Fulcrum: condensing redundant reads from high-throughput sequencing studies

Motivation: Ultra-high-throughput sequencing produces duplicate and near-duplicate reads, which can consume computational resources in downstream applications. A tool that collapses such reads should reduce storage and assembly complications and costs. Results: We developed Fulcrum to collapse ident...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 28; no. 10; pp. 1324 - 1327
Main Authors Burriesci, Matthew S., Lehnert, Erik M., Pringle, John R.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 15.05.2012
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
DOI10.1093/bioinformatics/bts123

Cover

Abstract Motivation: Ultra-high-throughput sequencing produces duplicate and near-duplicate reads, which can consume computational resources in downstream applications. A tool that collapses such reads should reduce storage and assembly complications and costs. Results: We developed Fulcrum to collapse identical and near-identical Illumina and 454 reads (such as those from PCR clones) into single error-corrected sequences; it can process paired-end as well as single-end reads. Fulcrum is customizable and can be deployed on a single machine, a local network or a commercially available MapReduce cluster, and it has been optimized to maximize ease-of-use, cross-platform compatibility and future scalability. Sequence datasets have been collapsed by up to 71%, and the reduced number and improved quality of the resulting sequences allow assemblers to produce longer contigs while using less memory. Availability and implementation: Source code and a tutorial are available at http://pringlelab.stanford.edu/protocols.html under a BSD-like license. Fulcrum was written and tested in Python 2.6, and the single-machine and local-network modes depend on a modified version of the Parallel Python library (provided). Contact:  erik.m.lehnert@gmail.com Supplementary information:  Supplementary information is available at Bioinformatics online.
AbstractList Motivation: Ultra-high-throughput sequencing produces duplicate and near-duplicate reads, which can consume computational resources in downstream applications. A tool that collapses such reads should reduce storage and assembly complications and costs. Results: We developed Fulcrum to collapse identical and near-identical Illumina and 454 reads (such as those from PCR clones) into single error-corrected sequences; it can process paired-end as well as single-end reads. Fulcrum is customizable and can be deployed on a single machine, a local network or a commercially available MapReduce cluster, and it has been optimized to maximize ease-of-use, cross-platform compatibility and future scalability. Sequence datasets have been collapsed by up to 71%, and the reduced number and improved quality of the resulting sequences allow assemblers to produce longer contigs while using less memory. Availability and implementation: Source code and a tutorial are available at http://pringlelab.stanford.edu/protocols.html under a BSD-like license. Fulcrum was written and tested in Python 2.6, and the single-machine and local-network modes depend on a modified version of the Parallel Python library (provided). Contact: erik.m.lehnert@gmail.com Supplementary information: Supplementary information is available at Bioinformatics online.
Motivation: Ultra-high-throughput sequencing produces duplicate and near-duplicate reads, which can consume computational resources in downstream applications. A tool that collapses such reads should reduce storage and assembly complications and costs. Results: We developed Fulcrum to collapse identical and near-identical Illumina and 454 reads (such as those from PCR clones) into single error-corrected sequences; it can process paired-end as well as single-end reads. Fulcrum is customizable and can be deployed on a single machine, a local network or a commercially available MapReduce cluster, and it has been optimized to maximize ease-of-use, cross-platform compatibility and future scalability. Sequence datasets have been collapsed by up to 71%, and the reduced number and improved quality of the resulting sequences allow assemblers to produce longer contigs while using less memory. Availability and implementation: Source code and a tutorial are available at http://pringlelab.stanford.edu/protocols.html under a BSD-like license. Fulcrum was written and tested in Python 2.6, and the single-machine and local-network modes depend on a modified version of the Parallel Python library (provided). Contact:  erik.m.lehnert@gmail.com Supplementary information:  Supplementary information is available at Bioinformatics online.
Ultra-high-throughput sequencing produces duplicate and near-duplicate reads, which can consume computational resources in downstream applications. A tool that collapses such reads should reduce storage and assembly complications and costs.MOTIVATIONUltra-high-throughput sequencing produces duplicate and near-duplicate reads, which can consume computational resources in downstream applications. A tool that collapses such reads should reduce storage and assembly complications and costs.We developed Fulcrum to collapse identical and near-identical Illumina and 454 reads (such as those from PCR clones) into single error-corrected sequences; it can process paired-end as well as single-end reads. Fulcrum is customizable and can be deployed on a single machine, a local network or a commercially available MapReduce cluster, and it has been optimized to maximize ease-of-use, cross-platform compatibility and future scalability. Sequence datasets have been collapsed by up to 71%, and the reduced number and improved quality of the resulting sequences allow assemblers to produce longer contigs while using less memory.RESULTSWe developed Fulcrum to collapse identical and near-identical Illumina and 454 reads (such as those from PCR clones) into single error-corrected sequences; it can process paired-end as well as single-end reads. Fulcrum is customizable and can be deployed on a single machine, a local network or a commercially available MapReduce cluster, and it has been optimized to maximize ease-of-use, cross-platform compatibility and future scalability. Sequence datasets have been collapsed by up to 71%, and the reduced number and improved quality of the resulting sequences allow assemblers to produce longer contigs while using less memory.
Ultra-high-throughput sequencing produces duplicate and near-duplicate reads, which can consume computational resources in downstream applications. A tool that collapses such reads should reduce storage and assembly complications and costs. We developed Fulcrum to collapse identical and near-identical Illumina and 454 reads (such as those from PCR clones) into single error-corrected sequences; it can process paired-end as well as single-end reads. Fulcrum is customizable and can be deployed on a single machine, a local network or a commercially available MapReduce cluster, and it has been optimized to maximize ease-of-use, cross-platform compatibility and future scalability. Sequence datasets have been collapsed by up to 71%, and the reduced number and improved quality of the resulting sequences allow assemblers to produce longer contigs while using less memory.
Author Lehnert, Erik M.
Pringle, John R.
Burriesci, Matthew S.
AuthorAffiliation Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
AuthorAffiliation_xml – name: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
Author_xml – sequence: 1
  givenname: Matthew S.
  surname: Burriesci
  fullname: Burriesci, Matthew S.
– sequence: 2
  givenname: Erik M.
  surname: Lehnert
  fullname: Lehnert, Erik M.
– sequence: 3
  givenname: John R.
  surname: Pringle
  fullname: Pringle, John R.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25872469$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22419786$$D View this record in MEDLINE/PubMed
BookMark eNqNkEtrFTEcxYNU7EM_QmU2QjfT5p0ZBUFKH2LBTV2HTJK5kzKTXPNQ-u2by71trRtd5Q_5nXM45xDs-eAtAMcIniLYk7PBBefHEBeVnU5nQ04Ik1fgABEuWtohtPd0Q7IPDlO6gxAyyPgbsI8xRb3o-AH4dllmHcvysdHBG-uT86smWlO8UT7XS5nUjDEszeRWU5unGMpqWpfcJPuzWK83fMrFOJvegtejmpN9t3uPwI_Li9vz6_bm-9XX8y83rWZQ5JYwhCgZBbcKM6U05JqIjvTE9NBQRhUeBNRsYMIMHecYix5CrTFjdOSDJuQI8K1v8Wt1_1vNs1xHt6h4LxGUm3Xky3Xkdp0q_LwVrsuwWKOtz1E9i4Ny8uWPd5NchV-SENoxJqrByc4ghto-Zbm4pO08K29DSTUbYUFrS17R939mPYU8Tl-BDztAJa3mMao6ZnrmWCcw5X3l2JbTMaQU7fjfZT_9pdMuVyJsqrn5H-oHQJHD4w
CitedBy_id crossref_primary_10_1038_s41598_021_95985_6
crossref_primary_10_1128_genomeA_00220_15
crossref_primary_10_1111_mec_12680
crossref_primary_10_1093_bioinformatics_btv071
crossref_primary_10_1093_bioinformatics_btaa112
crossref_primary_10_1093_bioinformatics_bty264
crossref_primary_10_1111_jeb_12895
crossref_primary_10_3389_fonc_2020_01351
crossref_primary_10_1093_bioinformatics_btaa915
crossref_primary_10_1038_s41598_019_48242_w
crossref_primary_10_1142_S0219720013300025
crossref_primary_10_1186_1471_2164_13_271
crossref_primary_10_1186_s12862_015_0451_9
crossref_primary_10_1007_s00253_018_9209_9
crossref_primary_10_3389_fbioe_2015_00028
crossref_primary_10_1093_bioinformatics_btw038
crossref_primary_10_1002_qub2_99
crossref_primary_10_1093_bioinformatics_btx307
crossref_primary_10_1371_journal_pone_0052249
crossref_primary_10_1186_s12859_016_1192_5
crossref_primary_10_1080_07357907_2020_1713350
crossref_primary_10_1371_journal_pone_0214723
crossref_primary_10_7717_peerj_3091
crossref_primary_10_2323_jgam_60_7
crossref_primary_10_3389_fimmu_2018_01331
crossref_primary_10_1128_spectrum_04282_22
crossref_primary_10_1038_s41893_019_0302_6
Cites_doi 10.1101/gr.101360.109
10.1038/nmeth.1416
10.1038/nature08696
10.1093/bioinformatics/btq151
10.1186/1471-2164-10-258
10.1101/gr.4086505
10.1186/gb-2010-11-11-r116
10.1101/gr.074492.107
10.1016/j.ygeno.2011.04.004
10.1101/gr.089151.108
10.1093/bioinformatics/btp379
10.1038/nmeth.1376
ContentType Journal Article
Copyright 2015 INIST-CNRS
The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/bioinformatics/bts123
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
EndPage 1327
ExternalDocumentID 10.1093/bioinformatics/bts123
PMC3348557
22419786
25872469
10_1093_bioinformatics_bts123
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: 5 T32 HG000044
– fundername: NHGRI NIH HHS
  grantid: T32 HG000044
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
.-4
.GJ
ABEFU
ABNGD
ACUKT
AFFNX
AGQPQ
AI.
AQDSO
ATTQO
AZFZN
CAG
ELUNK
HVGLF
IQODW
NTWIH
O~Y
PB-
RIG
RNI
RZF
RZO
VH1
ZGI
ABQTQ
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c507t-351143f76ea25aac06c378393d90d454a2b70c5b57db866227900cc2554f6bc33
IEDL.DBID UNPAY
ISSN 1367-4803
1367-4811
IngestDate Sun Oct 26 03:46:27 EDT 2025
Tue Sep 30 16:59:45 EDT 2025
Thu Oct 02 11:07:56 EDT 2025
Thu Apr 03 07:09:26 EDT 2025
Mon Jul 21 09:16:24 EDT 2025
Tue Jul 01 03:27:06 EDT 2025
Thu Apr 24 23:07:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords High throughput screening
High throughput sequencing
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-351143f76ea25aac06c378393d90d454a2b70c5b57db866227900cc2554f6bc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Associate Editor: Alex Bateman
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/28/10/1324/48864528/bioinformatics_28_10_1324.pdf
PMID 22419786
PQID 1012745076
PQPubID 23479
PageCount 4
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_bts123
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3348557
proquest_miscellaneous_1012745076
pubmed_primary_22419786
pascalfrancis_primary_25872469
crossref_primary_10_1093_bioinformatics_bts123
crossref_citationtrail_10_1093_bioinformatics_bts123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-15
PublicationDateYYYYMMDD 2012-05-15
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2012
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Kelley (2023012512302521400_B4) 2010; 11
Sunagawa (2023012512302521400_B11) 2009; 10
Mondal (2023012512302521400_B6) 2011; 98
Schatz (2023012512302521400_B9) 2010; 20
Flicek (2023012512302521400_B1) 2009; 6
Zerbino (2023012512302521400_B12) 2008; 18
Li (2023012512302521400_B5) 2010; 463
Salmela (2023012512302521400_B8) 2010; 26
Schröder (2023012512302521400_B10) 2009; 25
Hiatt (2023012512302521400_B3) 2010; 7
Giardine (2023012512302521400_B2) 2005; 15
Qu (2023012512302521400_B7) 2009; 19
20081835 - Nat Methods. 2010 Feb;7(2):119-22
20378555 - Bioinformatics. 2010 May 15;26(10):1284-90
19844229 - Nat Methods. 2009 Nov;6(11 Suppl):S6-S12
16169926 - Genome Res. 2005 Oct;15(10):1451-5
18349386 - Genome Res. 2008 May;18(5):821-9
21524701 - Genomics. 2011 Oct;98(4):260-5
20010809 - Nature. 2010 Jan 21;463(7279):311-7
19500365 - BMC Genomics. 2009;10:258
21114842 - Genome Biol. 2010;11(11):R116
20508146 - Genome Res. 2010 Sep;20(9):1165-73
19439514 - Genome Res. 2009 Jul;19(7):1309-15
19542152 - Bioinformatics. 2009 Sep 1;25(17):2157-63
References_xml – volume: 20
  start-page: 1165
  year: 2010
  ident: 2023012512302521400_B9
  article-title: Assembly of large genomes using second-generation sequencing
  publication-title: Genome Res.
  doi: 10.1101/gr.101360.109
– volume: 7
  start-page: 119
  year: 2010
  ident: 2023012512302521400_B3
  article-title: Parallel, tag-directed assembly of locally derived short sequence reads
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1416
– volume: 463
  start-page: 311
  year: 2010
  ident: 2023012512302521400_B5
  article-title: The sequence and de novo assembly of the giant panda genome
  publication-title: Nature
  doi: 10.1038/nature08696
– volume: 26
  start-page: 1284
  year: 2010
  ident: 2023012512302521400_B8
  article-title: Correction of sequencing errors in a mixed set of reads
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq151
– volume: 10
  start-page: 258
  year: 2009
  ident: 2023012512302521400_B11
  article-title: Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-258
– volume: 15
  start-page: 1451
  year: 2005
  ident: 2023012512302521400_B2
  article-title: Galaxy: a platform for interactive large-scale genome analysis
  publication-title: Genome Res.
  doi: 10.1101/gr.4086505
– volume: 11
  start-page: R116
  year: 2010
  ident: 2023012512302521400_B4
  article-title: Quake: quality-aware detection and correction of sequencing errors
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-11-r116
– volume: 18
  start-page: 821
  year: 2008
  ident: 2023012512302521400_B12
  article-title: Velvet: algorithms for de novo short read assembly using de Bruijn graphs
  publication-title: Genome Res.
  doi: 10.1101/gr.074492.107
– volume: 98
  start-page: 260
  year: 2011
  ident: 2023012512302521400_B6
  article-title: Targeted sequencing of the human X chromosome exome
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2011.04.004
– volume: 19
  start-page: 1309
  year: 2009
  ident: 2023012512302521400_B7
  article-title: Efficient frequency-based de novo short-read clustering for error trimming in next-generation sequencing
  publication-title: Genome Res.
  doi: 10.1101/gr.089151.108
– volume: 25
  start-page: 2157
  year: 2009
  ident: 2023012512302521400_B10
  article-title: SHREC: a short-read error correction method
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp379
– volume: 6
  start-page: S6
  year: 2009
  ident: 2023012512302521400_B1
  article-title: Sense from sequence reads: methods for alignment and assembly
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1376
– reference: 16169926 - Genome Res. 2005 Oct;15(10):1451-5
– reference: 21524701 - Genomics. 2011 Oct;98(4):260-5
– reference: 19439514 - Genome Res. 2009 Jul;19(7):1309-15
– reference: 20508146 - Genome Res. 2010 Sep;20(9):1165-73
– reference: 21114842 - Genome Biol. 2010;11(11):R116
– reference: 19500365 - BMC Genomics. 2009;10:258
– reference: 19542152 - Bioinformatics. 2009 Sep 1;25(17):2157-63
– reference: 20081835 - Nat Methods. 2010 Feb;7(2):119-22
– reference: 20378555 - Bioinformatics. 2010 May 15;26(10):1284-90
– reference: 20010809 - Nature. 2010 Jan 21;463(7279):311-7
– reference: 19844229 - Nat Methods. 2009 Nov;6(11 Suppl):S6-S12
– reference: 18349386 - Genome Res. 2008 May;18(5):821-9
SSID ssj0005056
Score 2.209789
Snippet Motivation: Ultra-high-throughput sequencing produces duplicate and near-duplicate reads, which can consume computational resources in downstream applications....
Ultra-high-throughput sequencing produces duplicate and near-duplicate reads, which can consume computational resources in downstream applications. A tool that...
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1324
SubjectTerms Algorithms
Biological and medical sciences
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling
General aspects
High-Throughput Nucleotide Sequencing - methods
Humans
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Original Papers
Pseudomonas - genetics
Sequence Analysis, DNA - methods
Software
Title Fulcrum: condensing redundant reads from high-throughput sequencing studies
URI https://www.ncbi.nlm.nih.gov/pubmed/22419786
https://www.proquest.com/docview/1012745076
https://pubmed.ncbi.nlm.nih.gov/PMC3348557
https://academic.oup.com/bioinformatics/article-pdf/28/10/1324/48864528/bioinformatics_28_10_1324.pdf
UnpaywallVersion publishedVersion
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF61qRCVEO9CeERG4mrH3re5VYiqAlE4NFI4WbvrdakIjhXbQuUH8LuZza4DCUjAgZsl7_gxnrW_8X7zDULPiS4h4VIkNjRVMdVlGUtZSXgZKitSm5VUuf-Qb8_46Yy-nrP5HrJDLYwKrPBkKGnQl8sgIepki6fBn3FTVlMsYc5PIZ2iUwhDt0Ind4YXWBbrJRtME7DYRwecAWQfoYPZ2fvjD74mS8RUrjsoh-0sGyp9crJ7et21GSZb37AbjWrBnZXvg_E7oPor3_J6Xzfq6otaLH76mJ3cQt8GN3gOy6ek73Rivu4oRP53P91GNwMcjo79ce6gPVvfRdd8g8yre-gNZMhm1X9-EUHaXjqufX0RrayrfIOIgC1VtpGrkImc7HIcmg41fRcFirgb33qq5H00O3l1_vI0Du0fYgMgtXM1BgDmKsGtwkwpk3JDBOA5UuZpSRlVWIvUMM1EqSXnTgoxTY2BHIlWXBtCjtCoXtb2IYo0l8rmyhF64aVFcgUoDY5qAQBZpRkfIzo80MIEbXTXomNR-DV6Uuz4y8fBGCUbs8aLg_zJYLIVLRsrzKTAlOdj9GwInwLmuVu8UbVd9q2j4mFBwTFwsQ98OP2wBhiWCwl7xFagbQY4DfHtPfXlx7WWuCvEZkyM0XQTkn93K4_-2eIxOgS0iR31ImNP0Khb9fYpILpOT9D--bv5JMzK7_tGVLE
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9RAEG7WWcQF8e06PpYIXpNJ-h1vi7gsiosHB9ZT6Fd0ccyESYKsP8DfbfV0Z3RGQT14C6Qrj0p18lX6q68Qeka0hYRLkdTQXKVUW5tKWUt4GSoncldYqvx_yDdn_HROX52z8z3kxloYFVnh2VjSoC-WUULUyxbPoj_T1tYzLGHOzyCdojMIQ79CJ3eGV1hW6yUbTDOwuIL2OQPIPkH787O3x-9DTZZIqVx3UI7bRTFW-pRk9_S67wpMtr5h11vVgTvr0Afjd0D1V77ltaFp1eUXtVj89DE7uYm-jW4IHJZP2dDrzHzdUYj87366hW5EOJwch-PcRnuuuYOuhgaZl3fRa8iQzWr4_DyBtN16rn3zIVk5X_kGEQFbynaJr5BJvOxyGpsOtUOfRIq4H98FquQ9ND95-e7FaRrbP6QGQGrvawwAzNWCO4WZUibnhgjAc8SWuaWMKqxFbphmwmrJuZdCzHNjIEeiNdeGkPto0iwb9wAlmkvlSuUJvfDSIqUClAZHdQCAnNKMTxEdH2hloja6b9GxqMIaPal2_BXiYIqyjVkbxEH-ZHC0FS0bK8ykwJSXU_R0DJ8K5rlfvFGNWw6dp-JhQcExcLGHIZx-WAMMK4WEPWIr0DYDvIb49p7m4uNaS9wXYjMmpmi2Ccm_u5WH_2zxCB0A2sSeelGwx2jSrwb3BBBdr4_ifPwOBEdTlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fulcrum%3A+condensing+redundant+reads+from+high-throughput+sequencing+studies&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Burriesci%2C+Matthew+S.&rft.au=Lehnert%2C+Erik+M.&rft.au=Pringle%2C+John+R.&rft.date=2012-05-15&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=28&rft.issue=10&rft.spage=1324&rft.epage=1327&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbts123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_bts123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon