Machine learning algorithms for predicting coronary artery disease: efforts toward an open source solution

The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist clinicians in timely detection of CAD and may improve outcomes. In this study, we applie...

Full description

Saved in:
Bibliographic Details
Published inFuture science OA Vol. 7; no. 6; p. FSO698
Main Authors Akella, Aravind, Akella, Sudheer
Format Journal Article
LanguageEnglish
Published England Future Science Ltd 01.07.2021
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN2056-5623
2056-5623
DOI10.2144/fsoa-2020-0206

Cover

Abstract The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist clinicians in timely detection of CAD and may improve outcomes. In this study, we applied six different ML algorithms to predict the presence of CAD amongst patients listed in ‘the Cleveland dataset.’ The generated computer code is provided as a working open source solution with the ultimate goal to achieve a viable clinical tool for CAD detection. All six ML algorithms achieved accuracies greater than 80%, with the ‘neural network’ algorithm achieving accuracy greater than 93%. The recall achieved with the ‘neural network’ model is also the highest of the six models (0.93), indicating that predictive ML models may provide diagnostic value in CAD. Coronary artery disease (CAD) is correlated with many preventable risk factors. Early diagnosis of CAD allows for prevention of worsening of CAD and its complications. This study aims to utilize machine learning (ML) algorithms to predict for CAD in patients. Our results indicate that ML algorithms can accurately predict for CAD. Furthermore, by providing our code publicly, we hope to improve the ability for ML algorithms as a diagnostic tool for CAD.
AbstractList The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist clinicians in timely detection of CAD and may improve outcomes. In this study, we applied six different ML algorithms to predict the presence of CAD amongst patients listed in 'the Cleveland dataset.' The generated computer code is provided as a working open source solution with the ultimate goal to achieve a viable clinical tool for CAD detection. All six ML algorithms achieved accuracies greater than 80%, with the 'neural network' algorithm achieving accuracy greater than 93%. The recall achieved with the 'neural network' model is also the highest of the six models (0.93), indicating that predictive ML models may provide diagnostic value in CAD.
The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist clinicians in timely detection of CAD and may improve outcomes. In this study, we applied six different ML algorithms to predict the presence of CAD amongst patients listed in ‘the Cleveland dataset.’ The generated computer code is provided as a working open source solution with the ultimate goal to achieve a viable clinical tool for CAD detection. All six ML algorithms achieved accuracies greater than 80%, with the ‘neural network’ algorithm achieving accuracy greater than 93%. The recall achieved with the ‘neural network’ model is also the highest of the six models (0.93), indicating that predictive ML models may provide diagnostic value in CAD. Coronary artery disease (CAD) is correlated with many preventable risk factors. Early diagnosis of CAD allows for prevention of worsening of CAD and its complications. This study aims to utilize machine learning (ML) algorithms to predict for CAD in patients. Our results indicate that ML algorithms can accurately predict for CAD. Furthermore, by providing our code publicly, we hope to improve the ability for ML algorithms as a diagnostic tool for CAD.
Aim: The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist clinicians in timely detection of CAD and may improve outcomes. Materials & methods: In this study, we applied six different ML algorithms to predict the presence of CAD amongst patients listed in ‘the Cleveland dataset.’ The generated computer code is provided as a working open source solution with the ultimate goal to achieve a viable clinical tool for CAD detection. Results: All six ML algorithms achieved accuracies greater than 80%, with the ‘neural network’ algorithm achieving accuracy greater than 93%. The recall achieved with the ‘neural network’ model is also the highest of the six models (0.93), indicating that predictive ML models may provide diagnostic value in CAD.
The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist clinicians in timely detection of CAD and may improve outcomes.AIMThe development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist clinicians in timely detection of CAD and may improve outcomes.In this study, we applied six different ML algorithms to predict the presence of CAD amongst patients listed in 'the Cleveland dataset.' The generated computer code is provided as a working open source solution with the ultimate goal to achieve a viable clinical tool for CAD detection.MATERIALS & METHODSIn this study, we applied six different ML algorithms to predict the presence of CAD amongst patients listed in 'the Cleveland dataset.' The generated computer code is provided as a working open source solution with the ultimate goal to achieve a viable clinical tool for CAD detection.All six ML algorithms achieved accuracies greater than 80%, with the 'neural network' algorithm achieving accuracy greater than 93%. The recall achieved with the 'neural network' model is also the highest of the six models (0.93), indicating that predictive ML models may provide diagnostic value in CAD.RESULTSAll six ML algorithms achieved accuracies greater than 80%, with the 'neural network' algorithm achieving accuracy greater than 93%. The recall achieved with the 'neural network' model is also the highest of the six models (0.93), indicating that predictive ML models may provide diagnostic value in CAD.
Coronary artery disease (CAD) is correlated with many preventable risk factors. Early diagnosis of CAD allows for prevention of worsening of CAD and its complications. This study aims to utilize machine learning (ML) algorithms to predict for CAD in patients. Our results indicate that ML algorithms can accurately predict for CAD. Furthermore, by providing our code publicly, we hope to improve the ability for ML algorithms as a diagnostic tool for CAD.
Author Akella, Sudheer
Akella, Aravind
AuthorAffiliation 1Qualicel Global Inc., Huntington Station, NY 11746, USA
AuthorAffiliation_xml – name: 1Qualicel Global Inc., Huntington Station, NY 11746, USA
Author_xml – sequence: 1
  givenname: Aravind
  orcidid: 0000-0002-3396-7598
  surname: Akella
  fullname: Akella, Aravind
  organization: Qualicel Global Inc., Huntington StationNY, 11746, USA
– sequence: 2
  givenname: Sudheer
  orcidid: 0000-0001-9781-8930
  surname: Akella
  fullname: Akella, Sudheer
  organization: Qualicel Global Inc., Huntington StationNY, 11746, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34046201$$D View this record in MEDLINE/PubMed
BookMark eNp1Uk1vFSEUJabG1tqtS8PSzVRggJnpwsQ0VpvUuNE1YeDyHi_z4AlMjf9eptOa1qQLcu_lnnMuH-c1OgoxAEJvKTlnlPMPLkfdMMJIU5d8gU4YEbIRkrVHj_JjdJbzjhBCayVZ_wodt5xwyQg9Qbtv2mx9ADyBTsGHDdbTJiZftvuMXUz4kMB6U5aOiSkGnf5gnQrUYH0GneECg6vIknGJv3WyWAccDxBwjnMyUMM0Fx_DG_TS6SnD2X08RT-vPv-4_NrcfP9yffnppjGCdKXhthOamlH0naGOOjOyXjttNbOW9oL0AxGtHJjlw-AGEMCd6Q2IgVjeAXHtKbpedW3UO3VIfl_PrKL26m4jpo2qF_BmAtVZwoUcSctcx1tSM9BcOtH1IwxcDFXr46p1mMc9WAOhJD09EX3aCX6rNvFW9ZR3HSdV4P29QIq_ZshF7X02ME06QJyzYqLlknIpRIW-ezzr35CHz6oAvgJMijkncMr4openraP9pChRiy3UYgu12EIttqi08_9oD8rPEi5WgpvLnCAbD8GAWqv9YodqmOfIfwHln9B2
CitedBy_id crossref_primary_10_1016_j_procs_2024_06_415
crossref_primary_10_1038_s41598_024_64445_2
crossref_primary_10_7717_peerj_15797
crossref_primary_10_1038_s41598_023_33500_9
crossref_primary_10_2174_1573403X18666220609123053
crossref_primary_10_1016_j_rineng_2024_101894
crossref_primary_10_3390_s22051928
crossref_primary_10_1109_ACCESS_2023_3253885
crossref_primary_10_3390_medicina58121745
crossref_primary_10_1007_s00395_023_00982_7
crossref_primary_10_21015_vtse_v10i3_1106
crossref_primary_10_3389_fpubh_2022_862384
crossref_primary_10_1155_2022_2585235
crossref_primary_10_56294_dm202365
crossref_primary_10_3390_app13148120
crossref_primary_10_7759_cureus_43003
crossref_primary_10_1007_s10462_023_10493_5
crossref_primary_10_1155_2021_5288844
crossref_primary_10_3389_fnume_2024_1232135
crossref_primary_10_3390_app132111953
crossref_primary_10_46604_aiti_2024_13825
crossref_primary_10_1016_j_clnu_2021_11_027
crossref_primary_10_1155_2021_3551756
crossref_primary_10_1016_j_rineng_2025_104370
crossref_primary_10_1097_JCN_0000000000001013
crossref_primary_10_2144_fsoa_2021_0124
crossref_primary_10_1038_s41598_024_52617_z
crossref_primary_10_3390_math10030311
crossref_primary_10_1007_s40998_024_00743_9
crossref_primary_10_4103_abr_abr_383_21
crossref_primary_10_1007_s10462_024_10899_9
crossref_primary_10_1186_s12911_024_02442_1
crossref_primary_10_53982_ajerd_2024_0701_04_j
crossref_primary_10_1186_s41231_021_00096_z
crossref_primary_10_1371_journal_pone_0284103
crossref_primary_10_1136_bmjopen_2021_055170
crossref_primary_10_3390_metabo12090816
crossref_primary_10_1007_s11042_023_16194_z
crossref_primary_10_33317_ssurj_649
crossref_primary_10_7717_peerj_cs_2498
crossref_primary_10_1109_ACCESS_2024_3470537
crossref_primary_10_1038_s41598_025_93986_3
Cites_doi 10.1161/JAHA.118.009476
10.1016/S0140-6736(16)31012-1
10.1161/01.cir.0000437741.48606.98
10.1145/3318299.3318343
10.1161/CIRCULATIONAHA.118.031734
10.1161/CIRCULATIONAHA.115.001593
10.1613/jair.953
10.1056/NEJMp1606181
10.1186/1475-925X-13-94
10.1016/j.compbiomed.2019.103346
10.1146/annurev.bioeng.8.061505.095802
10.1371/journal.pone.0174944
10.1016/j.patrec.2005.10.010
10.4103/HEARTVIEWS.HEARTVIEWS_106_17
ContentType Journal Article
Copyright 2021 Aravind Akella
2021 Aravind Akella.
2021 Aravind Akella 2021
Copyright_xml – notice: 2021 Aravind Akella
– notice: 2021 Aravind Akella.
– notice: 2021 Aravind Akella 2021
DBID FUSOA
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.2144/fsoa-2020-0206
DatabaseName Future Science (Open Access)
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2056-5623
ExternalDocumentID oai_doaj_org_article_7d0456b032f74306b0ea46f578be9459
PMC8147740
34046201
10_2144_fsoa_2020_0206
Genre Journal Article
GroupedDBID 53G
5VS
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
FUSOA
GROUPED_DOAJ
KQ8
M48
OK1
RPM
0YH
AAYXX
ADRAZ
AOIJS
CITATION
EJD
H13
HYE
M4Z
M~E
PGMZT
TDBHL
0R~
NPM
7X8
5PM
ID FETCH-LOGICAL-c507t-4d75a1cb587c1f1fcb28afada2dd185089053692d499f9e5e4fc8ce590d47e0f3
IEDL.DBID M48
ISSN 2056-5623
IngestDate Wed Aug 27 01:21:25 EDT 2025
Thu Aug 21 17:42:41 EDT 2025
Fri Jul 11 08:20:55 EDT 2025
Thu Jan 02 22:56:06 EST 2025
Tue Jul 01 00:53:22 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Sat May 22 06:07:41 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords heart dataset
heart disease
CAD
ML algorithms
neural networks
Language English
License 2021 Aravind Akella.
This work is licensed under the Creative Commons Attribution 4.0 License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-4d75a1cb587c1f1fcb28afada2dd185089053692d499f9e5e4fc8ce590d47e0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9781-8930
0000-0002-3396-7598
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2144/fsoa-2020-0206
PMID 34046201
PQID 2534614655
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_7d0456b032f74306b0ea46f578be9459
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8147740
proquest_miscellaneous_2534614655
pubmed_primary_34046201
crossref_citationtrail_10_2144_fsoa_2020_0206
crossref_primary_10_2144_fsoa_2020_0206
futurescience_futuremedicine_10_2144_fsoa_2020_0206
ProviderPackageCode FUSOA
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London, UK
PublicationTitle Future science OA
PublicationTitleAlternate Future Sci OA
PublicationYear 2021
Publisher Future Science Ltd
Taylor & Francis Group
Publisher_xml – name: Future Science Ltd
– name: Taylor & Francis Group
References e_1_3_6_11_1
e_1_3_6_10_1
Cuocolo R (e_1_3_6_8_1) 2019; 16
e_1_3_6_14_1
e_1_3_6_13_1
Lantz B (e_1_3_6_20_1) 2013
e_1_3_6_12_1
e_1_3_6_19_1
e_1_3_6_18_1
e_1_3_6_17_1
e_1_3_6_22_1
e_1_3_6_2_1
e_1_3_6_6_1
e_1_3_6_5_1
e_1_3_6_4_1
e_1_3_6_3_1
e_1_3_6_9_1
Heinze G (e_1_3_6_21_1) 2018; 60
e_1_3_6_7_1
Kotsiantis SB (e_1_3_6_16_1) 2007; 160
e_1_3_6_27_1
Goldstein BA (e_1_3_6_15_1) 2017; 38
e_1_3_6_23_1
e_1_3_6_24_1
e_1_3_6_25_1
e_1_3_6_26_1
References_xml – ident: e_1_3_6_14_1
  doi: 10.1161/JAHA.118.009476
– volume: 160
  start-page: 3
  year: 2007
  ident: e_1_3_6_16_1
  article-title: Supervised machine learning: a review of classification techniques
  publication-title: Informatica
– ident: e_1_3_6_2_1
  doi: 10.1016/S0140-6736(16)31012-1
– ident: e_1_3_6_12_1
  doi: 10.1161/01.cir.0000437741.48606.98
– ident: e_1_3_6_9_1
  doi: 10.1145/3318299.3318343
– ident: e_1_3_6_24_1
– ident: e_1_3_6_27_1
– ident: e_1_3_6_7_1
  doi: 10.1161/CIRCULATIONAHA.118.031734
– ident: e_1_3_6_5_1
  doi: 10.1161/CIRCULATIONAHA.115.001593
– ident: e_1_3_6_19_1
  doi: 10.1613/jair.953
– ident: e_1_3_6_6_1
  doi: 10.1056/NEJMp1606181
– volume-title: Machine learning with R.
  year: 2013
  ident: e_1_3_6_20_1
– ident: e_1_3_6_26_1
– ident: e_1_3_6_23_1
– ident: e_1_3_6_4_1
  doi: 10.1186/1475-925X-13-94
– ident: e_1_3_6_10_1
  doi: 10.1016/j.compbiomed.2019.103346
– volume: 16
  start-page: 601
  issue: 8
  year: 2019
  ident: e_1_3_6_8_1
  article-title: Current applications of big data and machine learning in cardiology
  publication-title: J. Geriatr. Cardiol.
– ident: e_1_3_6_3_1
  doi: 10.1146/annurev.bioeng.8.061505.095802
– ident: e_1_3_6_13_1
  doi: 10.1371/journal.pone.0174944
– ident: e_1_3_6_25_1
– volume: 38
  start-page: 1805
  issue: 23
  year: 2017
  ident: e_1_3_6_15_1
  article-title: Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges
  publication-title: Eur. Heart J.
– ident: e_1_3_6_18_1
  doi: 10.1016/j.patrec.2005.10.010
– ident: e_1_3_6_22_1
– ident: e_1_3_6_17_1
– ident: e_1_3_6_11_1
  doi: 10.4103/HEARTVIEWS.HEARTVIEWS_106_17
– volume: 60
  start-page: 431449
  issue: 3
  year: 2018
  ident: e_1_3_6_21_1
  article-title: Variable selection – a review and recommendations for the practicing statistician
  publication-title: Boim. J.
SSID ssj0001562628
Score 2.444165
Snippet The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive models...
Coronary artery disease (CAD) is correlated with many preventable risk factors. Early diagnosis of CAD allows for prevention of worsening of CAD and its...
Aim: The development of coronary artery disease (CAD), a highly prevalent disease worldwide, is influenced by several modifiable risk factors. Predictive...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
futurescience
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage FSO698
SubjectTerms CAD
heart dataset
heart disease
ML algorithms
neural networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hTkWoaksfoVC5ElJPEY5j59EbIBCqRE8gcbMcP4CKZtFuOPDvO2NnV5sK1EsPkTa7jvKYcebzzjffABxUIQjKp-W1cm2O-Fbmxhcmx3DhES0gJKipUPjiZ3V-JX9cq-u1Vl_ECUvywOnBHdaOQEfHSxEw2HH85I2sAjpa51upYukeb_naYmqsDxaVaJJKI6mCHYbFzKBL4GIJt2oShaJY_xZsJxWPMfI8hzj_Jk6uRaKzN_B6hJDsKF36W9jw_TvYWhMW3IFfF5Ej6dnYFOKGmfub2fxuuP29YAhT2cOcEjREeWaWNAzM_IlFducTG1M235kPgdIJbIjMWmZ6Rq22WPq7ny199j1cnZ1enpznY1eF3CL2G3LpamUK26mmtkUogu1EY4JxRjiHwZs3Lc7LqhUO10Kh9crLYBsq1uJO1p6H8gNs9rPefwIWOtkFZxtfWhJusy2-divTIcTBY4J0GeTLp6ztKDlOnS_uNS49yCqarKLJKpqsksG31fiHJLbx4shjMtpqFIlkxy_QdfToOvpfrpNBOTG5TntLUsOLp_66dAyNU5HyK6b3s8eFFqqUiHYqpTL4mBxldYGlpCpgXmRQT1xocgfTX_q72yj33RQSMTrf_R-3_BleCSLlRL7xHmwO80e_j6hq6L7ECfQHylIilA
  priority: 102
  providerName: Directory of Open Access Journals
Title Machine learning algorithms for predicting coronary artery disease: efforts toward an open source solution
URI http://dx.doi.org/10.2144/fsoa-2020-0206
https://www.ncbi.nlm.nih.gov/pubmed/34046201
https://www.proquest.com/docview/2534614655
https://pubmed.ncbi.nlm.nih.gov/PMC8147740
https://doaj.org/article/7d0456b032f74306b0ea46f578be9459
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFD7YCtIi4q26VcMIgk-re5m9FURULEGoTwbq0zA7l7Ql3a2bLZh_7zmzs7GR9MWHQC4zbDLnzJ7v5HzzHYA3ubUJ1dPCItNViPiWh9LEMsRwYRAtICQo6KDwyfd8OuPfTrPTv_wnv4DLrakd9ZOadYt3v3-tPuKG_0A0ZswH3ttlK9HamAfhI9-Bu65WRDQ-D_X9ieEkT8pBt3HLtD24l3I6qenbw4whyin578P9QeLDh6VtcPRfVuWNMHX8EB54fMk-DQ7xCO6Y5jHs31AdfAIXJ45AaZjvGDFncjFvu_P-7HLJEMOyq46qN8SHZooEDmS3Yo76uWK-nnPEjLVUa2C9o90y2TBaNzbUAtjo0E9hdvz1x5dp6FsuhAqBYR9yXWQyVnVWFiq2sVV1UkortUy0xsgelRVu2rxKNCZKtjKZ4VaVdJIr0rwwkU0PYLdpG_McmK15bbUqTapI1U1VeE_OZY34B-dYrgMIx1UWyuuRU1uMhcC8hAwkyECCDCTIQAG8XY-_GpQ4bh35mYy2HkUK2u6NtpsLvyFFoQnM1lGaWARRET4zkucWb2C1qXhWBZBumFwMr0bGw62Xfj06hsB9SsUX2Zj2eimSLOUIhfIsC-DZ4CjrLzg6XgDFhgtt_ILNT5rzM6cFXsYcAXx0-N8zX8BeQjQdx0B-Cbt9d21eIc7q6wnsRD-nE_cvxcRtpj_N0C0f
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+for+predicting+coronary+artery+disease%3A+efforts+toward+an+open+source+solution&rft.jtitle=Future+science+OA&rft.au=Akella%2C+Aravind&rft.au=Akella%2C+Sudheer&rft.date=2021-07-01&rft.pub=Future+Science+Ltd&rft.eissn=2056-5623&rft.volume=7&rft.issue=6&rft_id=info:doi/10.2144%2Ffsoa-2020-0206&rft_id=info%3Apmid%2F34046201&rft.externalDocID=PMC8147740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-5623&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-5623&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-5623&client=summon