Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning
Falls are a significant threat to the health and independence of elderly people and represent an enormous burden on the healthcare system. Successfully predicting falls could be of great help, yet this requires a timely and accurate fall risk assessment. Gait abnormalities are one of the best predic...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 20; no. 18; p. 5373 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI
19.09.2020
MDPI AG |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s20185373 |
Cover
| Abstract | Falls are a significant threat to the health and independence of elderly people and represent an enormous burden on the healthcare system. Successfully predicting falls could be of great help, yet this requires a timely and accurate fall risk assessment. Gait abnormalities are one of the best predictive signs of underlying locomotion conditions and precursors of falls. The advent of wearable sensors and wrist-worn devices provides new opportunities for continuous and unobtrusive monitoring of gait during daily activities, including the identification of unexpected changes in gait. To this end, we present in this paper a novel method for determining gait abnormalities based on a wrist-worn device and a deep neural network. It integrates convolutional and bidirectional long short-term memory layers for successful learning of spatiotemporal features from multiple sensor signals. The proposed method was evaluated using data from 18 subjects, who recorded their normal gait and simulated abnormal gait while wearing impairment glasses. The data consist of inertial measurement unit (IMU) sensor signals obtained from smartwatches that the subjects wore on both wrists. Numerous experiments showed that the proposed method provides better results than the compared methods, achieving 88.9% accuracy, 90.6% sensitivity, and 86.2% specificity in the detection of abnormal walking patterns using data from an accelerometer, gyroscope, and rotation vector sensor. These results indicate that reliable fall risk assessment is possible based on the detection of walking abnormalities with the use of wearable sensors on a wrist. |
|---|---|
| AbstractList | Falls are a significant threat to the health and independence of elderly people and represent an enormous burden on the healthcare system. Successfully predicting falls could be of great help, yet this requires a timely and accurate fall risk assessment. Gait abnormalities are one of the best predictive signs of underlying locomotion conditions and precursors of falls. The advent of wearable sensors and wrist-worn devices provides new opportunities for continuous and unobtrusive monitoring of gait during daily activities, including the identification of unexpected changes in gait. To this end, we present in this paper a novel method for determining gait abnormalities based on a wrist-worn device and a deep neural network. It integrates convolutional and bidirectional long short-term memory layers for successful learning of spatiotemporal features from multiple sensor signals. The proposed method was evaluated using data from 18 subjects, who recorded their normal gait and simulated abnormal gait while wearing impairment glasses. The data consist of inertial measurement unit (IMU) sensor signals obtained from smartwatches that the subjects wore on both wrists. Numerous experiments showed that the proposed method provides better results than the compared methods, achieving 88.9% accuracy, 90.6% sensitivity, and 86.2% specificity in the detection of abnormal walking patterns using data from an accelerometer, gyroscope, and rotation vector sensor. These results indicate that reliable fall risk assessment is possible based on the detection of walking abnormalities with the use of wearable sensors on a wrist. Falls are a significant threat to the health and independence of elderly people and represent an enormous burden on the healthcare system. Successfully predicting falls could be of great help, yet this requires a timely and accurate fall risk assessment. Gait abnormalities are one of the best predictive signs of underlying locomotion conditions and precursors of falls. The advent of wearable sensors and wrist-worn devices provides new opportunities for continuous and unobtrusive monitoring of gait during daily activities, including the identification of unexpected changes in gait. To this end, we present in this paper a novel method for determining gait abnormalities based on a wrist-worn device and a deep neural network. It integrates convolutional and bidirectional long short-term memory layers for successful learning of spatiotemporal features from multiple sensor signals. The proposed method was evaluated using data from 18 subjects, who recorded their normal gait and simulated abnormal gait while wearing impairment glasses. The data consist of inertial measurement unit (IMU) sensor signals obtained from smartwatches that the subjects wore on both wrists. Numerous experiments showed that the proposed method provides better results than the compared methods, achieving 88.9% accuracy, 90.6% sensitivity, and 86.2% specificity in the detection of abnormal walking patterns using data from an accelerometer, gyroscope, and rotation vector sensor. These results indicate that reliable fall risk assessment is possible based on the detection of walking abnormalities with the use of wearable sensors on a wrist.Falls are a significant threat to the health and independence of elderly people and represent an enormous burden on the healthcare system. Successfully predicting falls could be of great help, yet this requires a timely and accurate fall risk assessment. Gait abnormalities are one of the best predictive signs of underlying locomotion conditions and precursors of falls. The advent of wearable sensors and wrist-worn devices provides new opportunities for continuous and unobtrusive monitoring of gait during daily activities, including the identification of unexpected changes in gait. To this end, we present in this paper a novel method for determining gait abnormalities based on a wrist-worn device and a deep neural network. It integrates convolutional and bidirectional long short-term memory layers for successful learning of spatiotemporal features from multiple sensor signals. The proposed method was evaluated using data from 18 subjects, who recorded their normal gait and simulated abnormal gait while wearing impairment glasses. The data consist of inertial measurement unit (IMU) sensor signals obtained from smartwatches that the subjects wore on both wrists. Numerous experiments showed that the proposed method provides better results than the compared methods, achieving 88.9% accuracy, 90.6% sensitivity, and 86.2% specificity in the detection of abnormal walking patterns using data from an accelerometer, gyroscope, and rotation vector sensor. These results indicate that reliable fall risk assessment is possible based on the detection of walking abnormalities with the use of wearable sensors on a wrist. |
| Author | Gjoreski, Hristijan Gams, Matjaž Kiprijanovska, Ivana |
| AuthorAffiliation | 2 Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia 3 Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; hristijang@feit.ukim.edu.mk 1 Department of Intelligent Systems, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; matjaz.gams@ijs.si |
| AuthorAffiliation_xml | – name: 2 Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia – name: 3 Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; hristijang@feit.ukim.edu.mk – name: 1 Department of Intelligent Systems, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; matjaz.gams@ijs.si |
| Author_xml | – sequence: 1 givenname: Ivana surname: Kiprijanovska fullname: Kiprijanovska, Ivana – sequence: 2 givenname: Hristijan orcidid: 0000-0002-0770-4268 surname: Gjoreski fullname: Gjoreski, Hristijan – sequence: 3 givenname: Matjaž surname: Gams fullname: Gams, Matjaž |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32961750$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kV1rFDEYhQep2A-98A9ILlUYm8nHJHMjLK2tCwuCWnoZ3sm8s6Zmk22SVfrvnXXr0opeJSQnzzk573F1EGLAqnrZ0Hecd_Q0M9poyRV_Uh01golaM0YPHuwPq-OcbyhlnHP9rDrkrGsbJelR5c-xoC0uBhJHcgmukFkfYlqBd8VhJmNM5AK8J59d_k5mOWPOKwyFXGUXluQ6uVzq65gCmQdMxYEnXzDkmDKBMJBzxDVZIKQwqZ9XT0fwGV_cryfV1cWHr2cf68Wny_nZbFFbSVWpJRMgNdAGWsUpxbbjlo-oNZeopeZjw3o1yM6yEcTIlBKgOHZd33bSSuj5STXfcYcIN2ad3ArSnYngzO-DmJYGpqjWo2EoOQy96rRQotV9P-gBYLSKWs5a4BPr7Y61CWu4-zk1sQc21GzrN_v6J_H7nXi96Vc42KmnBP5Rgsc3wX0zy_jDKKmahrYT4PU9IMXbDeZiVi5b9B4Cxk02TAgpmObt1uvVQ6-9yZ_ZToLTncCmmHPC0VhXYDvqydr5f8Z_89eL_3_1FzYRwwU |
| CitedBy_id | crossref_primary_10_1109_JSEN_2023_3305024 crossref_primary_10_3390_s22103613 crossref_primary_10_1016_j_engappai_2023_105993 crossref_primary_10_3390_info12100403 crossref_primary_10_1109_ACCESS_2023_3289220 crossref_primary_10_3389_fbioe_2023_1302911 crossref_primary_10_3390_s23198294 crossref_primary_10_1111_jocn_16680 crossref_primary_10_1016_j_ssci_2024_106551 crossref_primary_10_1016_j_bspc_2021_103321 crossref_primary_10_1016_j_future_2022_09_011 crossref_primary_10_1016_j_medengphy_2023_103960 crossref_primary_10_32604_csse_2024_052931 crossref_primary_10_1007_s11042_023_15079_5 crossref_primary_10_1016_j_mcpdig_2024_05_003 crossref_primary_10_1016_j_mtcomm_2023_106250 crossref_primary_10_1016_j_gaitpost_2023_10_023 crossref_primary_10_3390_s25010266 crossref_primary_10_3390_bioengineering11060544 crossref_primary_10_3390_app15031297 crossref_primary_10_1080_17434440_2021_1988849 crossref_primary_10_3390_s22020493 crossref_primary_10_3390_s21206770 crossref_primary_10_1109_TIM_2024_3436068 crossref_primary_10_3390_healthcare9020149 crossref_primary_10_3389_fbioe_2024_1350135 crossref_primary_10_3390_s24217059 crossref_primary_10_1016_j_compbiomed_2022_105355 crossref_primary_10_3390_s22166275 crossref_primary_10_1007_s00415_022_11251_3 crossref_primary_10_3390_s21175930 crossref_primary_10_1007_s11760_024_03719_8 crossref_primary_10_1055_a_2151_4709 crossref_primary_10_3928_00989134_20240912_03 crossref_primary_10_3390_bios13120998 crossref_primary_10_1093_jcde_qwab054 |
| Cites_doi | 10.1109/JBHI.2019.2958879 10.1177/1559827615600137 10.1007/978-3-642-35289-8_5 10.1016/j.maturitas.2013.02.009 10.1162/089976698300017197 10.1023/A:1010933404324 10.3390/s17040825 10.1177/1545968313491004 10.3390/s19081757 10.1097/EDE.0b013e3181e89905 10.1109/TNSRE.2017.2687100 10.1093/gerona/glw019 10.1136/ip.2005.011015 10.1109/TBME.2019.2900863 10.1109/JBHI.2016.2636665 10.1109/JBHI.2015.2450232 10.1145/2513228.2513267 10.3390/s17061321 10.1007/978-3-642-24477-3_1 10.3390/s17122735 10.1162/neco.1997.9.8.1735 10.3390/s140406474 10.1145/3341162.3344856 10.1007/BF02295996 10.3414/ME10-01-0040 10.1145/3136755.3136817 10.1177/1545968314532031 10.1038/s41598-019-38748-8 10.1016/j.jbi.2016.08.003 10.1016/j.inffus.2020.04.004 10.3390/s16060800 10.1007/BF00994018 10.3390/s18051654 10.1016/j.patcog.2017.10.013 10.1109/ICASSP.2019.8682194 10.5220/0006227802230230 10.3390/s16010134 10.1016/j.patcog.2019.107024 10.1016/j.inffus.2011.08.001 10.1109/TST.2014.6838194 10.3390/s131012852 10.1109/ASPDAC.2015.7058994 10.1007/s00508-016-1096-4 10.1109/TIFS.2020.2985628 10.1371/journal.pone.0153240 10.3109/17538157.2014.931851 10.1561/9781601982957 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s20185373 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_2e53adb79847468bbd8daafc70c326a3 10.3390/s20185373 PMC7571106 32961750 10_3390_s20185373 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7X8 PUEGO 5PM ADRAZ ADTOC IAO IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c507t-524a58a01a67300e693c3fe8835e8583f12b7d59c2fa4f2774a73e99b695c5ab3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:42:09 EDT 2025 Sun Oct 26 03:35:23 EDT 2025 Tue Sep 30 16:26:32 EDT 2025 Thu Oct 02 11:34:18 EDT 2025 Wed Feb 19 02:28:21 EST 2025 Thu Oct 16 04:37:06 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | balance deficit smartwatch deep learning gait abnormalities fall risk assessment information fusion inertial sensors |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c507t-524a58a01a67300e693c3fe8835e8583f12b7d59c2fa4f2774a73e99b695c5ab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0770-4268 |
| OpenAccessLink | https://doaj.org/article/2e53adb79847468bbd8daafc70c326a3 |
| PMID | 32961750 |
| PQID | 2445428363 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2e53adb79847468bbd8daafc70c326a3 unpaywall_primary_10_3390_s20185373 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7571106 proquest_miscellaneous_2445428363 pubmed_primary_32961750 crossref_citationtrail_10_3390_s20185373 crossref_primary_10_3390_s20185373 |
| PublicationCentury | 2000 |
| PublicationDate | 20200919 |
| PublicationDateYYYYMMDD | 2020-09-19 |
| PublicationDate_xml | – month: 9 year: 2020 text: 20200919 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | Khaleghi (ref_48) 2013; 14 Houry (ref_1) 2016; 10 Marschollek (ref_12) 2011; 50 Salzman (ref_31) 2011; 81 ref_14 McNemar (ref_54) 1947; 12 ref_57 ref_56 ref_11 ref_10 ref_53 ref_16 ref_59 Su (ref_52) 2014; 19 Khusainov (ref_32) 2013; 10 Dietterich (ref_55) 1998; 10 ref_24 ref_23 ref_22 ref_21 Mancini (ref_20) 2016; 71 Tunca (ref_29) 2019; 24 ref_28 ref_27 Gjoreski (ref_58) 2020; 62 Ambrose (ref_6) 2013; 75 Wahid (ref_17) 2015; 19 Cortes (ref_50) 1995; 20 ref_36 Pirker (ref_7) 2017; 129 ref_34 ref_33 Breiman (ref_51) 2001; 45 ref_30 Gu (ref_37) 2018; 77 ref_38 Srivastava (ref_43) 2014; 15 Zou (ref_26) 2020; 15 Hochreiter (ref_39) 1997; 9 ref_47 Rispens (ref_18) 2015; 29 ref_46 Turner (ref_9) 2019; 66 Ravi (ref_25) 2017; 21 ref_45 ref_44 ref_42 ref_41 ref_40 (ref_8) 2016; 63 Banos (ref_35) 2014; 14 ref_3 ref_2 Weiss (ref_19) 2013; 27 ref_49 Howcroft (ref_15) 2017; 25 Fuller (ref_4) 2000; 57 ref_5 Gietzelt (ref_13) 2014; 39 |
| References_xml | – volume: 24 start-page: 1994 year: 2019 ident: ref_29 article-title: Deep Learning for Fall Risk Assessment with Inertial Sensors: Utilizing Domain Knowledge in Spatio-Temporal Gait Parameters publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2958879 – volume: 10 start-page: 74 year: 2016 ident: ref_1 article-title: The CDC Injury Center’s Response to the Growing Public Health Problem of Falls Among Older Adults publication-title: Am. J. Lifestyle Med. doi: 10.1177/1559827615600137 – ident: ref_46 doi: 10.1007/978-3-642-35289-8_5 – volume: 75 start-page: 51 year: 2013 ident: ref_6 article-title: Risk factors for falls among older adults: A review of the literature publication-title: Maturitas doi: 10.1016/j.maturitas.2013.02.009 – volume: 10 start-page: 1895 year: 1998 ident: ref_55 article-title: Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms publication-title: Neural Comput. doi: 10.1162/089976698300017197 – volume: 45 start-page: 5 year: 2001 ident: ref_51 article-title: Random Forest publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref_42 – volume: 81 start-page: 61 year: 2011 ident: ref_31 article-title: Gait and balance disorders in older adults publication-title: Am. Fam. Physician – ident: ref_21 doi: 10.3390/s17040825 – volume: 27 start-page: 742 year: 2013 ident: ref_19 article-title: Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-Day accelerometer recordings publication-title: Neurorehabil. Neural Repair doi: 10.1177/1545968313491004 – ident: ref_10 doi: 10.3390/s19081757 – ident: ref_5 doi: 10.1097/EDE.0b013e3181e89905 – volume: 25 start-page: 1812 year: 2017 ident: ref_15 article-title: Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2687100 – volume: 71 start-page: 1102 year: 2016 ident: ref_20 article-title: Continuous Monitoring of Turning Mobility and Its Association to Falls and Cognitive Function: A Pilot Study publication-title: J. Gerontol. A Biol. Sci. Med. Sci. doi: 10.1093/gerona/glw019 – ident: ref_3 doi: 10.1136/ip.2005.011015 – volume: 66 start-page: 3136 year: 2019 ident: ref_9 article-title: The Classification of Minor Gait Alterations Using Wearable Sensors and Deep Learning publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2900863 – volume: 21 start-page: 4 year: 2017 ident: ref_25 article-title: Deep Learning for Health Informatics publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2636665 – ident: ref_41 – volume: 19 start-page: 1794 year: 2015 ident: ref_17 article-title: Classification of Parkinson’s disease gait using spatial-temporal gait features publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2015.2450232 – ident: ref_45 – ident: ref_11 doi: 10.1145/2513228.2513267 – ident: ref_16 doi: 10.3390/s17061321 – ident: ref_24 doi: 10.1007/978-3-642-24477-3_1 – ident: ref_30 – ident: ref_33 doi: 10.3390/s17122735 – volume: 9 start-page: 1735 year: 1997 ident: ref_39 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 14 start-page: 6474 year: 2014 ident: ref_35 article-title: Window size impact in human activity recognition publication-title: Sensors doi: 10.3390/s140406474 – ident: ref_53 doi: 10.1145/3341162.3344856 – ident: ref_47 – volume: 12 start-page: 153 year: 1947 ident: ref_54 article-title: Note on the sampling error of the difference between correlated proportions or percentages publication-title: Psychometrika doi: 10.1007/BF02295996 – volume: 57 start-page: 771 year: 2000 ident: ref_4 article-title: Falls in the elderly publication-title: Can. Fam. Physician – volume: 50 start-page: 420 year: 2011 ident: ref_12 article-title: Sensor-based fall risk assessment—An expert “to go” publication-title: Methods Inf. Med. doi: 10.3414/ME10-01-0040 – ident: ref_40 – ident: ref_34 doi: 10.1145/3136755.3136817 – volume: 29 start-page: 54 year: 2015 ident: ref_18 article-title: Identification of fall risk predictors in daily life measurements: Gait characteristics’ reliability and association with self-reported fall history publication-title: Neurorehabil. Neural Repair doi: 10.1177/1545968314532031 – ident: ref_27 doi: 10.1038/s41598-019-38748-8 – volume: 15 start-page: 1929 year: 2014 ident: ref_43 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 63 start-page: 82 year: 2016 ident: ref_8 article-title: A vision based proposal for classification of normal and abnormal gait using RGB camera publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2016.08.003 – volume: 62 start-page: 47 year: 2020 ident: ref_58 article-title: Classical and deep learning methods for recognizing human activities and modes of transportation with smartphone sensors publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.04.004 – ident: ref_44 – ident: ref_56 doi: 10.3390/s16060800 – volume: 20 start-page: 273 year: 1995 ident: ref_50 article-title: Support-Vector Networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: ref_28 doi: 10.3390/s18051654 – volume: 77 start-page: 354 year: 2018 ident: ref_37 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.013 – ident: ref_38 doi: 10.1109/ICASSP.2019.8682194 – ident: ref_14 doi: 10.5220/0006227802230230 – ident: ref_22 doi: 10.3390/s16010134 – ident: ref_2 – ident: ref_49 doi: 10.1016/j.patcog.2019.107024 – volume: 14 start-page: 28 year: 2013 ident: ref_48 article-title: Multisensor data fusion: A review of the state-of-the-art publication-title: Inf. Fusion doi: 10.1016/j.inffus.2011.08.001 – volume: 19 start-page: 235 year: 2014 ident: ref_52 article-title: Activity recognition with smartphone sensors publication-title: Tsinghua Sci. Technol. doi: 10.1109/TST.2014.6838194 – volume: 10 start-page: 12852 year: 2013 ident: ref_32 article-title: Real-time human ambulation, activity, and physiological monitoring: Taxonomy of issues, techniques, applications, challenges and limitations publication-title: Sensors doi: 10.3390/s131012852 – ident: ref_59 doi: 10.1109/ASPDAC.2015.7058994 – volume: 129 start-page: 81 year: 2017 ident: ref_7 article-title: Gait disorders in adults and the elderly: A clinical guide publication-title: Wien KlinWochenschr doi: 10.1007/s00508-016-1096-4 – volume: 15 start-page: 3197 year: 2020 ident: ref_26 article-title: Deep Learning-Based Gait Recognition Using Smartphones in the Wild publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2020.2985628 – ident: ref_23 doi: 10.1371/journal.pone.0153240 – volume: 39 start-page: 249 year: 2014 ident: ref_13 article-title: A prospective field study for sensor-based identification of fall risk in older people with dementia publication-title: Inform. Health Soc. Care doi: 10.3109/17538157.2014.931851 – ident: ref_57 – ident: ref_36 doi: 10.1561/9781601982957 |
| SSID | ssj0023338 |
| Score | 2.496981 |
| Snippet | Falls are a significant threat to the health and independence of elderly people and represent an enormous burden on the healthcare system. Successfully... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 5373 |
| SubjectTerms | Accidental Falls - prevention & control Aged balance deficit Deep Learning fall risk assessment gait abnormalities Gait Analysis Humans inertial sensors information fusion Risk Assessment smartwatch Wearable Electronic Devices Wrist |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABlXcoIPM4cIma2vHruFCWggQHoGpv0dixYUXkrHazQvx7xkk22hVFXLgmo7HjGXu-SSbfEPLSMAvBGZ87r2ReamA5FLXNC6dDXQchuEt_I3_8JM_Oyw-X4nKn1VeqCRvogYeFO2ZecKitMniMllJbW-saUL0qHCIP6Hk-C222ydSYanHMvAYeIY5J_fEawxzGJcX3ok9P0n8VsvyzQPL6Ji7h109omp3oMz8kt0bYSGfDdG-Taz7eITd3yATvkubUd31dVaRtoO9g0dGZjQmSNj1rKkV4Sueom35erH_Q2UTJSfuyAXqRtnt-0a4ifR9TtTWO9wWT3Ha1phBreur9ko50rN_ukfP5269vzvKxl0LuEPF1mG-WIDQUJyATQ72XhjsevEYA5rXQPJwwq2phHAtQBoagEBT3xlhphBNg-X1yENvoHxKKJwAqKRwqRDhSSpCOyaC51Lx2CkJGXm3XuHIj0Xjqd9FUmHAkc1STOTLyfBJdDuwaVwm9ToaaBBIhdn8B3aQa3aT6l5tk5NnWzBVuoPRVBKJvN-sK8Y1IrHMSZR4MZp-G4swgwhNFRtSeQ-zNZf9OXHzvSbqVUIisZEZeTK7z90d89D8e8YjcYOllQOpvYR6Tg2618U8QMXX2ab85fgOrpBZQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQ9wAceD_KS-Zx4JJtGseOc0KFpSxIrBBQ7XKKxq-l2sip2hQEv55xkkYtLBIS12QytuWx5xtn5jMhz_JEgdO5jbTNRJRKSCKIjYpiLZ0xjnOmQzXy-yNxOEvfnfCTrSr-kFaJofi82aRDFVaEHizGEH00liPOMjZaGPfiW3eWNBbBhaVxKKTeExzR-IDszY4-TL40RUXd1y2hEMPofrRCfyeDmh031LD1nwcx_8yUvLj2C_jxHcpyyw1NrxLYDKDNPjnbX9dqX__8jdvxf0Z4jVzpMCqdtEZ1nVyw_ga5vMVceJOUB7Zukrg8rRx9A_OaTpQP-LdsKFopYmE6xf7Tj_PVGZ30_J-0yVGgx2FviY6rpadvfUjtxvY-YURdLVcUvKEH1i5ox_16eovMpq8_vzqMuosbIo3wssbgNgUuIR6DCHT4VuRMM2cloj0ruWRunKjM8FwnDlKXIAKFjNk8VyLnmoNit8nAV97eJRS3G1QSa1SI2CcVIHQinGRCMqMzcEPyfDOPhe5YzcPlGmWB0U2Y8qKf8iF50osuWiqP84ReBmPoBQL7dvOgWp4W3WIuEssZGJXl6NpTIZUy0gCaPPYT0TCgkscbUypwtYZfMOBttV4VCKZ4oLgTKHOnNa2-KZbkCCd5PCTZjtHt9GX3jZ9_bRjBM54hjBND8rQ3z78P8d4_Sd0nl5JwtBBuy8gfkEG9XNuHiL9q9ahbYr8AS30q7A priority: 102 providerName: Unpaywall |
| Title | Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32961750 https://www.proquest.com/docview/2445428363 https://pubmed.ncbi.nlm.nih.gov/PMC7571106 https://www.mdpi.com/1424-8220/20/18/5373/pdf?version=1600824031 https://doaj.org/article/2e53adb79847468bbd8daafc70c326a3 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central Free customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1bb9MwFLZ2kWA8IO4rl8pcHngJdHZ8e0CoY-sG0qppUK08RbbjjGqRU5pUsH_PcZpGrehe8uAc2Y6P7fOd-Pg7CL1TxOjMKhdZJ3gUS00i3UtN1LMyS9OMMWrDbeSzIT8dxd_GbLyFljk2mwEsN7p2IZ_UaJZ_-Pv75jMs-E_B4wSX_WMJRgysjqDbaBcMlAoZHM7i9jCBUHDDFqRC6-J76A4lCkx4uHS_YpVq8v5NiPP_wMm7cz_VN390nq9YpcEDdL-Bk7i_0P9DtOX8I3RvhWTwMcqPXFXHW3lcZPhETyrcNz5A1bxmU8UAW_EA6sYXk_Ia91uqTlyHE-DLsA1El8XM468-RGFDe9_B-S1mJdY-xUfOTXFD03r1BI0Gxz--nEZNjoXIAhKswA-NNZO6d6B5YK53XFFLMycBmDnJJM0OiBEpU5ZkOs4IgEUtqFPKcMUs04Y-RTu-8G4fYdgZoJKehQoBpsRcc0t4JimXNLVCZx30fjnGiW0IyEMejDwBRyRoJmk100FvWtHpgnVjk9BhUFQrEIiy64JidpU06y4hjlGdGqHACsdcGpPKVMPshH4CcNVQyeulmhNYWOG0RHtXzMsEcA8LbHQcZJ4t1N42tZw2HSTWJsRaX9bf-MmvmrxbMAGIi3fQ23bq3P6Jz29t-QXaI8HzD8ks1Eu0U83m7hXAo8p00bYYC3jKwUkX7R4eD88vuvWvhm69LKBsNDzv__wH-pYUOQ |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQ9wAceD_KS-Zx4JJtGseOc0KFpSxIrBBQ7XKKxq-l2sip2hQEv55xkkYtLBIS12QytuWx5xtn5jMhz_JEgdO5jbTNRJRKSCKIjYpiLZ0xjnOmQzXy-yNxOEvfnfCTrSr-kFaJofi82aRDFVaEHizGEH00liPOMjZaGPfiW3eWNBbBhaVxKKTeExzR-IDszY4-TL40RUXd1y2hEMPofrRCfyeDmh031LD1nwcx_8yUvLj2C_jxHcpyyw1NrxLYDKDNPjnbX9dqX__8jdvxf0Z4jVzpMCqdtEZ1nVyw_ga5vMVceJOUB7Zukrg8rRx9A_OaTpQP-LdsKFopYmE6xf7Tj_PVGZ30_J-0yVGgx2FviY6rpadvfUjtxvY-YURdLVcUvKEH1i5ox_16eovMpq8_vzqMuosbIo3wssbgNgUuIR6DCHT4VuRMM2cloj0ruWRunKjM8FwnDlKXIAKFjNk8VyLnmoNit8nAV97eJRS3G1QSa1SI2CcVIHQinGRCMqMzcEPyfDOPhe5YzcPlGmWB0U2Y8qKf8iF50osuWiqP84ReBmPoBQL7dvOgWp4W3WIuEssZGJXl6NpTIZUy0gCaPPYT0TCgkscbUypwtYZfMOBttV4VCKZ4oLgTKHOnNa2-KZbkCCd5PCTZjtHt9GX3jZ9_bRjBM54hjBND8rQ3z78P8d4_Sd0nl5JwtBBuy8gfkEG9XNuHiL9q9ahbYr8AS30q7A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Gait+Abnormalities+for+Fall+Risk+Assessment+Using+Wrist-Worn+Inertial+Sensors+and+Deep+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kiprijanovska%2C+Ivana&rft.au=Gjoreski%2C+Hristijan&rft.au=Gams%2C+Matja%C5%BE&rft.date=2020-09-19&rft.eissn=1424-8220&rft.volume=20&rft.issue=18&rft_id=info:doi/10.3390%2Fs20185373&rft_id=info%3Apmid%2F32961750&rft.externalDocID=32961750 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |