Missing Outcome Data in Epidemiologic Studies
Abstract Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple published examples detailing types of missing data and illustrating their possible impact on results. Here we take an example randomized tr...
Saved in:
| Published in | American journal of epidemiology Vol. 192; no. 1; pp. 6 - 10 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Oxford University Press
06.01.2023
Oxford Publishing Limited (England) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0002-9262 1476-6256 1476-6256 |
| DOI | 10.1093/aje/kwac179 |
Cover
| Abstract | Abstract
Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple published examples detailing types of missing data and illustrating their possible impact on results. Here we take an example randomized trial that was not subject to missing data and induce missing data to illustrate 4 scenarios in which outcomes are 1) missing completely at random, 2) missing at random with positivity, 3) missing at random without positivity, and 4) missing not at random. We demonstrate that accounting for missing data is generally a better strategy than ignoring missing data, which unfortunately remains a standard approach in epidemiology. |
|---|---|
| AbstractList | Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple published examples detailing types of missing data and illustrating their possible impact on results. Here we take an example randomized trial that was not subject to missing data and induce missing data to illustrate 4 scenarios in which outcomes are 1) missing completely at random, 2) missing at random with positivity, 3) missing at random without positivity, and 4) missing not at random. We demonstrate that accounting for missing data is generally a better strategy than ignoring missing data, which unfortunately remains a standard approach in epidemiology. Abstract Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple published examples detailing types of missing data and illustrating their possible impact on results. Here we take an example randomized trial that was not subject to missing data and induce missing data to illustrate 4 scenarios in which outcomes are 1) missing completely at random, 2) missing at random with positivity, 3) missing at random without positivity, and 4) missing not at random. We demonstrate that accounting for missing data is generally a better strategy than ignoring missing data, which unfortunately remains a standard approach in epidemiology. Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple published examples detailing types of missing data and illustrating their possible impact on results. Here we take an example randomized trial that was not subject to missing data and induce missing data to illustrate 4 scenarios in which outcomes are 1) missing completely at random, 2) missing at random with positivity, 3) missing at random without positivity, and 4) missing not at random. We demonstrate that accounting for missing data is generally a better strategy than ignoring missing data, which unfortunately remains a standard approach in epidemiology.Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple published examples detailing types of missing data and illustrating their possible impact on results. Here we take an example randomized trial that was not subject to missing data and induce missing data to illustrate 4 scenarios in which outcomes are 1) missing completely at random, 2) missing at random with positivity, 3) missing at random without positivity, and 4) missing not at random. We demonstrate that accounting for missing data is generally a better strategy than ignoring missing data, which unfortunately remains a standard approach in epidemiology. |
| Author | Ross, Rachael K Price, Joan T. Stringer, Jeffrey S A Zivich, Paul N Cole, Stephen R Shook-Sa, Bonnie E Edwards, Jessie K |
| Author_xml | – sequence: 1 givenname: Stephen R surname: Cole fullname: Cole, Stephen R email: cole@unc.edu – sequence: 2 givenname: Paul N surname: Zivich fullname: Zivich, Paul N email: pzivich@live.unc.edu – sequence: 3 givenname: Jessie K surname: Edwards fullname: Edwards, Jessie K – sequence: 4 givenname: Rachael K surname: Ross fullname: Ross, Rachael K email: rkross@live.unc.edu – sequence: 5 givenname: Bonnie E surname: Shook-Sa fullname: Shook-Sa, Bonnie E email: bshooksa@email.unc.edu – sequence: 6 givenname: Joan T. surname: Price fullname: Price, Joan T. email: joni@email.unc.edu – sequence: 7 givenname: Jeffrey S A surname: Stringer fullname: Stringer, Jeffrey S A email: jeffrey_stringer@med.unc.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36222655$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kM1P3DAUxC1EVRbaE_cqUiVUqU15fvHH-oQqSj8kEIeWs-U4ztbbxA5xUsR_X6PdthQJTu_wfjOamX2yG2JwhBxSeE9BVcdm7Y5_3hhLpdohC8qkKAVysUsWAIClQoF7ZD-lNQClisNzslcJRBScL0h54VPyYVVczpONvSs-mskUPhRng29c72MXV94W36a58S69IM9a0yX3cnsPyNWns--nX8rzy89fTz-cl5aDnEousQEFwCouWN3UjRO1ExTZUgilWiERpJRtw1VjlxngVLE245QDVlVbVwfk3cZ3DoO5vTFdp4fR92a81RT0XWudW-tt64yfbPBhrnvXWBem0fyTROP1_5_gf-hV_JWdKGMCITu82TqM8Xp2adK9T9Z1nQkuzkmjRIYMEGVGXz9A13EeQ55D45Ll4ZkQNFOv7kf6m-XP8hmgG8COMaXRtdr6yUw-3iX03SM93z7QPL3K0YaO8_Ak-Bud5rHg |
| CitedBy_id | crossref_primary_10_1186_s12879_023_08787_8 crossref_primary_10_1016_j_scitotenv_2024_172445 crossref_primary_10_1093_aje_kwad216 crossref_primary_10_1016_j_jhep_2024_05_022 crossref_primary_10_1093_aje_kwad215 crossref_primary_10_1097_EDE_0000000000001627 crossref_primary_10_1589_jpts_36_647 crossref_primary_10_1016_j_jamda_2023_10_001 crossref_primary_10_1093_aje_kwae085 crossref_primary_10_1289_EHP12500 crossref_primary_10_1093_aje_kwae065 crossref_primary_10_1093_aje_kwae197 crossref_primary_10_1001_jamanetworkopen_2023_25907 crossref_primary_10_1016_j_annepidem_2024_02_006 crossref_primary_10_1038_s41370_024_00698_3 |
| Cites_doi | 10.1016/0270-0255(86)90088-6 10.1177/0962280210386207 10.1214/aos/1176344552 10.1186/s12884-019-2224-8 10.1097/EDE.0b013e3182576cdb 10.1093/oxfordjournals.aje.a117592 10.1093/aje/kwx348 10.1093/ije/dyu272 10.1093/aje/kwq472 10.1186/1471-2288-14-118 10.1198/000313002753631330 10.1097/EDE.0b013e31818ef366 10.1016/S2352-3018(21)00150-8 10.4135/9781412985079 10.1093/ije/dyv135 10.1097/EDE.0000000000001493 10.1093/aje/kwn164 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2022 The Author(s) 2022. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2022 – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7T2 7TK 7U7 7U9 C1K H94 K9. NAPCQ 7X8 5PM ADTOC UNPAY |
| DOI | 10.1093/aje/kwac179 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Health and Safety Science Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Virology and AIDS Abstracts Toxicology Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Safety Science Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | Nursing & Allied Health Premium MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1476-6256 |
| EndPage | 10 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:10144620 PMC10144620 36222655 10_1093_aje_kwac179 10.1093/aje/kwac179 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: T32 AI007001 – fundername: NICHD NIH HHS grantid: P2C HD050924 – fundername: NHLBI NIH HHS grantid: U01 HL146194 – fundername: NIAID NIH HHS grantid: P30 AI050410 – fundername: NIAID NIH HHS grantid: R01 AI157758 – fundername: FIC NIH HHS grantid: K01 TW010857 – fundername: NICHD NIH HHS grantid: T32 HD052468 – fundername: NICHD NIH HHS grantid: R01 HD087119 – fundername: ; grantid: R01AI157758; R01HD087119; P30AI150410; T32AI007001; T32HD52468; K01TW010857 |
| GroupedDBID | --- -DZ -E4 -~X ..I .2P .55 .GJ .I3 .XZ .ZR 0R~ 186 1CY 1TH 23M 2WC 354 3O- 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6J9 70D 85S 8F7 AABZA AACZT AAILS AAJKP AAJQQ AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAWDT AAWTL AAYJJ ABDFA ABEFU ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABLJU ABNGD ABNHQ ABNKS ABOCM ABPTD ABQLI ABQTQ ABSMQ ABVGC ABXVV ABZBJ ACFRR ACGFO ACGFS ACGOD ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACZBC ADBBV ADCFL ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADMHG ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHKS AEJOX AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFIYH AFOFC AFRAH AFSHK AFYAG AGINJ AGKEF AGKRT AGMDO AGSYK AHMBA AHMMS AHXPO AI. AIAGR AIJHB AJDVS AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APJGH APWMN AQDSO AQKUS ASPBG ATGXG ATTQO AVNTJ AVWKF AXUDD AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM BZKNY C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD D~K E3Z EBS EE~ EIHJH EJD EMOBN F5P F9B FEDTE FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IH2 IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z M49 MBLQV ML0 N9A NEJ NGC NOMLY NOYVH NTWIH NVLIB O0~ O9- OAWHX OBFPC OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P P6G PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD QZG R44 RD5 RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCURE TEORI TJX TMA TR2 UAP UBC UHB UPT VH1 W8F WOQ X7H X7M YAYTL YF5 YKOAZ YOC YQI YROCO YSK YXANX Z0Y ZGI ZKX ZXP ~91 AAYXX AHGBF AJBYB CITATION AGORE CGR CUY CVF ECM EIF NPM 7QP 7T2 7TK 7U7 7U9 C1K H94 K9. NAPCQ 7X8 5PM ADTOC AGQPQ UNPAY |
| ID | FETCH-LOGICAL-c507t-572d090043564bdbde6be612486699f6720777fd59dc84bd5194f004150233fb3 |
| IEDL.DBID | UNPAY |
| ISSN | 0002-9262 1476-6256 |
| IngestDate | Sun Oct 26 03:39:10 EDT 2025 Tue Sep 30 17:14:52 EDT 2025 Thu Oct 02 06:27:40 EDT 2025 Mon Oct 06 18:13:41 EDT 2025 Mon Jul 21 02:03:06 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Wed Oct 01 02:03:58 EDT 2025 Wed Apr 02 07:04:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | generalized computation imputation error missing data bias precision |
| Language | English |
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2022. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c507t-572d090043564bdbde6be612486699f6720777fd59dc84bd5194f004150233fb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10144620/pdf/kwac179.pdf |
| PMID | 36222655 |
| PQID | 2842564661 |
| PQPubID | 41038 |
| PageCount | 5 |
| ParticipantIDs | unpaywall_primary_10_1093_aje_kwac179 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10144620 proquest_miscellaneous_2724240227 proquest_journals_2842564661 pubmed_primary_36222655 crossref_citationtrail_10_1093_aje_kwac179 crossref_primary_10_1093_aje_kwac179 oup_primary_10_1093_aje_kwac179 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-06 |
| PublicationDateYYYYMMDD | 2023-01-06 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | American journal of epidemiology |
| PublicationTitleAlternate | Am J Epidemiol |
| PublicationYear | 2023 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Perkins (2023042815420406800_ref2) 2018; 187 Snowden (2023042815420406800_ref6) 2011; 173 Cole (2023042815420406800_ref18) 2008; 168 Greenland (2023042815420406800_ref1) 1995; 142 Cole (2023042815420406800_ref8) 2009; 20 Orchard (2023042815420406800_ref11) 1972 Edwards (2023042815420406800_ref13) 2015; 44 Stefanski (2023042815420406800_ref17) 2002; 56 Gill (2023042815420406800_ref12) 1997 Robins (2023042815420406800_ref7) 1986; 7 Allison (2023042815420406800_ref5) 2002 Price (2023042815420406800_ref4) 2019; 19 Bell (2023042815420406800_ref15) 2014; 14 Efron (2023042815420406800_ref10) 1979; 7 Zivich (2023042815420406800_ref16) 2022; 33 Petersen (2023042815420406800_ref19) 2012; 21 Robins (2023042815420406800_ref20) 1999 Eekhout (2023042815420406800_ref14) 2012; 23 Westreich (2023042815420406800_ref9) 2015; 44 Price (2023042815420406800_ref3) 2021; 8 37946324 - Am J Epidemiol. 2024 Feb 5;193(3):561. doi: 10.1093/aje/kwad215. |
| References_xml | – volume: 7 start-page: 1393 issue: 9–12 year: 1986 ident: 2023042815420406800_ref7 article-title: A new approach to causal inference in mortality studies with a sustained exposure period: application to control of the healthy worker survivor effect publication-title: Math Modelling. doi: 10.1016/0270-0255(86)90088-6 – start-page: 697 volume-title: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics year: 1972 ident: 2023042815420406800_ref11 – volume: 21 start-page: 31 issue: 1 year: 2012 ident: 2023042815420406800_ref19 article-title: Diagnosing and responding to violations in the positivity assumption publication-title: Stat Methods Med Res. doi: 10.1177/0962280210386207 – volume: 7 start-page: 1 year: 1979 ident: 2023042815420406800_ref10 article-title: Bootstrap methods: another look at the jackknife publication-title: Ann Stat. doi: 10.1214/aos/1176344552 – volume: 19 start-page: 81 issue: 1 year: 2019 ident: 2023042815420406800_ref4 article-title: Intramuscular 17-hydroxyprogesterone caproate to prevent preterm birth among HIV-infected women in Zambia: study protocol of the IPOP randomized trial publication-title: BMC Pregnancy Childbirth. doi: 10.1186/s12884-019-2224-8 – volume: 23 start-page: 729 issue: 5 year: 2012 ident: 2023042815420406800_ref14 article-title: Missing data: a systematic review of how they are reported and handled publication-title: Epidemiology. doi: 10.1097/EDE.0b013e3182576cdb – volume: 142 start-page: 1255 issue: 12 year: 1995 ident: 2023042815420406800_ref1 article-title: A critical look at methods for handling missing covariates in epidemiologic regression analyses publication-title: Am J Epidemiol. doi: 10.1093/oxfordjournals.aje.a117592 – volume: 187 start-page: 568 issue: 3 year: 2018 ident: 2023042815420406800_ref2 article-title: Principled approaches to missing data in epidemiologic studies publication-title: Am J Epidemiol. doi: 10.1093/aje/kwx348 – volume: 44 start-page: 1452 issue: 4 year: 2015 ident: 2023042815420406800_ref13 article-title: All your data are always missing: incorporating bias due to measurement error into the potential outcomes framework publication-title: Int J Epidemiol. doi: 10.1093/ije/dyu272 – volume-title: Statistical Models in Epidemiology, the Environment, and Clinical Trials year: 1999 ident: 2023042815420406800_ref20 – volume: 173 start-page: 731 issue: 7 year: 2011 ident: 2023042815420406800_ref6 article-title: Implementation of G-computation on a simulated data set: demonstration of a causal inference technique publication-title: Am J Epidemiol. doi: 10.1093/aje/kwq472 – volume: 14 start-page: 118 year: 2014 ident: 2023042815420406800_ref15 article-title: Handling missing data in RCTs; a review of the top medical journals publication-title: BMC Med Res Methodol. doi: 10.1186/1471-2288-14-118 – volume: 56 start-page: 29 year: 2002 ident: 2023042815420406800_ref17 article-title: The calculus of M-estimation publication-title: Am Stat. doi: 10.1198/000313002753631330 – volume: 20 start-page: 3 issue: 1 year: 2009 ident: 2023042815420406800_ref8 article-title: The consistency statement in causal inference: a definition or an assumption? publication-title: Epidemiology. doi: 10.1097/EDE.0b013e31818ef366 – volume: 8 start-page: e605 issue: 10 year: 2021 ident: 2023042815420406800_ref3 article-title: Weekly 17 alpha-hydroxyprogesterone caproate to prevent preterm birth among women living with HIV: a randomised, double-blind, placebo-controlled trial publication-title: Lancet HIV. doi: 10.1016/S2352-3018(21)00150-8 – volume-title: Missing Data year: 2002 ident: 2023042815420406800_ref5 doi: 10.4135/9781412985079 – volume: 44 start-page: 1731 issue: 5 year: 2015 ident: 2023042815420406800_ref9 article-title: Imputation approaches for potential outcomes in causal inference publication-title: Int J Epidemiol. doi: 10.1093/ije/dyv135 – volume-title: Proceedings of the First Seattle Symposium in Biostatistics year: 1997 ident: 2023042815420406800_ref12 – volume: 33 start-page: 559 issue: 4 year: 2022 ident: 2023042815420406800_ref16 article-title: On the use of covariate supersets for identification conditions publication-title: Epidemiology doi: 10.1097/EDE.0000000000001493 – volume: 168 start-page: 656 issue: 6 year: 2008 ident: 2023042815420406800_ref18 article-title: Constructing inverse probability weights for marginal structural models publication-title: Am J Epidemiol. doi: 10.1093/aje/kwn164 – reference: 37946324 - Am J Epidemiol. 2024 Feb 5;193(3):561. doi: 10.1093/aje/kwad215. |
| SSID | ssj0011950 |
| Score | 2.50239 |
| SecondaryResourceType | review_article |
| Snippet | Abstract
Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few... Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6 |
| SubjectTerms | Bias Clinical outcomes Clinical trials Data collection Data Interpretation, Statistical Epidemiologic Studies Epidemiology Humans Medical research Missing data Randomized Controlled Trials as Topic |
| Title | Missing Outcome Data in Epidemiologic Studies |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36222655 https://www.proquest.com/docview/2842564661 https://www.proquest.com/docview/2724240227 https://pubmed.ncbi.nlm.nih.gov/PMC10144620 https://pmc.ncbi.nlm.nih.gov/articles/PMC10144620/pdf/kwac179.pdf |
| UnpaywallVersion | submittedVersion |
| Volume | 192 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1476-6256 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011950 issn: 0002-9262 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1476-6256 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0011950 issn: 0002-9262 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1476-6256 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0011950 issn: 0002-9262 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED7WFLrB6Lau27z-8qB9KcjxFEmOH0uWrgyS5qGB7slIlsyypm5obcr21-9ky27TjVLYm0EfsuU7oU-6u08A-5FK0XFMTKSmnDBjQqJopomqgkp9JYSx1cijsTiZsm_nvMkmtLUwi0vsJVWzIJ9fBvnsR5Vb2eSIdSejgb1blgkadhc6617cyhQ9KsDnFVgVHOl4B1an48nR94b2Wj28qsIoEgS5vnA1eriR78qfpulhaVVaqnS7Rzj_zpt8XuYL-etWzuf3FqXjV6Da4VS5KBdBWagg_f1A6fG_xvsa1h1l9Y9q-Bt4ZvINWBu5oPwGvKyP_vy6ouktkBEaE1dE_7Qs0J-N_0UW0p_l_vDuNlqEuwzGTZgeD88GJ8TdykBS5I4F4RHVYWwjiFwwpZU2QhnkSawvRBxnIqJhFEWZ5rFO-whAisgyK-vFkR70MtV7B538KjcfwNeapaGWXDEkNYaGsazkDanhuGFHYunBYWOVJHWS5fbmjHlSh857CZowcT_Fg_0WvKiVOv4N20PzPo7YbkyfuAl9k1AbrhQM2YwHn9pmnIo2viJzc1UiJrK1NlaT0YP3tae070GegESXcw_6Sz7UAqzM93ILekMl9914gAcHrbs99v0fn4jbghcUTVKdJ4lt6BTXpdlBhlWoXVj5ev55182kP7zGJU8 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS-QwEB7OFU5B7jzP06qnPdCXg3RLNkm3j-IP5GDVBxfOp5I0Ke7tWhdtkbu_3kmb9lwVEXwr5CNtOhPyJTPzBWA3Uik6jomJ1JQTZkxIFM00UVVQqa-EMLYaeXAqTobs12_eZBPaWpjpNfaSqlGQT66DfHRV5VY2OWLd88GBvVuWCRp2pzrrju9lih4V4PMczAuOdLwD88PT8_3LhvZaPbyqwigSBLm-cDV6uJHvyj-m6WFmVZqpdHtEOJ_nTS6U-VT-vZeTyaNF6fgzqHY4VS7KOCgLFaT_nig9vmu8y_DJUVZ_v4Z_gQ8mX4GPAxeUX4Gl-ujPryuavgIZoDFxRfTPygL92fiHspD-KPeP_t9Gi3CXwbgKw-Oji4MT4m5lIClyx4LwiOowthFELpjSShuhDPIk1hcijjMR0TCKokzzWKd9BCBFZJmV9eJID3qZ6n2DTn6Tm3XwtWZpqCVXDEmNoWEsK3lDajhu2JFYevCzsUqSOslye3PGJKlD570ETZi4n-LBbgue1kodL8N20LyvI7Ya0yduQt8l1IYrBUM248GPthmnoo2vyNzclIiJbK2N1WT0YK32lPY9yBOQ6HLuQX_Gh1qAlfmebUFvqOS-Gw_wYK91t9e-f-ONuE1YpGiS6jxJbEGnuC3Nd2RYhdp2c-gB4qUkXg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Missing+Outcome+Data+in+Epidemiologic+Studies&rft.jtitle=American+journal+of+epidemiology&rft.au=Cole%2C+Stephen+R&rft.au=Zivich%2C+Paul+N&rft.au=Edwards%2C+Jessie+K&rft.au=Ross%2C+Rachael+K&rft.date=2023-01-06&rft.pub=Oxford+University+Press&rft.issn=0002-9262&rft.eissn=1476-6256&rft.volume=192&rft.issue=1&rft.spage=6&rft.epage=10&rft_id=info:doi/10.1093%2Faje%2Fkwac179&rft_id=info%3Apmid%2F36222655&rft.externalDocID=PMC10144620 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9262&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9262&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9262&client=summon |