Molecular pathway identification using biological network-regularized logistic models

Background Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L 1 -norm based regularization and its extensions elastic net and fused lasso, h...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 14; no. Suppl 8; p. S7
Main Authors Zhang, Wen, Wan, Ying-wooi, Allen, Genevera I, Pang, Kaifang, Anderson, Matthew L, Liu, Zhandong
Format Journal Article
LanguageEnglish
Published London BioMed Central 09.12.2013
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/1471-2164-14-S8-S7

Cover

Abstract Background Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L 1 -norm based regularization and its extensions elastic net and fused lasso, have been introduced to deal with this challenge. However, these approaches tend to ignore the vast amount of a priori biological network information curated in the literature. Results We propose the use of graph Laplacian regularized logistic regression to integrate biological networks into disease classification and pathway association problems. Simulation studies demonstrate that the performance of the proposed algorithm is superior to elastic net and lasso analyses. Utility of this algorithm is also validated by its ability to reliably differentiate breast cancer subtypes using a large breast cancer dataset recently generated by the Cancer Genome Atlas (TCGA) consortium. Many of the protein-protein interaction modules identified by our approach are further supported by evidence published in the literature. Source code of the proposed algorithm is freely available at http://www.github.com/zhandong/Logit-Lapnet . Conclusion Logistic regression with graph Laplacian regularization is an effective algorithm for identifying key pathways and modules associated with disease subtypes. With the rapid expansion of our knowledge of biological regulatory networks, this approach will become more accurate and increasingly useful for mining transcriptomic, epi-genomic, and other types of genome wide association studies.
AbstractList Doc number: S7 Abstract Background: Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L1 -norm based regularization and its extensions elastic net and fused lasso, have been introduced to deal with this challenge. However, these approaches tend to ignore the vast amount of a priori biological network information curated in the literature. Results: We propose the use of graph Laplacian regularized logistic regression to integrate biological networks into disease classification and pathway association problems. Simulation studies demonstrate that the performance of the proposed algorithm is superior to elastic net and lasso analyses. Utility of this algorithm is also validated by its ability to reliably differentiate breast cancer subtypes using a large breast cancer dataset recently generated by the Cancer Genome Atlas (TCGA) consortium. Many of the protein-protein interaction modules identified by our approach are further supported by evidence published in the literature. Source code of the proposed algorithm is freely available at http://www.github.com/zhandong/Logit-Lapnet . Conclusion: Logistic regression with graph Laplacian regularization is an effective algorithm for identifying key pathways and modules associated with disease subtypes. With the rapid expansion of our knowledge of biological regulatory networks, this approach will become more accurate and increasingly useful for mining transcriptomic, epi-genomic, and other types of genome wide association studies.
Background: Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L sub(1)-norm based regularization and its extensions elastic net and fused lasso, have been introduced to deal with this challenge. However, these approaches tend to ignore the vast amount of a priori biological network information curated in the literature. Results: We propose the use of graph Laplacian regularized logistic regression to integrate biological networks into disease classification and pathway association problems. Simulation studies demonstrate that the performance of the proposed algorithm is superior to elastic net and lasso analyses. Utility of this algorithm is also validated by its ability to reliably differentiate breast cancer subtypes using a large breast cancer dataset recently generated by the Cancer Genome Atlas (TCGA) consortium. Many of the protein-protein interaction modules identified by our approach are further supported by evidence published in the literature. Source code of the proposed algorithm is freely available at http://www.github.com/zhandong/Logit-Lapnet . Conclusion: Logistic regression with graph Laplacian regularization is an effective algorithm for identifying key pathways and modules associated with disease subtypes. With the rapid expansion of our knowledge of biological regulatory networks, this approach will become more accurate and increasingly useful for mining transcriptomic, epi-genomic, and other types of genome wide association studies.
Background Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L 1 -norm based regularization and its extensions elastic net and fused lasso, have been introduced to deal with this challenge. However, these approaches tend to ignore the vast amount of a priori biological network information curated in the literature. Results We propose the use of graph Laplacian regularized logistic regression to integrate biological networks into disease classification and pathway association problems. Simulation studies demonstrate that the performance of the proposed algorithm is superior to elastic net and lasso analyses. Utility of this algorithm is also validated by its ability to reliably differentiate breast cancer subtypes using a large breast cancer dataset recently generated by the Cancer Genome Atlas (TCGA) consortium. Many of the protein-protein interaction modules identified by our approach are further supported by evidence published in the literature. Source code of the proposed algorithm is freely available at http://www.github.com/zhandong/Logit-Lapnet . Conclusion Logistic regression with graph Laplacian regularization is an effective algorithm for identifying key pathways and modules associated with disease subtypes. With the rapid expansion of our knowledge of biological regulatory networks, this approach will become more accurate and increasingly useful for mining transcriptomic, epi-genomic, and other types of genome wide association studies.
Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L1-norm based regularization and its extensions elastic net and fused lasso, have been introduced to deal with this challenge. However, these approaches tend to ignore the vast amount of a priori biological network information curated in the literature. We propose the use of graph Laplacian regularized logistic regression to integrate biological networks into disease classification and pathway association problems. Simulation studies demonstrate that the performance of the proposed algorithm is superior to elastic net and lasso analyses. Utility of this algorithm is also validated by its ability to reliably differentiate breast cancer subtypes using a large breast cancer dataset recently generated by the Cancer Genome Atlas (TCGA) consortium. Many of the protein-protein interaction modules identified by our approach are further supported by evidence published in the literature. Source code of the proposed algorithm is freely available at http://www.github.com/zhandong/Logit-Lapnet. Logistic regression with graph Laplacian regularization is an effective algorithm for identifying key pathways and modules associated with disease subtypes. With the rapid expansion of our knowledge of biological regulatory networks, this approach will become more accurate and increasingly useful for mining transcriptomic, epi-genomic, and other types of genome wide association studies.
Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L1-norm based regularization and its extensions elastic net and fused lasso, have been introduced to deal with this challenge. However, these approaches tend to ignore the vast amount of a priori biological network information curated in the literature.BACKGROUNDSelecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L1-norm based regularization and its extensions elastic net and fused lasso, have been introduced to deal with this challenge. However, these approaches tend to ignore the vast amount of a priori biological network information curated in the literature.We propose the use of graph Laplacian regularized logistic regression to integrate biological networks into disease classification and pathway association problems. Simulation studies demonstrate that the performance of the proposed algorithm is superior to elastic net and lasso analyses. Utility of this algorithm is also validated by its ability to reliably differentiate breast cancer subtypes using a large breast cancer dataset recently generated by the Cancer Genome Atlas (TCGA) consortium. Many of the protein-protein interaction modules identified by our approach are further supported by evidence published in the literature. Source code of the proposed algorithm is freely available at http://www.github.com/zhandong/Logit-Lapnet.RESULTSWe propose the use of graph Laplacian regularized logistic regression to integrate biological networks into disease classification and pathway association problems. Simulation studies demonstrate that the performance of the proposed algorithm is superior to elastic net and lasso analyses. Utility of this algorithm is also validated by its ability to reliably differentiate breast cancer subtypes using a large breast cancer dataset recently generated by the Cancer Genome Atlas (TCGA) consortium. Many of the protein-protein interaction modules identified by our approach are further supported by evidence published in the literature. Source code of the proposed algorithm is freely available at http://www.github.com/zhandong/Logit-Lapnet.Logistic regression with graph Laplacian regularization is an effective algorithm for identifying key pathways and modules associated with disease subtypes. With the rapid expansion of our knowledge of biological regulatory networks, this approach will become more accurate and increasingly useful for mining transcriptomic, epi-genomic, and other types of genome wide association studies.CONCLUSIONLogistic regression with graph Laplacian regularization is an effective algorithm for identifying key pathways and modules associated with disease subtypes. With the rapid expansion of our knowledge of biological regulatory networks, this approach will become more accurate and increasingly useful for mining transcriptomic, epi-genomic, and other types of genome wide association studies.
ArticleNumber S7
Author Wan, Ying-wooi
Liu, Zhandong
Pang, Kaifang
Zhang, Wen
Allen, Genevera I
Anderson, Matthew L
AuthorAffiliation 2 Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
6 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
3 Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
4 Department of Statistics and Electrical Engineering, Rice University, Houston, TX, USA
5 Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX, USA
1 Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
AuthorAffiliation_xml – name: 3 Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
– name: 6 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
– name: 5 Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX, USA
– name: 4 Department of Statistics and Electrical Engineering, Rice University, Houston, TX, USA
– name: 2 Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
– name: 1 Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
Author_xml – sequence: 1
  givenname: Wen
  surname: Zhang
  fullname: Zhang, Wen
  organization: Department of Pediatrics-Neurology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital
– sequence: 2
  givenname: Ying-wooi
  surname: Wan
  fullname: Wan, Ying-wooi
  organization: Department of Pediatrics-Neurology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Department of Obstetrics and Gynecology, Baylor College of Medicine
– sequence: 3
  givenname: Genevera I
  surname: Allen
  fullname: Allen, Genevera I
  organization: Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Department of Statistics and Electrical Engineering, Rice University
– sequence: 4
  givenname: Kaifang
  surname: Pang
  fullname: Pang, Kaifang
  organization: Department of Pediatrics-Neurology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital
– sequence: 5
  givenname: Matthew L
  surname: Anderson
  fullname: Anderson, Matthew L
  organization: Department of Obstetrics and Gynecology, Baylor College of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine
– sequence: 6
  givenname: Zhandong
  surname: Liu
  fullname: Liu, Zhandong
  email: zhandonl@bcm.edu
  organization: Department of Pediatrics-Neurology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24564637$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1vFCEUhompsR_6B7wwk3jjzSjfMDcmprFqUuPF2mvCAjOlsrDCjJv115dx17o2sSYkEHifc17ecwqOYooOgOcIvkZI8jeICtRixGmLaLuQ7UI8Aid3l0cH52NwWsoNhEhIzJ6AY0wZp5yIE3D1OQVnpqBzs9bj9UZvG29dHH3vjR59is1UfByapU8hDfUuNNGNm5S_tdkNM-d_OtvMb2X0plkl60J5Ch73OhT3bL-fgauL91_PP7aXXz58On932RoGxdgKaSTsCdGCaSmQYWQJhes7xpjWxHQQG4s5JqSHS4ettdBSK7DlFole9B05A2RXd4prvd3oENQ6-5XOW4WgmkNScwZqzqCeVJGqiEq93VHrably1tTvZv2HTNqrv1-iv1ZD-qEopJxxXgu82hfI6fvkyqhWvhgXgo4uTUUhBqtpCDv6fyntMEdCkNnWy3vSmzTlWPOrqtq1LoGr6sWh-TvXv0daBXgnMDmVkl3_cCQLqRYzJO9Bxo-_5l8D8OFhdD-DUvvEweUD2_-mbgE_2Ndy
CitedBy_id crossref_primary_10_1016_j_jmva_2018_12_007
crossref_primary_10_3892_ol_2019_11001
crossref_primary_10_1186_s12859_019_3076_y
crossref_primary_10_1109_ACCESS_2019_2955958
crossref_primary_10_1109_JBHI_2024_3363081
crossref_primary_10_24870_cjb_2017_a62
crossref_primary_10_1186_1559_0275_11_22
crossref_primary_10_1371_journal_pone_0144439
crossref_primary_10_1109_ACCESS_2018_2818682
crossref_primary_10_1186_s12859_018_2149_7
crossref_primary_10_1016_j_neucom_2015_12_106
crossref_primary_10_1109_TCBB_2019_2897301
crossref_primary_10_1080_07350015_2020_1730859
crossref_primary_10_1016_j_phrs_2016_06_018
crossref_primary_10_5897_AJAR2018_13286
crossref_primary_10_1038_s41598_018_19635_0
crossref_primary_10_1142_S0129065719500163
crossref_primary_10_1002_int_22844
crossref_primary_10_1016_j_cmpb_2018_06_004
crossref_primary_10_1200_PO_19_00018
crossref_primary_10_3390_math10193695
crossref_primary_10_1038_s41598_019_49967_4
crossref_primary_10_1214_19_EJS1601
crossref_primary_10_18632_aging_203140
crossref_primary_10_1042_BSR20190489
crossref_primary_10_1109_TCYB_2020_3006240
crossref_primary_10_3233_THC_228013
crossref_primary_10_18632_oncotarget_24468
crossref_primary_10_1002_mas_21710
crossref_primary_10_1186_s12859_019_2937_8
crossref_primary_10_3389_fmolb_2019_00044
crossref_primary_10_1186_s13073_016_0390_0
crossref_primary_10_1016_j_physa_2017_02_032
crossref_primary_10_3389_fneur_2018_00930
crossref_primary_10_4137_CIN_S14054
crossref_primary_10_1080_01635581_2018_1540715
crossref_primary_10_1007_s10489_021_02877_3
crossref_primary_10_18632_oncotarget_9370
crossref_primary_10_18632_aging_202260
crossref_primary_10_2174_1574893613666181112150422
crossref_primary_10_1186_s12859_017_1984_2
crossref_primary_10_3233_THC_THC228041
crossref_primary_10_1016_j_eswa_2023_120179
crossref_primary_10_1109_TCBB_2016_2640303
crossref_primary_10_1177_0300060519850724
crossref_primary_10_1186_s13075_021_02451_9
crossref_primary_10_3892_etm_2019_8017
Cites_doi 10.1111/j.1467-9868.2005.00503.x
10.1109/TCBB.2005.22
10.1038/nrc1299
10.1038/msb4100180
10.1186/1471-2105-10-S1-S21
10.1007/978-1-84800-155-8_7
10.1093/bioinformatics/btp041
10.1038/nature11412
10.1016/j.jmva.2004.02.012
10.1093/bioinformatics/btn081
10.1093/nar/gkr988
10.1093/nar/gkj109
10.1016/j.neuroimage.2012.12.062
10.1056/NEJMoa033513
10.1093/biostatistics/kxs034
10.1056/NEJMra1001389
10.1093/bioinformatics/btm287
10.1186/1752-0509-5-161
10.1111/j.1467-9868.2005.00532.x
10.1101/gr.139469.112
10.1158/0008-5472.CAN-12-1699
10.1101/gr.2807605
10.1111/j.1541-0420.2009.01296.x
10.1093/biostatistics/kxg046
10.3322/caac.21166
10.1111/j.2517-6161.1996.tb02080.x
10.1214/11-AOAS463
10.1038/415530a
10.1111/j.1467-9868.2005.00490.x
10.1126/science.286.5439.531
10.1093/bioinformatics/btt078
10.1016/S0140-6736(05)70933-8
10.1186/1471-2105-13-94
10.1371/journal.pgen.1000587
ContentType Journal Article
Copyright Zhang et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated.
2013 Zhang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Copyright © 2013 Zhang et al.; licensee BioMed Central Ltd. 2013 Zhang et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Zhang et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated.
– notice: 2013 Zhang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
– notice: Copyright © 2013 Zhang et al.; licensee BioMed Central Ltd. 2013 Zhang et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/1471-2164-14-S8-S7
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
Genetics Abstracts

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage S7
ExternalDocumentID 10.1186/1471-2164-14-s8-s7
PMC4046566
3151656941
24564637
10_1186_1471_2164_14_S8_S7
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
-A0
2VQ
3V.
ACRMQ
ADINQ
AIXEN
ALIPV
C1A
C24
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c507t-78c80f33a75a871c53b07ef9555aa3c902cd26233f0be2ddd0d4d72d6d17f7f93
IEDL.DBID M48
ISSN 1471-2164
IngestDate Sun Oct 26 03:45:20 EDT 2025
Tue Sep 30 16:57:53 EDT 2025
Fri Sep 05 08:29:59 EDT 2025
Thu Sep 04 19:06:04 EDT 2025
Mon Oct 06 18:12:28 EDT 2025
Thu Jan 02 22:18:48 EST 2025
Wed Oct 01 03:03:10 EDT 2025
Thu Apr 24 23:12:34 EDT 2025
Sat Sep 06 07:28:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 8
Keywords Breast Cancer Subtype
Triple Negative Breast Cancer
Normalize Read Count
Breast Cancer Specimen
Lasso
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-78c80f33a75a871c53b07ef9555aa3c902cd26233f0be2ddd0d4d72d6d17f7f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2164-14-S8-S7
PMID 24564637
PQID 1466366372
PQPubID 44682
ParticipantIDs unpaywall_primary_10_1186_1471_2164_14_s8_s7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4046566
proquest_miscellaneous_1502330094
proquest_miscellaneous_1492617737
proquest_journals_1466366372
pubmed_primary_24564637
crossref_primary_10_1186_1471_2164_14_S8_S7
crossref_citationtrail_10_1186_1471_2164_14_S8_S7
springer_journals_10_1186_1471_2164_14_S8_S7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-09
PublicationDateYYYYMMDD 2013-12-09
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-09
  day: 09
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2013
Publisher BioMed Central
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
References L Grosenick (5550_CR23) 2013; 72
S Hill (5550_CR28) 2012; 13
V Theodorou (5550_CR35) 2013; 23
R Tibshirani (5550_CR10) 1994; 58
J Zhu (5550_CR6) 2004; 5
HY Chuang (5550_CR19) 2007; 3
W Pan (5550_CR26) 2010; 66
M Dettling (5550_CR12) 2004; 90
J Bootkrajang (5550_CR9) 2013; 29
A Holleman (5550_CR3) 2004; 351
WD Foulkes (5550_CR34) 2010; 363
Z Tian (5550_CR17) 2012
PA Futreal (5550_CR36) 2004; 4
C Li (5550_CR22) 2008; 24
Y Wang (5550_CR5) 2005; 365
H Zou (5550_CR11) 2005; 67
R Siegel (5550_CR31) 2013; 63
KN Stevens (5550_CR33) 2013; 73
M Grant (5550_CR29) 2008
Lv Veer (5550_CR4) 2002; 415
CVX Research I (5550_CR30) 2012
J Liu (5550_CR18) 2013; 14
M Kanehisa (5550_CR21) 2012; 40
S Kim (5550_CR16) 2009; 5
C Stark (5550_CR20) 2006; 34
L Chen (5550_CR24) 2011; 5
TR Golub (5550_CR1) 1999; 286
TT Wu (5550_CR15) 2009; 25
R Tibshirani (5550_CR14) 2005; 67
Y Zhu (5550_CR25) 2009; 10
M Yuan (5550_CR13) 2006; 68
L Shen (5550_CR7) 2005; 2
JG Liao (5550_CR8) 2007; 23
FC Stingo (5550_CR27) 2011; 5
The TCGA (5550_CR32) 2012; 490
G Natsoulis (5550_CR2) 2005; 15
21992556 - BMC Syst Biol. 2011;5:161
19176549 - Bioinformatics. 2009 Mar 15;25(6):714-21
15208204 - Biostatistics. 2004 Jul;5(3):427-43
14993899 - Nat Rev Cancer. 2004 Mar;4(3):177-83
15867433 - Genome Res. 2005 May;15(5):724-36
23172872 - Genome Res. 2013 Jan;23(1):12-22
19208121 - BMC Bioinformatics. 2009;10 Suppl 1:S21
19680538 - PLoS Genet. 2009 Aug;5(8):e1000587
22080510 - Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14
11823860 - Nature. 2002 Jan 31;415(6871):530-6
15721472 - Lancet. 2005 Feb 19-25;365(9460):671-9
18310618 - Bioinformatics. 2008 May 1;24(9):1175-82
22988281 - Biostatistics. 2013 Apr;14(2):205-19
19645699 - Biometrics. 2010 Jun;66(2):474-84
22578440 - BMC Bioinformatics. 2012;13:94
23335087 - CA Cancer J Clin. 2013 Jan;63(1):11-30
15295046 - N Engl J Med. 2004 Aug 5;351(6):533-42
17540680 - Bioinformatics. 2007 Aug 1;23(15):1945-51
23667412 - Ann Appl Stat. 2011 Sep 1;5(3):1978-2002
17044181 - IEEE/ACM Trans Comput Biol Bioinform. 2005 Apr-Jun;2(2):166-75
16381927 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9
17940530 - Mol Syst Biol. 2007;3:140
23536562 - Cancer Res. 2013 Apr 1;73(7):2025-30
23000897 - Nature. 2012 Oct 4;490(7418):61-70
21067385 - N Engl J Med. 2010 Nov 11;363(20):1938-48
23298747 - Neuroimage. 2013 May 15;72:304-21
23418189 - Bioinformatics. 2013 Apr 1;29(7):870-7
10521349 - Science. 1999 Oct 15;286(5439):531-7
References_xml – volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 5550_CR11
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 2
  start-page: 166
  year: 2005
  ident: 5550_CR7
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2005.22
– volume: 4
  start-page: 177
  issue: 3
  year: 2004
  ident: 5550_CR36
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1299
– volume: 3
  start-page: 140
  year: 2007
  ident: 5550_CR19
  publication-title: Mol Syst Biol
  doi: 10.1038/msb4100180
– volume: 10
  start-page: S21
  issue: Suppl 1
  year: 2009
  ident: 5550_CR25
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-S1-S21
– start-page: 95
  volume-title: Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences
  year: 2008
  ident: 5550_CR29
  doi: 10.1007/978-1-84800-155-8_7
– volume: 25
  start-page: 714
  issue: 6
  year: 2009
  ident: 5550_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp041
– volume: 490
  start-page: 61
  issue: 7418
  year: 2012
  ident: 5550_CR32
  publication-title: Nature
  doi: 10.1038/nature11412
– volume: 90
  start-page: 106
  year: 2004
  ident: 5550_CR12
  publication-title: Special Issue on Multivariate Methods in Genomic Data Analysis
  doi: 10.1016/j.jmva.2004.02.012
– volume: 24
  start-page: 1175
  issue: 9
  year: 2008
  ident: 5550_CR22
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn081
– volume: 40
  start-page: D109
  issue: D1
  year: 2012
  ident: 5550_CR21
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkr988
– volume: 34
  start-page: D535
  issue: suppl 1
  year: 2006
  ident: 5550_CR20
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkj109
– volume: 72
  start-page: 304
  year: 2013
  ident: 5550_CR23
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.12.062
– volume: 351
  start-page: 533
  issue: 6
  year: 2004
  ident: 5550_CR3
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMoa033513
– volume: 14
  start-page: 205
  issue: 2
  year: 2013
  ident: 5550_CR18
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxs034
– volume: 363
  start-page: 1938
  issue: 20
  year: 2010
  ident: 5550_CR34
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1001389
– volume: 23
  start-page: 1945
  issue: 15
  year: 2007
  ident: 5550_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm287
– volume: 5
  start-page: 161
  year: 2011
  ident: 5550_CR24
  publication-title: BMC systems biology
  doi: 10.1186/1752-0509-5-161
– volume-title: CVX: Matlab Software for Disciplined Convex Programming, version 2.0
  year: 2012
  ident: 5550_CR30
– start-page: 665
  volume-title: ICDM'12
  year: 2012
  ident: 5550_CR17
– volume: 68
  start-page: 49
  year: 2006
  ident: 5550_CR13
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 23
  start-page: 12
  year: 2013
  ident: 5550_CR35
  publication-title: Genome Research
  doi: 10.1101/gr.139469.112
– volume: 73
  start-page: 2025
  issue: 7
  year: 2013
  ident: 5550_CR33
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-1699
– volume: 15
  start-page: 724
  issue: 5
  year: 2005
  ident: 5550_CR2
  publication-title: Genome research
  doi: 10.1101/gr.2807605
– volume: 66
  start-page: 474
  issue: 2
  year: 2010
  ident: 5550_CR26
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2009.01296.x
– volume: 5
  start-page: 427
  issue: 3
  year: 2004
  ident: 5550_CR6
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxg046
– volume: 63
  start-page: 11
  year: 2013
  ident: 5550_CR31
  publication-title: CA: A Cancer Journal for Clinicians
  doi: 10.3322/caac.21166
– volume: 58
  start-page: 267
  year: 1994
  ident: 5550_CR10
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 5
  start-page: 1978
  issue: 3
  year: 2011
  ident: 5550_CR27
  publication-title: The Annals of Applied Statistics
  doi: 10.1214/11-AOAS463
– volume: 415
  start-page: 530
  issue: 6871
  year: 2002
  ident: 5550_CR4
  publication-title: nature
  doi: 10.1038/415530a
– volume: 67
  start-page: 91
  year: 2005
  ident: 5550_CR14
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2005.00490.x
– volume: 286
  start-page: 531
  issue: 5439
  year: 1999
  ident: 5550_CR1
  publication-title: science
  doi: 10.1126/science.286.5439.531
– volume: 29
  start-page: 870
  issue: 7
  year: 2013
  ident: 5550_CR9
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt078
– volume: 365
  start-page: 671
  year: 2005
  ident: 5550_CR5
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)70933-8
– volume: 13
  start-page: 94
  year: 2012
  ident: 5550_CR28
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-13-94
– volume: 5
  start-page: e1000587
  issue: 8
  year: 2009
  ident: 5550_CR16
  publication-title: PLoS genetics
  doi: 10.1371/journal.pgen.1000587
– reference: 19176549 - Bioinformatics. 2009 Mar 15;25(6):714-21
– reference: 16381927 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9
– reference: 23418189 - Bioinformatics. 2013 Apr 1;29(7):870-7
– reference: 18310618 - Bioinformatics. 2008 May 1;24(9):1175-82
– reference: 22080510 - Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14
– reference: 15721472 - Lancet. 2005 Feb 19-25;365(9460):671-9
– reference: 22578440 - BMC Bioinformatics. 2012;13:94
– reference: 19680538 - PLoS Genet. 2009 Aug;5(8):e1000587
– reference: 19208121 - BMC Bioinformatics. 2009;10 Suppl 1:S21
– reference: 23000897 - Nature. 2012 Oct 4;490(7418):61-70
– reference: 21992556 - BMC Syst Biol. 2011;5:161
– reference: 17540680 - Bioinformatics. 2007 Aug 1;23(15):1945-51
– reference: 15867433 - Genome Res. 2005 May;15(5):724-36
– reference: 14993899 - Nat Rev Cancer. 2004 Mar;4(3):177-83
– reference: 11823860 - Nature. 2002 Jan 31;415(6871):530-6
– reference: 23298747 - Neuroimage. 2013 May 15;72:304-21
– reference: 23536562 - Cancer Res. 2013 Apr 1;73(7):2025-30
– reference: 22988281 - Biostatistics. 2013 Apr;14(2):205-19
– reference: 23667412 - Ann Appl Stat. 2011 Sep 1;5(3):1978-2002
– reference: 23172872 - Genome Res. 2013 Jan;23(1):12-22
– reference: 21067385 - N Engl J Med. 2010 Nov 11;363(20):1938-48
– reference: 15208204 - Biostatistics. 2004 Jul;5(3):427-43
– reference: 10521349 - Science. 1999 Oct 15;286(5439):531-7
– reference: 17044181 - IEEE/ACM Trans Comput Biol Bioinform. 2005 Apr-Jun;2(2):166-75
– reference: 15295046 - N Engl J Med. 2004 Aug 5;351(6):533-42
– reference: 23335087 - CA Cancer J Clin. 2013 Jan;63(1):11-30
– reference: 17940530 - Mol Syst Biol. 2007;3:140
– reference: 19645699 - Biometrics. 2010 Jun;66(2):474-84
SSID ssj0017825
Score 2.3211882
Snippet Background Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when...
Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing...
Doc number: S7 Abstract Background: Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is...
Background: Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage S7
SubjectTerms Algorithms
Animal Genetics and Genomics
Biomarkers, Tumor - metabolism
Biomedical and Life Sciences
Breast cancer
Breast Neoplasms - metabolism
Computational Biology - methods
Computer Simulation
Female
Gene Regulatory Networks
Genomics
Humans
Life Sciences
Logistic Models
Microarrays
Microbial Genetics and Genomics
Models, Biological
Plant Genetics and Genomics
Proteomics
Reproducibility of Results
Studies
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEB_qFVE_iO9Gq0Twm11Msq_sBxGVliL0EM-DfgubfdSDI3e9B-X8693Jyx6FQD4EdjYkO7O7M5nZ3w_gQ-ZdwqiWJPgKlDDlE5K7EPM4K5TmRnBT4uHki7E4n7Ifl_zyAMbdWRgsq-zWxHqhtguD_8g_hRktaLhk9mV5TZA1CrOrHYWGbqkV7OcaYuweHGaIjDWCw2-n45-_-rxC2A95d3QmF-GhMiVZiBhIysgkJxO5vz3d8Tnvlk72-dNH8GBbLfXuRs_nt7aosyfwuPUt46-NMTyFA1c9g_sN2-TuOUwvOircGHmIb_Quntm2WKjWT4xF8Fdxg8uEyourpkicrGrG-tXsr7Nxc2ZoZuKaRGf9AqZnp7-_n5OWVYGY4PttiMxNnnga9MN1iJYMp2UinVecc62pUUlmbBacIuqT0mXW2sQyKzMrbCq99Iq-hFG1qNwRxFKnvpROORZklLXaBu9H2ZyVvtSlLSNIu8EsTAs5jswX86IOPXJRoAIKVEC4KyZ5MZERfOz7LBvAjUHp405HRTv51sV_U4ngfd8cpg3mQnTlFluUUYhFL6kckOHBoaFYexnBq0bt_SthvpgJ7C33DKIXQNju_ZZq9qeG72YJYtSJCE4607n16gNfetKb1_DArPNiLV8PD8wbeJghrwfW5ahjGG1WW_c2eFeb8l07Zf4B_Egk-g
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEG40IupBfEVHo7TgzTTO9LuPQQxBiJd1Ibehn7qwTMLOLmHz69M1L7JEFoQ5DHT10NNV1f0V9ULoC02x5MwqkrECI9ykkuiYbZ4YpLHCS-EdJCef_5Jnc_7zQlwMSWHtGO0-uiS7k7pTay2_VfkYJTSje1JxMtNkph6iRwLKeWUpntOTyXeQ7zwxpsf8c97uFXQPV94Pj5x8pM_Qk01zZbfXdrm8cw2dvkDPB_yIT3qGv0QPYvMKPe47Sm5fo_n52O4WQ6_ha7vFizAEBHU8wBDo_gf3tZeAQbjpA8HJqutKv1rcxID7vKCFx12jnPYNmp_--P39jAydE4jP-G5NlPa6TCzzQNhsEXnBXKliMkIIa5k3JfWBZuDDUukiDSGUgQdFgwyVSioZdogOmssmvkNY2So5FU3kmcaEYENGOCZo7pKzLrgCVeNm1n4oKw7dLZZ1Z15oWQMDamBAfqtnup6pAn2d5lz1RTX2Uh-NPKoHBWvBYpEsP4oW6PM0nFUD_B22iZcboDFQb14xtYdGZNDCIL6yQG97tk9LAp8wlzBb7QjERACluXdHmsXfrkQ3L6EOnSzQ8Sg6d5a-50-PJ_HavzGtrlv1_v--_gE9pdDLA2JxzBE6WK828WNGVGv3qVOgW8-0G54
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBZbylj3sPs6b93wYG-rUtuyLn4sY6UMWgZZoHsyunZhiRvihJL--ulYtklaCAwGfjDoCCT5O9YndM53EPqcOZvkRHLsuQLBeeESLKw_81jDCkk1o1pBcvL5BTsb598v6WWbHg25MGqmQZx0NtH1cDMBfRryG6B-gl0cz40L7i7Ycep_rzjzrB-nOR4JPOIP0R6jnpkP0N744sfJrybBqDXq8mbudqwFrvn23nSPcN6Pm-wvT5-gx6tqLtc3cjrd2J9On6FZN7MQlvJnuFqqob69I_r4v6b-HD1tiWx8EpD3Aj2w1Uv0KJS2XL9C4_Ou7m4MRY9v5DqemDYyqQFDDBH3V3EQgQKkxFWISMcLewX9JrfWxCFBaaLjpmJP_RqNT7_9_HqG2xIOWHuiucRcaJE44sFApT-aaUpUwq0rKKVSEl0kmTaZZ2DEJcpmxpjE5IZnhpmUO-4K8gYNquvKvkUxl6lT3BY29zaFMdJ4qlUYkSunpDIqQmn38Urd6ptDmY1p2ZxzBCthuUpYLv9WjkQ54hH60veZB3WPndaHHSbK1tNrODox4h-eRehT3-x9FC5eZGWvV2BTgPA9J3yHDfXsiUCgZ4QOAsz6IcHldM6gN98CYG8AGuHbLdXkd6MVnicgiMcidNRBdWPoO2Z61MN598LUoqz5u38zf4_2MygqAkFBxSEaLBcr-8FTu6X62HrsX3boS2Y
  priority: 102
  providerName: Unpaywall
Title Molecular pathway identification using biological network-regularized logistic models
URI https://link.springer.com/article/10.1186/1471-2164-14-S8-S7
https://www.ncbi.nlm.nih.gov/pubmed/24564637
https://www.proquest.com/docview/1466366372
https://www.proquest.com/docview/1492617737
https://www.proquest.com/docview/1502330094
https://pubmed.ncbi.nlm.nih.gov/PMC4046566
https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-14-S8-S7
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Medical Journals Open Access
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (WRLC)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Complete
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 20250331
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals (WRLC)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: U2A
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_aHqI-iN9G6xFBfLGrSTbZzT6I1KOlCHcUz8D5FDbZjR4c6fU-qOdf70y-7NFyCCEkZLIkO7PZ32Rm5wfwNiisF3ItGWIFzkJVeCy26PNYI5SOchHlGS1OHo7EWRJ-nUSTPWjTbZsOXN7q2hGfVLKYffh9ufmMA_5TNeBj8dHHDywLEPczP2TjmI3lu_klI2IpCsA2LBv70MPJSxG7wzD8F2jACTKqFiA1TbTram5tdnvuugFIb-ZVdsHV-3B3Xc715krPZtfmr9OH8KABnu5xbSmPYM-Wj-FOTUW5eQLJsOXJdYmk-Epv3KlpMokq5bmUIf_TrYs2kWbdss4gZ4uKzn4x_WONWy8omuZuxbCzfArJ6cn3wRlrKBdYjsBwxWScx17BUXmRRlcqj3jmSVuoKIq05rnygtwEiJh44WU2MMZ4JjQyMML4spCF4s_goLwo7QtwpfaLTFplQ5RRxmiD0EiZOMyKTGcmc8BvOzPNm3rkRIsxSyu_JBYpKSAlBeBROo7TsXTgfXfPvK7GsVP6sNVR2hoWuTqC4yYDB950l3FMUaBEl_ZiTTKKCtVLLnfIRIh2OCVmOvC8Vnv3SBRMDgXdLbcMohOgmt7bV8rpr6q2d-hRATvhwFFrOtcefcebHnXmtbtjlnG6lC__461ewb2AmD8oc0cdwsFqsbavEX-tsj7sy4nsQ-_Lyej8G54NxKBf_cvoV2ML90mAx71kdH784y9SATPg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB5CQkl7KH1Xbdqq0J6apXqstNpDKH0kOE1sSh1DbpuVdpUajOxGNsb9cf1tndGrMQHfAjoINAu7OzO7M5rHB_AuyK3HQy0Y2goh4zL3WGLR57EmljrK4ihLqTi5P4h7I_79PDrfgr9tLQylVbZnYnVQm2lG_8g_okbHIT4i-DT7zQg1iqKrLYSGbqAVzEHVYqwp7DixqyW6cOXB8Tfk9_sgODo8-9pjDcoAy9AWmjORZImXhzjfSKP3kEVh6gmbyyiKtA4z6QWZCdBICHMvtYExxjPciMDExhe5yKkZE14BOzzkEp2_nS-Hgx8_uzgG3r9RW6qTxLgI4bMAPRTmczZM2FCsX4c3bNybqZpdvPYe7C6KmV4t9WRy7Uo8egD3G1vW_VwL30PYssUjuFOjW64ew6jfQu-6hHu81Ct3bJrkpEoeXEq6v3TrPlAkLG5RJ6WzK3tJ48Z_rHHrGqVx5lagPeUTGN3K_j6F7WJa2OfgCu3nqbDScqSRxmiD1pY0CU_zVKcmdcBvN1NlTYtzQtqYqMrVSWJFDFDEAHxTw0QNhQMfujGzusHHRuq9lkeqUfZS_RdNB952n1FNKfaiCztdEI2k3vciFBtoIjSgQsr1dOBZzfZuShSf5jGNFmsC0RFQm_D1L8X4V9UunHvUEy92YL8VnWtT37DS_U68Nm9MmahSvNi8MW9gt3fWP1Wnx4OTl3A3IEwRygmSe7A9v1rYV2jZzdPXjfq4cHHbGvsPbZdiHA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFD5oRasP4q01tmoE3-zQJHPLPJbVpV5ahHWhb2EyF7uwpMteKOuvd05u7FJZEPIQmDMhmTMn8x3O5QP4mHmXMKolCViBEqZ8QnIXfB5nhdLcCG5KLE6-uBTnY_btil9tVPHX2e5dSLKpacAuTdXydGZ9Y-K5OE3DL5VkAemTlJFRTkbyPjxg4XRDDoOBGPRxhHD-8a5U5p_zto-jOxjzbqpkHy99AvuraqbXt3o63TiShs_gaYsl47NG-c_hnqtewMOGXXL9EsYXHfVtjLzDt3odT2ybHFTrI8ak999x04cJlRVXTVI4mdcM9fPJH2fjpkZoYuKaNGfxCsbDL78G56RlUSAmYL0lkbnJE0-DPrgO3pHhtEyk84pzrjU1KsmMzQIIoj4pXWatTSyzMrPCptJLr-gB7FU3lXsNsdSpL6VTjgUZZa22Ae0om7PSl7q0ZQRpt5iFaVuMI9PFtKhdjVwUqIACFRDuilFejGQEn_o5s6bBxk7p405HRWtsC_ReBA2XzCL40A8HM8HYh67czQplFPael1TukOEBwFDMtYzgsFF7_0oYH2YCZ8utDdELYJvu7ZFqcl2362YJ9qQTEZx0W2fj1Xd86Um_vXYvzCIvFvLN_z39PTz6-XlY_Ph6-f0IHmdI8YEpOuoY9pbzlXsbgNayfFfb0l8KwCKw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBZbylj3sPs6b93wYG-rUtuyLn4sY6UMWgZZoHsyunZhiRvihJL--ulYtklaCAwGfjDoCCT5O9YndM53EPqcOZvkRHLsuQLBeeESLKw_81jDCkk1o1pBcvL5BTsb598v6WWbHg25MGqmQZx0NtH1cDMBfRryG6B-gl0cz40L7i7Ycep_rzjzrB-nOR4JPOIP0R6jnpkP0N744sfJrybBqDXq8mbudqwFrvn23nSPcN6Pm-wvT5-gx6tqLtc3cjrd2J9On6FZN7MQlvJnuFqqob69I_r4v6b-HD1tiWx8EpD3Aj2w1Uv0KJS2XL9C4_Ou7m4MRY9v5DqemDYyqQFDDBH3V3EQgQKkxFWISMcLewX9JrfWxCFBaaLjpmJP_RqNT7_9_HqG2xIOWHuiucRcaJE44sFApT-aaUpUwq0rKKVSEl0kmTaZZ2DEJcpmxpjE5IZnhpmUO-4K8gYNquvKvkUxl6lT3BY29zaFMdJ4qlUYkSunpDIqQmn38Urd6ptDmY1p2ZxzBCthuUpYLv9WjkQ54hH60veZB3WPndaHHSbK1tNrODox4h-eRehT3-x9FC5eZGWvV2BTgPA9J3yHDfXsiUCgZ4QOAsz6IcHldM6gN98CYG8AGuHbLdXkd6MVnicgiMcidNRBdWPoO2Z61MN598LUoqz5u38zf4_2MygqAkFBxSEaLBcr-8FTu6X62HrsX3boS2Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+pathway+identification+using+biological+network-regularized+logistic+models&rft.jtitle=BMC+genomics&rft.au=Zhang%2C+Wen&rft.au=Wan%2C+Ying-Wooi&rft.au=Allen%2C+Genevera+I&rft.au=Pang%2C+Kaifang&rft.date=2013-12-09&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=14+Suppl+8&rft.spage=S7&rft_id=info:doi/10.1186%2F1471-2164-14-S8-S7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon