Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets
Background High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results...
Saved in:
| Published in | BMC bioinformatics Vol. 14; no. Suppl 9; p. S1 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
28.06.2013
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/1471-2105-14-S9-S1 |
Cover
| Abstract | Background
High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results between the two platforms. The objective of this study was to compare parallel paired-end RNA-Seq and microarray data generated on 5-azadeoxy-cytidine (5-Aza) treated HT-29 colon cancer cells with an additional simulation study.
Methods
We first performed general correlation analysis comparing gene expression profiles on both platforms. An Errors-In-Variables (EIV) regression model was subsequently applied to assess proportional and fixed biases between the two technologies. Then several existing algorithms, designed for DEG identification in RNA-Seq and microarray data, were applied to compare the cross-platform overlaps with respect to DEG lists, which were further validated using qRT-PCR assays on selected genes. Functional analyses were subsequently conducted using Ingenuity Pathway Analysis (IPA).
Results
Pearson and Spearman correlation coefficients between the RNA-Seq and microarray data each exceeded 0.80, with 66%~68% overlap of genes on both platforms. The EIV regression model indicated the existence of both fixed and proportional biases between the two platforms. The DESeq and baySeq algorithms (RNA-Seq) and the SAM and eBayes algorithms (microarray) achieved the highest cross-platform overlap rate in DEG results from both experimental and simulated datasets. DESeq method exhibited a better control on the false discovery rate than baySeq on the simulated dataset although it performed slightly inferior to baySeq in the sensitivity test. RNA-Seq and qRT-PCR, but not microarray data, confirmed the expected reversal of
SPARC
gene suppression after treating HT-29 cells with 5-Aza. Thirty-three IPA canonical pathways were identified by both microarray and RNA-Seq data, 152 pathways by RNA-Seq data only, and none by microarray data only.
Conclusions
These results suggest that RNA-Seq has advantages over microarray in identification of DEGs with the most consistent results generated from DESeq and SAM methods. The EIV regression model reveals both fixed and proportional biases between RNA-Seq and microarray. This may explain in part the lower cross-platform overlap in DEG lists compared to those in detectable genes. |
|---|---|
| AbstractList | Background
High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results between the two platforms. The objective of this study was to compare parallel paired-end RNA-Seq and microarray data generated on 5-azadeoxy-cytidine (5-Aza) treated HT-29 colon cancer cells with an additional simulation study.
Methods
We first performed general correlation analysis comparing gene expression profiles on both platforms. An Errors-In-Variables (EIV) regression model was subsequently applied to assess proportional and fixed biases between the two technologies. Then several existing algorithms, designed for DEG identification in RNA-Seq and microarray data, were applied to compare the cross-platform overlaps with respect to DEG lists, which were further validated using qRT-PCR assays on selected genes. Functional analyses were subsequently conducted using Ingenuity Pathway Analysis (IPA).
Results
Pearson and Spearman correlation coefficients between the RNA-Seq and microarray data each exceeded 0.80, with 66%~68% overlap of genes on both platforms. The EIV regression model indicated the existence of both fixed and proportional biases between the two platforms. The DESeq and baySeq algorithms (RNA-Seq) and the SAM and eBayes algorithms (microarray) achieved the highest cross-platform overlap rate in DEG results from both experimental and simulated datasets. DESeq method exhibited a better control on the false discovery rate than baySeq on the simulated dataset although it performed slightly inferior to baySeq in the sensitivity test. RNA-Seq and qRT-PCR, but not microarray data, confirmed the expected reversal of
SPARC
gene suppression after treating HT-29 cells with 5-Aza. Thirty-three IPA canonical pathways were identified by both microarray and RNA-Seq data, 152 pathways by RNA-Seq data only, and none by microarray data only.
Conclusions
These results suggest that RNA-Seq has advantages over microarray in identification of DEGs with the most consistent results generated from DESeq and SAM methods. The EIV regression model reveals both fixed and proportional biases between RNA-Seq and microarray. This may explain in part the lower cross-platform overlap in DEG lists compared to those in detectable genes. High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results between the two platforms. The objective of this study was to compare parallel paired-end RNA-Seq and microarray data generated on 5-azadeoxy-cytidine (5-Aza) treated HT-29 colon cancer cells with an additional simulation study. We first performed general correlation analysis comparing gene expression profiles on both platforms. An Errors-In-Variables (EIV) regression model was subsequently applied to assess proportional and fixed biases between the two technologies. Then several existing algorithms, designed for DEG identification in RNA-Seq and microarray data, were applied to compare the cross-platform overlaps with respect to DEG lists, which were further validated using qRT-PCR assays on selected genes. Functional analyses were subsequently conducted using Ingenuity Pathway Analysis (IPA). Pearson and Spearman correlation coefficients between the RNA-Seq and microarray data each exceeded 0.80, with 66%~68% overlap of genes on both platforms. The EIV regression model indicated the existence of both fixed and proportional biases between the two platforms. The DESeq and baySeq algorithms (RNA-Seq) and the SAM and eBayes algorithms (microarray) achieved the highest cross-platform overlap rate in DEG results from both experimental and simulated datasets. DESeq method exhibited a better control on the false discovery rate than baySeq on the simulated dataset although it performed slightly inferior to baySeq in the sensitivity test. RNA-Seq and qRT-PCR, but not microarray data, confirmed the expected reversal of SPARC gene suppression after treating HT-29 cells with 5-Aza. Thirty-three IPA canonical pathways were identified by both microarray and RNA-Seq data, 152 pathways by RNA-Seq data only, and none by microarray data only. These results suggest that RNA-Seq has advantages over microarray in identification of DEGs with the most consistent results generated from DESeq and SAM methods. The EIV regression model reveals both fixed and proportional biases between RNA-Seq and microarray. This may explain in part the lower cross-platform overlap in DEG lists compared to those in detectable genes. Background: High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results between the two platforms. The objective of this study was to compare parallel paired-end RNA-Seq and microarray data generated on 5-azadeoxy-cytidine (5-Aza) treated HT-29 colon cancer cells with an additional simulation study. Methods: We first performed general correlation analysis comparing gene expression profiles on both platforms. An Errors-In-Variables (EIV) regression model was subsequently applied to assess proportional and fixed biases between the two technologies. Then several existing algorithms, designed for DEG identification in RNA-Seq and microarray data, were applied to compare the cross-platform overlaps with respect to DEG lists, which were further validated using qRT-PCR assays on selected genes. Functional analyses were subsequently conducted using Ingenuity Pathway Analysis (IPA). Results: Pearson and Spearman correlation coefficients between the RNA-Seq and microarray data each exceeded 0.80, with 66%~68% overlap of genes on both platforms. The EIV regression model indicated the existence of both fixed and proportional biases between the two platforms. The DESeq and baySeq algorithms (RNA-Seq) and the SAM and eBayes algorithms (microarray) achieved the highest cross-platform overlap rate in DEG results from both experimental and simulated datasets. DESeq method exhibited a better control on the false discovery rate than baySeq on the simulated dataset although it performed slightly inferior to baySeq in the sensitivity test. RNA-Seq and qRT-PCR, but not microarray data, confirmed the expected reversal of SPARC gene suppression after treating HT-29 cells with 5-Aza. Thirty-three IPA canonical pathways were identified by both microarray and RNA-Seq data, 152 pathways by RNA-Seq data only, and none by microarray data only. Conclusions: These results suggest that RNA-Seq has advantages over microarray in identification of DEGs with the most consistent results generated from DESeq and SAM methods. The EIV regression model reveals both fixed and proportional biases between RNA-Seq and microarray. This may explain in part the lower cross-platform overlap in DEG lists compared to those in detectable genes. High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results between the two platforms. The objective of this study was to compare parallel paired-end RNA-Seq and microarray data generated on 5-azadeoxy-cytidine (5-Aza) treated HT-29 colon cancer cells with an additional simulation study.BACKGROUNDHigh throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results between the two platforms. The objective of this study was to compare parallel paired-end RNA-Seq and microarray data generated on 5-azadeoxy-cytidine (5-Aza) treated HT-29 colon cancer cells with an additional simulation study.We first performed general correlation analysis comparing gene expression profiles on both platforms. An Errors-In-Variables (EIV) regression model was subsequently applied to assess proportional and fixed biases between the two technologies. Then several existing algorithms, designed for DEG identification in RNA-Seq and microarray data, were applied to compare the cross-platform overlaps with respect to DEG lists, which were further validated using qRT-PCR assays on selected genes. Functional analyses were subsequently conducted using Ingenuity Pathway Analysis (IPA).METHODSWe first performed general correlation analysis comparing gene expression profiles on both platforms. An Errors-In-Variables (EIV) regression model was subsequently applied to assess proportional and fixed biases between the two technologies. Then several existing algorithms, designed for DEG identification in RNA-Seq and microarray data, were applied to compare the cross-platform overlaps with respect to DEG lists, which were further validated using qRT-PCR assays on selected genes. Functional analyses were subsequently conducted using Ingenuity Pathway Analysis (IPA).Pearson and Spearman correlation coefficients between the RNA-Seq and microarray data each exceeded 0.80, with 66%~68% overlap of genes on both platforms. The EIV regression model indicated the existence of both fixed and proportional biases between the two platforms. The DESeq and baySeq algorithms (RNA-Seq) and the SAM and eBayes algorithms (microarray) achieved the highest cross-platform overlap rate in DEG results from both experimental and simulated datasets. DESeq method exhibited a better control on the false discovery rate than baySeq on the simulated dataset although it performed slightly inferior to baySeq in the sensitivity test. RNA-Seq and qRT-PCR, but not microarray data, confirmed the expected reversal of SPARC gene suppression after treating HT-29 cells with 5-Aza. Thirty-three IPA canonical pathways were identified by both microarray and RNA-Seq data, 152 pathways by RNA-Seq data only, and none by microarray data only.RESULTSPearson and Spearman correlation coefficients between the RNA-Seq and microarray data each exceeded 0.80, with 66%~68% overlap of genes on both platforms. The EIV regression model indicated the existence of both fixed and proportional biases between the two platforms. The DESeq and baySeq algorithms (RNA-Seq) and the SAM and eBayes algorithms (microarray) achieved the highest cross-platform overlap rate in DEG results from both experimental and simulated datasets. DESeq method exhibited a better control on the false discovery rate than baySeq on the simulated dataset although it performed slightly inferior to baySeq in the sensitivity test. RNA-Seq and qRT-PCR, but not microarray data, confirmed the expected reversal of SPARC gene suppression after treating HT-29 cells with 5-Aza. Thirty-three IPA canonical pathways were identified by both microarray and RNA-Seq data, 152 pathways by RNA-Seq data only, and none by microarray data only.These results suggest that RNA-Seq has advantages over microarray in identification of DEGs with the most consistent results generated from DESeq and SAM methods. The EIV regression model reveals both fixed and proportional biases between RNA-Seq and microarray. This may explain in part the lower cross-platform overlap in DEG lists compared to those in detectable genes.CONCLUSIONSThese results suggest that RNA-Seq has advantages over microarray in identification of DEGs with the most consistent results generated from DESeq and SAM methods. The EIV regression model reveals both fixed and proportional biases between RNA-Seq and microarray. This may explain in part the lower cross-platform overlap in DEG lists compared to those in detectable genes. Doc number: S1 Abstract Background: High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results between the two platforms. The objective of this study was to compare parallel paired-end RNA-Seq and microarray data generated on 5-azadeoxy-cytidine (5-Aza) treated HT-29 colon cancer cells with an additional simulation study. Methods: We first performed general correlation analysis comparing gene expression profiles on both platforms. An Errors-In-Variables (EIV) regression model was subsequently applied to assess proportional and fixed biases between the two technologies. Then several existing algorithms, designed for DEG identification in RNA-Seq and microarray data, were applied to compare the cross-platform overlaps with respect to DEG lists, which were further validated using qRT-PCR assays on selected genes. Functional analyses were subsequently conducted using Ingenuity Pathway Analysis (IPA). Results: Pearson and Spearman correlation coefficients between the RNA-Seq and microarray data each exceeded 0.80, with 66%~68% overlap of genes on both platforms. The EIV regression model indicated the existence of both fixed and proportional biases between the two platforms. The DESeq and baySeq algorithms (RNA-Seq) and the SAM and eBayes algorithms (microarray) achieved the highest cross-platform overlap rate in DEG results from both experimental and simulated datasets. DESeq method exhibited a better control on the false discovery rate than baySeq on the simulated dataset although it performed slightly inferior to baySeq in the sensitivity test. RNA-Seq and qRT-PCR, but not microarray data, confirmed the expected reversal of SPARC gene suppression after treating HT-29 cells with 5-Aza. Thirty-three IPA canonical pathways were identified by both microarray and RNA-Seq data, 152 pathways by RNA-Seq data only, and none by microarray data only. Conclusions: These results suggest that RNA-Seq has advantages over microarray in identification of DEGs with the most consistent results generated from DESeq and SAM methods. The EIV regression model reveals both fixed and proportional biases between RNA-Seq and microarray. This may explain in part the lower cross-platform overlap in DEG lists compared to those in detectable genes. |
| ArticleNumber | S1 |
| Author | Xu, Xiao Zhang, Yuanhao Zhu, Wei Li, Ellen Denoya, Paula Wu, Song Williams, Jennie Antoniou, Eric McCombie, W Richard Davidson, Nicholas O |
| AuthorAffiliation | 4 Department of Medicine, Washington University St. Louis, St. Louis, MO, 63110, USA 2 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA 1 School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA 3 Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, USA |
| AuthorAffiliation_xml | – name: 1 School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA – name: 4 Department of Medicine, Washington University St. Louis, St. Louis, MO, 63110, USA – name: 2 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA – name: 3 Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, USA |
| Author_xml | – sequence: 1 givenname: Xiao surname: Xu fullname: Xu, Xiao organization: School of Medicine, Stony Brook University – sequence: 2 givenname: Yuanhao surname: Zhang fullname: Zhang, Yuanhao organization: Department of Applied Mathematics and Statistics, Stony Brook University – sequence: 3 givenname: Jennie surname: Williams fullname: Williams, Jennie organization: School of Medicine, Stony Brook University – sequence: 4 givenname: Eric surname: Antoniou fullname: Antoniou, Eric organization: Cold Spring Harbor Laboratory – sequence: 5 givenname: W Richard surname: McCombie fullname: McCombie, W Richard organization: Cold Spring Harbor Laboratory – sequence: 6 givenname: Song surname: Wu fullname: Wu, Song organization: Department of Applied Mathematics and Statistics, Stony Brook University – sequence: 7 givenname: Wei surname: Zhu fullname: Zhu, Wei organization: Department of Applied Mathematics and Statistics, Stony Brook University – sequence: 8 givenname: Nicholas O surname: Davidson fullname: Davidson, Nicholas O organization: Department of Medicine, Washington University St. Louis – sequence: 9 givenname: Paula surname: Denoya fullname: Denoya, Paula organization: School of Medicine, Stony Brook University – sequence: 10 givenname: Ellen surname: Li fullname: Li, Ellen email: ellen.li@stonybrookmedicine.edu organization: School of Medicine, Stony Brook University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23902433$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks1u1DAUhSNURH_gBVggS2zYGGwnmcQbpFEFtFIFiClry-NcD64cO7Ud6PB4PBnOzLQMFT8rW853zj059nFx4LyDonhKyUtK29krWjUUM0pqTCu84HhBHxRHd4cHe_vD4jjGK0Jo05L6UXHISk5YVZZHxY-PMkhrwSLl-0EGE71DXqNza8feOIk-vZ_jBVwj6To013rdQwrmBvVGBS9DkGs0WJm0D31EWZqCdFEFMySfETQEr42FiFbgIMgEHdLB96jG8rvEHfibNVbrZDrjIGthQ5xdYsZzHpv9lHQKAlJgbdxkiKYf7QbrZJIRUnxcPNTSRniyW0-Kz2_fXJ6e4YsP785P5xdY1aRJmEvKlC7Zsqu4ZBUFDbwFCm1HNanaSi0bIMuWcK2rGTRUtbRrVMO5bOrlrGzKk6Lc-o5ukOtvuTUxBNPLsBaUiOlGxFS4mArPOxG5iDSrXm9Vw7jsoVPgckW_lF4a8fsXZ76Ilf8qyhnPwyeDFzuD4K9HiEn0Jk59SAd-jHkS5WVF2rL9P1pyzhkjlGX0-T30yo_B5f4mqq0pq5tp9rP98Hepb99PBtotkF9DjAG0UCbJZPz0L8b-uZgFF4vJm92T_rPNW9HuDmKG3QrCXuy_q34Ck_T-YQ |
| CitedBy_id | crossref_primary_10_1080_15592294_2019_1580112 crossref_primary_10_1111_add_16168 crossref_primary_10_29219_fnr_v63_1559 crossref_primary_10_7554_eLife_62927 crossref_primary_10_1002_sim_10218 crossref_primary_10_1007_s11103_018_0754_5 crossref_primary_10_1042_CS20160211 crossref_primary_10_1039_C9FO02786F crossref_primary_10_1186_s12859_015_0847_y crossref_primary_10_1371_journal_pone_0275864 crossref_primary_10_1186_s13062_016_0167_9 crossref_primary_10_1016_j_jff_2018_05_041 crossref_primary_10_1038_srep18475 crossref_primary_10_1016_j_isci_2022_103798 crossref_primary_10_1038_srep14107 crossref_primary_10_1016_j_canlet_2019_10_040 crossref_primary_10_1111_raq_12064 crossref_primary_10_1371_journal_pone_0098404 crossref_primary_10_1038_s41598_023_44459_y crossref_primary_10_1186_1471_2164_15_842 crossref_primary_10_1186_s12864_015_1913_6 crossref_primary_10_1186_s12920_019_0548_x crossref_primary_10_1093_bioinformatics_btz007 crossref_primary_10_1111_mec_14338 crossref_primary_10_1158_2326_6066_CIR_15_0243 crossref_primary_10_1371_journal_pone_0115842 crossref_primary_10_1093_nar_gkad965 crossref_primary_10_3892_ol_2016_5138 crossref_primary_10_3390_ijms22168451 crossref_primary_10_1007_s11105_015_0903_9 crossref_primary_10_1186_s12864_021_07682_3 crossref_primary_10_4137_EBO_S14823 crossref_primary_10_1016_j_jaut_2016_03_008 crossref_primary_10_3390_ijms241210299 crossref_primary_10_1007_s11033_014_3539_1 crossref_primary_10_1007_s10439_023_03385_w crossref_primary_10_1186_gb_2014_15_3_r47 crossref_primary_10_12659_MSMBR_892101 crossref_primary_10_1007_s12539_021_00440_9 crossref_primary_10_1080_15592294_2016_1190894 crossref_primary_10_1152_physiolgenomics_00022_2014 crossref_primary_10_2131_jts_49_249 crossref_primary_10_1038_s41598_023_41085_6 crossref_primary_10_3390_bdcc7010046 crossref_primary_10_1016_S2665_9913_23_00010_3 crossref_primary_10_1038_s41598_021_03156_4 crossref_primary_10_1016_j_jbi_2022_104133 crossref_primary_10_1158_2643_3230_BCD_20_0076 crossref_primary_10_2460_ajvr_77_7_693 crossref_primary_10_1007_s00216_013_7486_9 crossref_primary_10_1371_journal_pone_0195771 crossref_primary_10_1186_1471_2164_15_1008 crossref_primary_10_1038_s41598_019_57311_z crossref_primary_10_1038_sdata_2017_106 crossref_primary_10_1186_s12864_016_3441_4 crossref_primary_10_1186_1471_2164_14_903 crossref_primary_10_3389_fmolb_2014_00008 crossref_primary_10_3390_ijms20194922 crossref_primary_10_3389_fgene_2022_913743 crossref_primary_10_1016_j_tube_2016_09_020 crossref_primary_10_1007_s13277_014_2388_9 crossref_primary_10_1080_15384101_2017_1361068 crossref_primary_10_1007_s10048_014_0435_8 crossref_primary_10_1016_j_cancergen_2024_12_003 crossref_primary_10_3390_cancers13184515 crossref_primary_10_1038_s41467_017_01153_8 crossref_primary_10_1016_j_jbi_2022_104164 crossref_primary_10_1186_s13148_019_0628_y crossref_primary_10_3389_fgene_2018_00636 crossref_primary_10_1038_s43856_024_00571_2 crossref_primary_10_1038_cgt_2015_20 crossref_primary_10_1186_s12864_017_3819_y crossref_primary_10_3389_fimmu_2016_00129 |
| Cites_doi | 10.1093/bioinformatics/18.4.576 10.1101/gr.124321.111 10.1126/science.1160342 10.1101/gr.126516.111 10.3732/ajb.1100340 10.1093/nar/gkq817 10.1371/journal.pone.0030044 10.3835/plantgenome2011.05.0015 10.1101/gr.079558.108 10.1073/pnas.98.18.10515-c 10.1093/bioinformatics/19.2.185 10.1186/gb-2010-11-12-220 10.1038/nbt.1621 10.1371/journal.pone.0017820 10.1093/clinchem/39.3.424 10.1021/tx200103b 10.1186/1471-2105-11-422 10.1038/nature07002 10.1093/nar/gkr720 10.1186/1471-2164-10-161 10.1111/j.2517-6161.1995.tb02031.x 10.1093/bioinformatics/btp616 10.1093/bioinformatics/btm453 10.1007/978-1-4614-0631-0_65 10.1186/1471-2164-11-282 10.1093/bioinformatics/btp120 10.1038/sj.bjc.6604377 10.2202/1544-6115.1027 10.1016/j.jneumeth.2010.08.018 10.1038/cr.2012.30 10.1371/journal.pone.0012336 10.1186/gb-2010-11-10-r106 10.1371/journal.pone.0025400 10.1089/106652701753307485 10.1093/bioinformatics/18.suppl_1.S105 10.1073/pnas.96.24.14007 |
| ContentType | Journal Article |
| Copyright | Xu et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 2013 Xu et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2013 Xu et al.; licensee BioMed Central Ltd. 2013 Xu et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Xu et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: 2013 Xu et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright © 2013 Xu et al.; licensee BioMed Central Ltd. 2013 Xu et al.; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7TM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/1471-2105-14-S9-S1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Nucleic Acids Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | S1 |
| ExternalDocumentID | 10.1186/1471-2105-14-s9-s1 PMC3697991 3014368301 23902433 10_1186_1471_2105_14_S9_S1 |
| Genre | Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA045508 – fundername: NIDDK NIH HHS grantid: P30DK-52574 – fundername: NIDDK NIH HHS grantid: R01DK-56260 – fundername: NCI NIH HHS grantid: R01 CA140487 – fundername: NCI NIH HHS grantid: R01CA140487 – fundername: NHLBI NIH HHS grantid: R01HL-38180 |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION 123 2VQ ALIPV C1A CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7TM 7X8 5PM ADTOC AFFHD UNPAY |
| ID | FETCH-LOGICAL-c507t-9a12cf32bd49a241efe98e1e8d1f0484cb7e0b809ff46e71c81d7c799a75b6373 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Wed Oct 29 12:00:54 EDT 2025 Tue Sep 30 16:37:36 EDT 2025 Fri Sep 05 08:48:45 EDT 2025 Tue Oct 07 09:33:30 EDT 2025 Mon Oct 06 18:17:16 EDT 2025 Thu Apr 03 06:55:44 EDT 2025 Wed Oct 01 04:15:23 EDT 2025 Thu Apr 24 23:12:34 EDT 2025 Sat Sep 06 07:27:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 9 |
| Keywords | Differentially Express Gene Differentially Express Gene List Platform Comparison Fixed Bias Proportional Bias |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c507t-9a12cf32bd49a241efe98e1e8d1f0484cb7e0b809ff46e71c81d7c799a75b6373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Conference-3 SourceType-Conference Papers & Proceedings-2 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-14-S9-S1 |
| PMID | 23902433 |
| PQID | 1398512571 |
| PQPubID | 44065 |
| ParticipantIDs | unpaywall_primary_10_1186_1471_2105_14_s9_s1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3697991 proquest_miscellaneous_1419340838 proquest_miscellaneous_1399922012 proquest_journals_1398512571 pubmed_primary_23902433 crossref_citationtrail_10_1186_1471_2105_14_S9_S1 crossref_primary_10_1186_1471_2105_14_S9_S1 springer_journals_10_1186_1471_2105_14_S9_S1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-06-28 |
| PublicationDateYYYYMMDD | 2013-06-28 |
| PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2013 |
| Publisher | BioMed Central Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V |
| References | S Liu (5949_CR13) 2011; 39 BM Bolstad (5949_CR17) 2003; 19 X Fu (5949_CR7) 2009; 10 C Trapnell (5949_CR19) 2009; 25 J Li (5949_CR27) 2011 M Castellarin (5949_CR6) 2012; 22 GK Smyth (5949_CR26) 2004; 3 RM Davidson (5949_CR40) 2011; 4 S Cheetham (5949_CR16) 2008; 98 Z Su (5949_CR11) 2011; 24 TJ Hardcastle (5949_CR29) 2010; 11 VD Barnett (5949_CR23) 1970 P Lahiry (5949_CR12) 2011; 6 C Trapnell (5949_CR20) 2010; 28 DM Rocke (5949_CR32) 2001; 8 MD Robinson (5949_CR31) 2010; 26 5949_CR34 H Levene (5949_CR22) 1960 BT Wilhelm (5949_CR39) 2008; 453 K Linnet (5949_CR15) 1993; 39 VM Kvam (5949_CR35) 2012; 99 5949_CR18 S Anders (5949_CR28) 2010; 11 T Zhang (5949_CR36) 2012; 7 DC Hoyle (5949_CR42) 2002; 18 S Ren (5949_CR3) 2012; 22 JC Marioni (5949_CR1) 2008; 18 BP Durbin (5949_CR33) 2002; 18 AR Karpf (5949_CR37) 1999; 96 M Sultan (5949_CR38) 2008; 321 VG Tusher (5949_CR25) 2001; 98 A Oshlack (5949_CR2) 2010; 11 5949_CR41 5949_CR21 E Courtney (5949_CR4) 2010; 193 MD Robinson (5949_CR43) 2007; 23 JR Bradford (5949_CR8) 2010; 11 T Lancaste (5949_CR14) 1966; 61 S Tarazona (5949_CR30) 2011; 21 Y Benjamini (5949_CR24) 1995; 57 D Bottomly (5949_CR10) 2011; 6 MH Farkas (5949_CR5) 2012; 723 M Mokry (5949_CR9) 2012; 40 22009989 - Genome Res. 2012 Feb;22(2):299-306 12016055 - Bioinformatics. 2002 Apr;18(4):576-84 17881408 - Bioinformatics. 2007 Nov 1;23(21):2881-7 20979621 - Genome Biol. 2010;11(10):R106 22127579 - Stat Methods Med Res. 2013 Oct;22(5):519-36 20864445 - Nucleic Acids Res. 2011 Jan;39(2):578-88 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3 21914722 - Nucleic Acids Res. 2012 Jan;40(1):148-58 11747612 - J Comput Biol. 2001;8(6):557-69 20838429 - PLoS One. 2010;5(9):e12336 19371429 - BMC Genomics. 2009;10:161 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 12169537 - Bioinformatics. 2002;18 Suppl 1:S105-10 8448852 - Clin Chem. 1993 Mar;39(3):424-32 22183372 - Adv Exp Med Biol. 2012;723:519-25 18488015 - Nature. 2008 Jun 26;453(7199):1239-43 20698981 - BMC Bioinformatics. 2010;11:422 18599741 - Science. 2008 Aug 15;321(5891):956-60 21903743 - Genome Res. 2011 Dec;21(12):2213-23 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40 21176179 - Genome Biol. 2010;11(12):220 21834575 - Chem Res Toxicol. 2011 Sep 19;24(9):1486-93 21980446 - PLoS One. 2011;6(9):e25400 10570189 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14007-12 18458674 - Br J Cancer. 2008 Jun 3;98(11):1810-9 21455293 - PLoS One. 2011;6(3):e17820 20436464 - Nat Biotechnol. 2010 May;28(5):511-5 20444259 - BMC Genomics. 2010;11:282 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 22719822 - PLoS One. 2012;7(6):e30044 20800617 - J Neurosci Methods. 2010 Nov 30;193(2):189-202 22349460 - Cell Res. 2012 May;22(5):806-21 22268221 - Am J Bot. 2012 Feb;99(2):248-56 18550803 - Genome Res. 2008 Sep;18(9):1509-17 12538238 - Bioinformatics. 2003 Jan 22;19(2):185-93 |
| References_xml | – start-page: 135 volume-title: Journal of the Royal Statistical Society Series C (Applied Statistics) year: 1970 ident: 5949_CR23 – volume: 18 start-page: 576 issue: 4 year: 2002 ident: 5949_CR42 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.4.576 – ident: 5949_CR21 – volume: 21 start-page: 2213 issue: 12 year: 2011 ident: 5949_CR30 publication-title: Genome research doi: 10.1101/gr.124321.111 – volume: 321 start-page: 956 issue: 5891 year: 2008 ident: 5949_CR38 publication-title: Science doi: 10.1126/science.1160342 – volume-title: Robust tests for equality of variances year: 1960 ident: 5949_CR22 – ident: 5949_CR34 – volume: 22 start-page: 299 issue: 2 year: 2012 ident: 5949_CR6 publication-title: Genome research doi: 10.1101/gr.126516.111 – volume: 99 start-page: 248 issue: 2 year: 2012 ident: 5949_CR35 publication-title: American journal of botany doi: 10.3732/ajb.1100340 – volume: 39 start-page: 578 issue: 2 year: 2011 ident: 5949_CR13 publication-title: Nucleic acids research doi: 10.1093/nar/gkq817 – volume: 7 start-page: e30044 issue: 6 year: 2012 ident: 5949_CR36 publication-title: PloS one doi: 10.1371/journal.pone.0030044 – volume: 4 start-page: 191 year: 2011 ident: 5949_CR40 publication-title: The Plant Genome doi: 10.3835/plantgenome2011.05.0015 – volume: 61 start-page: 128 issue: 313 year: 1966 ident: 5949_CR14 publication-title: J Am Stat Assoc – volume: 18 start-page: 1509 issue: 9 year: 2008 ident: 5949_CR1 publication-title: Genome research doi: 10.1101/gr.079558.108 – volume: 98 start-page: 10515 issue: 18 year: 2001 ident: 5949_CR25 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.98.18.10515-c – volume: 19 start-page: 185 issue: 2 year: 2003 ident: 5949_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.2.185 – volume: 11 start-page: 220 issue: 12 year: 2010 ident: 5949_CR2 publication-title: Genome biology doi: 10.1186/gb-2010-11-12-220 – volume: 28 start-page: 511 issue: 5 year: 2010 ident: 5949_CR20 publication-title: Nature biotechnology doi: 10.1038/nbt.1621 – volume: 6 start-page: e17820 issue: 3 year: 2011 ident: 5949_CR10 publication-title: PloS one doi: 10.1371/journal.pone.0017820 – volume: 39 start-page: 424 issue: 3 year: 1993 ident: 5949_CR15 publication-title: Clin Chem doi: 10.1093/clinchem/39.3.424 – volume: 24 start-page: 1486 issue: 9 year: 2011 ident: 5949_CR11 publication-title: Chemical research in toxicology doi: 10.1021/tx200103b – volume: 11 start-page: 422 year: 2010 ident: 5949_CR29 publication-title: BMC bioinformatics doi: 10.1186/1471-2105-11-422 – volume: 453 start-page: 1239 issue: 7199 year: 2008 ident: 5949_CR39 publication-title: Nature doi: 10.1038/nature07002 – ident: 5949_CR18 – volume: 40 start-page: 148 issue: 1 year: 2012 ident: 5949_CR9 publication-title: Nucleic acids research doi: 10.1093/nar/gkr720 – volume: 10 start-page: 161 year: 2009 ident: 5949_CR7 publication-title: BMC genomics doi: 10.1186/1471-2164-10-161 – volume: 57 start-page: 289 issue: 1 year: 1995 ident: 5949_CR24 publication-title: J Roy Stat Soc B Met doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 26 start-page: 139 issue: 1 year: 2010 ident: 5949_CR31 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume-title: Statistical methods in medical research year: 2011 ident: 5949_CR27 – volume: 23 start-page: 2881 issue: 21 year: 2007 ident: 5949_CR43 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm453 – volume: 723 start-page: 519 year: 2012 ident: 5949_CR5 publication-title: Advances in experimental medicine and biology doi: 10.1007/978-1-4614-0631-0_65 – volume: 11 start-page: 282 year: 2010 ident: 5949_CR8 publication-title: BMC genomics doi: 10.1186/1471-2164-11-282 – volume: 25 start-page: 1105 issue: 9 year: 2009 ident: 5949_CR19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp120 – volume: 98 start-page: 1810 issue: 11 year: 2008 ident: 5949_CR16 publication-title: British journal of cancer doi: 10.1038/sj.bjc.6604377 – volume: 3 start-page: Article3 year: 2004 ident: 5949_CR26 publication-title: Statistical applications in genetics and molecular biology doi: 10.2202/1544-6115.1027 – volume: 193 start-page: 189 issue: 2 year: 2010 ident: 5949_CR4 publication-title: Journal of neuroscience methods doi: 10.1016/j.jneumeth.2010.08.018 – volume: 22 start-page: 806 issue: 5 year: 2012 ident: 5949_CR3 publication-title: Cell research doi: 10.1038/cr.2012.30 – ident: 5949_CR41 doi: 10.1371/journal.pone.0012336 – volume: 11 start-page: R106 issue: 10 year: 2010 ident: 5949_CR28 publication-title: Genome biology doi: 10.1186/gb-2010-11-10-r106 – volume: 6 start-page: e25400 issue: 9 year: 2011 ident: 5949_CR12 publication-title: PloS one doi: 10.1371/journal.pone.0025400 – volume: 8 start-page: 557 issue: 6 year: 2001 ident: 5949_CR32 publication-title: Journal of computational biology: a journal of computational molecular cell biology doi: 10.1089/106652701753307485 – volume: 18 start-page: S105 issue: Suppl 1 year: 2002 ident: 5949_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_1.S105 – volume: 96 start-page: 14007 issue: 24 year: 1999 ident: 5949_CR37 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.96.24.14007 – reference: 22719822 - PLoS One. 2012;7(6):e30044 – reference: 18599741 - Science. 2008 Aug 15;321(5891):956-60 – reference: 22349460 - Cell Res. 2012 May;22(5):806-21 – reference: 12538238 - Bioinformatics. 2003 Jan 22;19(2):185-93 – reference: 21980446 - PLoS One. 2011;6(9):e25400 – reference: 20864445 - Nucleic Acids Res. 2011 Jan;39(2):578-88 – reference: 19371429 - BMC Genomics. 2009;10:161 – reference: 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 – reference: 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40 – reference: 22268221 - Am J Bot. 2012 Feb;99(2):248-56 – reference: 21903743 - Genome Res. 2011 Dec;21(12):2213-23 – reference: 12169537 - Bioinformatics. 2002;18 Suppl 1:S105-10 – reference: 18488015 - Nature. 2008 Jun 26;453(7199):1239-43 – reference: 20444259 - BMC Genomics. 2010;11:282 – reference: 17881408 - Bioinformatics. 2007 Nov 1;23(21):2881-7 – reference: 11747612 - J Comput Biol. 2001;8(6):557-69 – reference: 10570189 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14007-12 – reference: 18550803 - Genome Res. 2008 Sep;18(9):1509-17 – reference: 20698981 - BMC Bioinformatics. 2010;11:422 – reference: 20436464 - Nat Biotechnol. 2010 May;28(5):511-5 – reference: 21176179 - Genome Biol. 2010;11(12):220 – reference: 20979621 - Genome Biol. 2010;11(10):R106 – reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 – reference: 22009989 - Genome Res. 2012 Feb;22(2):299-306 – reference: 22183372 - Adv Exp Med Biol. 2012;723:519-25 – reference: 21455293 - PLoS One. 2011;6(3):e17820 – reference: 8448852 - Clin Chem. 1993 Mar;39(3):424-32 – reference: 21914722 - Nucleic Acids Res. 2012 Jan;40(1):148-58 – reference: 12016055 - Bioinformatics. 2002 Apr;18(4):576-84 – reference: 22127579 - Stat Methods Med Res. 2013 Oct;22(5):519-36 – reference: 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3 – reference: 18458674 - Br J Cancer. 2008 Jun 3;98(11):1810-9 – reference: 20800617 - J Neurosci Methods. 2010 Nov 30;193(2):189-202 – reference: 20838429 - PLoS One. 2010;5(9):e12336 – reference: 21834575 - Chem Res Toxicol. 2011 Sep 19;24(9):1486-93 |
| SSID | ssj0017805 |
| Score | 2.3915775 |
| Snippet | Background
High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed... High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes... Doc number: S1 Abstract Background: High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying... Background: High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | S1 |
| SubjectTerms | Algorithms Azacitidine Bias Bioinformatics Biomedical and Life Sciences Colon Colonic Neoplasms - genetics Computational Biology/Bioinformatics Computer Appl. in Life Sciences Correlation analysis Correlation coefficient DNA methylation Gene expression Gene Expression Profiling - methods Genomes HT29 Cells Humans Laboratories Life Sciences Medical research Meetings Methodology Methodology Article Methods Microarrays Oligonucleotide Array Sequence Analysis - methods Polymerase chain reaction Regression Analysis RNA, Neoplasm - genetics Sensitivity and Specificity Sequence Analysis, RNA - methods |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3batwwEBXphtL2ofRet2lRoW-NyMp3PZSyLQnbQpcQJ5A3I8tSuuC1N7aXxv28fllnfGuWwL4teAyyNBqd2RmdQ8jH6TR10xTSkiSBTMdNpWECTgHmGccxoRHcaLzv_HPhzy_cH5fe5R5ZDHdhsK1yiIltoE4Lhf-RHwFSAXAADsa_rK8ZqkZhdXWQ0JC9tEL6uaUYu0f2bWTGmpD9r8eL07OxroAM_sPVmdA_4hCaGdh5DIYXCRbx7ePpDua82zo51k8fkQebfC2b3zLLbh1RJ0_I4x5b0lnnDE_Jns6fkfud2mTznPw9lSUqp2RUjeKDtDD0O4odL3NJzxYzFulrKvOUzoxpVqi2dUNX2LMny1I2dJ3JGlFuReHVGo-5NujgzWbaq39X9KplsgYkS_HuCvWY_CNZqoubhqkGJg9wLW3728Fifs5sQZE5O6cKHbCkWEqo2jFUyxWKi4EZ9rFWuq5ekIuT4_Nvc9ZLODAFQLNmQnJbGcdOUldIAAvaaBFqrsOUG4gdrkoCPU3CqTDG9XXAFcDnQAVCyMBLfCdwXpJJXuT6NaGuhOjhJY4vQ8jpPSUNgCkTGBcyOmFr3yJ8WLlY9fzmKLORxW2eE_oxrnaMqw2_4kjEEbfIp_GddcfusdP6YHCIuN_pVfzfLy3yYXwMexRnS-a62LQ2SP8LWGCHjQtQ2gVAHFrkVedj45BsRyBxpGORYMv7RgPkCN9-ki9_tVzhjo91Wxjb4eCnt4a-40sPR1_ePTGViCv-ZvfEvCUP7U5EhNnhAZnU5Ua_AyhXJ-_7_fkP_OFKjQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEA5yIuqD-NvVUyL45gU3bZo2j8vhsQoeYu_g3kqaJrrQza5tF6_-ef5lzrTdssvJgm-FTEraTGa-YTLfEPJuOi1EUUBYkucQ6YhCO6bAC7DIhaFLnOLOYr3zl3M5vxSfr6KrgSYHa2F28_c8kR84GE8GYUnE4AWpYilEOrfBSckuMStPx4wBcvNvi2L-OW_f8dxAkzcvRY6Z0fvk7savdftLl-WO8zl7SB4MqJHO-m1-RG5Z_5jc6ftItk_In6-6wp4oJTVjW0G6cvQTtjFeeE2_nc9Yan9S7Qs6c65dYh-ta7rE23i6qnRL16VuEL_WFKY26MA6c4I1y3To613T7x1HNWBUilUpNGL6t2aFXV23zLTNAtygpd3NdZCYX7BAUeTE9tSgalUUkwR1t4Z6scS2YSCGN1Rr29RPyeXZx4vTORuaMzADELJhSvPAuDDIC6E0wADrrEost0nBHVgFYfLYTvNkqpwT0sbcADCOTayUjqNchnH4jBz5lbcvCBUa7EKUh1InEK1HRjuASS52AmI1FVg5IXy7c5kZmMuxgUaZdRFMIjPc7Qx3G56yVGUpn5D345x1z9txUPp4qxDZcIbrDLAxwFEwaTD8dhyG04d_S3u72nQySOwLXv6AjACQLADqJhPyvNexcUlBqJASMpyQeE_7RgFk_94f8YsfHQt4KDEjC2s72erpztIPfOnJqMuHf0ytspq__L-3vyL3gr5dCAuSY3LUVBv7GkBbk7_pTutfm6M8_Q priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBYlZWx72P2SrRsa7G1VGtvyRY9hrGSDhdI00D0ZWZa6MMfJLIct_Xn7ZTvHN5IWAoO9GXSEZfno6DtI5_sIeT8cpjxNIS1JEsh0eCoNE7ALMN94nomMcIzGeuevk2A8418u_csDct7WwiQLlcyXDWkoEhUPtsvQs7rKAVUUdHGySk296KPgxIEgyyB98Rm8aCrYFDKiw8AHfN4jh7PJ2ehbVWbUGLXVMzc7WsGss7tD3YKdt29Pdkeo98nddb6Sm18yy7Z2qdOHxLbfV19O-TFYl8lAXd-gfvy_E_CIPGhALR3VXviYHOj8CblTy1xunpI_Z7JAyZaMqk71kC4N_Ywqy_Nc0vPJiE31TyrzlI6M2SxQ5us3XeBlQVkUckNXmSxxrJZC1xL31yraYUk1bWTHLb2qKLQBQlMsmqE-k9eSpRqmgqlNOYddWtPqYj1YjC-YKyhSdudUoecXFM8wbDUGO1-gqhmY4QVaq0v7jMxOP118HLNGO4IpQLglE9JxlfHcJOVCAkrRRotIOzpKHQNBi6sk1MMkGgpjeKBDRwFuD1UohAz9JPBC7znp5ctcvySUSwhbfuIFMhrywFfSAIozoeGQSgpXB33itP4Sq4ZYHfU9srhKsKIgxn8T47-Bp3gq4qnTJx-6PquaVmSv9VHrhnETYmwM0B3QMkRcaH7XNUNwwNmSuV6uKxvkHQYQsseGA4bngMSjPnlRe3Y3JNcTyFjp9Um44_OdAZKT77bk8-8VSbkX4IExjO24XR1bQ9_zpcfdCto_MVbE1nn1b-avyT23VjNhbnREemWx1m8AU5bJ2yZI_AWVlHXw priority: 102 providerName: Unpaywall |
| Title | Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets |
| URI | https://link.springer.com/article/10.1186/1471-2105-14-S9-S1 https://www.ncbi.nlm.nih.gov/pubmed/23902433 https://www.proquest.com/docview/1398512571 https://www.proquest.com/docview/1399922012 https://www.proquest.com/docview/1419340838 https://pubmed.ncbi.nlm.nih.gov/PMC3697991 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-14-S9-S1 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELb2IQQcEG8KS2UkxIX10rzjA0Kh2lIqbVVtttJyipzEhkpp2iapaPh5_DJm0iRstatemqqetI49nvmmHs9HyPteLzbjGMKSMIRIx4yFYhy8ALOUYShXcU1JPO98MbaHU3N0bV0fkCbdth7A_M7QDvmkpllytlmVX2DBf64WvGt_0sDAMghdLAY_4nPmax-WK4bEUrgBW7NsHJJjcF4c2R0uzP8bDVjSvzlLc-dX7fqrWyD0di5lu6H6kNxfp0tR_hZJcsNnDR6TRzXYpN5WO56QA5k-Jfe29JPlM_J3IjKkUklo1LIR0oWi35H9eJYKejn2mC9XVKQx9ZQq50i_taFzTOITWSZKukxEgbA3p3BrgX6vskJ41JnWdOA5_VmVtgZoS_EwC7WY-CNYLBebkkVlMQPvKWmV8A4Swyumc4qltFMaoUZmFPcW8qoP-WyObGMghomtuSzy52Q6OL_qD1nN6cAiQJ4F40LTI2XoYWxyAehBKsldqUk31hQYEzMKHdkL3R5XyrSlo0WAp53I4Vw4VmgbjvGCHKWLVL4i1BRgTqzQsIULQb4VCQXoSjnKhBCP69LuEK2ZuSCqC54j70YSVIGPawc42wHONrwLfB74Wod8bO9Zbst97JU-aRQiaDQ3AEgNKBYsITS_a5th0eJoiVQu1pUM1gMGcLBHxgRsbQJCdjvk5VbH2i7pBsdKkkaHODva1wpg0fDdlnT2qyoebti4kQt9O2309EbX9zzpaavL-wcm50Guvd4_MG_IA33LKsJ094QcFdlavgVsV4RdcuhcO_DqDr51ybHnjfwRXL-ejyeX8Gnf7nerf0261SqGlul44v34B8_OVyQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXGEBo8IL5XGGAkeGLW6sT58ANCFTC1bKsQ7aS-ZY5js0pt2jWptvCj-BH8Mu5NmrBqUt_2Vik3lWOf3HtufH0PIe_b7UQkCaQlcQyZjkiUZRKiAPOs69rQSm4Nnnc-6fvdU_F95I22yJ_6LAyWVdY-sXTUyUzjN_IDYCpADgBg_PP8gqFqFO6u1hIaFSyOTHEJKVv2qfcV1veD4xx-G37pspWqANPAfXImFXe0dZ04EVJB_DLWyNBwEybcApyFjgPTjsO2tFb4JuAaGF2gAylV4MW-G7jwv3fIXeGCL4H3Jxg1CR5HfYD6YE7oH3Bw_AxSKo_Bww8kG_D14HeD0d4szGx2Zx-QnWU6V8WlmkyuBcDDR-ThirnSTgW1x2TLpE_IvUrLsnhK_v5QC9RlmVDdSBvSmaU9lFIep4r-7HfYwFxQlSa0Y20xRS2vKzrFikC1WKiCzicqRw6dUbg1xyBaujQ8N01X2uIZ_VX2yQaeTPFkDPWY-q1YYmZXBdNFPoZQbGhZPQ8W3SFzJMW-3CnVCO8FxY2KrBxDNp6idBmYYZVsZvLsGTm9laV8TrbTWWp2CRUKfJMXu74K28L3tLJA1WxgBeSL0jF-i_B65SK96p6OIh6TqMyiQj_C1Y5wteFXNJDRgLfIx-aeedU7ZKP1Xg2IaOVHsug_6lvkXXMZPADOlkrNbFnaYHNhYBobbAQQdQF0O2yRFxXGmiE5rsS2lG6LBGvoawywA_n6lXR8XnYid33cFYax7dc4vTb0DU-632B588RkMsr4y80T85bsdIcnx9Fxr3_0itx3KrkS5oR7ZDtfLM1rII15_KZ8Uyk5u23X8A9OoIE0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQEDAeEPcVBhiJN2atiXPzY1WoOi7VRDZpb5aT2FApdUuSioWfxy_jnKSJWg1V4i2SjyMnPvb5js7lI-TdcJh5WQZuSZKAp-NlyjABVoD5hnMTGeEYjfXOX2fB9NL7dOVfbVXxN9nuXUiyrWnALk22Ol1lpj3iUXDqwJXKwFnxGbw2FiwG_-e2B9YNOQzGwbiPI2DH_q5U5p_zds3RDYx5M1Wyj5feJ_fWdqXqXyrPt0zS5CF5sMGSdNRu_iNyS9vH5E7LLlk_IX_OVYFMKTlNe7JBujT0DMmN51bRb7MRi_VPqmxGR8bUC2TXuqYLzNFTRaFquspVhai2pDC1QrPWXDJYyUw3bN8l_d50rgbkSrFWhfpM_VYs08vrmqV1NQfjqGmTzw4S0wvmCoqdsi1NUeEKiqGDsllDOV8gmRiIYd5qqavyKbmcfLwYT9mGsoGlACwrJpTjpoa7SeYJBeBAGy0i7egocwzcFV6ahHqYRENhjBfo0EkBLodpKIQK_STgIX9GDuzS6iNCPQW3hZ_wQEXgw_upMgCeTGg88OCEq4MBcbqdk-mmnznSauSy8WuiQOJuS9xteJKxkLEzIO_7Oau2m8de6eNOIeTmZJcSEDOAVLjoYPhtPwxnEv-Wsnq5bmSw3S_Y_j0yHkBnUFkeDcjzVsf6JblcYKNIPiDhjvb1AtgTfHfEzn80vcF5gHFaWNtJp6dbS9_zpSe9Lu__MaWQpfPi_97-htw9_zCRX85mn1-SQ7flE2FudEwOqmKtXwGqq5LXzcH9C_DESDM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBYlZWx72P2SrRsa7G1VGtvyRY9hrGSDhdI00D0ZWZa6MMfJLIct_Xn7ZTvHN5IWAoO9GXSEZfno6DtI5_sIeT8cpjxNIS1JEsh0eCoNE7ALMN94nomMcIzGeuevk2A8418u_csDct7WwiQLlcyXDWkoEhUPtsvQs7rKAVUUdHGySk296KPgxIEgyyB98Rm8aCrYFDKiw8AHfN4jh7PJ2ehbVWbUGLXVMzc7WsGss7tD3YKdt29Pdkeo98nddb6Sm18yy7Z2qdOHxLbfV19O-TFYl8lAXd-gfvy_E_CIPGhALR3VXviYHOj8CblTy1xunpI_Z7JAyZaMqk71kC4N_Ywqy_Nc0vPJiE31TyrzlI6M2SxQ5us3XeBlQVkUckNXmSxxrJZC1xL31yraYUk1bWTHLb2qKLQBQlMsmqE-k9eSpRqmgqlNOYddWtPqYj1YjC-YKyhSdudUoecXFM8wbDUGO1-gqhmY4QVaq0v7jMxOP118HLNGO4IpQLglE9JxlfHcJOVCAkrRRotIOzpKHQNBi6sk1MMkGgpjeKBDRwFuD1UohAz9JPBC7znp5ctcvySUSwhbfuIFMhrywFfSAIozoeGQSgpXB33itP4Sq4ZYHfU9srhKsKIgxn8T47-Bp3gq4qnTJx-6PquaVmSv9VHrhnETYmwM0B3QMkRcaH7XNUNwwNmSuV6uKxvkHQYQsseGA4bngMSjPnlRe3Y3JNcTyFjp9Um44_OdAZKT77bk8-8VSbkX4IExjO24XR1bQ9_zpcfdCto_MVbE1nn1b-avyT23VjNhbnREemWx1m8AU5bJ2yZI_AWVlHXw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+comparison+of+Illumina+RNA-Seq+and+Affymetrix+microarray+platforms+on+transcriptomic+profiles+generated+from+5-aza-deoxy-cytidine+treated+HT-29+colon+cancer+cells+and+simulated+datasets&rft.jtitle=BMC+bioinformatics&rft.au=Xu%2C+Xiao&rft.au=Zhang%2C+Yuanhao&rft.au=Williams%2C+Jennie&rft.au=Antoniou%2C+Eric&rft.date=2013-06-28&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=14&rft.issue=Suppl+9&rft_id=info:doi/10.1186%2F1471-2105-14-S9-S1&rft.externalDocID=3014368301 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |