Molecular pathway identification using biological network-regularized logistic models
Background Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L 1 -norm based regularization and its extensions elastic net and fused lasso, h...
Saved in:
| Published in | BMC genomics Vol. 14; no. Suppl 8; p. S7 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
09.12.2013
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2164 1471-2164 |
| DOI | 10.1186/1471-2164-14-S8-S7 |
Cover
| Abstract | Background
Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as
L
1
-norm based regularization and its extensions elastic net and fused lasso, have been introduced to deal with this challenge. However, these approaches tend to ignore the vast amount of
a priori
biological network information curated in the literature.
Results
We propose the use of graph Laplacian regularized logistic regression to integrate biological networks into disease classification and pathway association problems. Simulation studies demonstrate that the performance of the proposed algorithm is superior to elastic net and lasso analyses. Utility of this algorithm is also validated by its ability to reliably differentiate breast cancer subtypes using a large breast cancer dataset recently generated by the Cancer Genome Atlas (TCGA) consortium. Many of the protein-protein interaction modules identified by our approach are further supported by evidence published in the literature. Source code of the proposed algorithm is freely available at
http://www.github.com/zhandong/Logit-Lapnet
.
Conclusion
Logistic regression with graph Laplacian regularization is an effective algorithm for identifying key pathways and modules associated with disease subtypes. With the rapid expansion of our knowledge of biological regulatory networks, this approach will become more accurate and increasingly useful for mining transcriptomic, epi-genomic, and other types of genome wide association studies. |
|---|---|
| AbstractList | Doc number: S7 Abstract Background: Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L1 -norm based regularization and its extensions elastic net and fused lasso, have been introduced to deal with this challenge. However, these approaches tend to ignore the vast amount of a priori biological network information curated in the literature. Results: We propose the use of graph Laplacian regularized logistic regression to integrate biological networks into disease classification and pathway association problems. Simulation studies demonstrate that the performance of the proposed algorithm is superior to elastic net and lasso analyses. Utility of this algorithm is also validated by its ability to reliably differentiate breast cancer subtypes using a large breast cancer dataset recently generated by the Cancer Genome Atlas (TCGA) consortium. Many of the protein-protein interaction modules identified by our approach are further supported by evidence published in the literature. Source code of the proposed algorithm is freely available at http://www.github.com/zhandong/Logit-Lapnet . Conclusion: Logistic regression with graph Laplacian regularization is an effective algorithm for identifying key pathways and modules associated with disease subtypes. With the rapid expansion of our knowledge of biological regulatory networks, this approach will become more accurate and increasingly useful for mining transcriptomic, epi-genomic, and other types of genome wide association studies. Background: Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L sub(1)-norm based regularization and its extensions elastic net and fused lasso, have been introduced to deal with this challenge. However, these approaches tend to ignore the vast amount of a priori biological network information curated in the literature. Results: We propose the use of graph Laplacian regularized logistic regression to integrate biological networks into disease classification and pathway association problems. Simulation studies demonstrate that the performance of the proposed algorithm is superior to elastic net and lasso analyses. Utility of this algorithm is also validated by its ability to reliably differentiate breast cancer subtypes using a large breast cancer dataset recently generated by the Cancer Genome Atlas (TCGA) consortium. Many of the protein-protein interaction modules identified by our approach are further supported by evidence published in the literature. Source code of the proposed algorithm is freely available at http://www.github.com/zhandong/Logit-Lapnet . Conclusion: Logistic regression with graph Laplacian regularization is an effective algorithm for identifying key pathways and modules associated with disease subtypes. With the rapid expansion of our knowledge of biological regulatory networks, this approach will become more accurate and increasingly useful for mining transcriptomic, epi-genomic, and other types of genome wide association studies. Background Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L 1 -norm based regularization and its extensions elastic net and fused lasso, have been introduced to deal with this challenge. However, these approaches tend to ignore the vast amount of a priori biological network information curated in the literature. Results We propose the use of graph Laplacian regularized logistic regression to integrate biological networks into disease classification and pathway association problems. Simulation studies demonstrate that the performance of the proposed algorithm is superior to elastic net and lasso analyses. Utility of this algorithm is also validated by its ability to reliably differentiate breast cancer subtypes using a large breast cancer dataset recently generated by the Cancer Genome Atlas (TCGA) consortium. Many of the protein-protein interaction modules identified by our approach are further supported by evidence published in the literature. Source code of the proposed algorithm is freely available at http://www.github.com/zhandong/Logit-Lapnet . Conclusion Logistic regression with graph Laplacian regularization is an effective algorithm for identifying key pathways and modules associated with disease subtypes. With the rapid expansion of our knowledge of biological regulatory networks, this approach will become more accurate and increasingly useful for mining transcriptomic, epi-genomic, and other types of genome wide association studies. Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L1-norm based regularization and its extensions elastic net and fused lasso, have been introduced to deal with this challenge. However, these approaches tend to ignore the vast amount of a priori biological network information curated in the literature. We propose the use of graph Laplacian regularized logistic regression to integrate biological networks into disease classification and pathway association problems. Simulation studies demonstrate that the performance of the proposed algorithm is superior to elastic net and lasso analyses. Utility of this algorithm is also validated by its ability to reliably differentiate breast cancer subtypes using a large breast cancer dataset recently generated by the Cancer Genome Atlas (TCGA) consortium. Many of the protein-protein interaction modules identified by our approach are further supported by evidence published in the literature. Source code of the proposed algorithm is freely available at http://www.github.com/zhandong/Logit-Lapnet. Logistic regression with graph Laplacian regularization is an effective algorithm for identifying key pathways and modules associated with disease subtypes. With the rapid expansion of our knowledge of biological regulatory networks, this approach will become more accurate and increasingly useful for mining transcriptomic, epi-genomic, and other types of genome wide association studies. Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L1-norm based regularization and its extensions elastic net and fused lasso, have been introduced to deal with this challenge. However, these approaches tend to ignore the vast amount of a priori biological network information curated in the literature.BACKGROUNDSelecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L1-norm based regularization and its extensions elastic net and fused lasso, have been introduced to deal with this challenge. However, these approaches tend to ignore the vast amount of a priori biological network information curated in the literature.We propose the use of graph Laplacian regularized logistic regression to integrate biological networks into disease classification and pathway association problems. Simulation studies demonstrate that the performance of the proposed algorithm is superior to elastic net and lasso analyses. Utility of this algorithm is also validated by its ability to reliably differentiate breast cancer subtypes using a large breast cancer dataset recently generated by the Cancer Genome Atlas (TCGA) consortium. Many of the protein-protein interaction modules identified by our approach are further supported by evidence published in the literature. Source code of the proposed algorithm is freely available at http://www.github.com/zhandong/Logit-Lapnet.RESULTSWe propose the use of graph Laplacian regularized logistic regression to integrate biological networks into disease classification and pathway association problems. Simulation studies demonstrate that the performance of the proposed algorithm is superior to elastic net and lasso analyses. Utility of this algorithm is also validated by its ability to reliably differentiate breast cancer subtypes using a large breast cancer dataset recently generated by the Cancer Genome Atlas (TCGA) consortium. Many of the protein-protein interaction modules identified by our approach are further supported by evidence published in the literature. Source code of the proposed algorithm is freely available at http://www.github.com/zhandong/Logit-Lapnet.Logistic regression with graph Laplacian regularization is an effective algorithm for identifying key pathways and modules associated with disease subtypes. With the rapid expansion of our knowledge of biological regulatory networks, this approach will become more accurate and increasingly useful for mining transcriptomic, epi-genomic, and other types of genome wide association studies.CONCLUSIONLogistic regression with graph Laplacian regularization is an effective algorithm for identifying key pathways and modules associated with disease subtypes. With the rapid expansion of our knowledge of biological regulatory networks, this approach will become more accurate and increasingly useful for mining transcriptomic, epi-genomic, and other types of genome wide association studies. |
| ArticleNumber | S7 |
| Author | Wan, Ying-wooi Liu, Zhandong Pang, Kaifang Zhang, Wen Allen, Genevera I Anderson, Matthew L |
| AuthorAffiliation | 2 Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA 6 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA 3 Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA 4 Department of Statistics and Electrical Engineering, Rice University, Houston, TX, USA 5 Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX, USA 1 Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA |
| AuthorAffiliation_xml | – name: 3 Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA – name: 6 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA – name: 5 Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX, USA – name: 4 Department of Statistics and Electrical Engineering, Rice University, Houston, TX, USA – name: 2 Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA – name: 1 Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA |
| Author_xml | – sequence: 1 givenname: Wen surname: Zhang fullname: Zhang, Wen organization: Department of Pediatrics-Neurology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital – sequence: 2 givenname: Ying-wooi surname: Wan fullname: Wan, Ying-wooi organization: Department of Pediatrics-Neurology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Department of Obstetrics and Gynecology, Baylor College of Medicine – sequence: 3 givenname: Genevera I surname: Allen fullname: Allen, Genevera I organization: Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Department of Statistics and Electrical Engineering, Rice University – sequence: 4 givenname: Kaifang surname: Pang fullname: Pang, Kaifang organization: Department of Pediatrics-Neurology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital – sequence: 5 givenname: Matthew L surname: Anderson fullname: Anderson, Matthew L organization: Department of Obstetrics and Gynecology, Baylor College of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine – sequence: 6 givenname: Zhandong surname: Liu fullname: Liu, Zhandong email: zhandonl@bcm.edu organization: Department of Pediatrics-Neurology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24564637$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkV1vFCEUhompsR_6B7wwk3jjzSjfMDcmprFqUuPF2mvCAjOlsrDCjJv115dx17o2sSYkEHifc17ecwqOYooOgOcIvkZI8jeICtRixGmLaLuQ7UI8Aid3l0cH52NwWsoNhEhIzJ6AY0wZp5yIE3D1OQVnpqBzs9bj9UZvG29dHH3vjR59is1UfByapU8hDfUuNNGNm5S_tdkNM-d_OtvMb2X0plkl60J5Ch73OhT3bL-fgauL91_PP7aXXz58On932RoGxdgKaSTsCdGCaSmQYWQJhes7xpjWxHQQG4s5JqSHS4ettdBSK7DlFole9B05A2RXd4prvd3oENQ6-5XOW4WgmkNScwZqzqCeVJGqiEq93VHrably1tTvZv2HTNqrv1-iv1ZD-qEopJxxXgu82hfI6fvkyqhWvhgXgo4uTUUhBqtpCDv6fyntMEdCkNnWy3vSmzTlWPOrqtq1LoGr6sWh-TvXv0daBXgnMDmVkl3_cCQLqRYzJO9Bxo-_5l8D8OFhdD-DUvvEweUD2_-mbgE_2Ndy |
| CitedBy_id | crossref_primary_10_1016_j_jmva_2018_12_007 crossref_primary_10_3892_ol_2019_11001 crossref_primary_10_1186_s12859_019_3076_y crossref_primary_10_1109_ACCESS_2019_2955958 crossref_primary_10_1109_JBHI_2024_3363081 crossref_primary_10_24870_cjb_2017_a62 crossref_primary_10_1186_1559_0275_11_22 crossref_primary_10_1371_journal_pone_0144439 crossref_primary_10_1109_ACCESS_2018_2818682 crossref_primary_10_1186_s12859_018_2149_7 crossref_primary_10_1016_j_neucom_2015_12_106 crossref_primary_10_1109_TCBB_2019_2897301 crossref_primary_10_1080_07350015_2020_1730859 crossref_primary_10_1016_j_phrs_2016_06_018 crossref_primary_10_5897_AJAR2018_13286 crossref_primary_10_1038_s41598_018_19635_0 crossref_primary_10_1142_S0129065719500163 crossref_primary_10_1002_int_22844 crossref_primary_10_1016_j_cmpb_2018_06_004 crossref_primary_10_1200_PO_19_00018 crossref_primary_10_3390_math10193695 crossref_primary_10_1038_s41598_019_49967_4 crossref_primary_10_1214_19_EJS1601 crossref_primary_10_18632_aging_203140 crossref_primary_10_1042_BSR20190489 crossref_primary_10_1109_TCYB_2020_3006240 crossref_primary_10_3233_THC_228013 crossref_primary_10_18632_oncotarget_24468 crossref_primary_10_1002_mas_21710 crossref_primary_10_1186_s12859_019_2937_8 crossref_primary_10_3389_fmolb_2019_00044 crossref_primary_10_1186_s13073_016_0390_0 crossref_primary_10_1016_j_physa_2017_02_032 crossref_primary_10_3389_fneur_2018_00930 crossref_primary_10_4137_CIN_S14054 crossref_primary_10_1080_01635581_2018_1540715 crossref_primary_10_1007_s10489_021_02877_3 crossref_primary_10_18632_oncotarget_9370 crossref_primary_10_18632_aging_202260 crossref_primary_10_2174_1574893613666181112150422 crossref_primary_10_1186_s12859_017_1984_2 crossref_primary_10_3233_THC_THC228041 crossref_primary_10_1016_j_eswa_2023_120179 crossref_primary_10_1109_TCBB_2016_2640303 crossref_primary_10_1177_0300060519850724 crossref_primary_10_1186_s13075_021_02451_9 crossref_primary_10_3892_etm_2019_8017 |
| Cites_doi | 10.1111/j.1467-9868.2005.00503.x 10.1109/TCBB.2005.22 10.1038/nrc1299 10.1038/msb4100180 10.1186/1471-2105-10-S1-S21 10.1007/978-1-84800-155-8_7 10.1093/bioinformatics/btp041 10.1038/nature11412 10.1016/j.jmva.2004.02.012 10.1093/bioinformatics/btn081 10.1093/nar/gkr988 10.1093/nar/gkj109 10.1016/j.neuroimage.2012.12.062 10.1056/NEJMoa033513 10.1093/biostatistics/kxs034 10.1056/NEJMra1001389 10.1093/bioinformatics/btm287 10.1186/1752-0509-5-161 10.1111/j.1467-9868.2005.00532.x 10.1101/gr.139469.112 10.1158/0008-5472.CAN-12-1699 10.1101/gr.2807605 10.1111/j.1541-0420.2009.01296.x 10.1093/biostatistics/kxg046 10.3322/caac.21166 10.1111/j.2517-6161.1996.tb02080.x 10.1214/11-AOAS463 10.1038/415530a 10.1111/j.1467-9868.2005.00490.x 10.1126/science.286.5439.531 10.1093/bioinformatics/btt078 10.1016/S0140-6736(05)70933-8 10.1186/1471-2105-13-94 10.1371/journal.pgen.1000587 |
| ContentType | Journal Article |
| Copyright | Zhang et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated. 2013 Zhang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Copyright © 2013 Zhang et al.; licensee BioMed Central Ltd. 2013 Zhang et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Zhang et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated. – notice: 2013 Zhang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. – notice: Copyright © 2013 Zhang et al.; licensee BioMed Central Ltd. 2013 Zhang et al.; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/1471-2164-14-S8-S7 |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database Genetics Abstracts MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2164 |
| EndPage | S7 |
| ExternalDocumentID | 10.1186/1471-2164-14-s8-s7 PMC4046566 3151656941 24564637 10_1186_1471_2164_14_S8_S7 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 2XV 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION -A0 2VQ 3V. ACRMQ ADINQ AIXEN ALIPV C1A C24 CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c507t-78c80f33a75a871c53b07ef9555aa3c902cd26233f0be2ddd0d4d72d6d17f7f93 |
| IEDL.DBID | M48 |
| ISSN | 1471-2164 |
| IngestDate | Sun Oct 26 03:45:20 EDT 2025 Tue Sep 30 16:57:53 EDT 2025 Fri Sep 05 08:29:59 EDT 2025 Thu Sep 04 19:06:04 EDT 2025 Mon Oct 06 18:12:28 EDT 2025 Thu Jan 02 22:18:48 EST 2025 Wed Oct 01 03:03:10 EDT 2025 Thu Apr 24 23:12:34 EDT 2025 Sat Sep 06 07:28:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 8 |
| Keywords | Breast Cancer Subtype Triple Negative Breast Cancer Normalize Read Count Breast Cancer Specimen Lasso |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c507t-78c80f33a75a871c53b07ef9555aa3c902cd26233f0be2ddd0d4d72d6d17f7f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2164-14-S8-S7 |
| PMID | 24564637 |
| PQID | 1466366372 |
| PQPubID | 44682 |
| ParticipantIDs | unpaywall_primary_10_1186_1471_2164_14_s8_s7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4046566 proquest_miscellaneous_1502330094 proquest_miscellaneous_1492617737 proquest_journals_1466366372 pubmed_primary_24564637 crossref_primary_10_1186_1471_2164_14_S8_S7 crossref_citationtrail_10_1186_1471_2164_14_S8_S7 springer_journals_10_1186_1471_2164_14_S8_S7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-12-09 |
| PublicationDateYYYYMMDD | 2013-12-09 |
| PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-09 day: 09 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC genomics |
| PublicationTitleAbbrev | BMC Genomics |
| PublicationTitleAlternate | BMC Genomics |
| PublicationYear | 2013 |
| Publisher | BioMed Central Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V |
| References | L Grosenick (5550_CR23) 2013; 72 S Hill (5550_CR28) 2012; 13 V Theodorou (5550_CR35) 2013; 23 R Tibshirani (5550_CR10) 1994; 58 J Zhu (5550_CR6) 2004; 5 HY Chuang (5550_CR19) 2007; 3 W Pan (5550_CR26) 2010; 66 M Dettling (5550_CR12) 2004; 90 J Bootkrajang (5550_CR9) 2013; 29 A Holleman (5550_CR3) 2004; 351 WD Foulkes (5550_CR34) 2010; 363 Z Tian (5550_CR17) 2012 PA Futreal (5550_CR36) 2004; 4 C Li (5550_CR22) 2008; 24 Y Wang (5550_CR5) 2005; 365 H Zou (5550_CR11) 2005; 67 R Siegel (5550_CR31) 2013; 63 KN Stevens (5550_CR33) 2013; 73 M Grant (5550_CR29) 2008 Lv Veer (5550_CR4) 2002; 415 CVX Research I (5550_CR30) 2012 J Liu (5550_CR18) 2013; 14 M Kanehisa (5550_CR21) 2012; 40 S Kim (5550_CR16) 2009; 5 C Stark (5550_CR20) 2006; 34 L Chen (5550_CR24) 2011; 5 TR Golub (5550_CR1) 1999; 286 TT Wu (5550_CR15) 2009; 25 R Tibshirani (5550_CR14) 2005; 67 Y Zhu (5550_CR25) 2009; 10 M Yuan (5550_CR13) 2006; 68 L Shen (5550_CR7) 2005; 2 JG Liao (5550_CR8) 2007; 23 FC Stingo (5550_CR27) 2011; 5 The TCGA (5550_CR32) 2012; 490 G Natsoulis (5550_CR2) 2005; 15 21992556 - BMC Syst Biol. 2011;5:161 19176549 - Bioinformatics. 2009 Mar 15;25(6):714-21 15208204 - Biostatistics. 2004 Jul;5(3):427-43 14993899 - Nat Rev Cancer. 2004 Mar;4(3):177-83 15867433 - Genome Res. 2005 May;15(5):724-36 23172872 - Genome Res. 2013 Jan;23(1):12-22 19208121 - BMC Bioinformatics. 2009;10 Suppl 1:S21 19680538 - PLoS Genet. 2009 Aug;5(8):e1000587 22080510 - Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14 11823860 - Nature. 2002 Jan 31;415(6871):530-6 15721472 - Lancet. 2005 Feb 19-25;365(9460):671-9 18310618 - Bioinformatics. 2008 May 1;24(9):1175-82 22988281 - Biostatistics. 2013 Apr;14(2):205-19 19645699 - Biometrics. 2010 Jun;66(2):474-84 22578440 - BMC Bioinformatics. 2012;13:94 23335087 - CA Cancer J Clin. 2013 Jan;63(1):11-30 15295046 - N Engl J Med. 2004 Aug 5;351(6):533-42 17540680 - Bioinformatics. 2007 Aug 1;23(15):1945-51 23667412 - Ann Appl Stat. 2011 Sep 1;5(3):1978-2002 17044181 - IEEE/ACM Trans Comput Biol Bioinform. 2005 Apr-Jun;2(2):166-75 16381927 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9 17940530 - Mol Syst Biol. 2007;3:140 23536562 - Cancer Res. 2013 Apr 1;73(7):2025-30 23000897 - Nature. 2012 Oct 4;490(7418):61-70 21067385 - N Engl J Med. 2010 Nov 11;363(20):1938-48 23298747 - Neuroimage. 2013 May 15;72:304-21 23418189 - Bioinformatics. 2013 Apr 1;29(7):870-7 10521349 - Science. 1999 Oct 15;286(5439):531-7 |
| References_xml | – volume: 67 start-page: 301 issue: 2 year: 2005 ident: 5550_CR11 publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2005.00503.x – volume: 2 start-page: 166 year: 2005 ident: 5550_CR7 publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2005.22 – volume: 4 start-page: 177 issue: 3 year: 2004 ident: 5550_CR36 publication-title: Nat Rev Cancer doi: 10.1038/nrc1299 – volume: 3 start-page: 140 year: 2007 ident: 5550_CR19 publication-title: Mol Syst Biol doi: 10.1038/msb4100180 – volume: 10 start-page: S21 issue: Suppl 1 year: 2009 ident: 5550_CR25 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-S1-S21 – start-page: 95 volume-title: Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences year: 2008 ident: 5550_CR29 doi: 10.1007/978-1-84800-155-8_7 – volume: 25 start-page: 714 issue: 6 year: 2009 ident: 5550_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp041 – volume: 490 start-page: 61 issue: 7418 year: 2012 ident: 5550_CR32 publication-title: Nature doi: 10.1038/nature11412 – volume: 90 start-page: 106 year: 2004 ident: 5550_CR12 publication-title: Special Issue on Multivariate Methods in Genomic Data Analysis doi: 10.1016/j.jmva.2004.02.012 – volume: 24 start-page: 1175 issue: 9 year: 2008 ident: 5550_CR22 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn081 – volume: 40 start-page: D109 issue: D1 year: 2012 ident: 5550_CR21 publication-title: Nucleic Acids Research doi: 10.1093/nar/gkr988 – volume: 34 start-page: D535 issue: suppl 1 year: 2006 ident: 5550_CR20 publication-title: Nucleic Acids Research doi: 10.1093/nar/gkj109 – volume: 72 start-page: 304 year: 2013 ident: 5550_CR23 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.12.062 – volume: 351 start-page: 533 issue: 6 year: 2004 ident: 5550_CR3 publication-title: New England Journal of Medicine doi: 10.1056/NEJMoa033513 – volume: 14 start-page: 205 issue: 2 year: 2013 ident: 5550_CR18 publication-title: Biostatistics doi: 10.1093/biostatistics/kxs034 – volume: 363 start-page: 1938 issue: 20 year: 2010 ident: 5550_CR34 publication-title: N Engl J Med doi: 10.1056/NEJMra1001389 – volume: 23 start-page: 1945 issue: 15 year: 2007 ident: 5550_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm287 – volume: 5 start-page: 161 year: 2011 ident: 5550_CR24 publication-title: BMC systems biology doi: 10.1186/1752-0509-5-161 – volume-title: CVX: Matlab Software for Disciplined Convex Programming, version 2.0 year: 2012 ident: 5550_CR30 – start-page: 665 volume-title: ICDM'12 year: 2012 ident: 5550_CR17 – volume: 68 start-page: 49 year: 2006 ident: 5550_CR13 publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2005.00532.x – volume: 23 start-page: 12 year: 2013 ident: 5550_CR35 publication-title: Genome Research doi: 10.1101/gr.139469.112 – volume: 73 start-page: 2025 issue: 7 year: 2013 ident: 5550_CR33 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-1699 – volume: 15 start-page: 724 issue: 5 year: 2005 ident: 5550_CR2 publication-title: Genome research doi: 10.1101/gr.2807605 – volume: 66 start-page: 474 issue: 2 year: 2010 ident: 5550_CR26 publication-title: Biometrics doi: 10.1111/j.1541-0420.2009.01296.x – volume: 5 start-page: 427 issue: 3 year: 2004 ident: 5550_CR6 publication-title: Biostatistics doi: 10.1093/biostatistics/kxg046 – volume: 63 start-page: 11 year: 2013 ident: 5550_CR31 publication-title: CA: A Cancer Journal for Clinicians doi: 10.3322/caac.21166 – volume: 58 start-page: 267 year: 1994 ident: 5550_CR10 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 5 start-page: 1978 issue: 3 year: 2011 ident: 5550_CR27 publication-title: The Annals of Applied Statistics doi: 10.1214/11-AOAS463 – volume: 415 start-page: 530 issue: 6871 year: 2002 ident: 5550_CR4 publication-title: nature doi: 10.1038/415530a – volume: 67 start-page: 91 year: 2005 ident: 5550_CR14 publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2005.00490.x – volume: 286 start-page: 531 issue: 5439 year: 1999 ident: 5550_CR1 publication-title: science doi: 10.1126/science.286.5439.531 – volume: 29 start-page: 870 issue: 7 year: 2013 ident: 5550_CR9 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt078 – volume: 365 start-page: 671 year: 2005 ident: 5550_CR5 publication-title: Lancet doi: 10.1016/S0140-6736(05)70933-8 – volume: 13 start-page: 94 year: 2012 ident: 5550_CR28 publication-title: BMC bioinformatics doi: 10.1186/1471-2105-13-94 – volume: 5 start-page: e1000587 issue: 8 year: 2009 ident: 5550_CR16 publication-title: PLoS genetics doi: 10.1371/journal.pgen.1000587 – reference: 19176549 - Bioinformatics. 2009 Mar 15;25(6):714-21 – reference: 16381927 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9 – reference: 23418189 - Bioinformatics. 2013 Apr 1;29(7):870-7 – reference: 18310618 - Bioinformatics. 2008 May 1;24(9):1175-82 – reference: 22080510 - Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14 – reference: 15721472 - Lancet. 2005 Feb 19-25;365(9460):671-9 – reference: 22578440 - BMC Bioinformatics. 2012;13:94 – reference: 19680538 - PLoS Genet. 2009 Aug;5(8):e1000587 – reference: 19208121 - BMC Bioinformatics. 2009;10 Suppl 1:S21 – reference: 23000897 - Nature. 2012 Oct 4;490(7418):61-70 – reference: 21992556 - BMC Syst Biol. 2011;5:161 – reference: 17540680 - Bioinformatics. 2007 Aug 1;23(15):1945-51 – reference: 15867433 - Genome Res. 2005 May;15(5):724-36 – reference: 14993899 - Nat Rev Cancer. 2004 Mar;4(3):177-83 – reference: 11823860 - Nature. 2002 Jan 31;415(6871):530-6 – reference: 23298747 - Neuroimage. 2013 May 15;72:304-21 – reference: 23536562 - Cancer Res. 2013 Apr 1;73(7):2025-30 – reference: 22988281 - Biostatistics. 2013 Apr;14(2):205-19 – reference: 23667412 - Ann Appl Stat. 2011 Sep 1;5(3):1978-2002 – reference: 23172872 - Genome Res. 2013 Jan;23(1):12-22 – reference: 21067385 - N Engl J Med. 2010 Nov 11;363(20):1938-48 – reference: 15208204 - Biostatistics. 2004 Jul;5(3):427-43 – reference: 10521349 - Science. 1999 Oct 15;286(5439):531-7 – reference: 17044181 - IEEE/ACM Trans Comput Biol Bioinform. 2005 Apr-Jun;2(2):166-75 – reference: 15295046 - N Engl J Med. 2004 Aug 5;351(6):533-42 – reference: 23335087 - CA Cancer J Clin. 2013 Jan;63(1):11-30 – reference: 17940530 - Mol Syst Biol. 2007;3:140 – reference: 19645699 - Biometrics. 2010 Jun;66(2):474-84 |
| SSID | ssj0017825 |
| Score | 2.3211882 |
| Snippet | Background
Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when... Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing... Doc number: S7 Abstract Background: Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is... Background: Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | S7 |
| SubjectTerms | Algorithms Animal Genetics and Genomics Biomarkers, Tumor - metabolism Biomedical and Life Sciences Breast cancer Breast Neoplasms - metabolism Computational Biology - methods Computer Simulation Female Gene Regulatory Networks Genomics Humans Life Sciences Logistic Models Microarrays Microbial Genetics and Genomics Models, Biological Plant Genetics and Genomics Proteomics Reproducibility of Results Studies |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEB_qFVE_iO9Gq0Twm11Msq_sBxGVliL0EM-DfgubfdSDI3e9B-X8693Jyx6FQD4EdjYkO7O7M5nZ3w_gQ-ZdwqiWJPgKlDDlE5K7EPM4K5TmRnBT4uHki7E4n7Ifl_zyAMbdWRgsq-zWxHqhtguD_8g_hRktaLhk9mV5TZA1CrOrHYWGbqkV7OcaYuweHGaIjDWCw2-n45-_-rxC2A95d3QmF-GhMiVZiBhIysgkJxO5vz3d8Tnvlk72-dNH8GBbLfXuRs_nt7aosyfwuPUt46-NMTyFA1c9g_sN2-TuOUwvOircGHmIb_Quntm2WKjWT4xF8Fdxg8uEyourpkicrGrG-tXsr7Nxc2ZoZuKaRGf9AqZnp7-_n5OWVYGY4PttiMxNnnga9MN1iJYMp2UinVecc62pUUlmbBacIuqT0mXW2sQyKzMrbCq99Iq-hFG1qNwRxFKnvpROORZklLXaBu9H2ZyVvtSlLSNIu8EsTAs5jswX86IOPXJRoAIKVEC4KyZ5MZERfOz7LBvAjUHp405HRTv51sV_U4ngfd8cpg3mQnTlFluUUYhFL6kckOHBoaFYexnBq0bt_SthvpgJ7C33DKIXQNju_ZZq9qeG72YJYtSJCE4607n16gNfetKb1_DArPNiLV8PD8wbeJghrwfW5ahjGG1WW_c2eFeb8l07Zf4B_Egk-g priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEG40IupBfEVHo7TgzTTO9LuPQQxBiJd1Ibehn7qwTMLOLmHz69M1L7JEFoQ5DHT10NNV1f0V9ULoC02x5MwqkrECI9ykkuiYbZ4YpLHCS-EdJCef_5Jnc_7zQlwMSWHtGO0-uiS7k7pTay2_VfkYJTSje1JxMtNkph6iRwLKeWUpntOTyXeQ7zwxpsf8c97uFXQPV94Pj5x8pM_Qk01zZbfXdrm8cw2dvkDPB_yIT3qGv0QPYvMKPe47Sm5fo_n52O4WQ6_ha7vFizAEBHU8wBDo_gf3tZeAQbjpA8HJqutKv1rcxID7vKCFx12jnPYNmp_--P39jAydE4jP-G5NlPa6TCzzQNhsEXnBXKliMkIIa5k3JfWBZuDDUukiDSGUgQdFgwyVSioZdogOmssmvkNY2So5FU3kmcaEYENGOCZo7pKzLrgCVeNm1n4oKw7dLZZ1Z15oWQMDamBAfqtnup6pAn2d5lz1RTX2Uh-NPKoHBWvBYpEsP4oW6PM0nFUD_B22iZcboDFQb14xtYdGZNDCIL6yQG97tk9LAp8wlzBb7QjERACluXdHmsXfrkQ3L6EOnSzQ8Sg6d5a-50-PJ_HavzGtrlv1_v--_gE9pdDLA2JxzBE6WK828WNGVGv3qVOgW8-0G54 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBZbylj3sPs6b93wYG-rUtuyLn4sY6UMWgZZoHsyunZhiRvihJL--ulYtklaCAwGfjDoCCT5O9YndM53EPqcOZvkRHLsuQLBeeESLKw_81jDCkk1o1pBcvL5BTsb598v6WWbHg25MGqmQZx0NtH1cDMBfRryG6B-gl0cz40L7i7Ycep_rzjzrB-nOR4JPOIP0R6jnpkP0N744sfJrybBqDXq8mbudqwFrvn23nSPcN6Pm-wvT5-gx6tqLtc3cjrd2J9On6FZN7MQlvJnuFqqob69I_r4v6b-HD1tiWx8EpD3Aj2w1Uv0KJS2XL9C4_Ou7m4MRY9v5DqemDYyqQFDDBH3V3EQgQKkxFWISMcLewX9JrfWxCFBaaLjpmJP_RqNT7_9_HqG2xIOWHuiucRcaJE44sFApT-aaUpUwq0rKKVSEl0kmTaZZ2DEJcpmxpjE5IZnhpmUO-4K8gYNquvKvkUxl6lT3BY29zaFMdJ4qlUYkSunpDIqQmn38Urd6ptDmY1p2ZxzBCthuUpYLv9WjkQ54hH60veZB3WPndaHHSbK1tNrODox4h-eRehT3-x9FC5eZGWvV2BTgPA9J3yHDfXsiUCgZ4QOAsz6IcHldM6gN98CYG8AGuHbLdXkd6MVnicgiMcidNRBdWPoO2Z61MN598LUoqz5u38zf4_2MygqAkFBxSEaLBcr-8FTu6X62HrsX3boS2Y priority: 102 providerName: Unpaywall |
| Title | Molecular pathway identification using biological network-regularized logistic models |
| URI | https://link.springer.com/article/10.1186/1471-2164-14-S8-S7 https://www.ncbi.nlm.nih.gov/pubmed/24564637 https://www.proquest.com/docview/1466366372 https://www.proquest.com/docview/1492617737 https://www.proquest.com/docview/1502330094 https://pubmed.ncbi.nlm.nih.gov/PMC4046566 https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-14-S8-S7 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Medical Journals Open Access customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (WRLC) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Complete customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1471-2164 dateEnd: 20250331 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals (WRLC) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: U2A dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_aHqI-iN9G6xFBfLGrSTbZzT6I1KOlCHcUz8D5FDbZjR4c6fU-qOdf70y-7NFyCCEkZLIkO7PZ32Rm5wfwNiisF3ItGWIFzkJVeCy26PNYI5SOchHlGS1OHo7EWRJ-nUSTPWjTbZsOXN7q2hGfVLKYffh9ufmMA_5TNeBj8dHHDywLEPczP2TjmI3lu_klI2IpCsA2LBv70MPJSxG7wzD8F2jACTKqFiA1TbTram5tdnvuugFIb-ZVdsHV-3B3Xc715krPZtfmr9OH8KABnu5xbSmPYM-Wj-FOTUW5eQLJsOXJdYmk-Epv3KlpMokq5bmUIf_TrYs2kWbdss4gZ4uKzn4x_WONWy8omuZuxbCzfArJ6cn3wRlrKBdYjsBwxWScx17BUXmRRlcqj3jmSVuoKIq05rnygtwEiJh44WU2MMZ4JjQyMML4spCF4s_goLwo7QtwpfaLTFplQ5RRxmiD0EiZOMyKTGcmc8BvOzPNm3rkRIsxSyu_JBYpKSAlBeBROo7TsXTgfXfPvK7GsVP6sNVR2hoWuTqC4yYDB950l3FMUaBEl_ZiTTKKCtVLLnfIRIh2OCVmOvC8Vnv3SBRMDgXdLbcMohOgmt7bV8rpr6q2d-hRATvhwFFrOtcefcebHnXmtbtjlnG6lC__461ewb2AmD8oc0cdwsFqsbavEX-tsj7sy4nsQ-_Lyej8G54NxKBf_cvoV2ML90mAx71kdH784y9SATPg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB5CQkl7KH1Xbdqq0J6apXqstNpDKH0kOE1sSh1DbpuVdpUajOxGNsb9cf1tndGrMQHfAjoINAu7OzO7M5rHB_AuyK3HQy0Y2goh4zL3WGLR57EmljrK4ihLqTi5P4h7I_79PDrfgr9tLQylVbZnYnVQm2lG_8g_okbHIT4i-DT7zQg1iqKrLYSGbqAVzEHVYqwp7DixqyW6cOXB8Tfk9_sgODo8-9pjDcoAy9AWmjORZImXhzjfSKP3kEVh6gmbyyiKtA4z6QWZCdBICHMvtYExxjPciMDExhe5yKkZE14BOzzkEp2_nS-Hgx8_uzgG3r9RW6qTxLgI4bMAPRTmczZM2FCsX4c3bNybqZpdvPYe7C6KmV4t9WRy7Uo8egD3G1vW_VwL30PYssUjuFOjW64ew6jfQu-6hHu81Ct3bJrkpEoeXEq6v3TrPlAkLG5RJ6WzK3tJ48Z_rHHrGqVx5lagPeUTGN3K_j6F7WJa2OfgCu3nqbDScqSRxmiD1pY0CU_zVKcmdcBvN1NlTYtzQtqYqMrVSWJFDFDEAHxTw0QNhQMfujGzusHHRuq9lkeqUfZS_RdNB952n1FNKfaiCztdEI2k3vciFBtoIjSgQsr1dOBZzfZuShSf5jGNFmsC0RFQm_D1L8X4V9UunHvUEy92YL8VnWtT37DS_U68Nm9MmahSvNi8MW9gt3fWP1Wnx4OTl3A3IEwRygmSe7A9v1rYV2jZzdPXjfq4cHHbGvsPbZdiHA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFD5oRasP4q01tmoE3-zQJHPLPJbVpV5ahHWhb2EyF7uwpMteKOuvd05u7FJZEPIQmDMhmTMn8x3O5QP4mHmXMKolCViBEqZ8QnIXfB5nhdLcCG5KLE6-uBTnY_btil9tVPHX2e5dSLKpacAuTdXydGZ9Y-K5OE3DL5VkAemTlJFRTkbyPjxg4XRDDoOBGPRxhHD-8a5U5p_zto-jOxjzbqpkHy99AvuraqbXt3o63TiShs_gaYsl47NG-c_hnqtewMOGXXL9EsYXHfVtjLzDt3odT2ybHFTrI8ak999x04cJlRVXTVI4mdcM9fPJH2fjpkZoYuKaNGfxCsbDL78G56RlUSAmYL0lkbnJE0-DPrgO3pHhtEyk84pzrjU1KsmMzQIIoj4pXWatTSyzMrPCptJLr-gB7FU3lXsNsdSpL6VTjgUZZa22Ae0om7PSl7q0ZQRpt5iFaVuMI9PFtKhdjVwUqIACFRDuilFejGQEn_o5s6bBxk7p405HRWtsC_ReBA2XzCL40A8HM8HYh67czQplFPael1TukOEBwFDMtYzgsFF7_0oYH2YCZ8utDdELYJvu7ZFqcl2362YJ9qQTEZx0W2fj1Xd86Um_vXYvzCIvFvLN_z39PTz6-XlY_Ph6-f0IHmdI8YEpOuoY9pbzlXsbgNayfFfb0l8KwCKw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBZbylj3sPs6b93wYG-rUtuyLn4sY6UMWgZZoHsyunZhiRvihJL--ulYtklaCAwGfjDoCCT5O9YndM53EPqcOZvkRHLsuQLBeeESLKw_81jDCkk1o1pBcvL5BTsb598v6WWbHg25MGqmQZx0NtH1cDMBfRryG6B-gl0cz40L7i7Ycep_rzjzrB-nOR4JPOIP0R6jnpkP0N744sfJrybBqDXq8mbudqwFrvn23nSPcN6Pm-wvT5-gx6tqLtc3cjrd2J9On6FZN7MQlvJnuFqqob69I_r4v6b-HD1tiWx8EpD3Aj2w1Uv0KJS2XL9C4_Ou7m4MRY9v5DqemDYyqQFDDBH3V3EQgQKkxFWISMcLewX9JrfWxCFBaaLjpmJP_RqNT7_9_HqG2xIOWHuiucRcaJE44sFApT-aaUpUwq0rKKVSEl0kmTaZZ2DEJcpmxpjE5IZnhpmUO-4K8gYNquvKvkUxl6lT3BY29zaFMdJ4qlUYkSunpDIqQmn38Urd6ptDmY1p2ZxzBCthuUpYLv9WjkQ54hH60veZB3WPndaHHSbK1tNrODox4h-eRehT3-x9FC5eZGWvV2BTgPA9J3yHDfXsiUCgZ4QOAsz6IcHldM6gN98CYG8AGuHbLdXkd6MVnicgiMcidNRBdWPoO2Z61MN598LUoqz5u38zf4_2MygqAkFBxSEaLBcr-8FTu6X62HrsX3boS2Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+pathway+identification+using+biological+network-regularized+logistic+models&rft.jtitle=BMC+genomics&rft.au=Zhang%2C+Wen&rft.au=Wan%2C+Ying-Wooi&rft.au=Allen%2C+Genevera+I&rft.au=Pang%2C+Kaifang&rft.date=2013-12-09&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=14+Suppl+8&rft.spage=S7&rft_id=info:doi/10.1186%2F1471-2164-14-S8-S7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |