SAM methods. The EIV regression model reveals both fixed and proportional biases between RNA-Seq and microarray. This may explain in part the lower cross-platform overlap in DEG lists compared to those in detectable genes.
High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results between the two platforms. The objective of this study was to compare parallel paired-end RNA-Seq and microarray data generated on 5-azadeoxy-cytidine (5-Aza) treated HT-29 colon cancer cells with an additional simulation study.BACKGROUNDHigh throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results between the two platforms. The objective of this study was to compare parallel paired-end RNA-Seq and microarray data generated on 5-azadeoxy-cytidine (5-Aza) treated HT-29 colon cancer cells with an additional simulation study.We first performed general correlation analysis comparing gene expression profiles on both platforms. An Errors-In-Variables (EIV) regression model was subsequently applied to assess proportional and fixed biases between the two technologies. Then several existing algorithms, designed for DEG identification in RNA-Seq and microarray data, were applied to compare the cross-platform overlaps with respect to DEG lists, which were further validated using qRT-PCR assays on selected genes. Functional analyses were subsequently conducted using Ingenuity Pathway Analysis (IPA).METHODSWe first performed general correlation analysis comparing gene expression profiles on both platforms. An Errors-In-Variables (EIV) regression model was subsequently applied to assess proportional and fixed biases between the two technologies. Then several existing algorithms, designed for DEG identification in RNA-Seq and microarray data, were applied to compare the cross-platform overlaps with respect to DEG lists, which were further validated using qRT-PCR assays on selected genes. Functional analyses were subsequently conducted using Ingenuity Pathway Analysis (IPA).Pearson and Spearman correlation coefficients between the RNA-Seq and microarray data each exceeded 0.80, with 66%~68% overlap of genes on both platforms. The EIV regression model indicated the existence of both fixed and proportional biases between the two platforms. The DESeq and baySeq algorithms (RNA-Seq) and the SAM and eBayes algorithms (microarray) achieved the highest cross-platform overlap rate in DEG results from both experimental and simulated datasets. DESeq method exhibited a better control on the false discovery rate than baySeq on the simulated dataset although it performed slightly inferior to baySeq in the sensitivity test. RNA-Seq and qRT-PCR, but not microarray data, confirmed the expected reversal of SPARC gene suppression after treating HT-29 cells with 5-Aza. Thirty-three IPA canonical pathways were identified by both microarray and RNA-Seq data, 152 pathways by RNA-Seq data only, and none by microarray data only.RESULTSPearson and Spearman correlation coefficients between the RNA-Seq and microarray data each exceeded 0.80, with 66%~68% overlap of genes on both platforms. The EIV regression model indicated the existence of both fixed and proportional biases between the two platforms. The DESeq and baySeq algorithms (RNA-Seq) and the SAM and eBayes algorithms (microarray) achieved the highest cross-platform overlap rate in DEG results from both experimental and simulated datasets. DESeq method exhibited a better control on the false discovery rate than baySeq on the simulated dataset although it performed slightly inferior to baySeq in the sensitivity test. RNA-Seq and qRT-PCR, but not microarray data, confirmed the expected reversal of SPARC gene suppression after treating HT-29 cells with 5-Aza. Thirty-three IPA canonical pathways were identified by both microarray and RNA-Seq data, 152 pathways by RNA-Seq data only, and none by microarray data only.These results suggest that RNA-Seq has advantages over microarray in identification of DEGs with the most consistent results generated from DESeq and SAM methods. The EIV regression model reveals both fixed and proportional biases between RNA-Seq and microarray. This may explain in part the lower cross-platform overlap in DEG lists compared to those in detectable genes.CONCLUSIONSThese results suggest that RNA-Seq has advantages over microarray in identification of DEGs with the most consistent results generated from DESeq and SAM methods. The EIV regression model reveals both fixed and proportional biases between RNA-Seq and microarray. This may explain in part the lower cross-platform overlap in DEG lists compared to those in detectable genes.
Doc number: S1 Abstract Background: High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results between the two platforms. The objective of this study was to compare parallel paired-end RNA-Seq and microarray data generated on 5-azadeoxy-cytidine (5-Aza) treated HT-29 colon cancer cells with an additional simulation study. Methods: We first performed general correlation analysis comparing gene expression profiles on both platforms. An Errors-In-Variables (EIV) regression model was subsequently applied to assess proportional and fixed biases between the two technologies. Then several existing algorithms, designed for DEG identification in RNA-Seq and microarray data, were applied to compare the cross-platform overlaps with respect to DEG lists, which were further validated using qRT-PCR assays on selected genes. Functional analyses were subsequently conducted using Ingenuity Pathway Analysis (IPA). Results: Pearson and Spearman correlation coefficients between the RNA-Seq and microarray data each exceeded 0.80, with 66%~68% overlap of genes on both platforms. The EIV regression model indicated the existence of both fixed and proportional biases between the two platforms. The DESeq and baySeq algorithms (RNA-Seq) and the SAM and eBayes algorithms (microarray) achieved the highest cross-platform overlap rate in DEG results from both experimental and simulated datasets. DESeq method exhibited a better control on the false discovery rate than baySeq on the simulated dataset although it performed slightly inferior to baySeq in the sensitivity test. RNA-Seq and qRT-PCR, but not microarray data, confirmed the expected reversal of SPARC gene suppression after treating HT-29 cells with 5-Aza. Thirty-three IPA canonical pathways were identified by both microarray and RNA-Seq data, 152 pathways by RNA-Seq data only, and none by microarray data only. Conclusions: These results suggest that RNA-Seq has advantages over microarray in identification of DEGs with the most consistent results generated from DESeq and SAM methods. The EIV regression model reveals both fixed and proportional biases between RNA-Seq and microarray. This may explain in part the lower cross-platform overlap in DEG lists compared to those in detectable genes.
ArticleNumber S1
Author Xu, Xiao
Zhang, Yuanhao
Zhu, Wei
Li, Ellen
Denoya, Paula
Wu, Song
Williams, Jennie
Antoniou, Eric
McCombie, W Richard
Davidson, Nicholas O
AuthorAffiliation 4 Department of Medicine, Washington University St. Louis, St. Louis, MO, 63110, USA
2 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
1 School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
3 Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, USA
AuthorAffiliation_xml – name: 1 School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
– name: 4 Department of Medicine, Washington University St. Louis, St. Louis, MO, 63110, USA
– name: 2 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
– name: 3 Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, USA
Author_xml – sequence: 1
  givenname: Xiao
  surname: Xu
  fullname: Xu, Xiao
  organization: School of Medicine, Stony Brook University
– sequence: 2
  givenname: Yuanhao
  surname: Zhang
  fullname: Zhang, Yuanhao
  organization: Department of Applied Mathematics and Statistics, Stony Brook University
– sequence: 3
  givenname: Jennie
  surname: Williams
  fullname: Williams, Jennie
  organization: School of Medicine, Stony Brook University
– sequence: 4
  givenname: Eric
  surname: Antoniou
  fullname: Antoniou, Eric
  organization: Cold Spring Harbor Laboratory
– sequence: 5
  givenname: W Richard
  surname: McCombie
  fullname: McCombie, W Richard
  organization: Cold Spring Harbor Laboratory
– sequence: 6
  givenname: Song
  surname: Wu
  fullname: Wu, Song
  organization: Department of Applied Mathematics and Statistics, Stony Brook University
– sequence: 7
  givenname: Wei
  surname: Zhu
  fullname: Zhu, Wei
  organization: Department of Applied Mathematics and Statistics, Stony Brook University
– sequence: 8
  givenname: Nicholas O
  surname: Davidson
  fullname: Davidson, Nicholas O
  organization: Department of Medicine, Washington University St. Louis
– sequence: 9
  givenname: Paula
  surname: Denoya
  fullname: Denoya, Paula
  organization: School of Medicine, Stony Brook University
– sequence: 10
  givenname: Ellen
  surname: Li
  fullname: Li, Ellen
  email: ellen.li@stonybrookmedicine.edu
  organization: School of Medicine, Stony Brook University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23902433$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhSNURH_gBVggS2zYGGwnmcQbpFEFtFIFiClry-NcD64cO7Ud6PB4PBnOzLQMFT8rW853zj059nFx4LyDonhKyUtK29krWjUUM0pqTCu84HhBHxRHd4cHe_vD4jjGK0Jo05L6UXHISk5YVZZHxY-PMkhrwSLl-0EGE71DXqNza8feOIk-vZ_jBVwj6To013rdQwrmBvVGBS9DkGs0WJm0D31EWZqCdFEFMySfETQEr42FiFbgIMgEHdLB96jG8rvEHfibNVbrZDrjIGthQ5xdYsZzHpv9lHQKAlJgbdxkiKYf7QbrZJIRUnxcPNTSRniyW0-Kz2_fXJ6e4YsP785P5xdY1aRJmEvKlC7Zsqu4ZBUFDbwFCm1HNanaSi0bIMuWcK2rGTRUtbRrVMO5bOrlrGzKk6Lc-o5ukOtvuTUxBNPLsBaUiOlGxFS4mArPOxG5iDSrXm9Vw7jsoVPgckW_lF4a8fsXZ76Ilf8qyhnPwyeDFzuD4K9HiEn0Jk59SAd-jHkS5WVF2rL9P1pyzhkjlGX0-T30yo_B5f4mqq0pq5tp9rP98Hepb99PBtotkF9DjAG0UCbJZPz0L8b-uZgFF4vJm92T_rPNW9HuDmKG3QrCXuy_q34Ck_T-YQ
CitedBy_id crossref_primary_10_1080_15592294_2019_1580112
crossref_primary_10_1111_add_16168
crossref_primary_10_29219_fnr_v63_1559
crossref_primary_10_7554_eLife_62927
crossref_primary_10_1002_sim_10218
crossref_primary_10_1007_s11103_018_0754_5
crossref_primary_10_1042_CS20160211
crossref_primary_10_1039_C9FO02786F
crossref_primary_10_1186_s12859_015_0847_y
crossref_primary_10_1371_journal_pone_0275864
crossref_primary_10_1186_s13062_016_0167_9
crossref_primary_10_1016_j_jff_2018_05_041
crossref_primary_10_1038_srep18475
crossref_primary_10_1016_j_isci_2022_103798
crossref_primary_10_1038_srep14107
crossref_primary_10_1016_j_canlet_2019_10_040
crossref_primary_10_1111_raq_12064
crossref_primary_10_1371_journal_pone_0098404
crossref_primary_10_1038_s41598_023_44459_y
crossref_primary_10_1186_1471_2164_15_842
crossref_primary_10_1186_s12864_015_1913_6
crossref_primary_10_1186_s12920_019_0548_x
crossref_primary_10_1093_bioinformatics_btz007
crossref_primary_10_1111_mec_14338
crossref_primary_10_1158_2326_6066_CIR_15_0243
crossref_primary_10_1371_journal_pone_0115842
crossref_primary_10_1093_nar_gkad965
crossref_primary_10_3892_ol_2016_5138
crossref_primary_10_3390_ijms22168451
crossref_primary_10_1007_s11105_015_0903_9
crossref_primary_10_1186_s12864_021_07682_3
crossref_primary_10_4137_EBO_S14823
crossref_primary_10_1016_j_jaut_2016_03_008
crossref_primary_10_3390_ijms241210299
crossref_primary_10_1007_s11033_014_3539_1
crossref_primary_10_1007_s10439_023_03385_w
crossref_primary_10_1186_gb_2014_15_3_r47
crossref_primary_10_12659_MSMBR_892101
crossref_primary_10_1007_s12539_021_00440_9
crossref_primary_10_1080_15592294_2016_1190894
crossref_primary_10_1152_physiolgenomics_00022_2014
crossref_primary_10_2131_jts_49_249
crossref_primary_10_1038_s41598_023_41085_6
crossref_primary_10_3390_bdcc7010046
crossref_primary_10_1016_S2665_9913_23_00010_3
crossref_primary_10_1038_s41598_021_03156_4
crossref_primary_10_1016_j_jbi_2022_104133
crossref_primary_10_1158_2643_3230_BCD_20_0076
crossref_primary_10_2460_ajvr_77_7_693
crossref_primary_10_1007_s00216_013_7486_9
crossref_primary_10_1371_journal_pone_0195771
crossref_primary_10_1186_1471_2164_15_1008
crossref_primary_10_1038_s41598_019_57311_z
crossref_primary_10_1038_sdata_2017_106
crossref_primary_10_1186_s12864_016_3441_4
crossref_primary_10_1186_1471_2164_14_903
crossref_primary_10_3389_fmolb_2014_00008
crossref_primary_10_3390_ijms20194922
crossref_primary_10_3389_fgene_2022_913743
crossref_primary_10_1016_j_tube_2016_09_020
crossref_primary_10_1007_s13277_014_2388_9
crossref_primary_10_1080_15384101_2017_1361068
crossref_primary_10_1007_s10048_014_0435_8
crossref_primary_10_1016_j_cancergen_2024_12_003
crossref_primary_10_3390_cancers13184515
crossref_primary_10_1038_s41467_017_01153_8
crossref_primary_10_1016_j_jbi_2022_104164
crossref_primary_10_1186_s13148_019_0628_y
crossref_primary_10_3389_fgene_2018_00636
crossref_primary_10_1038_s43856_024_00571_2
crossref_primary_10_1038_cgt_2015_20
crossref_primary_10_1186_s12864_017_3819_y
crossref_primary_10_3389_fimmu_2016_00129
Cites_doi 10.1093/bioinformatics/18.4.576
10.1101/gr.124321.111
10.1126/science.1160342
10.1101/gr.126516.111
10.3732/ajb.1100340
10.1093/nar/gkq817
10.1371/journal.pone.0030044
10.3835/plantgenome2011.05.0015
10.1101/gr.079558.108
10.1073/pnas.98.18.10515-c
10.1093/bioinformatics/19.2.185
10.1186/gb-2010-11-12-220
10.1038/nbt.1621
10.1371/journal.pone.0017820
10.1093/clinchem/39.3.424
10.1021/tx200103b
10.1186/1471-2105-11-422
10.1038/nature07002
10.1093/nar/gkr720
10.1186/1471-2164-10-161
10.1111/j.2517-6161.1995.tb02031.x
10.1093/bioinformatics/btp616
10.1093/bioinformatics/btm453
10.1007/978-1-4614-0631-0_65
10.1186/1471-2164-11-282
10.1093/bioinformatics/btp120
10.1038/sj.bjc.6604377
10.2202/1544-6115.1027
10.1016/j.jneumeth.2010.08.018
10.1038/cr.2012.30
10.1371/journal.pone.0012336
10.1186/gb-2010-11-10-r106
10.1371/journal.pone.0025400
10.1089/106652701753307485
10.1093/bioinformatics/18.suppl_1.S105
10.1073/pnas.96.24.14007
ContentType Journal Article
Copyright Xu et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2013 Xu et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2013 Xu et al.; licensee BioMed Central Ltd. 2013 Xu et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Xu et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: 2013 Xu et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2013 Xu et al.; licensee BioMed Central Ltd. 2013 Xu et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7TM
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/1471-2105-14-S9-S1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Nucleic Acids Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Engineering Research Database
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage S1
ExternalDocumentID 10.1186/1471-2105-14-s9-s1
PMC3697991
3014368301
23902433
10_1186_1471_2105_14_S9_S1
Genre Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA045508
– fundername: NIDDK NIH HHS
  grantid: P30DK-52574
– fundername: NIDDK NIH HHS
  grantid: R01DK-56260
– fundername: NCI NIH HHS
  grantid: R01 CA140487
– fundername: NCI NIH HHS
  grantid: R01CA140487
– fundername: NHLBI NIH HHS
  grantid: R01HL-38180
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
123
2VQ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7TM
7X8
5PM
ADTOC
AFFHD
UNPAY
ID FETCH-LOGICAL-c507t-9a12cf32bd49a241efe98e1e8d1f0484cb7e0b809ff46e71c81d7c799a75b6373
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Oct 29 12:00:54 EDT 2025
Tue Sep 30 16:37:36 EDT 2025
Fri Sep 05 08:48:45 EDT 2025
Tue Oct 07 09:33:30 EDT 2025
Mon Oct 06 18:17:16 EDT 2025
Thu Apr 03 06:55:44 EDT 2025
Wed Oct 01 04:15:23 EDT 2025
Thu Apr 24 23:12:34 EDT 2025
Sat Sep 06 07:27:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 9
Keywords Differentially Express Gene
Differentially Express Gene List
Platform Comparison
Fixed Bias
Proportional Bias
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-9a12cf32bd49a241efe98e1e8d1f0484cb7e0b809ff46e71c81d7c799a75b6373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Conference-3
SourceType-Conference Papers & Proceedings-2
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-14-S9-S1
PMID 23902433
PQID 1398512571
PQPubID 44065
ParticipantIDs unpaywall_primary_10_1186_1471_2105_14_s9_s1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3697991
proquest_miscellaneous_1419340838
proquest_miscellaneous_1399922012
proquest_journals_1398512571
pubmed_primary_23902433
crossref_citationtrail_10_1186_1471_2105_14_S9_S1
crossref_primary_10_1186_1471_2105_14_S9_S1
springer_journals_10_1186_1471_2105_14_S9_S1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-28
PublicationDateYYYYMMDD 2013-06-28
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-28
  day: 28
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2013
Publisher BioMed Central
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
References S Liu (5949_CR13) 2011; 39
BM Bolstad (5949_CR17) 2003; 19
X Fu (5949_CR7) 2009; 10
C Trapnell (5949_CR19) 2009; 25
J Li (5949_CR27) 2011
M Castellarin (5949_CR6) 2012; 22
GK Smyth (5949_CR26) 2004; 3
RM Davidson (5949_CR40) 2011; 4
S Cheetham (5949_CR16) 2008; 98
Z Su (5949_CR11) 2011; 24
TJ Hardcastle (5949_CR29) 2010; 11
VD Barnett (5949_CR23) 1970
P Lahiry (5949_CR12) 2011; 6
C Trapnell (5949_CR20) 2010; 28
DM Rocke (5949_CR32) 2001; 8
MD Robinson (5949_CR31) 2010; 26
5949_CR34
H Levene (5949_CR22) 1960
BT Wilhelm (5949_CR39) 2008; 453
K Linnet (5949_CR15) 1993; 39
VM Kvam (5949_CR35) 2012; 99
5949_CR18
S Anders (5949_CR28) 2010; 11
T Zhang (5949_CR36) 2012; 7
DC Hoyle (5949_CR42) 2002; 18
S Ren (5949_CR3) 2012; 22
JC Marioni (5949_CR1) 2008; 18
BP Durbin (5949_CR33) 2002; 18
AR Karpf (5949_CR37) 1999; 96
M Sultan (5949_CR38) 2008; 321
VG Tusher (5949_CR25) 2001; 98
A Oshlack (5949_CR2) 2010; 11
5949_CR41
5949_CR21
E Courtney (5949_CR4) 2010; 193
MD Robinson (5949_CR43) 2007; 23
JR Bradford (5949_CR8) 2010; 11
T Lancaste (5949_CR14) 1966; 61
S Tarazona (5949_CR30) 2011; 21
Y Benjamini (5949_CR24) 1995; 57
D Bottomly (5949_CR10) 2011; 6
MH Farkas (5949_CR5) 2012; 723
M Mokry (5949_CR9) 2012; 40
22009989 - Genome Res. 2012 Feb;22(2):299-306
12016055 - Bioinformatics. 2002 Apr;18(4):576-84
17881408 - Bioinformatics. 2007 Nov 1;23(21):2881-7
20979621 - Genome Biol. 2010;11(10):R106
22127579 - Stat Methods Med Res. 2013 Oct;22(5):519-36
20864445 - Nucleic Acids Res. 2011 Jan;39(2):578-88
16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
21914722 - Nucleic Acids Res. 2012 Jan;40(1):148-58
11747612 - J Comput Biol. 2001;8(6):557-69
20838429 - PLoS One. 2010;5(9):e12336
19371429 - BMC Genomics. 2009;10:161
19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
12169537 - Bioinformatics. 2002;18 Suppl 1:S105-10
8448852 - Clin Chem. 1993 Mar;39(3):424-32
22183372 - Adv Exp Med Biol. 2012;723:519-25
18488015 - Nature. 2008 Jun 26;453(7199):1239-43
20698981 - BMC Bioinformatics. 2010;11:422
18599741 - Science. 2008 Aug 15;321(5891):956-60
21903743 - Genome Res. 2011 Dec;21(12):2213-23
19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40
21176179 - Genome Biol. 2010;11(12):220
21834575 - Chem Res Toxicol. 2011 Sep 19;24(9):1486-93
21980446 - PLoS One. 2011;6(9):e25400
10570189 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14007-12
18458674 - Br J Cancer. 2008 Jun 3;98(11):1810-9
21455293 - PLoS One. 2011;6(3):e17820
20436464 - Nat Biotechnol. 2010 May;28(5):511-5
20444259 - BMC Genomics. 2010;11:282
11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21
22719822 - PLoS One. 2012;7(6):e30044
20800617 - J Neurosci Methods. 2010 Nov 30;193(2):189-202
22349460 - Cell Res. 2012 May;22(5):806-21
22268221 - Am J Bot. 2012 Feb;99(2):248-56
18550803 - Genome Res. 2008 Sep;18(9):1509-17
12538238 - Bioinformatics. 2003 Jan 22;19(2):185-93
References_xml – start-page: 135
  volume-title: Journal of the Royal Statistical Society Series C (Applied Statistics)
  year: 1970
  ident: 5949_CR23
– volume: 18
  start-page: 576
  issue: 4
  year: 2002
  ident: 5949_CR42
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.4.576
– ident: 5949_CR21
– volume: 21
  start-page: 2213
  issue: 12
  year: 2011
  ident: 5949_CR30
  publication-title: Genome research
  doi: 10.1101/gr.124321.111
– volume: 321
  start-page: 956
  issue: 5891
  year: 2008
  ident: 5949_CR38
  publication-title: Science
  doi: 10.1126/science.1160342
– volume-title: Robust tests for equality of variances
  year: 1960
  ident: 5949_CR22
– ident: 5949_CR34
– volume: 22
  start-page: 299
  issue: 2
  year: 2012
  ident: 5949_CR6
  publication-title: Genome research
  doi: 10.1101/gr.126516.111
– volume: 99
  start-page: 248
  issue: 2
  year: 2012
  ident: 5949_CR35
  publication-title: American journal of botany
  doi: 10.3732/ajb.1100340
– volume: 39
  start-page: 578
  issue: 2
  year: 2011
  ident: 5949_CR13
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkq817
– volume: 7
  start-page: e30044
  issue: 6
  year: 2012
  ident: 5949_CR36
  publication-title: PloS one
  doi: 10.1371/journal.pone.0030044
– volume: 4
  start-page: 191
  year: 2011
  ident: 5949_CR40
  publication-title: The Plant Genome
  doi: 10.3835/plantgenome2011.05.0015
– volume: 61
  start-page: 128
  issue: 313
  year: 1966
  ident: 5949_CR14
  publication-title: J Am Stat Assoc
– volume: 18
  start-page: 1509
  issue: 9
  year: 2008
  ident: 5949_CR1
  publication-title: Genome research
  doi: 10.1101/gr.079558.108
– volume: 98
  start-page: 10515
  issue: 18
  year: 2001
  ident: 5949_CR25
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.98.18.10515-c
– volume: 19
  start-page: 185
  issue: 2
  year: 2003
  ident: 5949_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/19.2.185
– volume: 11
  start-page: 220
  issue: 12
  year: 2010
  ident: 5949_CR2
  publication-title: Genome biology
  doi: 10.1186/gb-2010-11-12-220
– volume: 28
  start-page: 511
  issue: 5
  year: 2010
  ident: 5949_CR20
  publication-title: Nature biotechnology
  doi: 10.1038/nbt.1621
– volume: 6
  start-page: e17820
  issue: 3
  year: 2011
  ident: 5949_CR10
  publication-title: PloS one
  doi: 10.1371/journal.pone.0017820
– volume: 39
  start-page: 424
  issue: 3
  year: 1993
  ident: 5949_CR15
  publication-title: Clin Chem
  doi: 10.1093/clinchem/39.3.424
– volume: 24
  start-page: 1486
  issue: 9
  year: 2011
  ident: 5949_CR11
  publication-title: Chemical research in toxicology
  doi: 10.1021/tx200103b
– volume: 11
  start-page: 422
  year: 2010
  ident: 5949_CR29
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-11-422
– volume: 453
  start-page: 1239
  issue: 7199
  year: 2008
  ident: 5949_CR39
  publication-title: Nature
  doi: 10.1038/nature07002
– ident: 5949_CR18
– volume: 40
  start-page: 148
  issue: 1
  year: 2012
  ident: 5949_CR9
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkr720
– volume: 10
  start-page: 161
  year: 2009
  ident: 5949_CR7
  publication-title: BMC genomics
  doi: 10.1186/1471-2164-10-161
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 5949_CR24
  publication-title: J Roy Stat Soc B Met
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 26
  start-page: 139
  issue: 1
  year: 2010
  ident: 5949_CR31
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume-title: Statistical methods in medical research
  year: 2011
  ident: 5949_CR27
– volume: 23
  start-page: 2881
  issue: 21
  year: 2007
  ident: 5949_CR43
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm453
– volume: 723
  start-page: 519
  year: 2012
  ident: 5949_CR5
  publication-title: Advances in experimental medicine and biology
  doi: 10.1007/978-1-4614-0631-0_65
– volume: 11
  start-page: 282
  year: 2010
  ident: 5949_CR8
  publication-title: BMC genomics
  doi: 10.1186/1471-2164-11-282
– volume: 25
  start-page: 1105
  issue: 9
  year: 2009
  ident: 5949_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 98
  start-page: 1810
  issue: 11
  year: 2008
  ident: 5949_CR16
  publication-title: British journal of cancer
  doi: 10.1038/sj.bjc.6604377
– volume: 3
  start-page: Article3
  year: 2004
  ident: 5949_CR26
  publication-title: Statistical applications in genetics and molecular biology
  doi: 10.2202/1544-6115.1027
– volume: 193
  start-page: 189
  issue: 2
  year: 2010
  ident: 5949_CR4
  publication-title: Journal of neuroscience methods
  doi: 10.1016/j.jneumeth.2010.08.018
– volume: 22
  start-page: 806
  issue: 5
  year: 2012
  ident: 5949_CR3
  publication-title: Cell research
  doi: 10.1038/cr.2012.30
– ident: 5949_CR41
  doi: 10.1371/journal.pone.0012336
– volume: 11
  start-page: R106
  issue: 10
  year: 2010
  ident: 5949_CR28
  publication-title: Genome biology
  doi: 10.1186/gb-2010-11-10-r106
– volume: 6
  start-page: e25400
  issue: 9
  year: 2011
  ident: 5949_CR12
  publication-title: PloS one
  doi: 10.1371/journal.pone.0025400
– volume: 8
  start-page: 557
  issue: 6
  year: 2001
  ident: 5949_CR32
  publication-title: Journal of computational biology: a journal of computational molecular cell biology
  doi: 10.1089/106652701753307485
– volume: 18
  start-page: S105
  issue: Suppl 1
  year: 2002
  ident: 5949_CR33
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_1.S105
– volume: 96
  start-page: 14007
  issue: 24
  year: 1999
  ident: 5949_CR37
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.96.24.14007
– reference: 22719822 - PLoS One. 2012;7(6):e30044
– reference: 18599741 - Science. 2008 Aug 15;321(5891):956-60
– reference: 22349460 - Cell Res. 2012 May;22(5):806-21
– reference: 12538238 - Bioinformatics. 2003 Jan 22;19(2):185-93
– reference: 21980446 - PLoS One. 2011;6(9):e25400
– reference: 20864445 - Nucleic Acids Res. 2011 Jan;39(2):578-88
– reference: 19371429 - BMC Genomics. 2009;10:161
– reference: 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21
– reference: 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40
– reference: 22268221 - Am J Bot. 2012 Feb;99(2):248-56
– reference: 21903743 - Genome Res. 2011 Dec;21(12):2213-23
– reference: 12169537 - Bioinformatics. 2002;18 Suppl 1:S105-10
– reference: 18488015 - Nature. 2008 Jun 26;453(7199):1239-43
– reference: 20444259 - BMC Genomics. 2010;11:282
– reference: 17881408 - Bioinformatics. 2007 Nov 1;23(21):2881-7
– reference: 11747612 - J Comput Biol. 2001;8(6):557-69
– reference: 10570189 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14007-12
– reference: 18550803 - Genome Res. 2008 Sep;18(9):1509-17
– reference: 20698981 - BMC Bioinformatics. 2010;11:422
– reference: 20436464 - Nat Biotechnol. 2010 May;28(5):511-5
– reference: 21176179 - Genome Biol. 2010;11(12):220
– reference: 20979621 - Genome Biol. 2010;11(10):R106
– reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
– reference: 22009989 - Genome Res. 2012 Feb;22(2):299-306
– reference: 22183372 - Adv Exp Med Biol. 2012;723:519-25
– reference: 21455293 - PLoS One. 2011;6(3):e17820
– reference: 8448852 - Clin Chem. 1993 Mar;39(3):424-32
– reference: 21914722 - Nucleic Acids Res. 2012 Jan;40(1):148-58
– reference: 12016055 - Bioinformatics. 2002 Apr;18(4):576-84
– reference: 22127579 - Stat Methods Med Res. 2013 Oct;22(5):519-36
– reference: 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
– reference: 18458674 - Br J Cancer. 2008 Jun 3;98(11):1810-9
– reference: 20800617 - J Neurosci Methods. 2010 Nov 30;193(2):189-202
– reference: 20838429 - PLoS One. 2010;5(9):e12336
– reference: 21834575 - Chem Res Toxicol. 2011 Sep 19;24(9):1486-93
SSID ssj0017805
Score 2.3915775
Snippet Background High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed...
High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes...
Doc number: S1 Abstract Background: High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying...
Background: High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage S1
SubjectTerms Algorithms
Azacitidine
Bias
Bioinformatics
Biomedical and Life Sciences
Colon
Colonic Neoplasms - genetics
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Correlation analysis
Correlation coefficient
DNA methylation
Gene expression
Gene Expression Profiling - methods
Genomes
HT29 Cells
Humans
Laboratories
Life Sciences
Medical research
Meetings
Methodology
Methodology Article
Methods
Microarrays
Oligonucleotide Array Sequence Analysis - methods
Polymerase chain reaction
Regression Analysis
RNA, Neoplasm - genetics
Sensitivity and Specificity
Sequence Analysis, RNA - methods
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3batwwEBXphtL2ofRet2lRoW-NyMp3PZSyLQnbQpcQJ5A3I8tSuuC1N7aXxv28fllnfGuWwL4teAyyNBqd2RmdQ8jH6TR10xTSkiSBTMdNpWECTgHmGccxoRHcaLzv_HPhzy_cH5fe5R5ZDHdhsK1yiIltoE4Lhf-RHwFSAXAADsa_rK8ZqkZhdXWQ0JC9tEL6uaUYu0f2bWTGmpD9r8eL07OxroAM_sPVmdA_4hCaGdh5DIYXCRbx7ePpDua82zo51k8fkQebfC2b3zLLbh1RJ0_I4x5b0lnnDE_Jns6fkfud2mTznPw9lSUqp2RUjeKDtDD0O4odL3NJzxYzFulrKvOUzoxpVqi2dUNX2LMny1I2dJ3JGlFuReHVGo-5NujgzWbaq39X9KplsgYkS_HuCvWY_CNZqoubhqkGJg9wLW3728Fifs5sQZE5O6cKHbCkWEqo2jFUyxWKi4EZ9rFWuq5ekIuT4_Nvc9ZLODAFQLNmQnJbGcdOUldIAAvaaBFqrsOUG4gdrkoCPU3CqTDG9XXAFcDnQAVCyMBLfCdwXpJJXuT6NaGuhOjhJY4vQ8jpPSUNgCkTGBcyOmFr3yJ8WLlY9fzmKLORxW2eE_oxrnaMqw2_4kjEEbfIp_GddcfusdP6YHCIuN_pVfzfLy3yYXwMexRnS-a62LQ2SP8LWGCHjQtQ2gVAHFrkVedj45BsRyBxpGORYMv7RgPkCN9-ki9_tVzhjo91Wxjb4eCnt4a-40sPR1_ePTGViCv-ZvfEvCUP7U5EhNnhAZnU5Ua_AyhXJ-_7_fkP_OFKjQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEA5yIuqD-NvVUyL45gU3bZo2j8vhsQoeYu_g3kqaJrrQza5tF6_-ef5lzrTdssvJgm-FTEraTGa-YTLfEPJuOi1EUUBYkucQ6YhCO6bAC7DIhaFLnOLOYr3zl3M5vxSfr6KrgSYHa2F28_c8kR84GE8GYUnE4AWpYilEOrfBSckuMStPx4wBcvNvi2L-OW_f8dxAkzcvRY6Z0fvk7savdftLl-WO8zl7SB4MqJHO-m1-RG5Z_5jc6ftItk_In6-6wp4oJTVjW0G6cvQTtjFeeE2_nc9Yan9S7Qs6c65dYh-ta7rE23i6qnRL16VuEL_WFKY26MA6c4I1y3To613T7x1HNWBUilUpNGL6t2aFXV23zLTNAtygpd3NdZCYX7BAUeTE9tSgalUUkwR1t4Z6scS2YSCGN1Rr29RPyeXZx4vTORuaMzADELJhSvPAuDDIC6E0wADrrEost0nBHVgFYfLYTvNkqpwT0sbcADCOTayUjqNchnH4jBz5lbcvCBUa7EKUh1InEK1HRjuASS52AmI1FVg5IXy7c5kZmMuxgUaZdRFMIjPc7Qx3G56yVGUpn5D345x1z9txUPp4qxDZcIbrDLAxwFEwaTD8dhyG04d_S3u72nQySOwLXv6AjACQLADqJhPyvNexcUlBqJASMpyQeE_7RgFk_94f8YsfHQt4KDEjC2s72erpztIPfOnJqMuHf0ytspq__L-3vyL3gr5dCAuSY3LUVBv7GkBbk7_pTutfm6M8_Q
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBYlZWx72P2SrRsa7G1VGtvyRY9hrGSDhdI00D0ZWZa6MMfJLIct_Xn7ZTvHN5IWAoO9GXSEZfno6DtI5_sIeT8cpjxNIS1JEsh0eCoNE7ALMN94nomMcIzGeuevk2A8418u_csDct7WwiQLlcyXDWkoEhUPtsvQs7rKAVUUdHGySk296KPgxIEgyyB98Rm8aCrYFDKiw8AHfN4jh7PJ2ehbVWbUGLXVMzc7WsGss7tD3YKdt29Pdkeo98nddb6Sm18yy7Z2qdOHxLbfV19O-TFYl8lAXd-gfvy_E_CIPGhALR3VXviYHOj8CblTy1xunpI_Z7JAyZaMqk71kC4N_Ywqy_Nc0vPJiE31TyrzlI6M2SxQ5us3XeBlQVkUckNXmSxxrJZC1xL31yraYUk1bWTHLb2qKLQBQlMsmqE-k9eSpRqmgqlNOYddWtPqYj1YjC-YKyhSdudUoecXFM8wbDUGO1-gqhmY4QVaq0v7jMxOP118HLNGO4IpQLglE9JxlfHcJOVCAkrRRotIOzpKHQNBi6sk1MMkGgpjeKBDRwFuD1UohAz9JPBC7znp5ctcvySUSwhbfuIFMhrywFfSAIozoeGQSgpXB33itP4Sq4ZYHfU9srhKsKIgxn8T47-Bp3gq4qnTJx-6PquaVmSv9VHrhnETYmwM0B3QMkRcaH7XNUNwwNmSuV6uKxvkHQYQsseGA4bngMSjPnlRe3Y3JNcTyFjp9Um44_OdAZKT77bk8-8VSbkX4IExjO24XR1bQ9_zpcfdCto_MVbE1nn1b-avyT23VjNhbnREemWx1m8AU5bJ2yZI_AWVlHXw
  priority: 102
  providerName: Unpaywall
Title Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets
URI https://link.springer.com/article/10.1186/1471-2105-14-S9-S1
https://www.ncbi.nlm.nih.gov/pubmed/23902433
https://www.proquest.com/docview/1398512571
https://www.proquest.com/docview/1399922012
https://www.proquest.com/docview/1419340838
https://pubmed.ncbi.nlm.nih.gov/PMC3697991
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-14-S9-S1
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELb2IQQcEG8KS2UkxIX10rzjA0Kh2lIqbVVtttJyipzEhkpp2iapaPh5_DJm0iRstatemqqetI49nvmmHs9HyPteLzbjGMKSMIRIx4yFYhy8ALOUYShXcU1JPO98MbaHU3N0bV0fkCbdth7A_M7QDvmkpllytlmVX2DBf64WvGt_0sDAMghdLAY_4nPmax-WK4bEUrgBW7NsHJJjcF4c2R0uzP8bDVjSvzlLc-dX7fqrWyD0di5lu6H6kNxfp0tR_hZJcsNnDR6TRzXYpN5WO56QA5k-Jfe29JPlM_J3IjKkUklo1LIR0oWi35H9eJYKejn2mC9XVKQx9ZQq50i_taFzTOITWSZKukxEgbA3p3BrgX6vskJ41JnWdOA5_VmVtgZoS_EwC7WY-CNYLBebkkVlMQPvKWmV8A4Swyumc4qltFMaoUZmFPcW8qoP-WyObGMghomtuSzy52Q6OL_qD1nN6cAiQJ4F40LTI2XoYWxyAehBKsldqUk31hQYEzMKHdkL3R5XyrSlo0WAp53I4Vw4VmgbjvGCHKWLVL4i1BRgTqzQsIULQb4VCQXoSjnKhBCP69LuEK2ZuSCqC54j70YSVIGPawc42wHONrwLfB74Wod8bO9Zbst97JU-aRQiaDQ3AEgNKBYsITS_a5th0eJoiVQu1pUM1gMGcLBHxgRsbQJCdjvk5VbH2i7pBsdKkkaHODva1wpg0fDdlnT2qyoebti4kQt9O2309EbX9zzpaavL-wcm50Guvd4_MG_IA33LKsJ094QcFdlavgVsV4RdcuhcO_DqDr51ybHnjfwRXL-ejyeX8Gnf7nerf0261SqGlul44v34B8_OVyQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXGEBo8IL5XGGAkeGLW6sT58ANCFTC1bKsQ7aS-ZY5js0pt2jWptvCj-BH8Mu5NmrBqUt_2Vik3lWOf3HtufH0PIe_b7UQkCaQlcQyZjkiUZRKiAPOs69rQSm4Nnnc-6fvdU_F95I22yJ_6LAyWVdY-sXTUyUzjN_IDYCpADgBg_PP8gqFqFO6u1hIaFSyOTHEJKVv2qfcV1veD4xx-G37pspWqANPAfXImFXe0dZ04EVJB_DLWyNBwEybcApyFjgPTjsO2tFb4JuAaGF2gAylV4MW-G7jwv3fIXeGCL4H3Jxg1CR5HfYD6YE7oH3Bw_AxSKo_Bww8kG_D14HeD0d4szGx2Zx-QnWU6V8WlmkyuBcDDR-ThirnSTgW1x2TLpE_IvUrLsnhK_v5QC9RlmVDdSBvSmaU9lFIep4r-7HfYwFxQlSa0Y20xRS2vKzrFikC1WKiCzicqRw6dUbg1xyBaujQ8N01X2uIZ_VX2yQaeTPFkDPWY-q1YYmZXBdNFPoZQbGhZPQ8W3SFzJMW-3CnVCO8FxY2KrBxDNp6idBmYYZVsZvLsGTm9laV8TrbTWWp2CRUKfJMXu74K28L3tLJA1WxgBeSL0jF-i_B65SK96p6OIh6TqMyiQj_C1Y5wteFXNJDRgLfIx-aeedU7ZKP1Xg2IaOVHsug_6lvkXXMZPADOlkrNbFnaYHNhYBobbAQQdQF0O2yRFxXGmiE5rsS2lG6LBGvoawywA_n6lXR8XnYid33cFYax7dc4vTb0DU-632B588RkMsr4y80T85bsdIcnx9Fxr3_0itx3KrkS5oR7ZDtfLM1rII15_KZ8Uyk5u23X8A9OoIE0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQEDAeEPcVBhiJN2atiXPzY1WoOi7VRDZpb5aT2FApdUuSioWfxy_jnKSJWg1V4i2SjyMnPvb5js7lI-TdcJh5WQZuSZKAp-NlyjABVoD5hnMTGeEYjfXOX2fB9NL7dOVfbVXxN9nuXUiyrWnALk22Ol1lpj3iUXDqwJXKwFnxGbw2FiwG_-e2B9YNOQzGwbiPI2DH_q5U5p_zds3RDYx5M1Wyj5feJ_fWdqXqXyrPt0zS5CF5sMGSdNRu_iNyS9vH5E7LLlk_IX_OVYFMKTlNe7JBujT0DMmN51bRb7MRi_VPqmxGR8bUC2TXuqYLzNFTRaFquspVhai2pDC1QrPWXDJYyUw3bN8l_d50rgbkSrFWhfpM_VYs08vrmqV1NQfjqGmTzw4S0wvmCoqdsi1NUeEKiqGDsllDOV8gmRiIYd5qqavyKbmcfLwYT9mGsoGlACwrJpTjpoa7SeYJBeBAGy0i7egocwzcFV6ahHqYRENhjBfo0EkBLodpKIQK_STgIX9GDuzS6iNCPQW3hZ_wQEXgw_upMgCeTGg88OCEq4MBcbqdk-mmnznSauSy8WuiQOJuS9xteJKxkLEzIO_7Oau2m8de6eNOIeTmZJcSEDOAVLjoYPhtPwxnEv-Wsnq5bmSw3S_Y_j0yHkBnUFkeDcjzVsf6JblcYKNIPiDhjvb1AtgTfHfEzn80vcF5gHFaWNtJp6dbS9_zpSe9Lu__MaWQpfPi_97-htw9_zCRX85mn1-SQ7flE2FudEwOqmKtXwGqq5LXzcH9C_DESDM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBYlZWx72P2SrRsa7G1VGtvyRY9hrGSDhdI00D0ZWZa6MMfJLIct_Xn7ZTvHN5IWAoO9GXSEZfno6DtI5_sIeT8cpjxNIS1JEsh0eCoNE7ALMN94nomMcIzGeuevk2A8418u_csDct7WwiQLlcyXDWkoEhUPtsvQs7rKAVUUdHGySk296KPgxIEgyyB98Rm8aCrYFDKiw8AHfN4jh7PJ2ehbVWbUGLXVMzc7WsGss7tD3YKdt29Pdkeo98nddb6Sm18yy7Z2qdOHxLbfV19O-TFYl8lAXd-gfvy_E_CIPGhALR3VXviYHOj8CblTy1xunpI_Z7JAyZaMqk71kC4N_Ywqy_Nc0vPJiE31TyrzlI6M2SxQ5us3XeBlQVkUckNXmSxxrJZC1xL31yraYUk1bWTHLb2qKLQBQlMsmqE-k9eSpRqmgqlNOYddWtPqYj1YjC-YKyhSdudUoecXFM8wbDUGO1-gqhmY4QVaq0v7jMxOP118HLNGO4IpQLglE9JxlfHcJOVCAkrRRotIOzpKHQNBi6sk1MMkGgpjeKBDRwFuD1UohAz9JPBC7znp5ctcvySUSwhbfuIFMhrywFfSAIozoeGQSgpXB33itP4Sq4ZYHfU9srhKsKIgxn8T47-Bp3gq4qnTJx-6PquaVmSv9VHrhnETYmwM0B3QMkRcaH7XNUNwwNmSuV6uKxvkHQYQsseGA4bngMSjPnlRe3Y3JNcTyFjp9Um44_OdAZKT77bk8-8VSbkX4IExjO24XR1bQ9_zpcfdCto_MVbE1nn1b-avyT23VjNhbnREemWx1m8AU5bJ2yZI_AWVlHXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+comparison+of+Illumina+RNA-Seq+and+Affymetrix+microarray+platforms+on+transcriptomic+profiles+generated+from+5-aza-deoxy-cytidine+treated+HT-29+colon+cancer+cells+and+simulated+datasets&rft.jtitle=BMC+bioinformatics&rft.au=Xu%2C+Xiao&rft.au=Zhang%2C+Yuanhao&rft.au=Williams%2C+Jennie&rft.au=Antoniou%2C+Eric&rft.date=2013-06-28&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=14&rft.issue=Suppl+9&rft_id=info:doi/10.1186%2F1471-2105-14-S9-S1&rft.externalDocID=3014368301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon