Missing Outcome Data in Epidemiologic Studies

Abstract Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple published examples detailing types of missing data and illustrating their possible impact on results. Here we take an example randomized tr...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of epidemiology Vol. 192; no. 1; pp. 6 - 10
Main Authors Cole, Stephen R, Zivich, Paul N, Edwards, Jessie K, Ross, Rachael K, Shook-Sa, Bonnie E, Price, Joan T., Stringer, Jeffrey S A
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 06.01.2023
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN0002-9262
1476-6256
1476-6256
DOI10.1093/aje/kwac179

Cover

Abstract Abstract Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple published examples detailing types of missing data and illustrating their possible impact on results. Here we take an example randomized trial that was not subject to missing data and induce missing data to illustrate 4 scenarios in which outcomes are 1) missing completely at random, 2) missing at random with positivity, 3) missing at random without positivity, and 4) missing not at random. We demonstrate that accounting for missing data is generally a better strategy than ignoring missing data, which unfortunately remains a standard approach in epidemiology.
AbstractList Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple published examples detailing types of missing data and illustrating their possible impact on results. Here we take an example randomized trial that was not subject to missing data and induce missing data to illustrate 4 scenarios in which outcomes are 1) missing completely at random, 2) missing at random with positivity, 3) missing at random without positivity, and 4) missing not at random. We demonstrate that accounting for missing data is generally a better strategy than ignoring missing data, which unfortunately remains a standard approach in epidemiology.
Abstract Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple published examples detailing types of missing data and illustrating their possible impact on results. Here we take an example randomized trial that was not subject to missing data and induce missing data to illustrate 4 scenarios in which outcomes are 1) missing completely at random, 2) missing at random with positivity, 3) missing at random without positivity, and 4) missing not at random. We demonstrate that accounting for missing data is generally a better strategy than ignoring missing data, which unfortunately remains a standard approach in epidemiology.
Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple published examples detailing types of missing data and illustrating their possible impact on results. Here we take an example randomized trial that was not subject to missing data and induce missing data to illustrate 4 scenarios in which outcomes are 1) missing completely at random, 2) missing at random with positivity, 3) missing at random without positivity, and 4) missing not at random. We demonstrate that accounting for missing data is generally a better strategy than ignoring missing data, which unfortunately remains a standard approach in epidemiology.Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple published examples detailing types of missing data and illustrating their possible impact on results. Here we take an example randomized trial that was not subject to missing data and induce missing data to illustrate 4 scenarios in which outcomes are 1) missing completely at random, 2) missing at random with positivity, 3) missing at random without positivity, and 4) missing not at random. We demonstrate that accounting for missing data is generally a better strategy than ignoring missing data, which unfortunately remains a standard approach in epidemiology.
Author Ross, Rachael K
Price, Joan T.
Stringer, Jeffrey S A
Zivich, Paul N
Cole, Stephen R
Shook-Sa, Bonnie E
Edwards, Jessie K
Author_xml – sequence: 1
  givenname: Stephen R
  surname: Cole
  fullname: Cole, Stephen R
  email: cole@unc.edu
– sequence: 2
  givenname: Paul N
  surname: Zivich
  fullname: Zivich, Paul N
  email: pzivich@live.unc.edu
– sequence: 3
  givenname: Jessie K
  surname: Edwards
  fullname: Edwards, Jessie K
– sequence: 4
  givenname: Rachael K
  surname: Ross
  fullname: Ross, Rachael K
  email: rkross@live.unc.edu
– sequence: 5
  givenname: Bonnie E
  surname: Shook-Sa
  fullname: Shook-Sa, Bonnie E
  email: bshooksa@email.unc.edu
– sequence: 6
  givenname: Joan T.
  surname: Price
  fullname: Price, Joan T.
  email: joni@email.unc.edu
– sequence: 7
  givenname: Jeffrey S A
  surname: Stringer
  fullname: Stringer, Jeffrey S A
  email: jeffrey_stringer@med.unc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36222655$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1P3DAUxC1EVRbaE_cqUiVUqU15fvHH-oQqSj8kEIeWs-U4ztbbxA5xUsR_X6PdthQJTu_wfjOamX2yG2JwhBxSeE9BVcdm7Y5_3hhLpdohC8qkKAVysUsWAIClQoF7ZD-lNQClisNzslcJRBScL0h54VPyYVVczpONvSs-mskUPhRng29c72MXV94W36a58S69IM9a0yX3cnsPyNWns--nX8rzy89fTz-cl5aDnEousQEFwCouWN3UjRO1ExTZUgilWiERpJRtw1VjlxngVLE245QDVlVbVwfk3cZ3DoO5vTFdp4fR92a81RT0XWudW-tt64yfbPBhrnvXWBem0fyTROP1_5_gf-hV_JWdKGMCITu82TqM8Xp2adK9T9Z1nQkuzkmjRIYMEGVGXz9A13EeQ55D45Ll4ZkQNFOv7kf6m-XP8hmgG8COMaXRtdr6yUw-3iX03SM93z7QPL3K0YaO8_Ak-Bud5rHg
CitedBy_id crossref_primary_10_1186_s12879_023_08787_8
crossref_primary_10_1016_j_scitotenv_2024_172445
crossref_primary_10_1093_aje_kwad216
crossref_primary_10_1016_j_jhep_2024_05_022
crossref_primary_10_1093_aje_kwad215
crossref_primary_10_1097_EDE_0000000000001627
crossref_primary_10_1589_jpts_36_647
crossref_primary_10_1016_j_jamda_2023_10_001
crossref_primary_10_1093_aje_kwae085
crossref_primary_10_1289_EHP12500
crossref_primary_10_1093_aje_kwae065
crossref_primary_10_1093_aje_kwae197
crossref_primary_10_1001_jamanetworkopen_2023_25907
crossref_primary_10_1016_j_annepidem_2024_02_006
crossref_primary_10_1038_s41370_024_00698_3
Cites_doi 10.1016/0270-0255(86)90088-6
10.1177/0962280210386207
10.1214/aos/1176344552
10.1186/s12884-019-2224-8
10.1097/EDE.0b013e3182576cdb
10.1093/oxfordjournals.aje.a117592
10.1093/aje/kwx348
10.1093/ije/dyu272
10.1093/aje/kwq472
10.1186/1471-2288-14-118
10.1198/000313002753631330
10.1097/EDE.0b013e31818ef366
10.1016/S2352-3018(21)00150-8
10.4135/9781412985079
10.1093/ije/dyv135
10.1097/EDE.0000000000001493
10.1093/aje/kwn164
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2022
The Author(s) 2022. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2022
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T2
7TK
7U7
7U9
C1K
H94
K9.
NAPCQ
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/aje/kwac179
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Health and Safety Science Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Virology and AIDS Abstracts
Toxicology Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Safety Science Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium
MEDLINE
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1476-6256
EndPage 10
ExternalDocumentID oai:pubmedcentral.nih.gov:10144620
PMC10144620
36222655
10_1093_aje_kwac179
10.1093/aje/kwac179
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: T32 AI007001
– fundername: NICHD NIH HHS
  grantid: P2C HD050924
– fundername: NHLBI NIH HHS
  grantid: U01 HL146194
– fundername: NIAID NIH HHS
  grantid: P30 AI050410
– fundername: NIAID NIH HHS
  grantid: R01 AI157758
– fundername: FIC NIH HHS
  grantid: K01 TW010857
– fundername: NICHD NIH HHS
  grantid: T32 HD052468
– fundername: NICHD NIH HHS
  grantid: R01 HD087119
– fundername: ;
  grantid: R01AI157758; R01HD087119; P30AI150410; T32AI007001; T32HD52468; K01TW010857
GroupedDBID ---
-DZ
-E4
-~X
..I
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
186
1CY
1TH
23M
2WC
354
3O-
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6J9
70D
85S
8F7
AABZA
AACZT
AAILS
AAJKP
AAJQQ
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAWTL
AAYJJ
ABDFA
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABLJU
ABNGD
ABNHQ
ABNKS
ABOCM
ABPTD
ABQLI
ABQTQ
ABSMQ
ABVGC
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACZBC
ADBBV
ADCFL
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADMHG
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEHKS
AEJOX
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFIYH
AFOFC
AFRAH
AFSHK
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGSYK
AHMBA
AHMMS
AHXPO
AI.
AIAGR
AIJHB
AJDVS
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APJGH
APWMN
AQDSO
AQKUS
ASPBG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
D~K
E3Z
EBS
EE~
EIHJH
EJD
EMOBN
F5P
F9B
FEDTE
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
MBLQV
ML0
N9A
NEJ
NGC
NOMLY
NOYVH
NTWIH
NVLIB
O0~
O9-
OAWHX
OBFPC
OCZFY
ODMLO
OHH
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
P6G
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
QZG
R44
RD5
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCURE
TEORI
TJX
TMA
TR2
UAP
UBC
UHB
UPT
VH1
W8F
WOQ
X7H
X7M
YAYTL
YF5
YKOAZ
YOC
YQI
YROCO
YSK
YXANX
Z0Y
ZGI
ZKX
ZXP
~91
AAYXX
AHGBF
AJBYB
CITATION
AGORE
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T2
7TK
7U7
7U9
C1K
H94
K9.
NAPCQ
7X8
5PM
ADTOC
AGQPQ
UNPAY
ID FETCH-LOGICAL-c507t-572d090043564bdbde6be612486699f6720777fd59dc84bd5194f004150233fb3
IEDL.DBID UNPAY
ISSN 0002-9262
1476-6256
IngestDate Sun Oct 26 03:39:10 EDT 2025
Tue Sep 30 17:14:52 EDT 2025
Thu Oct 02 06:27:40 EDT 2025
Mon Oct 06 18:13:41 EDT 2025
Mon Jul 21 02:03:06 EDT 2025
Thu Apr 24 23:06:36 EDT 2025
Wed Oct 01 02:03:58 EDT 2025
Wed Apr 02 07:04:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords generalized computation
imputation
error
missing data
bias
precision
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2022. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-572d090043564bdbde6be612486699f6720777fd59dc84bd5194f004150233fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10144620/pdf/kwac179.pdf
PMID 36222655
PQID 2842564661
PQPubID 41038
PageCount 5
ParticipantIDs unpaywall_primary_10_1093_aje_kwac179
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10144620
proquest_miscellaneous_2724240227
proquest_journals_2842564661
pubmed_primary_36222655
crossref_citationtrail_10_1093_aje_kwac179
crossref_primary_10_1093_aje_kwac179
oup_primary_10_1093_aje_kwac179
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-06
PublicationDateYYYYMMDD 2023-01-06
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle American journal of epidemiology
PublicationTitleAlternate Am J Epidemiol
PublicationYear 2023
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Perkins (2023042815420406800_ref2) 2018; 187
Snowden (2023042815420406800_ref6) 2011; 173
Cole (2023042815420406800_ref18) 2008; 168
Greenland (2023042815420406800_ref1) 1995; 142
Cole (2023042815420406800_ref8) 2009; 20
Orchard (2023042815420406800_ref11) 1972
Edwards (2023042815420406800_ref13) 2015; 44
Stefanski (2023042815420406800_ref17) 2002; 56
Gill (2023042815420406800_ref12) 1997
Robins (2023042815420406800_ref7) 1986; 7
Allison (2023042815420406800_ref5) 2002
Price (2023042815420406800_ref4) 2019; 19
Bell (2023042815420406800_ref15) 2014; 14
Efron (2023042815420406800_ref10) 1979; 7
Zivich (2023042815420406800_ref16) 2022; 33
Petersen (2023042815420406800_ref19) 2012; 21
Robins (2023042815420406800_ref20) 1999
Eekhout (2023042815420406800_ref14) 2012; 23
Westreich (2023042815420406800_ref9) 2015; 44
Price (2023042815420406800_ref3) 2021; 8
37946324 - Am J Epidemiol. 2024 Feb 5;193(3):561. doi: 10.1093/aje/kwad215.
References_xml – volume: 7
  start-page: 1393
  issue: 9–12
  year: 1986
  ident: 2023042815420406800_ref7
  article-title: A new approach to causal inference in mortality studies with a sustained exposure period: application to control of the healthy worker survivor effect
  publication-title: Math Modelling.
  doi: 10.1016/0270-0255(86)90088-6
– start-page: 697
  volume-title: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics
  year: 1972
  ident: 2023042815420406800_ref11
– volume: 21
  start-page: 31
  issue: 1
  year: 2012
  ident: 2023042815420406800_ref19
  article-title: Diagnosing and responding to violations in the positivity assumption
  publication-title: Stat Methods Med Res.
  doi: 10.1177/0962280210386207
– volume: 7
  start-page: 1
  year: 1979
  ident: 2023042815420406800_ref10
  article-title: Bootstrap methods: another look at the jackknife
  publication-title: Ann Stat.
  doi: 10.1214/aos/1176344552
– volume: 19
  start-page: 81
  issue: 1
  year: 2019
  ident: 2023042815420406800_ref4
  article-title: Intramuscular 17-hydroxyprogesterone caproate to prevent preterm birth among HIV-infected women in Zambia: study protocol of the IPOP randomized trial
  publication-title: BMC Pregnancy Childbirth.
  doi: 10.1186/s12884-019-2224-8
– volume: 23
  start-page: 729
  issue: 5
  year: 2012
  ident: 2023042815420406800_ref14
  article-title: Missing data: a systematic review of how they are reported and handled
  publication-title: Epidemiology.
  doi: 10.1097/EDE.0b013e3182576cdb
– volume: 142
  start-page: 1255
  issue: 12
  year: 1995
  ident: 2023042815420406800_ref1
  article-title: A critical look at methods for handling missing covariates in epidemiologic regression analyses
  publication-title: Am J Epidemiol.
  doi: 10.1093/oxfordjournals.aje.a117592
– volume: 187
  start-page: 568
  issue: 3
  year: 2018
  ident: 2023042815420406800_ref2
  article-title: Principled approaches to missing data in epidemiologic studies
  publication-title: Am J Epidemiol.
  doi: 10.1093/aje/kwx348
– volume: 44
  start-page: 1452
  issue: 4
  year: 2015
  ident: 2023042815420406800_ref13
  article-title: All your data are always missing: incorporating bias due to measurement error into the potential outcomes framework
  publication-title: Int J Epidemiol.
  doi: 10.1093/ije/dyu272
– volume-title: Statistical Models in Epidemiology, the Environment, and Clinical Trials
  year: 1999
  ident: 2023042815420406800_ref20
– volume: 173
  start-page: 731
  issue: 7
  year: 2011
  ident: 2023042815420406800_ref6
  article-title: Implementation of G-computation on a simulated data set: demonstration of a causal inference technique
  publication-title: Am J Epidemiol.
  doi: 10.1093/aje/kwq472
– volume: 14
  start-page: 118
  year: 2014
  ident: 2023042815420406800_ref15
  article-title: Handling missing data in RCTs; a review of the top medical journals
  publication-title: BMC Med Res Methodol.
  doi: 10.1186/1471-2288-14-118
– volume: 56
  start-page: 29
  year: 2002
  ident: 2023042815420406800_ref17
  article-title: The calculus of M-estimation
  publication-title: Am Stat.
  doi: 10.1198/000313002753631330
– volume: 20
  start-page: 3
  issue: 1
  year: 2009
  ident: 2023042815420406800_ref8
  article-title: The consistency statement in causal inference: a definition or an assumption?
  publication-title: Epidemiology.
  doi: 10.1097/EDE.0b013e31818ef366
– volume: 8
  start-page: e605
  issue: 10
  year: 2021
  ident: 2023042815420406800_ref3
  article-title: Weekly 17 alpha-hydroxyprogesterone caproate to prevent preterm birth among women living with HIV: a randomised, double-blind, placebo-controlled trial
  publication-title: Lancet HIV.
  doi: 10.1016/S2352-3018(21)00150-8
– volume-title: Missing Data
  year: 2002
  ident: 2023042815420406800_ref5
  doi: 10.4135/9781412985079
– volume: 44
  start-page: 1731
  issue: 5
  year: 2015
  ident: 2023042815420406800_ref9
  article-title: Imputation approaches for potential outcomes in causal inference
  publication-title: Int J Epidemiol.
  doi: 10.1093/ije/dyv135
– volume-title: Proceedings of the First Seattle Symposium in Biostatistics
  year: 1997
  ident: 2023042815420406800_ref12
– volume: 33
  start-page: 559
  issue: 4
  year: 2022
  ident: 2023042815420406800_ref16
  article-title: On the use of covariate supersets for identification conditions
  publication-title: Epidemiology
  doi: 10.1097/EDE.0000000000001493
– volume: 168
  start-page: 656
  issue: 6
  year: 2008
  ident: 2023042815420406800_ref18
  article-title: Constructing inverse probability weights for marginal structural models
  publication-title: Am J Epidemiol.
  doi: 10.1093/aje/kwn164
– reference: 37946324 - Am J Epidemiol. 2024 Feb 5;193(3):561. doi: 10.1093/aje/kwad215.
SSID ssj0011950
Score 2.50239
SecondaryResourceType review_article
Snippet Abstract Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few...
Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6
SubjectTerms Bias
Clinical outcomes
Clinical trials
Data collection
Data Interpretation, Statistical
Epidemiologic Studies
Epidemiology
Humans
Medical research
Missing data
Randomized Controlled Trials as Topic
Title Missing Outcome Data in Epidemiologic Studies
URI https://www.ncbi.nlm.nih.gov/pubmed/36222655
https://www.proquest.com/docview/2842564661
https://www.proquest.com/docview/2724240227
https://pubmed.ncbi.nlm.nih.gov/PMC10144620
https://pmc.ncbi.nlm.nih.gov/articles/PMC10144620/pdf/kwac179.pdf
UnpaywallVersion submittedVersion
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1476-6256
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011950
  issn: 0002-9262
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1476-6256
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0011950
  issn: 0002-9262
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1476-6256
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0011950
  issn: 0002-9262
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED7WFLrB6Lau27z-8qB9KcjxFEmOH0uWrgyS5qGB7slIlsyypm5obcr21-9ky27TjVLYm0EfsuU7oU-6u08A-5FK0XFMTKSmnDBjQqJopomqgkp9JYSx1cijsTiZsm_nvMkmtLUwi0vsJVWzIJ9fBvnsR5Vb2eSIdSejgb1blgkadhc6617cyhQ9KsDnFVgVHOl4B1an48nR94b2Wj28qsIoEgS5vnA1eriR78qfpulhaVVaqnS7Rzj_zpt8XuYL-etWzuf3FqXjV6Da4VS5KBdBWagg_f1A6fG_xvsa1h1l9Y9q-Bt4ZvINWBu5oPwGvKyP_vy6ouktkBEaE1dE_7Qs0J-N_0UW0p_l_vDuNlqEuwzGTZgeD88GJ8TdykBS5I4F4RHVYWwjiFwwpZU2QhnkSawvRBxnIqJhFEWZ5rFO-whAisgyK-vFkR70MtV7B538KjcfwNeapaGWXDEkNYaGsazkDanhuGFHYunBYWOVJHWS5fbmjHlSh857CZowcT_Fg_0WvKiVOv4N20PzPo7YbkyfuAl9k1AbrhQM2YwHn9pmnIo2viJzc1UiJrK1NlaT0YP3tae070GegESXcw_6Sz7UAqzM93ILekMl9914gAcHrbs99v0fn4jbghcUTVKdJ4lt6BTXpdlBhlWoXVj5ev55182kP7zGJU8
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS-QwEB7OFU5B7jzP06qnPdCXg3RLNkm3j-IP5GDVBxfOp5I0Ke7tWhdtkbu_3kmb9lwVEXwr5CNtOhPyJTPzBWA3Uik6jomJ1JQTZkxIFM00UVVQqa-EMLYaeXAqTobs12_eZBPaWpjpNfaSqlGQT66DfHRV5VY2OWLd88GBvVuWCRp2pzrrju9lih4V4PMczAuOdLwD88PT8_3LhvZaPbyqwigSBLm-cDV6uJHvyj-m6WFmVZqpdHtEOJ_nTS6U-VT-vZeTyaNF6fgzqHY4VS7KOCgLFaT_nig9vmu8y_DJUVZ_v4Z_gQ8mX4GPAxeUX4Gl-ujPryuavgIZoDFxRfTPygL92fiHspD-KPeP_t9Gi3CXwbgKw-Oji4MT4m5lIClyx4LwiOowthFELpjSShuhDPIk1hcijjMR0TCKokzzWKd9BCBFZJmV9eJID3qZ6n2DTn6Tm3XwtWZpqCVXDEmNoWEsK3lDajhu2JFYevCzsUqSOslye3PGJKlD570ETZi4n-LBbgue1kodL8N20LyvI7Ya0yduQt8l1IYrBUM248GPthmnoo2vyNzclIiJbK2N1WT0YK32lPY9yBOQ6HLuQX_Gh1qAlfmebUFvqOS-Gw_wYK91t9e-f-ONuE1YpGiS6jxJbEGnuC3Nd2RYhdp2c-gB4qUkXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Missing+Outcome+Data+in+Epidemiologic+Studies&rft.jtitle=American+journal+of+epidemiology&rft.au=Cole%2C+Stephen+R&rft.au=Zivich%2C+Paul+N&rft.au=Edwards%2C+Jessie+K&rft.au=Ross%2C+Rachael+K&rft.date=2023-01-06&rft.pub=Oxford+University+Press&rft.issn=0002-9262&rft.eissn=1476-6256&rft.volume=192&rft.issue=1&rft.spage=6&rft.epage=10&rft_id=info:doi/10.1093%2Faje%2Fkwac179&rft_id=info%3Apmid%2F36222655&rft.externalDocID=PMC10144620
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9262&client=summon