Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system
Osteocytes form over 90% of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in bone modeling and remodeling. Physical activity results in mechanical loading on the bones. Osteocytes are thought to be the main mechanosensor...
Saved in:
Published in | Bone (New York, N.Y.) Vol. 137; p. 115328 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 8756-3282 1873-2763 1873-2763 |
DOI | 10.1016/j.bone.2020.115328 |
Cover
Abstract | Osteocytes form over 90% of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in bone modeling and remodeling. Physical activity results in mechanical loading on the bones. Osteocytes are thought to be the main mechanosensory cells in bone. Upon load osteocytes secrete key factors initiating downstream signaling pathways that regulate skeletal metabolism including the Wnt/β-catenin signaling pathway. Osteocytes have dendritic structures and are housed in the lacunae and canaliculi within the bone matrix. Mechanical loading is known to have two primary effects, namely a mechanical strain (membrane disruption by stretching) on the lacunae/cells, and fluid flow, in the form of fluid flow shear stress (FFSS), in the space between the cell membranes and the lacuna-canalicular walls. In response, osteocytes get activated via a process called mechanotransduction in which mechanical signals are transduced to biological responses. The study of mechanotransduction is a complex subject involving principles of engineering mechanics as well as biological signaling pathway studies. Several length scales are involved as the mechanical loading on macro sized bones are converted to strain and FFSS responses at the micro-cellular level. Experimental measurements of strain and FFSS at the cellular level are very difficult and correlating them to specific biological activity makes this a very challenging task. One of the methods commonly adopted is a multi-scale approach that combines biological and mechanical experimentation with in silico numerical modeling of the engineering aspects of the problem. Finite element analysis along with fluid-structure interaction methodologies are used to compute the mechanical strain and FFSS. These types of analyses often involve a multi-length scale approach where models of both the macro bone structure and micro structure at the cellular length scale are used. Imaging modalities play a crucial role in the development of the models and present their own challenges. This paper reviews the efforts of various research groups in addressing this problem and presents the work in our research group. A clear understanding of how mechanical stimuli affect the lacunae and perilacunar tissue strains and shear stresses on the cellular membranes may ultimately lead to a better understanding of the process of osteocyte activation. |
---|---|
AbstractList | Osteocytes form over ninety percent of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in bone modeling and remodeling. Physical activity results in mechanical loading on the bones. Osteocytes are thought to be the main mechanosensory cells in bone. Upon load osteocytes secrete key factors initiating downstream signaling pathways that regulate skeletal metabolism including the Wnt/β-catenin signaling pathway. Osteocytes have dendritic structures and are housed in the lacunae and canaliculi within the bone matrix. Mechanical loading is known to have two primary effects, namely a mechanical strain (membrane disruption by stretching) on the lacunae/cells, and fluid flow, in the form of fluid flow shear stress (FFSS), in the space between the cell membranes and the lacuna-canalicular walls. In response, osteocytes get activated via a process called mechanotransduction in which mechanical signals are transduced to biological responses. The study of mechanotransduction is a complex subject involving principles of engineering mechanics as well as biological signaling pathway studies. Several length scales are involved as the mechanical loading on macro sized bones are converted to strain and FFSS responses at the micro-cellular level. Experimental measurements of strain and FFSS at the cellular level are very difficult and correlating them to specific biological activity makes this a very challenging task. One of the methods commonly adopted is a multi-scale approach that combines biological and mechanical experimentation with in silico numerical modeling of the engineering aspects of the problem. Finite element analysis along with fluid-structure interaction methodologies are used to compute the mechanical strain and FFSS. These types of analyses often involve a multi-length scale approach where models of both the macro bone structure and micro structure at the cellular length scale are used. Imaging modalities play a crucial role in the development of the models and present their own challenges. This paper reviews the efforts of various research groups in addressing this problem and presents the work in our research group. A clear understanding of how mechanical stimuli affect the lacunae and perilacunar tissue strains and shear stresses on the cellular membranes may ultimately lead to a better understanding of the process of osteocyte activation. Osteocytes form over 90% of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in bone modeling and remodeling. Physical activity results in mechanical loading on the bones. Osteocytes are thought to be the main mechanosensory cells in bone. Upon load osteocytes secrete key factors initiating downstream signaling pathways that regulate skeletal metabolism including the Wnt/β-catenin signaling pathway. Osteocytes have dendritic structures and are housed in the lacunae and canaliculi within the bone matrix. Mechanical loading is known to have two primary effects, namely a mechanical strain (membrane disruption by stretching) on the lacunae/cells, and fluid flow, in the form of fluid flow shear stress (FFSS), in the space between the cell membranes and the lacuna-canalicular walls. In response, osteocytes get activated via a process called mechanotransduction in which mechanical signals are transduced to biological responses. The study of mechanotransduction is a complex subject involving principles of engineering mechanics as well as biological signaling pathway studies. Several length scales are involved as the mechanical loading on macro sized bones are converted to strain and FFSS responses at the micro-cellular level. Experimental measurements of strain and FFSS at the cellular level are very difficult and correlating them to specific biological activity makes this a very challenging task. One of the methods commonly adopted is a multi-scale approach that combines biological and mechanical experimentation with in silico numerical modeling of the engineering aspects of the problem. Finite element analysis along with fluid-structure interaction methodologies are used to compute the mechanical strain and FFSS. These types of analyses often involve a multi-length scale approach where models of both the macro bone structure and micro structure at the cellular length scale are used. Imaging modalities play a crucial role in the development of the models and present their own challenges. This paper reviews the efforts of various research groups in addressing this problem and presents the work in our research group. A clear understanding of how mechanical stimuli affect the lacunae and perilacunar tissue strains and shear stresses on the cellular membranes may ultimately lead to a better understanding of the process of osteocyte activation. Osteocytes form over 90% of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in bone modeling and remodeling. Physical activity results in mechanical loading on the bones. Osteocytes are thought to be the main mechanosensory cells in bone. Upon load osteocytes secrete key factors initiating downstream signaling pathways that regulate skeletal metabolism including the Wnt/β-catenin signaling pathway. Osteocytes have dendritic structures and are housed in the lacunae and canaliculi within the bone matrix. Mechanical loading is known to have two primary effects, namely a mechanical strain (membrane disruption by stretching) on the lacunae/cells, and fluid flow, in the form of fluid flow shear stress (FFSS), in the space between the cell membranes and the lacuna-canalicular walls. In response, osteocytes get activated via a process called mechanotransduction in which mechanical signals are transduced to biological responses. The study of mechanotransduction is a complex subject involving principles of engineering mechanics as well as biological signaling pathway studies. Several length scales are involved as the mechanical loading on macro sized bones are converted to strain and FFSS responses at the micro-cellular level. Experimental measurements of strain and FFSS at the cellular level are very difficult and correlating them to specific biological activity makes this a very challenging task. One of the methods commonly adopted is a multi-scale approach that combines biological and mechanical experimentation with in silico numerical modeling of the engineering aspects of the problem. Finite element analysis along with fluid-structure interaction methodologies are used to compute the mechanical strain and FFSS. These types of analyses often involve a multi-length scale approach where models of both the macro bone structure and micro structure at the cellular length scale are used. Imaging modalities play a crucial role in the development of the models and present their own challenges. This paper reviews the efforts of various research groups in addressing this problem and presents the work in our research group. A clear understanding of how mechanical stimuli affect the lacunae and perilacunar tissue strains and shear stresses on the cellular membranes may ultimately lead to a better understanding of the process of osteocyte activation.Osteocytes form over 90% of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in bone modeling and remodeling. Physical activity results in mechanical loading on the bones. Osteocytes are thought to be the main mechanosensory cells in bone. Upon load osteocytes secrete key factors initiating downstream signaling pathways that regulate skeletal metabolism including the Wnt/β-catenin signaling pathway. Osteocytes have dendritic structures and are housed in the lacunae and canaliculi within the bone matrix. Mechanical loading is known to have two primary effects, namely a mechanical strain (membrane disruption by stretching) on the lacunae/cells, and fluid flow, in the form of fluid flow shear stress (FFSS), in the space between the cell membranes and the lacuna-canalicular walls. In response, osteocytes get activated via a process called mechanotransduction in which mechanical signals are transduced to biological responses. The study of mechanotransduction is a complex subject involving principles of engineering mechanics as well as biological signaling pathway studies. Several length scales are involved as the mechanical loading on macro sized bones are converted to strain and FFSS responses at the micro-cellular level. Experimental measurements of strain and FFSS at the cellular level are very difficult and correlating them to specific biological activity makes this a very challenging task. One of the methods commonly adopted is a multi-scale approach that combines biological and mechanical experimentation with in silico numerical modeling of the engineering aspects of the problem. Finite element analysis along with fluid-structure interaction methodologies are used to compute the mechanical strain and FFSS. These types of analyses often involve a multi-length scale approach where models of both the macro bone structure and micro structure at the cellular length scale are used. Imaging modalities play a crucial role in the development of the models and present their own challenges. This paper reviews the efforts of various research groups in addressing this problem and presents the work in our research group. A clear understanding of how mechanical stimuli affect the lacunae and perilacunar tissue strains and shear stresses on the cellular membranes may ultimately lead to a better understanding of the process of osteocyte activation. |
ArticleNumber | 115328 |
Author | Niroobakhsh, Mohammadmehdi Lara-Castillo, Nuria Laughrey, Loretta E. Ganesh, Thiagarajan |
AuthorAffiliation | 1 Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110 2 Department of Oral and Craniofacial Sciences School of Dentistry, University of Missouri-Kansas City, 650 E 25 th Street, Kansas City, MO 64108 |
AuthorAffiliation_xml | – name: 2 Department of Oral and Craniofacial Sciences School of Dentistry, University of Missouri-Kansas City, 650 E 25 th Street, Kansas City, MO 64108 – name: 1 Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110 |
Author_xml | – sequence: 1 givenname: Thiagarajan surname: Ganesh fullname: Ganesh, Thiagarajan email: ganesht@umkc.edu organization: Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110, United States of America – sequence: 2 givenname: Loretta E. surname: Laughrey fullname: Laughrey, Loretta E. organization: Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110, United States of America – sequence: 3 givenname: Mohammadmehdi surname: Niroobakhsh fullname: Niroobakhsh, Mohammadmehdi organization: Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110, United States of America – sequence: 4 givenname: Nuria surname: Lara-Castillo fullname: Lara-Castillo, Nuria organization: Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 E 25th Street, Kansas City, MO 64108, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32201360$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLeFP8AB-cglW39sEgchJFTxJRVxgbPl2JPWi2MvttMq_x5HKVB6KFxsaeZ9ZjTvzAk68sEDQs8p2VJCm7P9ti-BLSOsBGjNmXiENlS0vGJtw4_QRrR1U5UwO0YnKe0JIbxr6RN0zBkjlDdkg8bPk8s2aeUAD9bbDBgcjOAzHoMBZ_0lDgMeQV8pb4sMpxyV9Qkrb_DgJru84QZbj0PKEPRcSjilJx-08spZPTkVcZpLcnyKHg_KJXh2-5-ib-_ffT3_WF18-fDp_O1FpWvS5KobYNcSGKAfGtP20KkaiCGUDYYJoUWz07o1dWeEYaqHne5BG9IyotpOM2r4KeJr3ckf1HyjnJOHaEcVZ0mJXMyTe7mYJxfz5Gpeod6s1GHqRzC6mBDVHzIoK__OeHslL8O1bHm9Y7QpBV7eFojhxwQpy7FYC84pD2FKknFBRU2KuEhf3O31u8mvzRSBWAU6hpQiDFLbrLINS2vrHp6D3UP_a_jXKwRlL9cWokzagtdgbASdpQn2YfzVPVyX21kO5jvM_4J_AkXR4U0 |
CitedBy_id | crossref_primary_10_1155_2022_3935803 crossref_primary_10_1016_j_bone_2022_116367 crossref_primary_10_1016_j_bone_2022_116640 crossref_primary_10_1016_j_ijmecsci_2025_109931 crossref_primary_10_1007_s10409_022_22332_x crossref_primary_10_1080_10255842_2022_2145889 crossref_primary_10_3390_ijms22052697 crossref_primary_10_1007_s10409_024_23533_x crossref_primary_10_3390_life12020233 crossref_primary_10_1007_s11914_022_00728_9 crossref_primary_10_1002_wsbm_1514 crossref_primary_10_1038_s41571_021_00499_9 crossref_primary_10_1016_j_cjtee_2024_05_003 crossref_primary_10_3390_ma16093349 crossref_primary_10_1016_j_jmbbm_2024_106767 crossref_primary_10_2186_jpr_JPR_D_24_00003 crossref_primary_10_1016_j_bone_2024_117386 crossref_primary_10_1016_j_bioactmat_2023_07_017 crossref_primary_10_1038_s41413_022_00191_3 crossref_primary_10_1063_5_0165467 crossref_primary_10_1063_5_0208419 crossref_primary_10_2174_1574888X16666211006105915 crossref_primary_10_1080_10255842_2023_2270104 crossref_primary_10_1016_j_actbio_2024_03_003 crossref_primary_10_1073_pnas_2023999118 crossref_primary_10_1007_s00223_024_01285_2 crossref_primary_10_1080_10985549_2024_2385633 crossref_primary_10_1016_j_clinbiomech_2023_106072 crossref_primary_10_1139_apnm_2020_0683 crossref_primary_10_1007_s11914_023_00776_9 crossref_primary_10_1016_j_biomaterials_2021_121203 crossref_primary_10_1063_5_0085299 crossref_primary_10_1007_s10237_022_01573_6 crossref_primary_10_1007_s12204_024_2788_y crossref_primary_10_1038_s41413_022_00234_9 crossref_primary_10_1080_10255842_2024_2317442 crossref_primary_10_1136_annrheumdis_2020_218089 crossref_primary_10_1007_s11914_021_00713_8 |
Cites_doi | 10.1016/j.bone.2012.09.008 10.1016/j.bone.2007.12.224 10.4103/0973-029X.99070 10.1016/S0021-9290(98)00176-6 10.1016/0021-9290(95)00058-P 10.1016/0021-9290(87)90058-3 10.1016/j.jbiomech.2008.01.031 10.1096/fj.04-2210fje 10.1039/c2ib20092a 10.1007/s10237-007-0082-1 10.1007/3DRes.03(2012)5 10.1073/pnas.0407429101 10.1098/rsif.2015.0590 10.1002/ar.a.20050 10.1016/j.bone.2015.03.019 10.1016/0021-9290(95)80008-5 10.1016/j.bone.2010.08.007 10.1016/S0021-9290(01)00107-5 10.1016/j.bone.2013.01.004 10.1016/j.bone.2004.10.008 10.1016/j.bbrc.2004.01.138 10.1093/jn/125.suppl_7.2020S 10.1016/S8756-3282(98)00118-5 10.1016/j.jbiomech.2005.04.032 10.1098/rsif.2012.0286 10.1007/s10237-011-0305-3 10.1016/0021-9290(84)90003-4 10.1038/207094a0 10.1615/CritRevEukarGeneExpr.v19.i4.50 10.1016/j.cmpb.2016.05.019 10.1016/j.jbiomech.2009.10.042 10.1007/BF02406129 10.1115/1.2891234 10.1016/S1350-4533(98)00081-2 10.1016/j.bone.2015.02.011 10.1007/s10237-017-0885-7 10.1007/s10439-005-8962-y 10.1016/j.jbiomech.2014.03.035 10.1007/s10237-011-0320-4 10.1152/ajpendo.1996.270.3.E419 10.1016/j.bpj.2015.02.031 10.1016/j.bone.2007.09.047 10.1242/jcs.s3-103.61.111 10.1016/j.jbiomech.2013.10.052 10.1007/s10237-014-0631-3 10.1093/gigascience/gix027 10.1016/j.bone.2014.05.019 10.1073/pnas.0505193102 10.1016/S0021-9290(03)00123-4 10.1016/j.jbiomech.2008.02.035 10.1016/j.jbiomech.2013.06.036 10.1371/journal.pone.0116662 10.1016/j.medengphy.2017.04.011 10.1146/annurev.fluid.010908.165136 10.1007/BF01673415 10.1002/dvdy.20603 10.1016/0021-9290(94)90010-8 10.1016/S0021-9290(00)00090-7 10.1016/S8756-3282(02)00707-X 10.1016/j.patbio.2004.12.005 10.1016/j.bone.2019.01.025 10.1096/fasebj.13.9001.s101 10.1359/jbmr.2001.16.12.2291 10.1007/s00223-017-0247-6 10.1016/j.bone.2009.04.238 10.1007/s10237-013-0487-y 10.1172/JCI111096 10.1016/j.medengphy.2011.07.022 10.1016/S8756-3282(02)00871-2 10.1152/ajpendo.1997.273.4.E751 10.1002/jor.22720 10.1080/10255840802078014 10.1007/BF02553711 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY |
DOI | 10.1016/j.bone.2020.115328 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1873-2763 |
EndPage | 115328 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:7354216 PMC7354216 32201360 10_1016_j_bone_2020_115328 S8756328220301083 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P01 AG039355 – fundername: NIAMS NIH HHS grantid: R01 AR053949 – fundername: NCRR NIH HHS grantid: S10 RR027668 |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABGSF ABJNI ABLJU ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HMK HMO HVGLF HZ~ IHE J1W J5H K-O KOM L7B M29 M41 MO0 N9A O-L O9- OAUVE OF0 OR. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSU SSZ T5K WUQ X7M Z5R ZGI ZMT ~02 ~G- 1RT AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RIG ZA5 AAYXX ACLOT CITATION ~HD NPM 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c506t-9fe470efebf6d7be9a5e0d012fd288c864cc7d59d8d2abe4cbecd0720a79c21d3 |
IEDL.DBID | .~1 |
ISSN | 8756-3282 1873-2763 |
IngestDate | Sun Aug 24 08:58:22 EDT 2025 Tue Sep 30 16:26:39 EDT 2025 Sun Sep 28 00:37:10 EDT 2025 Wed Feb 19 02:29:07 EST 2025 Wed Oct 01 05:18:54 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Fri Feb 23 02:47:24 EST 2024 Tue Aug 26 16:31:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Perilacunar matrix Lacunae Finite element model Mechanotransduction Fluid flow shear stress Osteocyte Strain |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c506t-9fe470efebf6d7be9a5e0d012fd288c864cc7d59d8d2abe4cbecd0720a79c21d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7354216 |
PMID | 32201360 |
PQID | 2381850542 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | unpaywall_primary_10_1016_j_bone_2020_115328 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7354216 proquest_miscellaneous_2381850542 pubmed_primary_32201360 crossref_citationtrail_10_1016_j_bone_2020_115328 crossref_primary_10_1016_j_bone_2020_115328 elsevier_sciencedirect_doi_10_1016_j_bone_2020_115328 elsevier_clinicalkey_doi_10_1016_j_bone_2020_115328 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Bone (New York, N.Y.) |
PublicationTitleAlternate | Bone |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Burger, Klein-Nulend (bb0060) 1999; 13 Carter (bb0020) 1984; 36 Knothe (bb0165) 2003; 36 Webster, Schneider, Dallas, Muller (bb0370) 2013; 54 You, Weinbaum, Cowin, Schaffler (bb0385) 2004; 278 Lu, Thiagarajan, Nicolella, Johnson (bb0230) 2012; 34 Cowin, Weinbaum, Zeng (bb0050) 1995; 28 Castillo, Jacobs (bb0010) 2011 Torcasio, Zhang, Duyck, van Lenthe (bb0225) 2012; 11 Vaughan, Mullen, Verbruggen, McNamara (bb0340) 2015; 14 Lara-Castillo, Kim-Weroha, Kamel, Javaheri, Ellies, Krumlauf, Thiagarajan, Johnson (bb0415) 2015; 76 Silva, Brodt, Hucker (bb0220) 2005; 283 van Rietbergen, Weinans, Huiskes, Odgaard (bb0260) 1995; 28 Han, Cowin, Schaffler, Weinbaum (bb0105) 2004; 101 Webster, Morley, van Lenthe, Müller (bb0300) 2008; 11 Dreyer (bb0390) 1965; 207 Sanjai, Kumarswamy, Patil, Papaiah, Jayaram, Krishnan (bb0400) 2012; 16 Hsieh, Robling, Ambrosius, Burr, Turner (bb0090) 2001; 16 Zannoni, Mantovani, Viceconti (bb0265) 1999; 20 Weinbaum, Cowin, Zeng (bb0175) 1994; 27 McGarry, Klein-Nulend, Mullender, Prendergast (bb0185) 2005; 19 Carriero, Abela, Pitsillides, Shefelbine (bb0250) 2014; 47 Reilly (bb0140) 2000; 33 Franz-Odendaal, Hall, Witten (bb0005) 2006; 235 Burger, Klein-Nulend, Van Der Plas, Nijweide (bb0055) 1995; 125 Bacabac, Mizuno, Schmidt, MacKintosh, Van Loon, Klein-Nulend, Smit (bb0155) 2008; 41 Begonia, Dallas, Johnson, Thiagarajan (bb0255) 2017; 16 Tiede-Lewis, Dallas (bb0365) 2019; 122 Forwood, Owan, Takano, Turner (bb0070) 1996; 270 Robling, Turner (bb0080) 2002; 31 Wang, Wang, Han, Henderson, Majeska, Weinbaum, Schaffler (bb0115) 2005; 102 Verbruggen, Vaughan, McNamara (bb0320) 2014; 13 Deligianni, Apostolopoulos (bb0295) 2008; 7 Cowin, Moss-Salentijn, Moss (bb0045) 1991; 113 Ramezanzadehkoldeh, Skallerud (bb0280) 2017; 46 Rubin, Lanyon (bb0075) 1985; 37 Patel, Brodt, Silva (bb0240) 2014; 47 Thiagarajan, Lu, Dallas, Johnson (bb0235) 2014; 32 Cowin, Weinbaum (bb0125) 1998; 316 Webster, Wirth, van Lenthe, Müller (bb0305) 2012; 11 Pereira, Javaheri, Pitsillides, Shefelbine (bb0290) 2015; 12 Burr, Robling, Turner (bb0085) 2002; 30 Sztefek, Vanleene, Olsson, Collinson, Pitsillides, Shefelbine (bb0245) 2010; 43 Ding, Odgaard, Hvid (bb0420) 1999; 32 You, Temiyasathit, Lee, Kim, Tummala, Yao, Kingery, Malone, Kwon, Jacobs (bb0065) 2008; 42 Kamel, Picconi, Lara-Castillo, Johnson (bb0195) 2010; 47 You, Cowin, Schaffler, Weinbaum (bb0120) 2001; 34 Fritton, Weinbaum (bb0170) 2009; 41 Yang, Butz, Duffy, Niebur, Nauman, Main (bb0275) 2014; 66 Sugawara, Kamioka, Honjo, Tezuka, Takano-Yamamoto (bb0395) 2005; 36 Schulte, Zwahlen, Lambers, Kuhn, Ruffoni, Betts, Webster, Müller (bb0285) 2013; 52 Lanyon, Rubin (bb0035) 1984; 17 Verbruggen, Vaughan, McNamara (bb0110) 2012; 9 Wang, Dong, Xian (bb0315) 2015; 2015 Bacabac, Smit, Mullender, Dijcks, Van Loon, Klein-Nulend (bb0350) 2004; 315 Wolff (bb0030) 1986 Klein-Nulend, Bacabac, Mullender (bb0190) 2005; 53 Currey (bb0150) 1962; 3 Anderson, Knothe Tate (bb0325) 2008; 41 Alexander, Antonis, Savvas, Nikolaos (bb0425) 2012; 3 Calve, Ready, Huppenbauer, Main, Neu (bb0405) 2015; 10 Bagnell (bb0375) 2018 Turner (bb0025) 1998; 23 Verbruggen, Vaughan, McNamara (bb0310) 2012; 9 Verbruggen (bb0330) 2013 Carter, Fyhrie, Whalen (bb0095) 1987; 20 Akhter, Kimmel, Lappe, Recker (bb0040) 2017; 100 Kamioka, Kameo, Imai, Bakker, Bacabac, Yamada, Takaoka, Yamashiro, Adachi, Klein-Nulend (bb0160) 2012; 4 du Plessis, Broeckhoven, Guelpa, le Roux (bb0380) 2017; 6 Parfitt, Mathews, Villanueva, Kleerekoper, Frame, Rao (bb0360) 1983; 72 Nicolella, Moravits, Gale, Bonewald, Lankford (bb0135) 2006; 39 Smalt, Mitchell, Howard, Chambers (bb0180) 1997; 273 van Hove, Nolte, Vatsa, Semeins, Salmon, Smit, Klein-Nulend (bb0205) 2009; 45 Anderson, Kaliyamoorthy, Iwan, Alexander, Knothe Tate (bb0200) 2005; 33 Robling, Turner (bb0100) 2009; 19 Lara-Castillo, Kim-Weroha, Kamel, Javaheri, Ellies, Krumlauf, Thiagarajan, Johnson (bb0215) 2015; 76 Lanyon (bb0015) 1993; 53 Kamel-ElSayed, Tiede-Lewis, Lu, Veno, Dallas (bb0410) 2015; 76 Joukar, Niroomand-Oscuii, Ghalichi (bb0345) 2016; 133 Bonewald, Johnson (bb0210) 2008; 42 Klein-Nulend J, Bacabac R, Bakker A. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Verbruggen, Mc Garrigle, Haugh, Voisin, McNamara (bb0145) 2015; 108 Nicolella, Lankford (bb0130) 2002; 2 Blanchard, Dejaco, Bongaers, Hellmich (bb0270) 2013; 46 Rad, Vahidi (bb0335) 2015 Robling (10.1016/j.bone.2020.115328_bb0100) 2009; 19 Currey (10.1016/j.bone.2020.115328_bb0150) 1962; 3 Burger (10.1016/j.bone.2020.115328_bb0060) 1999; 13 Sugawara (10.1016/j.bone.2020.115328_bb0395) 2005; 36 Robling (10.1016/j.bone.2020.115328_bb0080) 2002; 31 van Rietbergen (10.1016/j.bone.2020.115328_bb0260) 1995; 28 Weinbaum (10.1016/j.bone.2020.115328_bb0175) 1994; 27 Castillo (10.1016/j.bone.2020.115328_bb0010) 2011 Ding (10.1016/j.bone.2020.115328_bb0420) 1999; 32 Sanjai (10.1016/j.bone.2020.115328_bb0400) 2012; 16 Patel (10.1016/j.bone.2020.115328_bb0240) 2014; 47 Schulte (10.1016/j.bone.2020.115328_bb0285) 2013; 52 Yang (10.1016/j.bone.2020.115328_bb0275) 2014; 66 Klein-Nulend (10.1016/j.bone.2020.115328_bb0190) 2005; 53 Kamioka (10.1016/j.bone.2020.115328_bb0160) 2012; 4 Alexander (10.1016/j.bone.2020.115328_bb0425) 2012; 3 You (10.1016/j.bone.2020.115328_bb0120) 2001; 34 Wang (10.1016/j.bone.2020.115328_bb0315) 2015; 2015 Joukar (10.1016/j.bone.2020.115328_bb0345) 2016; 133 Forwood (10.1016/j.bone.2020.115328_bb0070) 1996; 270 Kamel (10.1016/j.bone.2020.115328_bb0195) 2010; 47 Thiagarajan (10.1016/j.bone.2020.115328_bb0235) 2014; 32 du Plessis (10.1016/j.bone.2020.115328_bb0380) 2017; 6 Cowin (10.1016/j.bone.2020.115328_bb0125) 1998; 316 Webster (10.1016/j.bone.2020.115328_bb0305) 2012; 11 Bagnell (10.1016/j.bone.2020.115328_bb0375) 2018 Reilly (10.1016/j.bone.2020.115328_bb0140) 2000; 33 Smalt (10.1016/j.bone.2020.115328_bb0180) 1997; 273 Hsieh (10.1016/j.bone.2020.115328_bb0090) 2001; 16 McGarry (10.1016/j.bone.2020.115328_bb0185) 2005; 19 Anderson (10.1016/j.bone.2020.115328_bb0325) 2008; 41 Nicolella (10.1016/j.bone.2020.115328_bb0130) 2002; 2 Han (10.1016/j.bone.2020.115328_bb0105) 2004; 101 Sztefek (10.1016/j.bone.2020.115328_bb0245) 2010; 43 Verbruggen (10.1016/j.bone.2020.115328_bb0310) 2012; 9 Knothe (10.1016/j.bone.2020.115328_bb0165) 2003; 36 Tiede-Lewis (10.1016/j.bone.2020.115328_bb0365) 2019; 122 Verbruggen (10.1016/j.bone.2020.115328_bb0320) 2014; 13 Rubin (10.1016/j.bone.2020.115328_bb0075) 1985; 37 Carter (10.1016/j.bone.2020.115328_bb0095) 1987; 20 Deligianni (10.1016/j.bone.2020.115328_bb0295) 2008; 7 Calve (10.1016/j.bone.2020.115328_bb0405) 2015; 10 You (10.1016/j.bone.2020.115328_bb0385) 2004; 278 Rad (10.1016/j.bone.2020.115328_bb0335) 2015 Parfitt (10.1016/j.bone.2020.115328_bb0360) 1983; 72 Kamel-ElSayed (10.1016/j.bone.2020.115328_bb0410) 2015; 76 Wang (10.1016/j.bone.2020.115328_bb0115) 2005; 102 Lara-Castillo (10.1016/j.bone.2020.115328_bb0215) 2015; 76 Vaughan (10.1016/j.bone.2020.115328_bb0340) 2015; 14 Lara-Castillo (10.1016/j.bone.2020.115328_bb0415) 2015; 76 10.1016/j.bone.2020.115328_bb0355 Silva (10.1016/j.bone.2020.115328_bb0220) 2005; 283 Verbruggen (10.1016/j.bone.2020.115328_bb0110) 2012; 9 Wolff (10.1016/j.bone.2020.115328_bb0030) 1986 Burger (10.1016/j.bone.2020.115328_bb0055) 1995; 125 Ramezanzadehkoldeh (10.1016/j.bone.2020.115328_bb0280) 2017; 46 You (10.1016/j.bone.2020.115328_bb0065) 2008; 42 Pereira (10.1016/j.bone.2020.115328_bb0290) 2015; 12 Carriero (10.1016/j.bone.2020.115328_bb0250) 2014; 47 Verbruggen (10.1016/j.bone.2020.115328_bb0330) 2013 Lanyon (10.1016/j.bone.2020.115328_bb0035) 1984; 17 Akhter (10.1016/j.bone.2020.115328_bb0040) 2017; 100 Blanchard (10.1016/j.bone.2020.115328_bb0270) 2013; 46 Lanyon (10.1016/j.bone.2020.115328_bb0015) 1993; 53 Nicolella (10.1016/j.bone.2020.115328_bb0135) 2006; 39 Turner (10.1016/j.bone.2020.115328_bb0025) 1998; 23 Bacabac (10.1016/j.bone.2020.115328_bb0350) 2004; 315 Fritton (10.1016/j.bone.2020.115328_bb0170) 2009; 41 Verbruggen (10.1016/j.bone.2020.115328_bb0145) 2015; 108 Begonia (10.1016/j.bone.2020.115328_bb0255) 2017; 16 Lu (10.1016/j.bone.2020.115328_bb0230) 2012; 34 Franz-Odendaal (10.1016/j.bone.2020.115328_bb0005) 2006; 235 Carter (10.1016/j.bone.2020.115328_bb0020) 1984; 36 Anderson (10.1016/j.bone.2020.115328_bb0200) 2005; 33 Torcasio (10.1016/j.bone.2020.115328_bb0225) 2012; 11 Bacabac (10.1016/j.bone.2020.115328_bb0155) 2008; 41 van Hove (10.1016/j.bone.2020.115328_bb0205) 2009; 45 Dreyer (10.1016/j.bone.2020.115328_bb0390) 1965; 207 Webster (10.1016/j.bone.2020.115328_bb0300) 2008; 11 Webster (10.1016/j.bone.2020.115328_bb0370) 2013; 54 Cowin (10.1016/j.bone.2020.115328_bb0045) 1991; 113 Bonewald (10.1016/j.bone.2020.115328_bb0210) 2008; 42 Burr (10.1016/j.bone.2020.115328_bb0085) 2002; 30 Cowin (10.1016/j.bone.2020.115328_bb0050) 1995; 28 Zannoni (10.1016/j.bone.2020.115328_bb0265) 1999; 20 |
References_xml | – volume: 32 start-page: 1580 year: 2014 end-page: 1588 ident: bb0235 article-title: Experimental and finite element analysis of dynamic loading of the mouse forearm publication-title: J. Orthop. Res. – volume: 41 start-page: 1736 year: 2008 end-page: 1746 ident: bb0325 article-title: Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes publication-title: J. Biomech. – volume: 76 start-page: 129 year: 2015 end-page: 140 ident: bb0410 article-title: Novel approaches for two and three dimensional multiplexed imaging of osteocytes publication-title: Bone – volume: 2 start-page: 261 year: 2002 end-page: 263 ident: bb0130 article-title: Microstructural strain near osteocyte lacuna in cortical bone in vitro publication-title: J. Musculoskelet. Nueronal Interact. – volume: 53 start-page: 102 year: 1993 end-page: 107 ident: bb0015 article-title: Osteocytes, strain detection, bone modeling and remodeling publication-title: Calcif. Tissue Int. – volume: 14 start-page: 703 year: 2015 end-page: 718 ident: bb0340 article-title: Bone cell mechanosensation of fluid flow stimulation: a fluid–structure interaction model characterising the role integrin attachments and primary cilia publication-title: Biomech. Model. Mechanobiol. – volume: 122 start-page: 101 year: 2019 end-page: 113 ident: bb0365 article-title: Changes in the osteocyte lacunocanalicular network with aging publication-title: Bone – volume: 37 start-page: 411 year: 1985 end-page: 417 ident: bb0075 article-title: Regulation of bone mass by mechanical strain magnitude publication-title: Calcif. Tissue Int. – volume: 2015 year: 2015 ident: bb0315 article-title: Strain amplification analysis of an osteocyte under static and cyclic loading: a finite element study publication-title: Biomed. Res. Int. – volume: 133 start-page: 133 year: 2016 end-page: 141 ident: bb0345 article-title: Numerical simulation of osteocyte cell in response to directional mechanical loadings and mechanotransduction analysis: considering lacunar–canalicular interstitial fluid flow publication-title: Comput. Methods Prog. Biomed. – volume: 19 start-page: 319 year: 2009 end-page: 338 ident: bb0100 article-title: Mechanical signaling for bone modeling and remodeling publication-title: Crit. Rev. Eukaryot. Gene Expr. – start-page: 110 year: 2015 end-page: 114 ident: bb0335 article-title: Stress concentration at the base of primary cilium due to application of a thin elastic layer publication-title: 2015 22nd Iranian Conference on Biomedical Engineering (ICBME) – volume: 42 start-page: 172 year: 2008 end-page: 179 ident: bb0065 article-title: Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading publication-title: Bone – volume: 235 start-page: 176 year: 2006 end-page: 190 ident: bb0005 article-title: Buried alive: how osteoblasts become osteocytes publication-title: Developmental Dynamics: An Official Publication of the American Association of Anatomists – volume: 16 start-page: 222 year: 2012 end-page: 227 ident: bb0400 article-title: Evaluation and comparison of decalcification agents on the human teeth publication-title: J Oral Maxillofac Pathol – volume: 6 start-page: 1 year: 2017 end-page: 11 ident: bb0380 article-title: Laboratory x-ray micro-computed tomography: a user guideline for biological samples publication-title: Gigascience – volume: 34 start-page: 350 year: 2012 end-page: 356 ident: bb0230 article-title: Load/strain distribution between ulna and radius in the mouse forearm compression loading model publication-title: Med. Eng. Phys. – volume: 33 start-page: 52 year: 2005 end-page: 62 ident: bb0200 article-title: Nano? Microscale models of periosteocytic flow show differences in stresses imparted to cell body and processes publication-title: Ann. Biomed. Eng. – volume: 47 start-page: 451 year: 2014 end-page: 457 ident: bb0240 article-title: Experimental and finite element analysis of strains induced by axial tibial compression in young-adult and old female C57Bl/6 mice publication-title: J. Biomech. – volume: 72 start-page: 1396 year: 1983 end-page: 1409 ident: bb0360 article-title: Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss publication-title: J. Clin. Invest. – volume: 17 start-page: 897 year: 1984 end-page: 905 ident: bb0035 article-title: Static vs dynamic loads as an influence on bone remodelling publication-title: J. Biomech. – volume: 20 start-page: 785 year: 1987 end-page: 794 ident: bb0095 article-title: Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy publication-title: J. Biomech. – volume: 102 start-page: 11911 year: 2005 end-page: 11916 ident: bb0115 article-title: In situ measurement of solute transport in the bone lacunar-canalicular system publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 33 start-page: 1131 year: 2000 end-page: 1134 ident: bb0140 article-title: Observations of microdamage around osteocyte lacunae in bone publication-title: J. Biomech. – volume: 4 start-page: 1198 year: 2012 end-page: 1206 ident: bb0160 article-title: Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model publication-title: Integr. Biol. – volume: 47 start-page: 872 year: 2010 end-page: 881 ident: bb0195 article-title: Activation of β-catenin signaling in MLO-Y4 osteocytic cells versus 2T3 osteoblastic cells by fluid flow shear stress and PGE2: implications for the study of mechanosensation in bone publication-title: Bone – year: 1986 ident: bb0030 article-title: The Law of Bone Remodelling – volume: 54 start-page: 285 year: 2013 end-page: 295 ident: bb0370 article-title: Studying osteocytes within their environment publication-title: Bone – volume: 31 start-page: 562 year: 2002 end-page: 569 ident: bb0080 article-title: Mechanotransduction in bone: genetic effects on mechanosensitivity in mice publication-title: Bone – volume: 315 start-page: 823 year: 2004 end-page: 829 ident: bb0350 article-title: Nitric oxide production by bone cells is fluid shear stress rate dependent publication-title: Biochem. Biophys. Res. Commun. – volume: 10 year: 2015 ident: bb0405 article-title: Optical clearing in dense connective tissues to visualize cellular connectivity in situ publication-title: PLoS One – volume: 39 start-page: 1735 year: 2006 end-page: 1743 ident: bb0135 article-title: Osteocyte lacunae tissue strain in cortical bone publication-title: J. Biomech. – volume: 23 start-page: 399 year: 1998 end-page: 407 ident: bb0025 article-title: Three rules for bone adaptation to mechanical stimuli publication-title: Bone – volume: 41 start-page: 347 year: 2009 end-page: 374 ident: bb0170 article-title: Fluid and solute transport in bone: flow-induced mechanotransduction publication-title: Annu. Rev. Fluid Mech. – start-page: 179 year: 2011 end-page: 206 ident: bb0010 article-title: Skeletal mechanobiology publication-title: Mechanobiology Handbook – volume: 27 start-page: 339 year: 1994 end-page: 360 ident: bb0175 article-title: A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses publication-title: J. Biomech. – volume: 43 start-page: 599 year: 2010 end-page: 605 ident: bb0245 article-title: Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia publication-title: J. Biomech. – volume: 270 start-page: E419 year: 1996 end-page: E423 ident: bb0070 article-title: Increased bone formation in rat tibiae after a single short period of dynamic loading in vivo publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 101 start-page: 16689 year: 2004 end-page: 16694 ident: bb0105 article-title: Mechanotransduction and strain amplification in osteocyte cell processes publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 20 start-page: 735 year: 1999 end-page: 740 ident: bb0265 article-title: Material properties assignment to finite element models of bone structures: a new method publication-title: Med. Eng. Phys. – volume: 207 year: 1965 ident: bb0390 article-title: Demineralization of bone publication-title: Nature – volume: 9 start-page: 2735 year: 2012 end-page: 2744 ident: bb0110 article-title: Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes publication-title: J. R. Soc. Interface – volume: 76 start-page: 58 year: 2015 end-page: 66 ident: bb0415 article-title: In vivo mechanical loading rapidly activates beta-catenin signaling in osteocytes through a prostaglandin mediated mechanism publication-title: Bone – volume: 42 start-page: 606 year: 2008 end-page: 615 ident: bb0210 article-title: Osteocytes, mechanosensing and Wnt signaling publication-title: Bone – volume: 47 start-page: 2490 year: 2014 end-page: 2497 ident: bb0250 article-title: Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model publication-title: J. Biomech. – volume: 46 start-page: 12 year: 2017 end-page: 20 ident: bb0280 article-title: MicroCT-based finite element models as a tool for virtual testing of cortical bone publication-title: Med. Eng. Phys. – volume: 125 start-page: 2020S year: 1995 end-page: 2023S ident: bb0055 article-title: Function of osteocytes in bone—their role in mechanotransduction publication-title: J. Nutr. – year: 2018 ident: bb0375 article-title: What Is Micro-CT? An Introduction – volume: 52 start-page: 485 year: 2013 end-page: 492 ident: bb0285 article-title: Strain-adaptive in silico modeling of bone adaptation—a computer simulation validated by in vivo micro-computed tomography data publication-title: Bone – volume: 53 start-page: 576 year: 2005 end-page: 580 ident: bb0190 article-title: Mechanobiology of bone tissue publication-title: Pathologie-Biologie – volume: 11 start-page: 403 year: 2012 end-page: 410 ident: bb0225 article-title: 3D characterization of bone strains in the rat tibia loading model publication-title: Biomech. Model. Mechanobiol. – volume: 7 start-page: 151 year: 2008 end-page: 159 ident: bb0295 article-title: Multilevel finite element modeling for the prediction of local cellular deformation in bone publication-title: Biomech. Model. Mechanobiol. – volume: 45 start-page: 321 year: 2009 end-page: 329 ident: bb0205 article-title: Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density—is there a role for mechanosensing? publication-title: Bone – volume: 3 year: 2012 ident: bb0425 article-title: Nonintrusive 3D reconstruction of human bone models to simulate their bio-mechanical response publication-title: 3D Res. – volume: 19 start-page: 482 year: 2005 end-page: 484 ident: bb0185 article-title: A comparison of strain and fluid shear stress in stimulating bone cell responses—a computational and experimental study publication-title: FASEB J. – volume: 13 start-page: 85 year: 2014 end-page: 97 ident: bb0320 article-title: Fluid flow in the osteocyte mechanical environment: a fluid–structure interaction approach publication-title: Biomech. Model. Mechanobiol. – volume: 30 start-page: 781 year: 2002 end-page: 786 ident: bb0085 article-title: Effects of biomechanical stress on bones in animals publication-title: Bone – volume: 66 start-page: 131 year: 2014 end-page: 139 ident: bb0275 article-title: Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis publication-title: Bone – reference: Klein-Nulend J, Bacabac R, Bakker A. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. – volume: 13 start-page: 101 year: 1999 end-page: 112 ident: bb0060 article-title: Mechanotransduction in bone-role of the lacuno-canalicular network publication-title: FASEB J. – volume: 113 start-page: 191 year: 1991 ident: bb0045 article-title: Candidates for the mechanosensory system in bone publication-title: J. Biomech. Eng. – volume: 76 start-page: 58 year: 2015 end-page: 66 ident: bb0215 article-title: In vivo mechanical loading rapidly activates β-catenin signaling in osteocytes through a prostaglandin mediated mechanism publication-title: Bone – volume: 11 start-page: 435 year: 2008 end-page: 441 ident: bb0300 article-title: A novel in vivo mouse model for mechanically stimulated bone adaptation–a combined experimental and computational validation study publication-title: Computer Methods in Biomechanics and Biomedical Engineering – volume: 28 start-page: 1281 year: 1995 end-page: 1297 ident: bb0050 article-title: A case for bone canaliculi as the anatomical site of strain generated potentials publication-title: J. Biomech. – volume: 34 start-page: 1375 year: 2001 end-page: 1386 ident: bb0120 article-title: A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix publication-title: J. Biomech. – volume: 283 start-page: 380 year: 2005 end-page: 390 ident: bb0220 article-title: Finite element analysis of the mouse tibia: estimating endocortical strain during three-point bending in SAMP6 osteoporotic mice publication-title: The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology: An Official Publication of the American Association of Anatomists – volume: 273 start-page: E751 year: 1997 end-page: E758 ident: bb0180 article-title: Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain publication-title: American Journal of Physiology-Endocrinology and Metabolism – volume: 46 start-page: 2710 year: 2013 end-page: 2721 ident: bb0270 article-title: Intravoxel bone micromechanics for microCT-based finite element simulations publication-title: J. Biomech. – volume: 16 start-page: 2291 year: 2001 end-page: 2297 ident: bb0090 article-title: Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location publication-title: J. Bone Miner. Res. – volume: 41 start-page: 1590 year: 2008 end-page: 1598 ident: bb0155 article-title: Round versus flat: bone cell morphology, elasticity, and mechanosensing publication-title: J. Biomech. – volume: 11 start-page: 221 year: 2012 end-page: 230 ident: bb0305 article-title: Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation publication-title: Biomech. Model. Mechanobiol. – volume: 278 start-page: 505 year: 2004 end-page: 513 ident: bb0385 article-title: Ultrastructure of the osteocyte process and its pericellular matrix publication-title: Anat Rec A Discov Mol Cell Evol Biol – volume: 16 start-page: 1243 year: 2017 end-page: 1253 ident: bb0255 article-title: Comparison of strain measurement in the mouse forearm using subject-specific finite element models, strain gaging, and digital image correlation publication-title: Biomech. Model. Mechanobiol. – volume: 36 start-page: 877 year: 2005 end-page: 883 ident: bb0395 article-title: Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy publication-title: Bone – volume: 316 start-page: 184 year: 1998 ident: bb0125 article-title: Strain amplification in the bone mechanosensory system publication-title: Am J Med Sci – volume: 12 start-page: 20150590 year: 2015 ident: bb0290 article-title: Predicting cortical bone adaptation to axial loading in the mouse tibia publication-title: J. R. Soc. Interface – volume: 3 start-page: 111 year: 1962 end-page: 133 ident: bb0150 article-title: Stress concentrations in bone publication-title: J. Cell Sci. – volume: 36 start-page: 1409 year: 2003 end-page: 1424 ident: bb0165 article-title: “Whither flows the fluid in bone?” An osteocyte’s perspective publication-title: J. Biomech. – volume: 9 start-page: 2735 year: 2012 end-page: 2744 ident: bb0310 article-title: Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes publication-title: J. R. Soc. Interface – volume: 36 start-page: 19 year: 1984 end-page: 24 ident: bb0020 article-title: Mechanical loading histories and cortical bone remodeling publication-title: Calcif. Tissue Int. – volume: 28 start-page: 69 year: 1995 end-page: 81 ident: bb0260 article-title: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models publication-title: J. Biomech. – year: 2013 ident: bb0330 article-title: Mechanobiological Origins of Osteoporosis – volume: 32 start-page: 323 year: 1999 end-page: 326 ident: bb0420 article-title: Accuracy of cancellous bone volume fraction measured by micro-CT scanning publication-title: J. Biomech. – volume: 100 start-page: 619 year: 2017 end-page: 630 ident: bb0040 article-title: Effect of macroanatomic bone type and estrogen loss on osteocyte lacunar properties in healthy adult women publication-title: Calcif. Tissue Int. – volume: 108 start-page: 1587 year: 2015 end-page: 1598 ident: bb0145 article-title: Altered mechanical environment of bone cells in an animal model of short- and long-term osteoporosis publication-title: Biophys. J. – volume: 52 start-page: 485 year: 2013 ident: 10.1016/j.bone.2020.115328_bb0285 article-title: Strain-adaptive in silico modeling of bone adaptation—a computer simulation validated by in vivo micro-computed tomography data publication-title: Bone doi: 10.1016/j.bone.2012.09.008 – volume: 42 start-page: 606 year: 2008 ident: 10.1016/j.bone.2020.115328_bb0210 article-title: Osteocytes, mechanosensing and Wnt signaling publication-title: Bone doi: 10.1016/j.bone.2007.12.224 – volume: 16 start-page: 222 year: 2012 ident: 10.1016/j.bone.2020.115328_bb0400 article-title: Evaluation and comparison of decalcification agents on the human teeth publication-title: J Oral Maxillofac Pathol doi: 10.4103/0973-029X.99070 – volume: 32 start-page: 323 year: 1999 ident: 10.1016/j.bone.2020.115328_bb0420 article-title: Accuracy of cancellous bone volume fraction measured by micro-CT scanning publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00176-6 – volume: 28 start-page: 1281 year: 1995 ident: 10.1016/j.bone.2020.115328_bb0050 article-title: A case for bone canaliculi as the anatomical site of strain generated potentials publication-title: J. Biomech. doi: 10.1016/0021-9290(95)00058-P – volume: 20 start-page: 785 year: 1987 ident: 10.1016/j.bone.2020.115328_bb0095 article-title: Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy publication-title: J. Biomech. doi: 10.1016/0021-9290(87)90058-3 – volume: 41 start-page: 1590 year: 2008 ident: 10.1016/j.bone.2020.115328_bb0155 article-title: Round versus flat: bone cell morphology, elasticity, and mechanosensing publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.01.031 – volume: 19 start-page: 482 year: 2005 ident: 10.1016/j.bone.2020.115328_bb0185 article-title: A comparison of strain and fluid shear stress in stimulating bone cell responses—a computational and experimental study publication-title: FASEB J. doi: 10.1096/fj.04-2210fje – volume: 4 start-page: 1198 year: 2012 ident: 10.1016/j.bone.2020.115328_bb0160 article-title: Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model publication-title: Integr. Biol. doi: 10.1039/c2ib20092a – volume: 7 start-page: 151 year: 2008 ident: 10.1016/j.bone.2020.115328_bb0295 article-title: Multilevel finite element modeling for the prediction of local cellular deformation in bone publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-007-0082-1 – volume: 3 year: 2012 ident: 10.1016/j.bone.2020.115328_bb0425 article-title: Nonintrusive 3D reconstruction of human bone models to simulate their bio-mechanical response publication-title: 3D Res. doi: 10.1007/3DRes.03(2012)5 – volume: 101 start-page: 16689 year: 2004 ident: 10.1016/j.bone.2020.115328_bb0105 article-title: Mechanotransduction and strain amplification in osteocyte cell processes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0407429101 – volume: 12 start-page: 20150590 year: 2015 ident: 10.1016/j.bone.2020.115328_bb0290 article-title: Predicting cortical bone adaptation to axial loading in the mouse tibia publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2015.0590 – volume: 278 start-page: 505 year: 2004 ident: 10.1016/j.bone.2020.115328_bb0385 article-title: Ultrastructure of the osteocyte process and its pericellular matrix publication-title: Anat Rec A Discov Mol Cell Evol Biol doi: 10.1002/ar.a.20050 – volume: 76 start-page: 58 year: 2015 ident: 10.1016/j.bone.2020.115328_bb0215 article-title: In vivo mechanical loading rapidly activates β-catenin signaling in osteocytes through a prostaglandin mediated mechanism publication-title: Bone doi: 10.1016/j.bone.2015.03.019 – volume: 28 start-page: 69 year: 1995 ident: 10.1016/j.bone.2020.115328_bb0260 article-title: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models publication-title: J. Biomech. doi: 10.1016/0021-9290(95)80008-5 – ident: 10.1016/j.bone.2020.115328_bb0355 – volume: 47 start-page: 872 year: 2010 ident: 10.1016/j.bone.2020.115328_bb0195 article-title: Activation of β-catenin signaling in MLO-Y4 osteocytic cells versus 2T3 osteoblastic cells by fluid flow shear stress and PGE2: implications for the study of mechanosensation in bone publication-title: Bone doi: 10.1016/j.bone.2010.08.007 – volume: 34 start-page: 1375 year: 2001 ident: 10.1016/j.bone.2020.115328_bb0120 article-title: A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00107-5 – volume: 54 start-page: 285 year: 2013 ident: 10.1016/j.bone.2020.115328_bb0370 article-title: Studying osteocytes within their environment publication-title: Bone doi: 10.1016/j.bone.2013.01.004 – volume: 36 start-page: 877 year: 2005 ident: 10.1016/j.bone.2020.115328_bb0395 article-title: Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy publication-title: Bone doi: 10.1016/j.bone.2004.10.008 – volume: 315 start-page: 823 year: 2004 ident: 10.1016/j.bone.2020.115328_bb0350 article-title: Nitric oxide production by bone cells is fluid shear stress rate dependent publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.01.138 – volume: 125 start-page: 2020S year: 1995 ident: 10.1016/j.bone.2020.115328_bb0055 article-title: Function of osteocytes in bone—their role in mechanotransduction publication-title: J. Nutr. doi: 10.1093/jn/125.suppl_7.2020S – volume: 23 start-page: 399 year: 1998 ident: 10.1016/j.bone.2020.115328_bb0025 article-title: Three rules for bone adaptation to mechanical stimuli publication-title: Bone doi: 10.1016/S8756-3282(98)00118-5 – volume: 39 start-page: 1735 year: 2006 ident: 10.1016/j.bone.2020.115328_bb0135 article-title: Osteocyte lacunae tissue strain in cortical bone publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.04.032 – volume: 9 start-page: 2735 year: 2012 ident: 10.1016/j.bone.2020.115328_bb0110 article-title: Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2012.0286 – year: 1986 ident: 10.1016/j.bone.2020.115328_bb0030 – volume: 11 start-page: 221 year: 2012 ident: 10.1016/j.bone.2020.115328_bb0305 article-title: Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-011-0305-3 – volume: 17 start-page: 897 year: 1984 ident: 10.1016/j.bone.2020.115328_bb0035 article-title: Static vs dynamic loads as an influence on bone remodelling publication-title: J. Biomech. doi: 10.1016/0021-9290(84)90003-4 – volume: 207 year: 1965 ident: 10.1016/j.bone.2020.115328_bb0390 article-title: Demineralization of bone publication-title: Nature doi: 10.1038/207094a0 – volume: 19 start-page: 319 year: 2009 ident: 10.1016/j.bone.2020.115328_bb0100 article-title: Mechanical signaling for bone modeling and remodeling publication-title: Crit. Rev. Eukaryot. Gene Expr. doi: 10.1615/CritRevEukarGeneExpr.v19.i4.50 – volume: 133 start-page: 133 year: 2016 ident: 10.1016/j.bone.2020.115328_bb0345 article-title: Numerical simulation of osteocyte cell in response to directional mechanical loadings and mechanotransduction analysis: considering lacunar–canalicular interstitial fluid flow publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2016.05.019 – volume: 43 start-page: 599 year: 2010 ident: 10.1016/j.bone.2020.115328_bb0245 article-title: Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.10.042 – volume: 36 start-page: 19 year: 1984 ident: 10.1016/j.bone.2020.115328_bb0020 article-title: Mechanical loading histories and cortical bone remodeling publication-title: Calcif. Tissue Int. doi: 10.1007/BF02406129 – volume: 2015 year: 2015 ident: 10.1016/j.bone.2020.115328_bb0315 article-title: Strain amplification analysis of an osteocyte under static and cyclic loading: a finite element study publication-title: Biomed. Res. Int. – volume: 113 start-page: 191 year: 1991 ident: 10.1016/j.bone.2020.115328_bb0045 article-title: Candidates for the mechanosensory system in bone publication-title: J. Biomech. Eng. doi: 10.1115/1.2891234 – volume: 20 start-page: 735 year: 1999 ident: 10.1016/j.bone.2020.115328_bb0265 article-title: Material properties assignment to finite element models of bone structures: a new method publication-title: Med. Eng. Phys. doi: 10.1016/S1350-4533(98)00081-2 – volume: 76 start-page: 129 year: 2015 ident: 10.1016/j.bone.2020.115328_bb0410 article-title: Novel approaches for two and three dimensional multiplexed imaging of osteocytes publication-title: Bone doi: 10.1016/j.bone.2015.02.011 – volume: 16 start-page: 1243 year: 2017 ident: 10.1016/j.bone.2020.115328_bb0255 article-title: Comparison of strain measurement in the mouse forearm using subject-specific finite element models, strain gaging, and digital image correlation publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-017-0885-7 – volume: 33 start-page: 52 year: 2005 ident: 10.1016/j.bone.2020.115328_bb0200 article-title: Nano? Microscale models of periosteocytic flow show differences in stresses imparted to cell body and processes publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-005-8962-y – volume: 47 start-page: 2490 year: 2014 ident: 10.1016/j.bone.2020.115328_bb0250 article-title: Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.03.035 – volume: 11 start-page: 403 year: 2012 ident: 10.1016/j.bone.2020.115328_bb0225 article-title: 3D characterization of bone strains in the rat tibia loading model publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-011-0320-4 – volume: 2 start-page: 261 year: 2002 ident: 10.1016/j.bone.2020.115328_bb0130 article-title: Microstructural strain near osteocyte lacuna in cortical bone in vitro publication-title: J. Musculoskelet. Nueronal Interact. – volume: 270 start-page: E419 year: 1996 ident: 10.1016/j.bone.2020.115328_bb0070 article-title: Increased bone formation in rat tibiae after a single short period of dynamic loading in vivo publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.1996.270.3.E419 – volume: 108 start-page: 1587 year: 2015 ident: 10.1016/j.bone.2020.115328_bb0145 article-title: Altered mechanical environment of bone cells in an animal model of short- and long-term osteoporosis publication-title: Biophys. J. doi: 10.1016/j.bpj.2015.02.031 – volume: 9 start-page: 2735 year: 2012 ident: 10.1016/j.bone.2020.115328_bb0310 article-title: Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2012.0286 – volume: 42 start-page: 172 year: 2008 ident: 10.1016/j.bone.2020.115328_bb0065 article-title: Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading publication-title: Bone doi: 10.1016/j.bone.2007.09.047 – volume: 3 start-page: 111 year: 1962 ident: 10.1016/j.bone.2020.115328_bb0150 article-title: Stress concentrations in bone publication-title: J. Cell Sci. doi: 10.1242/jcs.s3-103.61.111 – volume: 47 start-page: 451 year: 2014 ident: 10.1016/j.bone.2020.115328_bb0240 article-title: Experimental and finite element analysis of strains induced by axial tibial compression in young-adult and old female C57Bl/6 mice publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.10.052 – volume: 14 start-page: 703 year: 2015 ident: 10.1016/j.bone.2020.115328_bb0340 article-title: Bone cell mechanosensation of fluid flow stimulation: a fluid–structure interaction model characterising the role integrin attachments and primary cilia publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-014-0631-3 – volume: 6 start-page: 1 year: 2017 ident: 10.1016/j.bone.2020.115328_bb0380 article-title: Laboratory x-ray micro-computed tomography: a user guideline for biological samples publication-title: Gigascience doi: 10.1093/gigascience/gix027 – volume: 283 start-page: 380 year: 2005 ident: 10.1016/j.bone.2020.115328_bb0220 article-title: Finite element analysis of the mouse tibia: estimating endocortical strain during three-point bending in SAMP6 osteoporotic mice publication-title: The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology: An Official Publication of the American Association of Anatomists – volume: 66 start-page: 131 year: 2014 ident: 10.1016/j.bone.2020.115328_bb0275 article-title: Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis publication-title: Bone doi: 10.1016/j.bone.2014.05.019 – volume: 102 start-page: 11911 year: 2005 ident: 10.1016/j.bone.2020.115328_bb0115 article-title: In situ measurement of solute transport in the bone lacunar-canalicular system publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0505193102 – volume: 36 start-page: 1409 year: 2003 ident: 10.1016/j.bone.2020.115328_bb0165 article-title: “Whither flows the fluid in bone?” An osteocyte’s perspective publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00123-4 – volume: 41 start-page: 1736 year: 2008 ident: 10.1016/j.bone.2020.115328_bb0325 article-title: Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.02.035 – volume: 316 start-page: 184 year: 1998 ident: 10.1016/j.bone.2020.115328_bb0125 article-title: Strain amplification in the bone mechanosensory system publication-title: Am J Med Sci – volume: 46 start-page: 2710 year: 2013 ident: 10.1016/j.bone.2020.115328_bb0270 article-title: Intravoxel bone micromechanics for microCT-based finite element simulations publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.06.036 – volume: 10 year: 2015 ident: 10.1016/j.bone.2020.115328_bb0405 article-title: Optical clearing in dense connective tissues to visualize cellular connectivity in situ publication-title: PLoS One doi: 10.1371/journal.pone.0116662 – volume: 46 start-page: 12 year: 2017 ident: 10.1016/j.bone.2020.115328_bb0280 article-title: MicroCT-based finite element models as a tool for virtual testing of cortical bone publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2017.04.011 – volume: 41 start-page: 347 year: 2009 ident: 10.1016/j.bone.2020.115328_bb0170 article-title: Fluid and solute transport in bone: flow-induced mechanotransduction publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.010908.165136 – volume: 53 start-page: 102 year: 1993 ident: 10.1016/j.bone.2020.115328_bb0015 article-title: Osteocytes, strain detection, bone modeling and remodeling publication-title: Calcif. Tissue Int. doi: 10.1007/BF01673415 – start-page: 110 year: 2015 ident: 10.1016/j.bone.2020.115328_bb0335 article-title: Stress concentration at the base of primary cilium due to application of a thin elastic layer – volume: 235 start-page: 176 year: 2006 ident: 10.1016/j.bone.2020.115328_bb0005 article-title: Buried alive: how osteoblasts become osteocytes publication-title: Developmental Dynamics: An Official Publication of the American Association of Anatomists doi: 10.1002/dvdy.20603 – volume: 27 start-page: 339 year: 1994 ident: 10.1016/j.bone.2020.115328_bb0175 article-title: A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses publication-title: J. Biomech. doi: 10.1016/0021-9290(94)90010-8 – volume: 33 start-page: 1131 year: 2000 ident: 10.1016/j.bone.2020.115328_bb0140 article-title: Observations of microdamage around osteocyte lacunae in bone publication-title: J. Biomech. doi: 10.1016/S0021-9290(00)00090-7 – volume: 30 start-page: 781 year: 2002 ident: 10.1016/j.bone.2020.115328_bb0085 article-title: Effects of biomechanical stress on bones in animals publication-title: Bone doi: 10.1016/S8756-3282(02)00707-X – year: 2018 ident: 10.1016/j.bone.2020.115328_bb0375 – volume: 53 start-page: 576 year: 2005 ident: 10.1016/j.bone.2020.115328_bb0190 article-title: Mechanobiology of bone tissue publication-title: Pathologie-Biologie doi: 10.1016/j.patbio.2004.12.005 – volume: 122 start-page: 101 year: 2019 ident: 10.1016/j.bone.2020.115328_bb0365 article-title: Changes in the osteocyte lacunocanalicular network with aging publication-title: Bone doi: 10.1016/j.bone.2019.01.025 – year: 2013 ident: 10.1016/j.bone.2020.115328_bb0330 – volume: 13 start-page: 101 year: 1999 ident: 10.1016/j.bone.2020.115328_bb0060 article-title: Mechanotransduction in bone-role of the lacuno-canalicular network publication-title: FASEB J. doi: 10.1096/fasebj.13.9001.s101 – volume: 16 start-page: 2291 year: 2001 ident: 10.1016/j.bone.2020.115328_bb0090 article-title: Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2001.16.12.2291 – volume: 100 start-page: 619 year: 2017 ident: 10.1016/j.bone.2020.115328_bb0040 article-title: Effect of macroanatomic bone type and estrogen loss on osteocyte lacunar properties in healthy adult women publication-title: Calcif. Tissue Int. doi: 10.1007/s00223-017-0247-6 – start-page: 179 year: 2011 ident: 10.1016/j.bone.2020.115328_bb0010 article-title: Skeletal mechanobiology – volume: 45 start-page: 321 year: 2009 ident: 10.1016/j.bone.2020.115328_bb0205 article-title: Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density—is there a role for mechanosensing? publication-title: Bone doi: 10.1016/j.bone.2009.04.238 – volume: 13 start-page: 85 year: 2014 ident: 10.1016/j.bone.2020.115328_bb0320 article-title: Fluid flow in the osteocyte mechanical environment: a fluid–structure interaction approach publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-013-0487-y – volume: 72 start-page: 1396 year: 1983 ident: 10.1016/j.bone.2020.115328_bb0360 article-title: Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss publication-title: J. Clin. Invest. doi: 10.1172/JCI111096 – volume: 34 start-page: 350 year: 2012 ident: 10.1016/j.bone.2020.115328_bb0230 article-title: Load/strain distribution between ulna and radius in the mouse forearm compression loading model publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2011.07.022 – volume: 31 start-page: 562 year: 2002 ident: 10.1016/j.bone.2020.115328_bb0080 article-title: Mechanotransduction in bone: genetic effects on mechanosensitivity in mice publication-title: Bone doi: 10.1016/S8756-3282(02)00871-2 – volume: 273 start-page: E751 year: 1997 ident: 10.1016/j.bone.2020.115328_bb0180 article-title: Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain publication-title: American Journal of Physiology-Endocrinology and Metabolism doi: 10.1152/ajpendo.1997.273.4.E751 – volume: 76 start-page: 58 year: 2015 ident: 10.1016/j.bone.2020.115328_bb0415 article-title: In vivo mechanical loading rapidly activates beta-catenin signaling in osteocytes through a prostaglandin mediated mechanism publication-title: Bone doi: 10.1016/j.bone.2015.03.019 – volume: 32 start-page: 1580 year: 2014 ident: 10.1016/j.bone.2020.115328_bb0235 article-title: Experimental and finite element analysis of dynamic loading of the mouse forearm publication-title: J. Orthop. Res. doi: 10.1002/jor.22720 – volume: 11 start-page: 435 year: 2008 ident: 10.1016/j.bone.2020.115328_bb0300 article-title: A novel in vivo mouse model for mechanically stimulated bone adaptation–a combined experimental and computational validation study publication-title: Computer Methods in Biomechanics and Biomedical Engineering doi: 10.1080/10255840802078014 – volume: 37 start-page: 411 year: 1985 ident: 10.1016/j.bone.2020.115328_bb0075 article-title: Regulation of bone mass by mechanical strain magnitude publication-title: Calcif. Tissue Int. doi: 10.1007/BF02553711 |
SSID | ssj0003971 |
Score | 2.5202243 |
SecondaryResourceType | review_article |
Snippet | Osteocytes form over 90% of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in... Osteocytes form over ninety percent of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 115328 |
SubjectTerms | Finite element model Fluid flow shear stress Lacunae Mechanotransduction Osteocyte Perilacunar matrix Strain |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB7qFtQXL63aeGME8UWzzU4ukzwuYilCi4gL9SnMLRjNTpbuhrL-es-ZSYK1Uu1LIGQmZDJfzvkm851zCHktwQloVzTDyCRMlJRgB4UOtSqETIrYKIMBzien2fEi-XiWnu2Q2RAL40T7StZT2yyntv7mtJWrpTocdGKHPE4TNstukd0M95QmZHdx-mn-FRdWOY9Dxl31NKDhWRjDeqIPlPGaLtlaTI3J0FKkMVZg_7szuko2r2om73R2JbYXoml-c0hH98nnYSheh_Jj2m3kVP38I8vjjcb6gNzr6Smd-0sPyY6xe2R_bmFpvtzSN9QJRt2f-D1y-6Tfl98nSxfHu4b5NrSqkcZS43Xp1JXaAf9I24ouDcYZIyzo2tWmWFNhNa2arsZje0FrSzHqpFVbuEUjVGdblKU1tZPLUp93-hFZHH348v447As5hCqNsk1YVCbhkamMrDLNpSlEaiINrrHSLM9VniVKcZ0WOtdMSAOIMUpHnEWCF4rNdPyYTCxM3QEqsTBnW5LEzPBEcSa1Ehp8KtgiYCqmCMhsmNFS9VnOcUBNOcjZvpeIghJRUHoUBOTt2Gflc3xc2zoegFIO0atgb0twQdf2SsdePbfxnOWf_V4NWCzhw8fdHGFN261Lz7WAcbOAPPHYHJ8erDTm4osCwi-hdmyAScUvXwH8ueTiPeQC8m7E93-8lKc3a_6M3MUzL6R8Tiab8868AHK3kS_7z_kX9wVQdg priority: 102 providerName: Unpaywall |
Title | Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S8756328220301083 https://dx.doi.org/10.1016/j.bone.2020.115328 https://www.ncbi.nlm.nih.gov/pubmed/32201360 https://www.proquest.com/docview/2381850542 https://pubmed.ncbi.nlm.nih.gov/PMC7354216 https://www.ncbi.nlm.nih.gov/pmc/articles/7354216 |
UnpaywallVersion | submittedVersion |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003971 issn: 8756-3282 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003971 issn: 8756-3282 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-2763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003971 issn: 8756-3282 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003971 issn: 8756-3282 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003971 issn: 8756-3282 databaseCode: AKRWK dateStart: 19850101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KBfWlaKs2fpQVxBeNl0s22cvjUVpOpYegB_Up7Fcwktsc3oVyL_7tzuwmsUelii8JSXZDsjOZ-WX3NzOEvJLgBLQrmmEkC5mSEuyg0KFWuZAsT4wyGOB8Mc9mC_bhMr3cI6d9LAzSKjvb7226s9bdmVE3mqNVVY0-A9LOEmRBIqoHJIER7CxDWt-7n79pHuBvx36OLwuxdRc44zlesrGYKjNGy5EmWJH9z87pJvi8yaG819qV2F6Jur7moM4fkIMOWdKpf_iHZM_YQ3I0tfBXvdzS19RxPd0k-iG5e9EtqR-RpQvBXYOoDC0rRKDUeEo5dVVywLXRpqRLgyHCKFG6dmUl1lRYTcu6rXDbXNHKUgwYadQWblEL1doGGWV15Ziu1KeMfkQW52dfTmdhV4MhVGmUbcK8NIxHpjSyzDSXJhepiTR4tVLHk4maZEwprtNcT3QspAFhG6UjHkeC5yoe6-Qx2bcwysdIosJ0a4wlseFM8VhqJTS4QzAjADJMHpBxP_iF6hKU4wvVRc9E-16gwAoUWOEFFpA3Q5-VT89xa-ukl2nRB56CqSzAe9zaKx167ajmX_u97NWmgG8WF2KENU27LjxMArAcB-SJV6Ph6cHAYhq9KCB8R8GGBpgPfPeKrb65vOA8gTuOs4C8HVTxHwbl6X--3jNyH488GfI52d_8aM0LAGgbeeK-wBNyZ_r-42wO-8X80_TrL3eOPok |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEB6ljtT0UrVJH-5zK1W9tMgYFjBHK2rkNLEvTaTcVvtCocJgxUaR_31mWEC1UqVVLz4YBsHO8M0HfDMD8FlhEjDN0AyruMe1UoiD0nhGp1LxNLTaUoHzfBHPLvmPq-hqD467WhiSVbbY7zC9Qev2n1G7mqNVno9-ItOOQ1JBEqtHJvEI9nmEmDyA_enp2WzRAzKm3LF7zRd7ZNDWzjiZl6pK6pYZEHhEIQ1l_3N-us8_78soD-pyJbe3sih-y1Enz-BpSy7Z1J3_c9iz5SEcTUt8sF5u2RfWyD2b9-iH8HjeflU_gmVThbtGb1mW5URCmXWqctYMysHsxqqMLS1VCZNT2bqZLLFmsjQsK-qcfqtblpeMakYqvcVDFFLXZUWisiJvxK7MdY1-AZcn3y-OZ147hsHTkR9vvDSzPPFtZlUWm0TZVEbWN5jYMhNMJnoSc60TE6VmYgKpLPrbauMngS-TVAdjE76EQYmr_Jp0VNRxjfMwsAnXSaCMlgYzIiIJ8gybDmHcLb7QbY9yuqBCdGK0X4IcJshhwjlsCF97m5Xr0PHg3mHnU9HVniJaCkwgD1pFvdVOdP7V7lMXNgJvW_oWI0tb1WvhmBLy5WAIr1wY9WePGEud9PwhJDsB1u9ALcF3t5T5ddMaPAnxiON4CN_6UPyHRXnzn5f3EQ5mF_NzcX66OHsLT2iL00a-g8Hmprbvka9t1If2frwDLIg_hA |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB7qFtQXL63aeGME8UWzzU4ukzwuYilCi4gL9SnMLRjNTpbuhrL-es-ZSYK1Uu1LIGQmZDJfzvkm851zCHktwQloVzTDyCRMlJRgB4UOtSqETIrYKIMBzien2fEi-XiWnu2Q2RAL40T7StZT2yyntv7mtJWrpTocdGKHPE4TNstukd0M95QmZHdx-mn-FRdWOY9Dxl31NKDhWRjDeqIPlPGaLtlaTI3J0FKkMVZg_7szuko2r2om73R2JbYXoml-c0hH98nnYSheh_Jj2m3kVP38I8vjjcb6gNzr6Smd-0sPyY6xe2R_bmFpvtzSN9QJRt2f-D1y-6Tfl98nSxfHu4b5NrSqkcZS43Xp1JXaAf9I24ouDcYZIyzo2tWmWFNhNa2arsZje0FrSzHqpFVbuEUjVGdblKU1tZPLUp93-hFZHH348v447As5hCqNsk1YVCbhkamMrDLNpSlEaiINrrHSLM9VniVKcZ0WOtdMSAOIMUpHnEWCF4rNdPyYTCxM3QEqsTBnW5LEzPBEcSa1Ehp8KtgiYCqmCMhsmNFS9VnOcUBNOcjZvpeIghJRUHoUBOTt2Gflc3xc2zoegFIO0atgb0twQdf2SsdePbfxnOWf_V4NWCzhw8fdHGFN261Lz7WAcbOAPPHYHJ8erDTm4osCwi-hdmyAScUvXwH8ueTiPeQC8m7E93-8lKc3a_6M3MUzL6R8Tiab8868AHK3kS_7z_kX9wVQdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+finite+element+modeling+of+mechanical+strains+and+fluid+flow+in+osteocyte+lacunocanalicular+system&rft.jtitle=Bone+%28New+York%2C+N.Y.%29&rft.au=Ganesh%2C+Thiagarajan&rft.au=Laughrey%2C+Loretta+E&rft.au=Niroobakhsh%2C+Mohammadmehdi&rft.au=Lara-Castillo%2C+Nuria&rft.date=2020-08-01&rft.issn=1873-2763&rft.eissn=1873-2763&rft.volume=137&rft.spage=115328&rft_id=info:doi/10.1016%2Fj.bone.2020.115328&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-3282&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-3282&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-3282&client=summon |