Machine learning algorithms for predicting coronary artery disease: efforts toward an open source solution
The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist clinicians in timely detection of CAD and may improve outcomes. In this study, we applie...
Saved in:
Published in | Future science OA Vol. 7; no. 6; p. FSO698 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Future Science Ltd
01.07.2021
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 2056-5623 2056-5623 |
DOI | 10.2144/fsoa-2020-0206 |
Cover
Abstract | The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist clinicians in timely detection of CAD and may improve outcomes.
In this study, we applied six different ML algorithms to predict the presence of CAD amongst patients listed in ‘the Cleveland dataset.’ The generated computer code is provided as a working open source solution with the ultimate goal to achieve a viable clinical tool for CAD detection.
All six ML algorithms achieved accuracies greater than 80%, with the ‘neural network’ algorithm achieving accuracy greater than 93%. The recall achieved with the ‘neural network’ model is also the highest of the six models (0.93), indicating that predictive ML models may provide diagnostic value in CAD.
Coronary artery disease (CAD) is correlated with many preventable risk factors. Early diagnosis of CAD allows for prevention of worsening of CAD and its complications. This study aims to utilize machine learning (ML) algorithms to predict for CAD in patients. Our results indicate that ML algorithms can accurately predict for CAD. Furthermore, by providing our code publicly, we hope to improve the ability for ML algorithms as a diagnostic tool for CAD. |
---|---|
AbstractList | The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist clinicians in timely detection of CAD and may improve outcomes.
In this study, we applied six different ML algorithms to predict the presence of CAD amongst patients listed in 'the Cleveland dataset.' The generated computer code is provided as a working open source solution with the ultimate goal to achieve a viable clinical tool for CAD detection.
All six ML algorithms achieved accuracies greater than 80%, with the 'neural network' algorithm achieving accuracy greater than 93%. The recall achieved with the 'neural network' model is also the highest of the six models (0.93), indicating that predictive ML models may provide diagnostic value in CAD. The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist clinicians in timely detection of CAD and may improve outcomes. In this study, we applied six different ML algorithms to predict the presence of CAD amongst patients listed in ‘the Cleveland dataset.’ The generated computer code is provided as a working open source solution with the ultimate goal to achieve a viable clinical tool for CAD detection. All six ML algorithms achieved accuracies greater than 80%, with the ‘neural network’ algorithm achieving accuracy greater than 93%. The recall achieved with the ‘neural network’ model is also the highest of the six models (0.93), indicating that predictive ML models may provide diagnostic value in CAD. Coronary artery disease (CAD) is correlated with many preventable risk factors. Early diagnosis of CAD allows for prevention of worsening of CAD and its complications. This study aims to utilize machine learning (ML) algorithms to predict for CAD in patients. Our results indicate that ML algorithms can accurately predict for CAD. Furthermore, by providing our code publicly, we hope to improve the ability for ML algorithms as a diagnostic tool for CAD. Aim: The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist clinicians in timely detection of CAD and may improve outcomes. Materials & methods: In this study, we applied six different ML algorithms to predict the presence of CAD amongst patients listed in ‘the Cleveland dataset.’ The generated computer code is provided as a working open source solution with the ultimate goal to achieve a viable clinical tool for CAD detection. Results: All six ML algorithms achieved accuracies greater than 80%, with the ‘neural network’ algorithm achieving accuracy greater than 93%. The recall achieved with the ‘neural network’ model is also the highest of the six models (0.93), indicating that predictive ML models may provide diagnostic value in CAD. The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist clinicians in timely detection of CAD and may improve outcomes.AIMThe development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist clinicians in timely detection of CAD and may improve outcomes.In this study, we applied six different ML algorithms to predict the presence of CAD amongst patients listed in 'the Cleveland dataset.' The generated computer code is provided as a working open source solution with the ultimate goal to achieve a viable clinical tool for CAD detection.MATERIALS & METHODSIn this study, we applied six different ML algorithms to predict the presence of CAD amongst patients listed in 'the Cleveland dataset.' The generated computer code is provided as a working open source solution with the ultimate goal to achieve a viable clinical tool for CAD detection.All six ML algorithms achieved accuracies greater than 80%, with the 'neural network' algorithm achieving accuracy greater than 93%. The recall achieved with the 'neural network' model is also the highest of the six models (0.93), indicating that predictive ML models may provide diagnostic value in CAD.RESULTSAll six ML algorithms achieved accuracies greater than 80%, with the 'neural network' algorithm achieving accuracy greater than 93%. The recall achieved with the 'neural network' model is also the highest of the six models (0.93), indicating that predictive ML models may provide diagnostic value in CAD. Coronary artery disease (CAD) is correlated with many preventable risk factors. Early diagnosis of CAD allows for prevention of worsening of CAD and its complications. This study aims to utilize machine learning (ML) algorithms to predict for CAD in patients. Our results indicate that ML algorithms can accurately predict for CAD. Furthermore, by providing our code publicly, we hope to improve the ability for ML algorithms as a diagnostic tool for CAD. |
Author | Akella, Sudheer Akella, Aravind |
AuthorAffiliation | 1Qualicel Global Inc., Huntington Station, NY 11746, USA |
AuthorAffiliation_xml | – name: 1Qualicel Global Inc., Huntington Station, NY 11746, USA |
Author_xml | – sequence: 1 givenname: Aravind orcidid: 0000-0002-3396-7598 surname: Akella fullname: Akella, Aravind organization: Qualicel Global Inc., Huntington StationNY, 11746, USA – sequence: 2 givenname: Sudheer orcidid: 0000-0001-9781-8930 surname: Akella fullname: Akella, Sudheer organization: Qualicel Global Inc., Huntington StationNY, 11746, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34046201$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uk1vFSEUJabG1tqtS8PSzVRggJnpwsQ0VpvUuNE1YeDyHi_z4AlMjf9eptOa1qQLcu_lnnMuH-c1OgoxAEJvKTlnlPMPLkfdMMJIU5d8gU4YEbIRkrVHj_JjdJbzjhBCayVZ_wodt5xwyQg9Qbtv2mx9ADyBTsGHDdbTJiZftvuMXUz4kMB6U5aOiSkGnf5gnQrUYH0GneECg6vIknGJv3WyWAccDxBwjnMyUMM0Fx_DG_TS6SnD2X08RT-vPv-4_NrcfP9yffnppjGCdKXhthOamlH0naGOOjOyXjttNbOW9oL0AxGtHJjlw-AGEMCd6Q2IgVjeAXHtKbpedW3UO3VIfl_PrKL26m4jpo2qF_BmAtVZwoUcSctcx1tSM9BcOtH1IwxcDFXr46p1mMc9WAOhJD09EX3aCX6rNvFW9ZR3HSdV4P29QIq_ZshF7X02ME06QJyzYqLlknIpRIW-ezzr35CHz6oAvgJMijkncMr4openraP9pChRiy3UYgu12EIttqi08_9oD8rPEi5WgpvLnCAbD8GAWqv9YodqmOfIfwHln9B2 |
CitedBy_id | crossref_primary_10_1016_j_procs_2024_06_415 crossref_primary_10_1038_s41598_024_64445_2 crossref_primary_10_7717_peerj_15797 crossref_primary_10_1038_s41598_023_33500_9 crossref_primary_10_2174_1573403X18666220609123053 crossref_primary_10_1016_j_rineng_2024_101894 crossref_primary_10_3390_s22051928 crossref_primary_10_1109_ACCESS_2023_3253885 crossref_primary_10_3390_medicina58121745 crossref_primary_10_1007_s00395_023_00982_7 crossref_primary_10_21015_vtse_v10i3_1106 crossref_primary_10_3389_fpubh_2022_862384 crossref_primary_10_1155_2022_2585235 crossref_primary_10_56294_dm202365 crossref_primary_10_3390_app13148120 crossref_primary_10_7759_cureus_43003 crossref_primary_10_1007_s10462_023_10493_5 crossref_primary_10_1155_2021_5288844 crossref_primary_10_3389_fnume_2024_1232135 crossref_primary_10_3390_app132111953 crossref_primary_10_46604_aiti_2024_13825 crossref_primary_10_1016_j_clnu_2021_11_027 crossref_primary_10_1155_2021_3551756 crossref_primary_10_1016_j_rineng_2025_104370 crossref_primary_10_1097_JCN_0000000000001013 crossref_primary_10_2144_fsoa_2021_0124 crossref_primary_10_1038_s41598_024_52617_z crossref_primary_10_3390_math10030311 crossref_primary_10_1007_s40998_024_00743_9 crossref_primary_10_4103_abr_abr_383_21 crossref_primary_10_1007_s10462_024_10899_9 crossref_primary_10_1186_s12911_024_02442_1 crossref_primary_10_53982_ajerd_2024_0701_04_j crossref_primary_10_1186_s41231_021_00096_z crossref_primary_10_1371_journal_pone_0284103 crossref_primary_10_1136_bmjopen_2021_055170 crossref_primary_10_3390_metabo12090816 crossref_primary_10_1007_s11042_023_16194_z crossref_primary_10_33317_ssurj_649 crossref_primary_10_7717_peerj_cs_2498 crossref_primary_10_1109_ACCESS_2024_3470537 crossref_primary_10_1038_s41598_025_93986_3 |
Cites_doi | 10.1161/JAHA.118.009476 10.1016/S0140-6736(16)31012-1 10.1161/01.cir.0000437741.48606.98 10.1145/3318299.3318343 10.1161/CIRCULATIONAHA.118.031734 10.1161/CIRCULATIONAHA.115.001593 10.1613/jair.953 10.1056/NEJMp1606181 10.1186/1475-925X-13-94 10.1016/j.compbiomed.2019.103346 10.1146/annurev.bioeng.8.061505.095802 10.1371/journal.pone.0174944 10.1016/j.patrec.2005.10.010 10.4103/HEARTVIEWS.HEARTVIEWS_106_17 |
ContentType | Journal Article |
Copyright | 2021 Aravind Akella 2021 Aravind Akella. 2021 Aravind Akella 2021 |
Copyright_xml | – notice: 2021 Aravind Akella – notice: 2021 Aravind Akella. – notice: 2021 Aravind Akella 2021 |
DBID | FUSOA AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.2144/fsoa-2020-0206 |
DatabaseName | Future Science (Open Access) CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2056-5623 |
ExternalDocumentID | oai_doaj_org_article_7d0456b032f74306b0ea46f578be9459 PMC8147740 34046201 10_2144_fsoa_2020_0206 |
Genre | Journal Article |
GroupedDBID | 53G 5VS ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV EBS FUSOA GROUPED_DOAJ KQ8 M48 OK1 RPM 0YH AAYXX ADRAZ AOIJS CITATION EJD H13 HYE M4Z M~E PGMZT TDBHL 0R~ NPM 7X8 5PM |
ID | FETCH-LOGICAL-c507t-4d75a1cb587c1f1fcb28afada2dd185089053692d499f9e5e4fc8ce590d47e0f3 |
IEDL.DBID | M48 |
ISSN | 2056-5623 |
IngestDate | Wed Aug 27 01:21:25 EDT 2025 Thu Aug 21 17:42:41 EDT 2025 Fri Jul 11 08:20:55 EDT 2025 Thu Jan 02 22:56:06 EST 2025 Tue Jul 01 00:53:22 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Sat May 22 06:07:41 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | heart dataset heart disease CAD ML algorithms neural networks |
Language | English |
License | 2021 Aravind Akella. This work is licensed under the Creative Commons Attribution 4.0 License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-4d75a1cb587c1f1fcb28afada2dd185089053692d499f9e5e4fc8ce590d47e0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9781-8930 0000-0002-3396-7598 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2144/fsoa-2020-0206 |
PMID | 34046201 |
PQID | 2534614655 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7d0456b032f74306b0ea46f578be9459 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8147740 proquest_miscellaneous_2534614655 pubmed_primary_34046201 crossref_citationtrail_10_2144_fsoa_2020_0206 crossref_primary_10_2144_fsoa_2020_0206 futurescience_futuremedicine_10_2144_fsoa_2020_0206 |
ProviderPackageCode | FUSOA CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London, UK |
PublicationTitle | Future science OA |
PublicationTitleAlternate | Future Sci OA |
PublicationYear | 2021 |
Publisher | Future Science Ltd Taylor & Francis Group |
Publisher_xml | – name: Future Science Ltd – name: Taylor & Francis Group |
References | e_1_3_6_11_1 e_1_3_6_10_1 Cuocolo R (e_1_3_6_8_1) 2019; 16 e_1_3_6_14_1 e_1_3_6_13_1 Lantz B (e_1_3_6_20_1) 2013 e_1_3_6_12_1 e_1_3_6_19_1 e_1_3_6_18_1 e_1_3_6_17_1 e_1_3_6_22_1 e_1_3_6_2_1 e_1_3_6_6_1 e_1_3_6_5_1 e_1_3_6_4_1 e_1_3_6_3_1 e_1_3_6_9_1 Heinze G (e_1_3_6_21_1) 2018; 60 e_1_3_6_7_1 Kotsiantis SB (e_1_3_6_16_1) 2007; 160 e_1_3_6_27_1 Goldstein BA (e_1_3_6_15_1) 2017; 38 e_1_3_6_23_1 e_1_3_6_24_1 e_1_3_6_25_1 e_1_3_6_26_1 |
References_xml | – ident: e_1_3_6_14_1 doi: 10.1161/JAHA.118.009476 – volume: 160 start-page: 3 year: 2007 ident: e_1_3_6_16_1 article-title: Supervised machine learning: a review of classification techniques publication-title: Informatica – ident: e_1_3_6_2_1 doi: 10.1016/S0140-6736(16)31012-1 – ident: e_1_3_6_12_1 doi: 10.1161/01.cir.0000437741.48606.98 – ident: e_1_3_6_9_1 doi: 10.1145/3318299.3318343 – ident: e_1_3_6_24_1 – ident: e_1_3_6_27_1 – ident: e_1_3_6_7_1 doi: 10.1161/CIRCULATIONAHA.118.031734 – ident: e_1_3_6_5_1 doi: 10.1161/CIRCULATIONAHA.115.001593 – ident: e_1_3_6_19_1 doi: 10.1613/jair.953 – ident: e_1_3_6_6_1 doi: 10.1056/NEJMp1606181 – volume-title: Machine learning with R. year: 2013 ident: e_1_3_6_20_1 – ident: e_1_3_6_26_1 – ident: e_1_3_6_23_1 – ident: e_1_3_6_4_1 doi: 10.1186/1475-925X-13-94 – ident: e_1_3_6_10_1 doi: 10.1016/j.compbiomed.2019.103346 – volume: 16 start-page: 601 issue: 8 year: 2019 ident: e_1_3_6_8_1 article-title: Current applications of big data and machine learning in cardiology publication-title: J. Geriatr. Cardiol. – ident: e_1_3_6_3_1 doi: 10.1146/annurev.bioeng.8.061505.095802 – ident: e_1_3_6_13_1 doi: 10.1371/journal.pone.0174944 – ident: e_1_3_6_25_1 – volume: 38 start-page: 1805 issue: 23 year: 2017 ident: e_1_3_6_15_1 article-title: Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges publication-title: Eur. Heart J. – ident: e_1_3_6_18_1 doi: 10.1016/j.patrec.2005.10.010 – ident: e_1_3_6_22_1 – ident: e_1_3_6_17_1 – ident: e_1_3_6_11_1 doi: 10.4103/HEARTVIEWS.HEARTVIEWS_106_17 – volume: 60 start-page: 431449 issue: 3 year: 2018 ident: e_1_3_6_21_1 article-title: Variable selection – a review and recommendations for the practicing statistician publication-title: Boim. J. |
SSID | ssj0001562628 |
Score | 2.444165 |
Snippet | The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models... Coronary artery disease (CAD) is correlated with many preventable risk factors. Early diagnosis of CAD allows for prevention of worsening of CAD and its... Aim: The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive... |
SourceID | doaj pubmedcentral proquest pubmed crossref futurescience |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | FSO698 |
SubjectTerms | CAD heart dataset heart disease ML algorithms neural networks |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hTkWoaksfoVC5ElJPEY5j59EbIBCqRE8gcbMcP4CKZtFuOPDvO2NnV5sK1EsPkTa7jvKYcebzzjffABxUIQjKp-W1cm2O-Fbmxhcmx3DhES0gJKipUPjiZ3V-JX9cq-u1Vl_ECUvywOnBHdaOQEfHSxEw2HH85I2sAjpa51upYukeb_naYmqsDxaVaJJKI6mCHYbFzKBL4GIJt2oShaJY_xZsJxWPMfI8hzj_Jk6uRaKzN_B6hJDsKF36W9jw_TvYWhMW3IFfF5Ej6dnYFOKGmfub2fxuuP29YAhT2cOcEjREeWaWNAzM_IlFducTG1M235kPgdIJbIjMWmZ6Rq22WPq7ny199j1cnZ1enpznY1eF3CL2G3LpamUK26mmtkUogu1EY4JxRjiHwZs3Lc7LqhUO10Kh9crLYBsq1uJO1p6H8gNs9rPefwIWOtkFZxtfWhJusy2-divTIcTBY4J0GeTLp6ztKDlOnS_uNS49yCqarKLJKpqsksG31fiHJLbx4shjMtpqFIlkxy_QdfToOvpfrpNBOTG5TntLUsOLp_66dAyNU5HyK6b3s8eFFqqUiHYqpTL4mBxldYGlpCpgXmRQT1xocgfTX_q72yj33RQSMTrf_R-3_BleCSLlRL7xHmwO80e_j6hq6L7ECfQHylIilA priority: 102 providerName: Directory of Open Access Journals |
Title | Machine learning algorithms for predicting coronary artery disease: efforts toward an open source solution |
URI | http://dx.doi.org/10.2144/fsoa-2020-0206 https://www.ncbi.nlm.nih.gov/pubmed/34046201 https://www.proquest.com/docview/2534614655 https://pubmed.ncbi.nlm.nih.gov/PMC8147740 https://doaj.org/article/7d0456b032f74306b0ea46f578be9459 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFD7YCtIi4q26VcMIgk-re5m9FURULEGoTwbq0zA7l7Ql3a2bLZh_7zmzs7GR9MWHQC4zbDLnzJ7v5HzzHYA3ubUJ1dPCItNViPiWh9LEMsRwYRAtICQo6KDwyfd8OuPfTrPTv_wnv4DLrakd9ZOadYt3v3-tPuKG_0A0ZswH3ttlK9HamAfhI9-Bu65WRDQ-D_X9ieEkT8pBt3HLtD24l3I6qenbw4whyin578P9QeLDh6VtcPRfVuWNMHX8EB54fMk-DQ7xCO6Y5jHs31AdfAIXJ45AaZjvGDFncjFvu_P-7HLJEMOyq46qN8SHZooEDmS3Yo76uWK-nnPEjLVUa2C9o90y2TBaNzbUAtjo0E9hdvz1x5dp6FsuhAqBYR9yXWQyVnVWFiq2sVV1UkortUy0xsgelRVu2rxKNCZKtjKZ4VaVdJIr0rwwkU0PYLdpG_McmK15bbUqTapI1U1VeE_OZY34B-dYrgMIx1UWyuuRU1uMhcC8hAwkyECCDCTIQAG8XY-_GpQ4bh35mYy2HkUK2u6NtpsLvyFFoQnM1lGaWARRET4zkucWb2C1qXhWBZBumFwMr0bGw62Xfj06hsB9SsUX2Zj2eimSLOUIhfIsC-DZ4CjrLzg6XgDFhgtt_ILNT5rzM6cFXsYcAXx0-N8zX8BeQjQdx0B-Cbt9d21eIc7q6wnsRD-nE_cvxcRtpj_N0C0f |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+for+predicting+coronary+artery+disease%3A+efforts+toward+an+open+source+solution&rft.jtitle=Future+science+OA&rft.au=Akella%2C+Aravind&rft.au=Akella%2C+Sudheer&rft.date=2021-07-01&rft.pub=Future+Science+Ltd&rft.eissn=2056-5623&rft.volume=7&rft.issue=6&rft_id=info:doi/10.2144%2Ffsoa-2020-0206&rft_id=info%3Apmid%2F34046201&rft.externalDocID=PMC8147740 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-5623&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-5623&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-5623&client=summon |