Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning

Falls are a significant threat to the health and independence of elderly people and represent an enormous burden on the healthcare system. Successfully predicting falls could be of great help, yet this requires a timely and accurate fall risk assessment. Gait abnormalities are one of the best predic...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 18; p. 5373
Main Authors Kiprijanovska, Ivana, Gjoreski, Hristijan, Gams, Matjaž
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 19.09.2020
MDPI AG
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s20185373

Cover

Abstract Falls are a significant threat to the health and independence of elderly people and represent an enormous burden on the healthcare system. Successfully predicting falls could be of great help, yet this requires a timely and accurate fall risk assessment. Gait abnormalities are one of the best predictive signs of underlying locomotion conditions and precursors of falls. The advent of wearable sensors and wrist-worn devices provides new opportunities for continuous and unobtrusive monitoring of gait during daily activities, including the identification of unexpected changes in gait. To this end, we present in this paper a novel method for determining gait abnormalities based on a wrist-worn device and a deep neural network. It integrates convolutional and bidirectional long short-term memory layers for successful learning of spatiotemporal features from multiple sensor signals. The proposed method was evaluated using data from 18 subjects, who recorded their normal gait and simulated abnormal gait while wearing impairment glasses. The data consist of inertial measurement unit (IMU) sensor signals obtained from smartwatches that the subjects wore on both wrists. Numerous experiments showed that the proposed method provides better results than the compared methods, achieving 88.9% accuracy, 90.6% sensitivity, and 86.2% specificity in the detection of abnormal walking patterns using data from an accelerometer, gyroscope, and rotation vector sensor. These results indicate that reliable fall risk assessment is possible based on the detection of walking abnormalities with the use of wearable sensors on a wrist.
AbstractList Falls are a significant threat to the health and independence of elderly people and represent an enormous burden on the healthcare system. Successfully predicting falls could be of great help, yet this requires a timely and accurate fall risk assessment. Gait abnormalities are one of the best predictive signs of underlying locomotion conditions and precursors of falls. The advent of wearable sensors and wrist-worn devices provides new opportunities for continuous and unobtrusive monitoring of gait during daily activities, including the identification of unexpected changes in gait. To this end, we present in this paper a novel method for determining gait abnormalities based on a wrist-worn device and a deep neural network. It integrates convolutional and bidirectional long short-term memory layers for successful learning of spatiotemporal features from multiple sensor signals. The proposed method was evaluated using data from 18 subjects, who recorded their normal gait and simulated abnormal gait while wearing impairment glasses. The data consist of inertial measurement unit (IMU) sensor signals obtained from smartwatches that the subjects wore on both wrists. Numerous experiments showed that the proposed method provides better results than the compared methods, achieving 88.9% accuracy, 90.6% sensitivity, and 86.2% specificity in the detection of abnormal walking patterns using data from an accelerometer, gyroscope, and rotation vector sensor. These results indicate that reliable fall risk assessment is possible based on the detection of walking abnormalities with the use of wearable sensors on a wrist.
Falls are a significant threat to the health and independence of elderly people and represent an enormous burden on the healthcare system. Successfully predicting falls could be of great help, yet this requires a timely and accurate fall risk assessment. Gait abnormalities are one of the best predictive signs of underlying locomotion conditions and precursors of falls. The advent of wearable sensors and wrist-worn devices provides new opportunities for continuous and unobtrusive monitoring of gait during daily activities, including the identification of unexpected changes in gait. To this end, we present in this paper a novel method for determining gait abnormalities based on a wrist-worn device and a deep neural network. It integrates convolutional and bidirectional long short-term memory layers for successful learning of spatiotemporal features from multiple sensor signals. The proposed method was evaluated using data from 18 subjects, who recorded their normal gait and simulated abnormal gait while wearing impairment glasses. The data consist of inertial measurement unit (IMU) sensor signals obtained from smartwatches that the subjects wore on both wrists. Numerous experiments showed that the proposed method provides better results than the compared methods, achieving 88.9% accuracy, 90.6% sensitivity, and 86.2% specificity in the detection of abnormal walking patterns using data from an accelerometer, gyroscope, and rotation vector sensor. These results indicate that reliable fall risk assessment is possible based on the detection of walking abnormalities with the use of wearable sensors on a wrist.Falls are a significant threat to the health and independence of elderly people and represent an enormous burden on the healthcare system. Successfully predicting falls could be of great help, yet this requires a timely and accurate fall risk assessment. Gait abnormalities are one of the best predictive signs of underlying locomotion conditions and precursors of falls. The advent of wearable sensors and wrist-worn devices provides new opportunities for continuous and unobtrusive monitoring of gait during daily activities, including the identification of unexpected changes in gait. To this end, we present in this paper a novel method for determining gait abnormalities based on a wrist-worn device and a deep neural network. It integrates convolutional and bidirectional long short-term memory layers for successful learning of spatiotemporal features from multiple sensor signals. The proposed method was evaluated using data from 18 subjects, who recorded their normal gait and simulated abnormal gait while wearing impairment glasses. The data consist of inertial measurement unit (IMU) sensor signals obtained from smartwatches that the subjects wore on both wrists. Numerous experiments showed that the proposed method provides better results than the compared methods, achieving 88.9% accuracy, 90.6% sensitivity, and 86.2% specificity in the detection of abnormal walking patterns using data from an accelerometer, gyroscope, and rotation vector sensor. These results indicate that reliable fall risk assessment is possible based on the detection of walking abnormalities with the use of wearable sensors on a wrist.
Author Gjoreski, Hristijan
Gams, Matjaž
Kiprijanovska, Ivana
AuthorAffiliation 2 Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
3 Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; hristijang@feit.ukim.edu.mk
1 Department of Intelligent Systems, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; matjaz.gams@ijs.si
AuthorAffiliation_xml – name: 2 Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
– name: 3 Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; hristijang@feit.ukim.edu.mk
– name: 1 Department of Intelligent Systems, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; matjaz.gams@ijs.si
Author_xml – sequence: 1
  givenname: Ivana
  surname: Kiprijanovska
  fullname: Kiprijanovska, Ivana
– sequence: 2
  givenname: Hristijan
  orcidid: 0000-0002-0770-4268
  surname: Gjoreski
  fullname: Gjoreski, Hristijan
– sequence: 3
  givenname: Matjaž
  surname: Gams
  fullname: Gams, Matjaž
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32961750$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1rFDEYhQep2A-98A9ILlUYm8nHJHMjLK2tCwuCWnoZ3sm8s6Zmk22SVfrvnXXr0opeJSQnzzk573F1EGLAqnrZ0Hecd_Q0M9poyRV_Uh01golaM0YPHuwPq-OcbyhlnHP9rDrkrGsbJelR5c-xoC0uBhJHcgmukFkfYlqBd8VhJmNM5AK8J59d_k5mOWPOKwyFXGUXluQ6uVzq65gCmQdMxYEnXzDkmDKBMJBzxDVZIKQwqZ9XT0fwGV_cryfV1cWHr2cf68Wny_nZbFFbSVWpJRMgNdAGWsUpxbbjlo-oNZeopeZjw3o1yM6yEcTIlBKgOHZd33bSSuj5STXfcYcIN2ad3ArSnYngzO-DmJYGpqjWo2EoOQy96rRQotV9P-gBYLSKWs5a4BPr7Y61CWu4-zk1sQc21GzrN_v6J_H7nXi96Vc42KmnBP5Rgsc3wX0zy_jDKKmahrYT4PU9IMXbDeZiVi5b9B4Cxk02TAgpmObt1uvVQ6-9yZ_ZToLTncCmmHPC0VhXYDvqydr5f8Z_89eL_3_1FzYRwwU
CitedBy_id crossref_primary_10_1109_JSEN_2023_3305024
crossref_primary_10_3390_s22103613
crossref_primary_10_1016_j_engappai_2023_105993
crossref_primary_10_3390_info12100403
crossref_primary_10_1109_ACCESS_2023_3289220
crossref_primary_10_3389_fbioe_2023_1302911
crossref_primary_10_3390_s23198294
crossref_primary_10_1111_jocn_16680
crossref_primary_10_1016_j_ssci_2024_106551
crossref_primary_10_1016_j_bspc_2021_103321
crossref_primary_10_1016_j_future_2022_09_011
crossref_primary_10_1016_j_medengphy_2023_103960
crossref_primary_10_32604_csse_2024_052931
crossref_primary_10_1007_s11042_023_15079_5
crossref_primary_10_1016_j_mcpdig_2024_05_003
crossref_primary_10_1016_j_mtcomm_2023_106250
crossref_primary_10_1016_j_gaitpost_2023_10_023
crossref_primary_10_3390_s25010266
crossref_primary_10_3390_bioengineering11060544
crossref_primary_10_3390_app15031297
crossref_primary_10_1080_17434440_2021_1988849
crossref_primary_10_3390_s22020493
crossref_primary_10_3390_s21206770
crossref_primary_10_1109_TIM_2024_3436068
crossref_primary_10_3390_healthcare9020149
crossref_primary_10_3389_fbioe_2024_1350135
crossref_primary_10_3390_s24217059
crossref_primary_10_1016_j_compbiomed_2022_105355
crossref_primary_10_3390_s22166275
crossref_primary_10_1007_s00415_022_11251_3
crossref_primary_10_3390_s21175930
crossref_primary_10_1007_s11760_024_03719_8
crossref_primary_10_1055_a_2151_4709
crossref_primary_10_3928_00989134_20240912_03
crossref_primary_10_3390_bios13120998
crossref_primary_10_1093_jcde_qwab054
Cites_doi 10.1109/JBHI.2019.2958879
10.1177/1559827615600137
10.1007/978-3-642-35289-8_5
10.1016/j.maturitas.2013.02.009
10.1162/089976698300017197
10.1023/A:1010933404324
10.3390/s17040825
10.1177/1545968313491004
10.3390/s19081757
10.1097/EDE.0b013e3181e89905
10.1109/TNSRE.2017.2687100
10.1093/gerona/glw019
10.1136/ip.2005.011015
10.1109/TBME.2019.2900863
10.1109/JBHI.2016.2636665
10.1109/JBHI.2015.2450232
10.1145/2513228.2513267
10.3390/s17061321
10.1007/978-3-642-24477-3_1
10.3390/s17122735
10.1162/neco.1997.9.8.1735
10.3390/s140406474
10.1145/3341162.3344856
10.1007/BF02295996
10.3414/ME10-01-0040
10.1145/3136755.3136817
10.1177/1545968314532031
10.1038/s41598-019-38748-8
10.1016/j.jbi.2016.08.003
10.1016/j.inffus.2020.04.004
10.3390/s16060800
10.1007/BF00994018
10.3390/s18051654
10.1016/j.patcog.2017.10.013
10.1109/ICASSP.2019.8682194
10.5220/0006227802230230
10.3390/s16010134
10.1016/j.patcog.2019.107024
10.1016/j.inffus.2011.08.001
10.1109/TST.2014.6838194
10.3390/s131012852
10.1109/ASPDAC.2015.7058994
10.1007/s00508-016-1096-4
10.1109/TIFS.2020.2985628
10.1371/journal.pone.0153240
10.3109/17538157.2014.931851
10.1561/9781601982957
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s20185373
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_2e53adb79847468bbd8daafc70c326a3
10.3390/s20185373
PMC7571106
32961750
10_3390_s20185373
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7X8
PUEGO
5PM
ADRAZ
ADTOC
IAO
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c507t-524a58a01a67300e693c3fe8835e8583f12b7d59c2fa4f2774a73e99b695c5ab3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:42:09 EDT 2025
Sun Oct 26 03:35:23 EDT 2025
Tue Sep 30 16:26:32 EDT 2025
Thu Oct 02 11:34:18 EDT 2025
Wed Feb 19 02:28:21 EST 2025
Thu Oct 16 04:37:06 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords balance deficit
smartwatch
deep learning
gait abnormalities
fall risk assessment
information fusion
inertial sensors
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-524a58a01a67300e693c3fe8835e8583f12b7d59c2fa4f2774a73e99b695c5ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0770-4268
OpenAccessLink https://doaj.org/article/2e53adb79847468bbd8daafc70c326a3
PMID 32961750
PQID 2445428363
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2e53adb79847468bbd8daafc70c326a3
unpaywall_primary_10_3390_s20185373
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7571106
proquest_miscellaneous_2445428363
pubmed_primary_32961750
crossref_citationtrail_10_3390_s20185373
crossref_primary_10_3390_s20185373
PublicationCentury 2000
PublicationDate 20200919
PublicationDateYYYYMMDD 2020-09-19
PublicationDate_xml – month: 9
  year: 2020
  text: 20200919
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Khaleghi (ref_48) 2013; 14
Houry (ref_1) 2016; 10
Marschollek (ref_12) 2011; 50
Salzman (ref_31) 2011; 81
ref_14
McNemar (ref_54) 1947; 12
ref_57
ref_56
ref_11
ref_10
ref_53
ref_16
ref_59
Su (ref_52) 2014; 19
Khusainov (ref_32) 2013; 10
Dietterich (ref_55) 1998; 10
ref_24
ref_23
ref_22
ref_21
Mancini (ref_20) 2016; 71
Tunca (ref_29) 2019; 24
ref_28
ref_27
Gjoreski (ref_58) 2020; 62
Ambrose (ref_6) 2013; 75
Wahid (ref_17) 2015; 19
Cortes (ref_50) 1995; 20
ref_36
Pirker (ref_7) 2017; 129
ref_34
ref_33
Breiman (ref_51) 2001; 45
ref_30
Gu (ref_37) 2018; 77
ref_38
Srivastava (ref_43) 2014; 15
Zou (ref_26) 2020; 15
Hochreiter (ref_39) 1997; 9
ref_47
Rispens (ref_18) 2015; 29
ref_46
Turner (ref_9) 2019; 66
Ravi (ref_25) 2017; 21
ref_45
ref_44
ref_42
ref_41
ref_40
(ref_8) 2016; 63
Banos (ref_35) 2014; 14
ref_3
ref_2
Weiss (ref_19) 2013; 27
ref_49
Howcroft (ref_15) 2017; 25
Fuller (ref_4) 2000; 57
ref_5
Gietzelt (ref_13) 2014; 39
References_xml – volume: 24
  start-page: 1994
  year: 2019
  ident: ref_29
  article-title: Deep Learning for Fall Risk Assessment with Inertial Sensors: Utilizing Domain Knowledge in Spatio-Temporal Gait Parameters
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2958879
– volume: 10
  start-page: 74
  year: 2016
  ident: ref_1
  article-title: The CDC Injury Center’s Response to the Growing Public Health Problem of Falls Among Older Adults
  publication-title: Am. J. Lifestyle Med.
  doi: 10.1177/1559827615600137
– ident: ref_46
  doi: 10.1007/978-3-642-35289-8_5
– volume: 75
  start-page: 51
  year: 2013
  ident: ref_6
  article-title: Risk factors for falls among older adults: A review of the literature
  publication-title: Maturitas
  doi: 10.1016/j.maturitas.2013.02.009
– volume: 10
  start-page: 1895
  year: 1998
  ident: ref_55
  article-title: Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017197
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_51
  article-title: Random Forest
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_42
– volume: 81
  start-page: 61
  year: 2011
  ident: ref_31
  article-title: Gait and balance disorders in older adults
  publication-title: Am. Fam. Physician
– ident: ref_21
  doi: 10.3390/s17040825
– volume: 27
  start-page: 742
  year: 2013
  ident: ref_19
  article-title: Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-Day accelerometer recordings
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968313491004
– ident: ref_10
  doi: 10.3390/s19081757
– ident: ref_5
  doi: 10.1097/EDE.0b013e3181e89905
– volume: 25
  start-page: 1812
  year: 2017
  ident: ref_15
  article-title: Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2687100
– volume: 71
  start-page: 1102
  year: 2016
  ident: ref_20
  article-title: Continuous Monitoring of Turning Mobility and Its Association to Falls and Cognitive Function: A Pilot Study
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/glw019
– ident: ref_3
  doi: 10.1136/ip.2005.011015
– volume: 66
  start-page: 3136
  year: 2019
  ident: ref_9
  article-title: The Classification of Minor Gait Alterations Using Wearable Sensors and Deep Learning
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2900863
– volume: 21
  start-page: 4
  year: 2017
  ident: ref_25
  article-title: Deep Learning for Health Informatics
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2636665
– ident: ref_41
– volume: 19
  start-page: 1794
  year: 2015
  ident: ref_17
  article-title: Classification of Parkinson’s disease gait using spatial-temporal gait features
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2015.2450232
– ident: ref_45
– ident: ref_11
  doi: 10.1145/2513228.2513267
– ident: ref_16
  doi: 10.3390/s17061321
– ident: ref_24
  doi: 10.1007/978-3-642-24477-3_1
– ident: ref_30
– ident: ref_33
  doi: 10.3390/s17122735
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_39
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 14
  start-page: 6474
  year: 2014
  ident: ref_35
  article-title: Window size impact in human activity recognition
  publication-title: Sensors
  doi: 10.3390/s140406474
– ident: ref_53
  doi: 10.1145/3341162.3344856
– ident: ref_47
– volume: 12
  start-page: 153
  year: 1947
  ident: ref_54
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
  doi: 10.1007/BF02295996
– volume: 57
  start-page: 771
  year: 2000
  ident: ref_4
  article-title: Falls in the elderly
  publication-title: Can. Fam. Physician
– volume: 50
  start-page: 420
  year: 2011
  ident: ref_12
  article-title: Sensor-based fall risk assessment—An expert “to go”
  publication-title: Methods Inf. Med.
  doi: 10.3414/ME10-01-0040
– ident: ref_40
– ident: ref_34
  doi: 10.1145/3136755.3136817
– volume: 29
  start-page: 54
  year: 2015
  ident: ref_18
  article-title: Identification of fall risk predictors in daily life measurements: Gait characteristics’ reliability and association with self-reported fall history
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968314532031
– ident: ref_27
  doi: 10.1038/s41598-019-38748-8
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_43
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 63
  start-page: 82
  year: 2016
  ident: ref_8
  article-title: A vision based proposal for classification of normal and abnormal gait using RGB camera
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2016.08.003
– volume: 62
  start-page: 47
  year: 2020
  ident: ref_58
  article-title: Classical and deep learning methods for recognizing human activities and modes of transportation with smartphone sensors
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.04.004
– ident: ref_44
– ident: ref_56
  doi: 10.3390/s16060800
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_50
  article-title: Support-Vector Networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: ref_28
  doi: 10.3390/s18051654
– volume: 77
  start-page: 354
  year: 2018
  ident: ref_37
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.013
– ident: ref_38
  doi: 10.1109/ICASSP.2019.8682194
– ident: ref_14
  doi: 10.5220/0006227802230230
– ident: ref_22
  doi: 10.3390/s16010134
– ident: ref_2
– ident: ref_49
  doi: 10.1016/j.patcog.2019.107024
– volume: 14
  start-page: 28
  year: 2013
  ident: ref_48
  article-title: Multisensor data fusion: A review of the state-of-the-art
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2011.08.001
– volume: 19
  start-page: 235
  year: 2014
  ident: ref_52
  article-title: Activity recognition with smartphone sensors
  publication-title: Tsinghua Sci. Technol.
  doi: 10.1109/TST.2014.6838194
– volume: 10
  start-page: 12852
  year: 2013
  ident: ref_32
  article-title: Real-time human ambulation, activity, and physiological monitoring: Taxonomy of issues, techniques, applications, challenges and limitations
  publication-title: Sensors
  doi: 10.3390/s131012852
– ident: ref_59
  doi: 10.1109/ASPDAC.2015.7058994
– volume: 129
  start-page: 81
  year: 2017
  ident: ref_7
  article-title: Gait disorders in adults and the elderly: A clinical guide
  publication-title: Wien KlinWochenschr
  doi: 10.1007/s00508-016-1096-4
– volume: 15
  start-page: 3197
  year: 2020
  ident: ref_26
  article-title: Deep Learning-Based Gait Recognition Using Smartphones in the Wild
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2020.2985628
– ident: ref_23
  doi: 10.1371/journal.pone.0153240
– volume: 39
  start-page: 249
  year: 2014
  ident: ref_13
  article-title: A prospective field study for sensor-based identification of fall risk in older people with dementia
  publication-title: Inform. Health Soc. Care
  doi: 10.3109/17538157.2014.931851
– ident: ref_57
– ident: ref_36
  doi: 10.1561/9781601982957
SSID ssj0023338
Score 2.496981
Snippet Falls are a significant threat to the health and independence of elderly people and represent an enormous burden on the healthcare system. Successfully...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5373
SubjectTerms Accidental Falls - prevention & control
Aged
balance deficit
Deep Learning
fall risk assessment
gait abnormalities
Gait Analysis
Humans
inertial sensors
information fusion
Risk Assessment
smartwatch
Wearable Electronic Devices
Wrist
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABlXcoIPM4cIma2vHruFCWggQHoGpv0dixYUXkrHazQvx7xkk22hVFXLgmo7HjGXu-SSbfEPLSMAvBGZ87r2ReamA5FLXNC6dDXQchuEt_I3_8JM_Oyw-X4nKn1VeqCRvogYeFO2ZecKitMniMllJbW-saUL0qHCIP6Hk-C222ydSYanHMvAYeIY5J_fEawxzGJcX3ok9P0n8VsvyzQPL6Ji7h109omp3oMz8kt0bYSGfDdG-Taz7eITd3yATvkubUd31dVaRtoO9g0dGZjQmSNj1rKkV4Sueom35erH_Q2UTJSfuyAXqRtnt-0a4ifR9TtTWO9wWT3Ha1phBreur9ko50rN_ukfP5269vzvKxl0LuEPF1mG-WIDQUJyATQ72XhjsevEYA5rXQPJwwq2phHAtQBoagEBT3xlhphBNg-X1yENvoHxKKJwAqKRwqRDhSSpCOyaC51Lx2CkJGXm3XuHIj0Xjqd9FUmHAkc1STOTLyfBJdDuwaVwm9ToaaBBIhdn8B3aQa3aT6l5tk5NnWzBVuoPRVBKJvN-sK8Y1IrHMSZR4MZp-G4swgwhNFRtSeQ-zNZf9OXHzvSbqVUIisZEZeTK7z90d89D8e8YjcYOllQOpvYR6Tg2618U8QMXX2ab85fgOrpBZQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQ9wAceD_KS-Zx4JJtGseOc0KFpSxIrBBQ7XKKxq-l2sip2hQEv55xkkYtLBIS12QytuWx5xtn5jMhz_JEgdO5jbTNRJRKSCKIjYpiLZ0xjnOmQzXy-yNxOEvfnfCTrSr-kFaJofi82aRDFVaEHizGEH00liPOMjZaGPfiW3eWNBbBhaVxKKTeExzR-IDszY4-TL40RUXd1y2hEMPofrRCfyeDmh031LD1nwcx_8yUvLj2C_jxHcpyyw1NrxLYDKDNPjnbX9dqX__8jdvxf0Z4jVzpMCqdtEZ1nVyw_ga5vMVceJOUB7Zukrg8rRx9A_OaTpQP-LdsKFopYmE6xf7Tj_PVGZ30_J-0yVGgx2FviY6rpadvfUjtxvY-YURdLVcUvKEH1i5ox_16eovMpq8_vzqMuosbIo3wssbgNgUuIR6DCHT4VuRMM2cloj0ruWRunKjM8FwnDlKXIAKFjNk8VyLnmoNit8nAV97eJRS3G1QSa1SI2CcVIHQinGRCMqMzcEPyfDOPhe5YzcPlGmWB0U2Y8qKf8iF50osuWiqP84ReBmPoBQL7dvOgWp4W3WIuEssZGJXl6NpTIZUy0gCaPPYT0TCgkscbUypwtYZfMOBttV4VCKZ4oLgTKHOnNa2-KZbkCCd5PCTZjtHt9GX3jZ9_bRjBM54hjBND8rQ3z78P8d4_Sd0nl5JwtBBuy8gfkEG9XNuHiL9q9ahbYr8AS30q7A
  priority: 102
  providerName: Unpaywall
Title Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/32961750
https://www.proquest.com/docview/2445428363
https://pubmed.ncbi.nlm.nih.gov/PMC7571106
https://www.mdpi.com/1424-8220/20/18/5373/pdf?version=1600824031
https://doaj.org/article/2e53adb79847468bbd8daafc70c326a3
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central Free
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1bb9MwFLZ2kWA8IO4rl8pcHngJdHZ8e0CoY-sG0qppUK08RbbjjGqRU5pUsH_PcZpGrehe8uAc2Y6P7fOd-Pg7CL1TxOjMKhdZJ3gUS00i3UtN1LMyS9OMMWrDbeSzIT8dxd_GbLyFljk2mwEsN7p2IZ_UaJZ_-Pv75jMs-E_B4wSX_WMJRgysjqDbaBcMlAoZHM7i9jCBUHDDFqRC6-J76A4lCkx4uHS_YpVq8v5NiPP_wMm7cz_VN390nq9YpcEDdL-Bk7i_0P9DtOX8I3RvhWTwMcqPXFXHW3lcZPhETyrcNz5A1bxmU8UAW_EA6sYXk_Ia91uqTlyHE-DLsA1El8XM468-RGFDe9_B-S1mJdY-xUfOTXFD03r1BI0Gxz--nEZNjoXIAhKswA-NNZO6d6B5YK53XFFLMycBmDnJJM0OiBEpU5ZkOs4IgEUtqFPKcMUs04Y-RTu-8G4fYdgZoJKehQoBpsRcc0t4JimXNLVCZx30fjnGiW0IyEMejDwBRyRoJmk100FvWtHpgnVjk9BhUFQrEIiy64JidpU06y4hjlGdGqHACsdcGpPKVMPshH4CcNVQyeulmhNYWOG0RHtXzMsEcA8LbHQcZJ4t1N42tZw2HSTWJsRaX9bf-MmvmrxbMAGIi3fQ23bq3P6Jz29t-QXaI8HzD8ks1Eu0U83m7hXAo8p00bYYC3jKwUkX7R4eD88vuvWvhm69LKBsNDzv__wH-pYUOQ
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQ9wAceD_KS-Zx4JJtGseOc0KFpSxIrBBQ7XKKxq-l2sip2hQEv55xkkYtLBIS12QytuWx5xtn5jMhz_JEgdO5jbTNRJRKSCKIjYpiLZ0xjnOmQzXy-yNxOEvfnfCTrSr-kFaJofi82aRDFVaEHizGEH00liPOMjZaGPfiW3eWNBbBhaVxKKTeExzR-IDszY4-TL40RUXd1y2hEMPofrRCfyeDmh031LD1nwcx_8yUvLj2C_jxHcpyyw1NrxLYDKDNPjnbX9dqX__8jdvxf0Z4jVzpMCqdtEZ1nVyw_ga5vMVceJOUB7Zukrg8rRx9A_OaTpQP-LdsKFopYmE6xf7Tj_PVGZ30_J-0yVGgx2FviY6rpadvfUjtxvY-YURdLVcUvKEH1i5ox_16eovMpq8_vzqMuosbIo3wssbgNgUuIR6DCHT4VuRMM2cloj0ruWRunKjM8FwnDlKXIAKFjNk8VyLnmoNit8nAV97eJRS3G1QSa1SI2CcVIHQinGRCMqMzcEPyfDOPhe5YzcPlGmWB0U2Y8qKf8iF50osuWiqP84ReBmPoBQL7dvOgWp4W3WIuEssZGJXl6NpTIZUy0gCaPPYT0TCgkscbUypwtYZfMOBttV4VCKZ4oLgTKHOnNa2-KZbkCCd5PCTZjtHt9GX3jZ9_bRjBM54hjBND8rQ3z78P8d4_Sd0nl5JwtBBuy8gfkEG9XNuHiL9q9ahbYr8AS30q7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Gait+Abnormalities+for+Fall+Risk+Assessment+Using+Wrist-Worn+Inertial+Sensors+and+Deep+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kiprijanovska%2C+Ivana&rft.au=Gjoreski%2C+Hristijan&rft.au=Gams%2C+Matja%C5%BE&rft.date=2020-09-19&rft.eissn=1424-8220&rft.volume=20&rft.issue=18&rft_id=info:doi/10.3390%2Fs20185373&rft_id=info%3Apmid%2F32961750&rft.externalDocID=32961750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon