Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system

Osteocytes form over 90% of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in bone modeling and remodeling. Physical activity results in mechanical loading on the bones. Osteocytes are thought to be the main mechanosensor...

Full description

Saved in:
Bibliographic Details
Published inBone (New York, N.Y.) Vol. 137; p. 115328
Main Authors Ganesh, Thiagarajan, Laughrey, Loretta E., Niroobakhsh, Mohammadmehdi, Lara-Castillo, Nuria
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2020
Subjects
Online AccessGet full text
ISSN8756-3282
1873-2763
1873-2763
DOI10.1016/j.bone.2020.115328

Cover

Abstract Osteocytes form over 90% of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in bone modeling and remodeling. Physical activity results in mechanical loading on the bones. Osteocytes are thought to be the main mechanosensory cells in bone. Upon load osteocytes secrete key factors initiating downstream signaling pathways that regulate skeletal metabolism including the Wnt/β-catenin signaling pathway. Osteocytes have dendritic structures and are housed in the lacunae and canaliculi within the bone matrix. Mechanical loading is known to have two primary effects, namely a mechanical strain (membrane disruption by stretching) on the lacunae/cells, and fluid flow, in the form of fluid flow shear stress (FFSS), in the space between the cell membranes and the lacuna-canalicular walls. In response, osteocytes get activated via a process called mechanotransduction in which mechanical signals are transduced to biological responses. The study of mechanotransduction is a complex subject involving principles of engineering mechanics as well as biological signaling pathway studies. Several length scales are involved as the mechanical loading on macro sized bones are converted to strain and FFSS responses at the micro-cellular level. Experimental measurements of strain and FFSS at the cellular level are very difficult and correlating them to specific biological activity makes this a very challenging task. One of the methods commonly adopted is a multi-scale approach that combines biological and mechanical experimentation with in silico numerical modeling of the engineering aspects of the problem. Finite element analysis along with fluid-structure interaction methodologies are used to compute the mechanical strain and FFSS. These types of analyses often involve a multi-length scale approach where models of both the macro bone structure and micro structure at the cellular length scale are used. Imaging modalities play a crucial role in the development of the models and present their own challenges. This paper reviews the efforts of various research groups in addressing this problem and presents the work in our research group. A clear understanding of how mechanical stimuli affect the lacunae and perilacunar tissue strains and shear stresses on the cellular membranes may ultimately lead to a better understanding of the process of osteocyte activation.
AbstractList Osteocytes form over ninety percent of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in bone modeling and remodeling. Physical activity results in mechanical loading on the bones. Osteocytes are thought to be the main mechanosensory cells in bone. Upon load osteocytes secrete key factors initiating downstream signaling pathways that regulate skeletal metabolism including the Wnt/β-catenin signaling pathway. Osteocytes have dendritic structures and are housed in the lacunae and canaliculi within the bone matrix. Mechanical loading is known to have two primary effects, namely a mechanical strain (membrane disruption by stretching) on the lacunae/cells, and fluid flow, in the form of fluid flow shear stress (FFSS), in the space between the cell membranes and the lacuna-canalicular walls. In response, osteocytes get activated via a process called mechanotransduction in which mechanical signals are transduced to biological responses. The study of mechanotransduction is a complex subject involving principles of engineering mechanics as well as biological signaling pathway studies. Several length scales are involved as the mechanical loading on macro sized bones are converted to strain and FFSS responses at the micro-cellular level. Experimental measurements of strain and FFSS at the cellular level are very difficult and correlating them to specific biological activity makes this a very challenging task. One of the methods commonly adopted is a multi-scale approach that combines biological and mechanical experimentation with in silico numerical modeling of the engineering aspects of the problem. Finite element analysis along with fluid-structure interaction methodologies are used to compute the mechanical strain and FFSS. These types of analyses often involve a multi-length scale approach where models of both the macro bone structure and micro structure at the cellular length scale are used. Imaging modalities play a crucial role in the development of the models and present their own challenges. This paper reviews the efforts of various research groups in addressing this problem and presents the work in our research group. A clear understanding of how mechanical stimuli affect the lacunae and perilacunar tissue strains and shear stresses on the cellular membranes may ultimately lead to a better understanding of the process of osteocyte activation.
Osteocytes form over 90% of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in bone modeling and remodeling. Physical activity results in mechanical loading on the bones. Osteocytes are thought to be the main mechanosensory cells in bone. Upon load osteocytes secrete key factors initiating downstream signaling pathways that regulate skeletal metabolism including the Wnt/β-catenin signaling pathway. Osteocytes have dendritic structures and are housed in the lacunae and canaliculi within the bone matrix. Mechanical loading is known to have two primary effects, namely a mechanical strain (membrane disruption by stretching) on the lacunae/cells, and fluid flow, in the form of fluid flow shear stress (FFSS), in the space between the cell membranes and the lacuna-canalicular walls. In response, osteocytes get activated via a process called mechanotransduction in which mechanical signals are transduced to biological responses. The study of mechanotransduction is a complex subject involving principles of engineering mechanics as well as biological signaling pathway studies. Several length scales are involved as the mechanical loading on macro sized bones are converted to strain and FFSS responses at the micro-cellular level. Experimental measurements of strain and FFSS at the cellular level are very difficult and correlating them to specific biological activity makes this a very challenging task. One of the methods commonly adopted is a multi-scale approach that combines biological and mechanical experimentation with in silico numerical modeling of the engineering aspects of the problem. Finite element analysis along with fluid-structure interaction methodologies are used to compute the mechanical strain and FFSS. These types of analyses often involve a multi-length scale approach where models of both the macro bone structure and micro structure at the cellular length scale are used. Imaging modalities play a crucial role in the development of the models and present their own challenges. This paper reviews the efforts of various research groups in addressing this problem and presents the work in our research group. A clear understanding of how mechanical stimuli affect the lacunae and perilacunar tissue strains and shear stresses on the cellular membranes may ultimately lead to a better understanding of the process of osteocyte activation.
Osteocytes form over 90% of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in bone modeling and remodeling. Physical activity results in mechanical loading on the bones. Osteocytes are thought to be the main mechanosensory cells in bone. Upon load osteocytes secrete key factors initiating downstream signaling pathways that regulate skeletal metabolism including the Wnt/β-catenin signaling pathway. Osteocytes have dendritic structures and are housed in the lacunae and canaliculi within the bone matrix. Mechanical loading is known to have two primary effects, namely a mechanical strain (membrane disruption by stretching) on the lacunae/cells, and fluid flow, in the form of fluid flow shear stress (FFSS), in the space between the cell membranes and the lacuna-canalicular walls. In response, osteocytes get activated via a process called mechanotransduction in which mechanical signals are transduced to biological responses. The study of mechanotransduction is a complex subject involving principles of engineering mechanics as well as biological signaling pathway studies. Several length scales are involved as the mechanical loading on macro sized bones are converted to strain and FFSS responses at the micro-cellular level. Experimental measurements of strain and FFSS at the cellular level are very difficult and correlating them to specific biological activity makes this a very challenging task. One of the methods commonly adopted is a multi-scale approach that combines biological and mechanical experimentation with in silico numerical modeling of the engineering aspects of the problem. Finite element analysis along with fluid-structure interaction methodologies are used to compute the mechanical strain and FFSS. These types of analyses often involve a multi-length scale approach where models of both the macro bone structure and micro structure at the cellular length scale are used. Imaging modalities play a crucial role in the development of the models and present their own challenges. This paper reviews the efforts of various research groups in addressing this problem and presents the work in our research group. A clear understanding of how mechanical stimuli affect the lacunae and perilacunar tissue strains and shear stresses on the cellular membranes may ultimately lead to a better understanding of the process of osteocyte activation.Osteocytes form over 90% of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in bone modeling and remodeling. Physical activity results in mechanical loading on the bones. Osteocytes are thought to be the main mechanosensory cells in bone. Upon load osteocytes secrete key factors initiating downstream signaling pathways that regulate skeletal metabolism including the Wnt/β-catenin signaling pathway. Osteocytes have dendritic structures and are housed in the lacunae and canaliculi within the bone matrix. Mechanical loading is known to have two primary effects, namely a mechanical strain (membrane disruption by stretching) on the lacunae/cells, and fluid flow, in the form of fluid flow shear stress (FFSS), in the space between the cell membranes and the lacuna-canalicular walls. In response, osteocytes get activated via a process called mechanotransduction in which mechanical signals are transduced to biological responses. The study of mechanotransduction is a complex subject involving principles of engineering mechanics as well as biological signaling pathway studies. Several length scales are involved as the mechanical loading on macro sized bones are converted to strain and FFSS responses at the micro-cellular level. Experimental measurements of strain and FFSS at the cellular level are very difficult and correlating them to specific biological activity makes this a very challenging task. One of the methods commonly adopted is a multi-scale approach that combines biological and mechanical experimentation with in silico numerical modeling of the engineering aspects of the problem. Finite element analysis along with fluid-structure interaction methodologies are used to compute the mechanical strain and FFSS. These types of analyses often involve a multi-length scale approach where models of both the macro bone structure and micro structure at the cellular length scale are used. Imaging modalities play a crucial role in the development of the models and present their own challenges. This paper reviews the efforts of various research groups in addressing this problem and presents the work in our research group. A clear understanding of how mechanical stimuli affect the lacunae and perilacunar tissue strains and shear stresses on the cellular membranes may ultimately lead to a better understanding of the process of osteocyte activation.
ArticleNumber 115328
Author Niroobakhsh, Mohammadmehdi
Lara-Castillo, Nuria
Laughrey, Loretta E.
Ganesh, Thiagarajan
AuthorAffiliation 1 Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110
2 Department of Oral and Craniofacial Sciences School of Dentistry, University of Missouri-Kansas City, 650 E 25 th Street, Kansas City, MO 64108
AuthorAffiliation_xml – name: 2 Department of Oral and Craniofacial Sciences School of Dentistry, University of Missouri-Kansas City, 650 E 25 th Street, Kansas City, MO 64108
– name: 1 Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110
Author_xml – sequence: 1
  givenname: Thiagarajan
  surname: Ganesh
  fullname: Ganesh, Thiagarajan
  email: ganesht@umkc.edu
  organization: Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110, United States of America
– sequence: 2
  givenname: Loretta E.
  surname: Laughrey
  fullname: Laughrey, Loretta E.
  organization: Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110, United States of America
– sequence: 3
  givenname: Mohammadmehdi
  surname: Niroobakhsh
  fullname: Niroobakhsh, Mohammadmehdi
  organization: Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110, United States of America
– sequence: 4
  givenname: Nuria
  surname: Lara-Castillo
  fullname: Lara-Castillo, Nuria
  organization: Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 E 25th Street, Kansas City, MO 64108, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32201360$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFP8AB-cglW39sEgchJFTxJRVxgbPl2JPWi2MvttMq_x5HKVB6KFxsaeZ9ZjTvzAk68sEDQs8p2VJCm7P9ti-BLSOsBGjNmXiENlS0vGJtw4_QRrR1U5UwO0YnKe0JIbxr6RN0zBkjlDdkg8bPk8s2aeUAD9bbDBgcjOAzHoMBZ_0lDgMeQV8pb4sMpxyV9Qkrb_DgJru84QZbj0PKEPRcSjilJx-08spZPTkVcZpLcnyKHg_KJXh2-5-ib-_ffT3_WF18-fDp_O1FpWvS5KobYNcSGKAfGtP20KkaiCGUDYYJoUWz07o1dWeEYaqHne5BG9IyotpOM2r4KeJr3ckf1HyjnJOHaEcVZ0mJXMyTe7mYJxfz5Gpeod6s1GHqRzC6mBDVHzIoK__OeHslL8O1bHm9Y7QpBV7eFojhxwQpy7FYC84pD2FKknFBRU2KuEhf3O31u8mvzRSBWAU6hpQiDFLbrLINS2vrHp6D3UP_a_jXKwRlL9cWokzagtdgbASdpQn2YfzVPVyX21kO5jvM_4J_AkXR4U0
CitedBy_id crossref_primary_10_1155_2022_3935803
crossref_primary_10_1016_j_bone_2022_116367
crossref_primary_10_1016_j_bone_2022_116640
crossref_primary_10_1016_j_ijmecsci_2025_109931
crossref_primary_10_1007_s10409_022_22332_x
crossref_primary_10_1080_10255842_2022_2145889
crossref_primary_10_3390_ijms22052697
crossref_primary_10_1007_s10409_024_23533_x
crossref_primary_10_3390_life12020233
crossref_primary_10_1007_s11914_022_00728_9
crossref_primary_10_1002_wsbm_1514
crossref_primary_10_1038_s41571_021_00499_9
crossref_primary_10_1016_j_cjtee_2024_05_003
crossref_primary_10_3390_ma16093349
crossref_primary_10_1016_j_jmbbm_2024_106767
crossref_primary_10_2186_jpr_JPR_D_24_00003
crossref_primary_10_1016_j_bone_2024_117386
crossref_primary_10_1016_j_bioactmat_2023_07_017
crossref_primary_10_1038_s41413_022_00191_3
crossref_primary_10_1063_5_0165467
crossref_primary_10_1063_5_0208419
crossref_primary_10_2174_1574888X16666211006105915
crossref_primary_10_1080_10255842_2023_2270104
crossref_primary_10_1016_j_actbio_2024_03_003
crossref_primary_10_1073_pnas_2023999118
crossref_primary_10_1007_s00223_024_01285_2
crossref_primary_10_1080_10985549_2024_2385633
crossref_primary_10_1016_j_clinbiomech_2023_106072
crossref_primary_10_1139_apnm_2020_0683
crossref_primary_10_1007_s11914_023_00776_9
crossref_primary_10_1016_j_biomaterials_2021_121203
crossref_primary_10_1063_5_0085299
crossref_primary_10_1007_s10237_022_01573_6
crossref_primary_10_1007_s12204_024_2788_y
crossref_primary_10_1038_s41413_022_00234_9
crossref_primary_10_1080_10255842_2024_2317442
crossref_primary_10_1136_annrheumdis_2020_218089
crossref_primary_10_1007_s11914_021_00713_8
Cites_doi 10.1016/j.bone.2012.09.008
10.1016/j.bone.2007.12.224
10.4103/0973-029X.99070
10.1016/S0021-9290(98)00176-6
10.1016/0021-9290(95)00058-P
10.1016/0021-9290(87)90058-3
10.1016/j.jbiomech.2008.01.031
10.1096/fj.04-2210fje
10.1039/c2ib20092a
10.1007/s10237-007-0082-1
10.1007/3DRes.03(2012)5
10.1073/pnas.0407429101
10.1098/rsif.2015.0590
10.1002/ar.a.20050
10.1016/j.bone.2015.03.019
10.1016/0021-9290(95)80008-5
10.1016/j.bone.2010.08.007
10.1016/S0021-9290(01)00107-5
10.1016/j.bone.2013.01.004
10.1016/j.bone.2004.10.008
10.1016/j.bbrc.2004.01.138
10.1093/jn/125.suppl_7.2020S
10.1016/S8756-3282(98)00118-5
10.1016/j.jbiomech.2005.04.032
10.1098/rsif.2012.0286
10.1007/s10237-011-0305-3
10.1016/0021-9290(84)90003-4
10.1038/207094a0
10.1615/CritRevEukarGeneExpr.v19.i4.50
10.1016/j.cmpb.2016.05.019
10.1016/j.jbiomech.2009.10.042
10.1007/BF02406129
10.1115/1.2891234
10.1016/S1350-4533(98)00081-2
10.1016/j.bone.2015.02.011
10.1007/s10237-017-0885-7
10.1007/s10439-005-8962-y
10.1016/j.jbiomech.2014.03.035
10.1007/s10237-011-0320-4
10.1152/ajpendo.1996.270.3.E419
10.1016/j.bpj.2015.02.031
10.1016/j.bone.2007.09.047
10.1242/jcs.s3-103.61.111
10.1016/j.jbiomech.2013.10.052
10.1007/s10237-014-0631-3
10.1093/gigascience/gix027
10.1016/j.bone.2014.05.019
10.1073/pnas.0505193102
10.1016/S0021-9290(03)00123-4
10.1016/j.jbiomech.2008.02.035
10.1016/j.jbiomech.2013.06.036
10.1371/journal.pone.0116662
10.1016/j.medengphy.2017.04.011
10.1146/annurev.fluid.010908.165136
10.1007/BF01673415
10.1002/dvdy.20603
10.1016/0021-9290(94)90010-8
10.1016/S0021-9290(00)00090-7
10.1016/S8756-3282(02)00707-X
10.1016/j.patbio.2004.12.005
10.1016/j.bone.2019.01.025
10.1096/fasebj.13.9001.s101
10.1359/jbmr.2001.16.12.2291
10.1007/s00223-017-0247-6
10.1016/j.bone.2009.04.238
10.1007/s10237-013-0487-y
10.1172/JCI111096
10.1016/j.medengphy.2011.07.022
10.1016/S8756-3282(02)00871-2
10.1152/ajpendo.1997.273.4.E751
10.1002/jor.22720
10.1080/10255840802078014
10.1007/BF02553711
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.bone.2020.115328
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1873-2763
EndPage 115328
ExternalDocumentID oai:pubmedcentral.nih.gov:7354216
PMC7354216
32201360
10_1016_j_bone_2020_115328
S8756328220301083
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P01 AG039355
– fundername: NIAMS NIH HHS
  grantid: R01 AR053949
– fundername: NCRR NIH HHS
  grantid: S10 RR027668
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OF0
OR.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
WUQ
X7M
Z5R
ZGI
ZMT
~02
~G-
1RT
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
LCYCR
RIG
ZA5
AAYXX
ACLOT
CITATION
~HD
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c506t-9fe470efebf6d7be9a5e0d012fd288c864cc7d59d8d2abe4cbecd0720a79c21d3
IEDL.DBID .~1
ISSN 8756-3282
1873-2763
IngestDate Sun Aug 24 08:58:22 EDT 2025
Tue Sep 30 16:26:39 EDT 2025
Sun Sep 28 00:37:10 EDT 2025
Wed Feb 19 02:29:07 EST 2025
Wed Oct 01 05:18:54 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Fri Feb 23 02:47:24 EST 2024
Tue Aug 26 16:31:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Perilacunar matrix
Lacunae
Finite element model
Mechanotransduction
Fluid flow shear stress
Osteocyte
Strain
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c506t-9fe470efebf6d7be9a5e0d012fd288c864cc7d59d8d2abe4cbecd0720a79c21d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7354216
PMID 32201360
PQID 2381850542
PQPubID 23479
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_bone_2020_115328
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7354216
proquest_miscellaneous_2381850542
pubmed_primary_32201360
crossref_citationtrail_10_1016_j_bone_2020_115328
crossref_primary_10_1016_j_bone_2020_115328
elsevier_sciencedirect_doi_10_1016_j_bone_2020_115328
elsevier_clinicalkey_doi_10_1016_j_bone_2020_115328
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Bone (New York, N.Y.)
PublicationTitleAlternate Bone
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Burger, Klein-Nulend (bb0060) 1999; 13
Carter (bb0020) 1984; 36
Knothe (bb0165) 2003; 36
Webster, Schneider, Dallas, Muller (bb0370) 2013; 54
You, Weinbaum, Cowin, Schaffler (bb0385) 2004; 278
Lu, Thiagarajan, Nicolella, Johnson (bb0230) 2012; 34
Cowin, Weinbaum, Zeng (bb0050) 1995; 28
Castillo, Jacobs (bb0010) 2011
Torcasio, Zhang, Duyck, van Lenthe (bb0225) 2012; 11
Vaughan, Mullen, Verbruggen, McNamara (bb0340) 2015; 14
Lara-Castillo, Kim-Weroha, Kamel, Javaheri, Ellies, Krumlauf, Thiagarajan, Johnson (bb0415) 2015; 76
Silva, Brodt, Hucker (bb0220) 2005; 283
van Rietbergen, Weinans, Huiskes, Odgaard (bb0260) 1995; 28
Han, Cowin, Schaffler, Weinbaum (bb0105) 2004; 101
Webster, Morley, van Lenthe, Müller (bb0300) 2008; 11
Dreyer (bb0390) 1965; 207
Sanjai, Kumarswamy, Patil, Papaiah, Jayaram, Krishnan (bb0400) 2012; 16
Hsieh, Robling, Ambrosius, Burr, Turner (bb0090) 2001; 16
Zannoni, Mantovani, Viceconti (bb0265) 1999; 20
Weinbaum, Cowin, Zeng (bb0175) 1994; 27
McGarry, Klein-Nulend, Mullender, Prendergast (bb0185) 2005; 19
Carriero, Abela, Pitsillides, Shefelbine (bb0250) 2014; 47
Reilly (bb0140) 2000; 33
Franz-Odendaal, Hall, Witten (bb0005) 2006; 235
Burger, Klein-Nulend, Van Der Plas, Nijweide (bb0055) 1995; 125
Bacabac, Mizuno, Schmidt, MacKintosh, Van Loon, Klein-Nulend, Smit (bb0155) 2008; 41
Begonia, Dallas, Johnson, Thiagarajan (bb0255) 2017; 16
Tiede-Lewis, Dallas (bb0365) 2019; 122
Forwood, Owan, Takano, Turner (bb0070) 1996; 270
Robling, Turner (bb0080) 2002; 31
Wang, Wang, Han, Henderson, Majeska, Weinbaum, Schaffler (bb0115) 2005; 102
Verbruggen, Vaughan, McNamara (bb0320) 2014; 13
Deligianni, Apostolopoulos (bb0295) 2008; 7
Cowin, Moss-Salentijn, Moss (bb0045) 1991; 113
Ramezanzadehkoldeh, Skallerud (bb0280) 2017; 46
Rubin, Lanyon (bb0075) 1985; 37
Patel, Brodt, Silva (bb0240) 2014; 47
Thiagarajan, Lu, Dallas, Johnson (bb0235) 2014; 32
Cowin, Weinbaum (bb0125) 1998; 316
Webster, Wirth, van Lenthe, Müller (bb0305) 2012; 11
Pereira, Javaheri, Pitsillides, Shefelbine (bb0290) 2015; 12
Burr, Robling, Turner (bb0085) 2002; 30
Sztefek, Vanleene, Olsson, Collinson, Pitsillides, Shefelbine (bb0245) 2010; 43
Ding, Odgaard, Hvid (bb0420) 1999; 32
You, Temiyasathit, Lee, Kim, Tummala, Yao, Kingery, Malone, Kwon, Jacobs (bb0065) 2008; 42
Kamel, Picconi, Lara-Castillo, Johnson (bb0195) 2010; 47
You, Cowin, Schaffler, Weinbaum (bb0120) 2001; 34
Fritton, Weinbaum (bb0170) 2009; 41
Yang, Butz, Duffy, Niebur, Nauman, Main (bb0275) 2014; 66
Sugawara, Kamioka, Honjo, Tezuka, Takano-Yamamoto (bb0395) 2005; 36
Schulte, Zwahlen, Lambers, Kuhn, Ruffoni, Betts, Webster, Müller (bb0285) 2013; 52
Lanyon, Rubin (bb0035) 1984; 17
Verbruggen, Vaughan, McNamara (bb0110) 2012; 9
Wang, Dong, Xian (bb0315) 2015; 2015
Bacabac, Smit, Mullender, Dijcks, Van Loon, Klein-Nulend (bb0350) 2004; 315
Wolff (bb0030) 1986
Klein-Nulend, Bacabac, Mullender (bb0190) 2005; 53
Currey (bb0150) 1962; 3
Anderson, Knothe Tate (bb0325) 2008; 41
Alexander, Antonis, Savvas, Nikolaos (bb0425) 2012; 3
Calve, Ready, Huppenbauer, Main, Neu (bb0405) 2015; 10
Bagnell (bb0375) 2018
Turner (bb0025) 1998; 23
Verbruggen, Vaughan, McNamara (bb0310) 2012; 9
Verbruggen (bb0330) 2013
Carter, Fyhrie, Whalen (bb0095) 1987; 20
Akhter, Kimmel, Lappe, Recker (bb0040) 2017; 100
Kamioka, Kameo, Imai, Bakker, Bacabac, Yamada, Takaoka, Yamashiro, Adachi, Klein-Nulend (bb0160) 2012; 4
du Plessis, Broeckhoven, Guelpa, le Roux (bb0380) 2017; 6
Parfitt, Mathews, Villanueva, Kleerekoper, Frame, Rao (bb0360) 1983; 72
Nicolella, Moravits, Gale, Bonewald, Lankford (bb0135) 2006; 39
Smalt, Mitchell, Howard, Chambers (bb0180) 1997; 273
van Hove, Nolte, Vatsa, Semeins, Salmon, Smit, Klein-Nulend (bb0205) 2009; 45
Anderson, Kaliyamoorthy, Iwan, Alexander, Knothe Tate (bb0200) 2005; 33
Robling, Turner (bb0100) 2009; 19
Lara-Castillo, Kim-Weroha, Kamel, Javaheri, Ellies, Krumlauf, Thiagarajan, Johnson (bb0215) 2015; 76
Lanyon (bb0015) 1993; 53
Kamel-ElSayed, Tiede-Lewis, Lu, Veno, Dallas (bb0410) 2015; 76
Joukar, Niroomand-Oscuii, Ghalichi (bb0345) 2016; 133
Bonewald, Johnson (bb0210) 2008; 42
Klein-Nulend J, Bacabac R, Bakker A. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton.
Verbruggen, Mc Garrigle, Haugh, Voisin, McNamara (bb0145) 2015; 108
Nicolella, Lankford (bb0130) 2002; 2
Blanchard, Dejaco, Bongaers, Hellmich (bb0270) 2013; 46
Rad, Vahidi (bb0335) 2015
Robling (10.1016/j.bone.2020.115328_bb0100) 2009; 19
Currey (10.1016/j.bone.2020.115328_bb0150) 1962; 3
Burger (10.1016/j.bone.2020.115328_bb0060) 1999; 13
Sugawara (10.1016/j.bone.2020.115328_bb0395) 2005; 36
Robling (10.1016/j.bone.2020.115328_bb0080) 2002; 31
van Rietbergen (10.1016/j.bone.2020.115328_bb0260) 1995; 28
Weinbaum (10.1016/j.bone.2020.115328_bb0175) 1994; 27
Castillo (10.1016/j.bone.2020.115328_bb0010) 2011
Ding (10.1016/j.bone.2020.115328_bb0420) 1999; 32
Sanjai (10.1016/j.bone.2020.115328_bb0400) 2012; 16
Patel (10.1016/j.bone.2020.115328_bb0240) 2014; 47
Schulte (10.1016/j.bone.2020.115328_bb0285) 2013; 52
Yang (10.1016/j.bone.2020.115328_bb0275) 2014; 66
Klein-Nulend (10.1016/j.bone.2020.115328_bb0190) 2005; 53
Kamioka (10.1016/j.bone.2020.115328_bb0160) 2012; 4
Alexander (10.1016/j.bone.2020.115328_bb0425) 2012; 3
You (10.1016/j.bone.2020.115328_bb0120) 2001; 34
Wang (10.1016/j.bone.2020.115328_bb0315) 2015; 2015
Joukar (10.1016/j.bone.2020.115328_bb0345) 2016; 133
Forwood (10.1016/j.bone.2020.115328_bb0070) 1996; 270
Kamel (10.1016/j.bone.2020.115328_bb0195) 2010; 47
Thiagarajan (10.1016/j.bone.2020.115328_bb0235) 2014; 32
du Plessis (10.1016/j.bone.2020.115328_bb0380) 2017; 6
Cowin (10.1016/j.bone.2020.115328_bb0125) 1998; 316
Webster (10.1016/j.bone.2020.115328_bb0305) 2012; 11
Bagnell (10.1016/j.bone.2020.115328_bb0375) 2018
Reilly (10.1016/j.bone.2020.115328_bb0140) 2000; 33
Smalt (10.1016/j.bone.2020.115328_bb0180) 1997; 273
Hsieh (10.1016/j.bone.2020.115328_bb0090) 2001; 16
McGarry (10.1016/j.bone.2020.115328_bb0185) 2005; 19
Anderson (10.1016/j.bone.2020.115328_bb0325) 2008; 41
Nicolella (10.1016/j.bone.2020.115328_bb0130) 2002; 2
Han (10.1016/j.bone.2020.115328_bb0105) 2004; 101
Sztefek (10.1016/j.bone.2020.115328_bb0245) 2010; 43
Verbruggen (10.1016/j.bone.2020.115328_bb0310) 2012; 9
Knothe (10.1016/j.bone.2020.115328_bb0165) 2003; 36
Tiede-Lewis (10.1016/j.bone.2020.115328_bb0365) 2019; 122
Verbruggen (10.1016/j.bone.2020.115328_bb0320) 2014; 13
Rubin (10.1016/j.bone.2020.115328_bb0075) 1985; 37
Carter (10.1016/j.bone.2020.115328_bb0095) 1987; 20
Deligianni (10.1016/j.bone.2020.115328_bb0295) 2008; 7
Calve (10.1016/j.bone.2020.115328_bb0405) 2015; 10
You (10.1016/j.bone.2020.115328_bb0385) 2004; 278
Rad (10.1016/j.bone.2020.115328_bb0335) 2015
Parfitt (10.1016/j.bone.2020.115328_bb0360) 1983; 72
Kamel-ElSayed (10.1016/j.bone.2020.115328_bb0410) 2015; 76
Wang (10.1016/j.bone.2020.115328_bb0115) 2005; 102
Lara-Castillo (10.1016/j.bone.2020.115328_bb0215) 2015; 76
Vaughan (10.1016/j.bone.2020.115328_bb0340) 2015; 14
Lara-Castillo (10.1016/j.bone.2020.115328_bb0415) 2015; 76
10.1016/j.bone.2020.115328_bb0355
Silva (10.1016/j.bone.2020.115328_bb0220) 2005; 283
Verbruggen (10.1016/j.bone.2020.115328_bb0110) 2012; 9
Wolff (10.1016/j.bone.2020.115328_bb0030) 1986
Burger (10.1016/j.bone.2020.115328_bb0055) 1995; 125
Ramezanzadehkoldeh (10.1016/j.bone.2020.115328_bb0280) 2017; 46
You (10.1016/j.bone.2020.115328_bb0065) 2008; 42
Pereira (10.1016/j.bone.2020.115328_bb0290) 2015; 12
Carriero (10.1016/j.bone.2020.115328_bb0250) 2014; 47
Verbruggen (10.1016/j.bone.2020.115328_bb0330) 2013
Lanyon (10.1016/j.bone.2020.115328_bb0035) 1984; 17
Akhter (10.1016/j.bone.2020.115328_bb0040) 2017; 100
Blanchard (10.1016/j.bone.2020.115328_bb0270) 2013; 46
Lanyon (10.1016/j.bone.2020.115328_bb0015) 1993; 53
Nicolella (10.1016/j.bone.2020.115328_bb0135) 2006; 39
Turner (10.1016/j.bone.2020.115328_bb0025) 1998; 23
Bacabac (10.1016/j.bone.2020.115328_bb0350) 2004; 315
Fritton (10.1016/j.bone.2020.115328_bb0170) 2009; 41
Verbruggen (10.1016/j.bone.2020.115328_bb0145) 2015; 108
Begonia (10.1016/j.bone.2020.115328_bb0255) 2017; 16
Lu (10.1016/j.bone.2020.115328_bb0230) 2012; 34
Franz-Odendaal (10.1016/j.bone.2020.115328_bb0005) 2006; 235
Carter (10.1016/j.bone.2020.115328_bb0020) 1984; 36
Anderson (10.1016/j.bone.2020.115328_bb0200) 2005; 33
Torcasio (10.1016/j.bone.2020.115328_bb0225) 2012; 11
Bacabac (10.1016/j.bone.2020.115328_bb0155) 2008; 41
van Hove (10.1016/j.bone.2020.115328_bb0205) 2009; 45
Dreyer (10.1016/j.bone.2020.115328_bb0390) 1965; 207
Webster (10.1016/j.bone.2020.115328_bb0300) 2008; 11
Webster (10.1016/j.bone.2020.115328_bb0370) 2013; 54
Cowin (10.1016/j.bone.2020.115328_bb0045) 1991; 113
Bonewald (10.1016/j.bone.2020.115328_bb0210) 2008; 42
Burr (10.1016/j.bone.2020.115328_bb0085) 2002; 30
Cowin (10.1016/j.bone.2020.115328_bb0050) 1995; 28
Zannoni (10.1016/j.bone.2020.115328_bb0265) 1999; 20
References_xml – volume: 32
  start-page: 1580
  year: 2014
  end-page: 1588
  ident: bb0235
  article-title: Experimental and finite element analysis of dynamic loading of the mouse forearm
  publication-title: J. Orthop. Res.
– volume: 41
  start-page: 1736
  year: 2008
  end-page: 1746
  ident: bb0325
  article-title: Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes
  publication-title: J. Biomech.
– volume: 76
  start-page: 129
  year: 2015
  end-page: 140
  ident: bb0410
  article-title: Novel approaches for two and three dimensional multiplexed imaging of osteocytes
  publication-title: Bone
– volume: 2
  start-page: 261
  year: 2002
  end-page: 263
  ident: bb0130
  article-title: Microstructural strain near osteocyte lacuna in cortical bone in vitro
  publication-title: J. Musculoskelet. Nueronal Interact.
– volume: 53
  start-page: 102
  year: 1993
  end-page: 107
  ident: bb0015
  article-title: Osteocytes, strain detection, bone modeling and remodeling
  publication-title: Calcif. Tissue Int.
– volume: 14
  start-page: 703
  year: 2015
  end-page: 718
  ident: bb0340
  article-title: Bone cell mechanosensation of fluid flow stimulation: a fluid–structure interaction model characterising the role integrin attachments and primary cilia
  publication-title: Biomech. Model. Mechanobiol.
– volume: 122
  start-page: 101
  year: 2019
  end-page: 113
  ident: bb0365
  article-title: Changes in the osteocyte lacunocanalicular network with aging
  publication-title: Bone
– volume: 37
  start-page: 411
  year: 1985
  end-page: 417
  ident: bb0075
  article-title: Regulation of bone mass by mechanical strain magnitude
  publication-title: Calcif. Tissue Int.
– volume: 2015
  year: 2015
  ident: bb0315
  article-title: Strain amplification analysis of an osteocyte under static and cyclic loading: a finite element study
  publication-title: Biomed. Res. Int.
– volume: 133
  start-page: 133
  year: 2016
  end-page: 141
  ident: bb0345
  article-title: Numerical simulation of osteocyte cell in response to directional mechanical loadings and mechanotransduction analysis: considering lacunar–canalicular interstitial fluid flow
  publication-title: Comput. Methods Prog. Biomed.
– volume: 19
  start-page: 319
  year: 2009
  end-page: 338
  ident: bb0100
  article-title: Mechanical signaling for bone modeling and remodeling
  publication-title: Crit. Rev. Eukaryot. Gene Expr.
– start-page: 110
  year: 2015
  end-page: 114
  ident: bb0335
  article-title: Stress concentration at the base of primary cilium due to application of a thin elastic layer
  publication-title: 2015 22nd Iranian Conference on Biomedical Engineering (ICBME)
– volume: 42
  start-page: 172
  year: 2008
  end-page: 179
  ident: bb0065
  article-title: Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading
  publication-title: Bone
– volume: 235
  start-page: 176
  year: 2006
  end-page: 190
  ident: bb0005
  article-title: Buried alive: how osteoblasts become osteocytes
  publication-title: Developmental Dynamics: An Official Publication of the American Association of Anatomists
– volume: 16
  start-page: 222
  year: 2012
  end-page: 227
  ident: bb0400
  article-title: Evaluation and comparison of decalcification agents on the human teeth
  publication-title: J Oral Maxillofac Pathol
– volume: 6
  start-page: 1
  year: 2017
  end-page: 11
  ident: bb0380
  article-title: Laboratory x-ray micro-computed tomography: a user guideline for biological samples
  publication-title: Gigascience
– volume: 34
  start-page: 350
  year: 2012
  end-page: 356
  ident: bb0230
  article-title: Load/strain distribution between ulna and radius in the mouse forearm compression loading model
  publication-title: Med. Eng. Phys.
– volume: 33
  start-page: 52
  year: 2005
  end-page: 62
  ident: bb0200
  article-title: Nano? Microscale models of periosteocytic flow show differences in stresses imparted to cell body and processes
  publication-title: Ann. Biomed. Eng.
– volume: 47
  start-page: 451
  year: 2014
  end-page: 457
  ident: bb0240
  article-title: Experimental and finite element analysis of strains induced by axial tibial compression in young-adult and old female C57Bl/6 mice
  publication-title: J. Biomech.
– volume: 72
  start-page: 1396
  year: 1983
  end-page: 1409
  ident: bb0360
  article-title: Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss
  publication-title: J. Clin. Invest.
– volume: 17
  start-page: 897
  year: 1984
  end-page: 905
  ident: bb0035
  article-title: Static vs dynamic loads as an influence on bone remodelling
  publication-title: J. Biomech.
– volume: 20
  start-page: 785
  year: 1987
  end-page: 794
  ident: bb0095
  article-title: Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy
  publication-title: J. Biomech.
– volume: 102
  start-page: 11911
  year: 2005
  end-page: 11916
  ident: bb0115
  article-title: In situ measurement of solute transport in the bone lacunar-canalicular system
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 33
  start-page: 1131
  year: 2000
  end-page: 1134
  ident: bb0140
  article-title: Observations of microdamage around osteocyte lacunae in bone
  publication-title: J. Biomech.
– volume: 4
  start-page: 1198
  year: 2012
  end-page: 1206
  ident: bb0160
  article-title: Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model
  publication-title: Integr. Biol.
– volume: 47
  start-page: 872
  year: 2010
  end-page: 881
  ident: bb0195
  article-title: Activation of β-catenin signaling in MLO-Y4 osteocytic cells versus 2T3 osteoblastic cells by fluid flow shear stress and PGE2: implications for the study of mechanosensation in bone
  publication-title: Bone
– year: 1986
  ident: bb0030
  article-title: The Law of Bone Remodelling
– volume: 54
  start-page: 285
  year: 2013
  end-page: 295
  ident: bb0370
  article-title: Studying osteocytes within their environment
  publication-title: Bone
– volume: 31
  start-page: 562
  year: 2002
  end-page: 569
  ident: bb0080
  article-title: Mechanotransduction in bone: genetic effects on mechanosensitivity in mice
  publication-title: Bone
– volume: 315
  start-page: 823
  year: 2004
  end-page: 829
  ident: bb0350
  article-title: Nitric oxide production by bone cells is fluid shear stress rate dependent
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 10
  year: 2015
  ident: bb0405
  article-title: Optical clearing in dense connective tissues to visualize cellular connectivity in situ
  publication-title: PLoS One
– volume: 39
  start-page: 1735
  year: 2006
  end-page: 1743
  ident: bb0135
  article-title: Osteocyte lacunae tissue strain in cortical bone
  publication-title: J. Biomech.
– volume: 23
  start-page: 399
  year: 1998
  end-page: 407
  ident: bb0025
  article-title: Three rules for bone adaptation to mechanical stimuli
  publication-title: Bone
– volume: 41
  start-page: 347
  year: 2009
  end-page: 374
  ident: bb0170
  article-title: Fluid and solute transport in bone: flow-induced mechanotransduction
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 179
  year: 2011
  end-page: 206
  ident: bb0010
  article-title: Skeletal mechanobiology
  publication-title: Mechanobiology Handbook
– volume: 27
  start-page: 339
  year: 1994
  end-page: 360
  ident: bb0175
  article-title: A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses
  publication-title: J. Biomech.
– volume: 43
  start-page: 599
  year: 2010
  end-page: 605
  ident: bb0245
  article-title: Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia
  publication-title: J. Biomech.
– volume: 270
  start-page: E419
  year: 1996
  end-page: E423
  ident: bb0070
  article-title: Increased bone formation in rat tibiae after a single short period of dynamic loading in vivo
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 101
  start-page: 16689
  year: 2004
  end-page: 16694
  ident: bb0105
  article-title: Mechanotransduction and strain amplification in osteocyte cell processes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 20
  start-page: 735
  year: 1999
  end-page: 740
  ident: bb0265
  article-title: Material properties assignment to finite element models of bone structures: a new method
  publication-title: Med. Eng. Phys.
– volume: 207
  year: 1965
  ident: bb0390
  article-title: Demineralization of bone
  publication-title: Nature
– volume: 9
  start-page: 2735
  year: 2012
  end-page: 2744
  ident: bb0110
  article-title: Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes
  publication-title: J. R. Soc. Interface
– volume: 76
  start-page: 58
  year: 2015
  end-page: 66
  ident: bb0415
  article-title: In vivo mechanical loading rapidly activates beta-catenin signaling in osteocytes through a prostaglandin mediated mechanism
  publication-title: Bone
– volume: 42
  start-page: 606
  year: 2008
  end-page: 615
  ident: bb0210
  article-title: Osteocytes, mechanosensing and Wnt signaling
  publication-title: Bone
– volume: 47
  start-page: 2490
  year: 2014
  end-page: 2497
  ident: bb0250
  article-title: Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model
  publication-title: J. Biomech.
– volume: 46
  start-page: 12
  year: 2017
  end-page: 20
  ident: bb0280
  article-title: MicroCT-based finite element models as a tool for virtual testing of cortical bone
  publication-title: Med. Eng. Phys.
– volume: 125
  start-page: 2020S
  year: 1995
  end-page: 2023S
  ident: bb0055
  article-title: Function of osteocytes in bone—their role in mechanotransduction
  publication-title: J. Nutr.
– year: 2018
  ident: bb0375
  article-title: What Is Micro-CT? An Introduction
– volume: 52
  start-page: 485
  year: 2013
  end-page: 492
  ident: bb0285
  article-title: Strain-adaptive in silico modeling of bone adaptation—a computer simulation validated by in vivo micro-computed tomography data
  publication-title: Bone
– volume: 53
  start-page: 576
  year: 2005
  end-page: 580
  ident: bb0190
  article-title: Mechanobiology of bone tissue
  publication-title: Pathologie-Biologie
– volume: 11
  start-page: 403
  year: 2012
  end-page: 410
  ident: bb0225
  article-title: 3D characterization of bone strains in the rat tibia loading model
  publication-title: Biomech. Model. Mechanobiol.
– volume: 7
  start-page: 151
  year: 2008
  end-page: 159
  ident: bb0295
  article-title: Multilevel finite element modeling for the prediction of local cellular deformation in bone
  publication-title: Biomech. Model. Mechanobiol.
– volume: 45
  start-page: 321
  year: 2009
  end-page: 329
  ident: bb0205
  article-title: Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density—is there a role for mechanosensing?
  publication-title: Bone
– volume: 3
  year: 2012
  ident: bb0425
  article-title: Nonintrusive 3D reconstruction of human bone models to simulate their bio-mechanical response
  publication-title: 3D Res.
– volume: 19
  start-page: 482
  year: 2005
  end-page: 484
  ident: bb0185
  article-title: A comparison of strain and fluid shear stress in stimulating bone cell responses—a computational and experimental study
  publication-title: FASEB J.
– volume: 13
  start-page: 85
  year: 2014
  end-page: 97
  ident: bb0320
  article-title: Fluid flow in the osteocyte mechanical environment: a fluid–structure interaction approach
  publication-title: Biomech. Model. Mechanobiol.
– volume: 30
  start-page: 781
  year: 2002
  end-page: 786
  ident: bb0085
  article-title: Effects of biomechanical stress on bones in animals
  publication-title: Bone
– volume: 66
  start-page: 131
  year: 2014
  end-page: 139
  ident: bb0275
  article-title: Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis
  publication-title: Bone
– reference: Klein-Nulend J, Bacabac R, Bakker A. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton.
– volume: 13
  start-page: 101
  year: 1999
  end-page: 112
  ident: bb0060
  article-title: Mechanotransduction in bone-role of the lacuno-canalicular network
  publication-title: FASEB J.
– volume: 113
  start-page: 191
  year: 1991
  ident: bb0045
  article-title: Candidates for the mechanosensory system in bone
  publication-title: J. Biomech. Eng.
– volume: 76
  start-page: 58
  year: 2015
  end-page: 66
  ident: bb0215
  article-title: In vivo mechanical loading rapidly activates β-catenin signaling in osteocytes through a prostaglandin mediated mechanism
  publication-title: Bone
– volume: 11
  start-page: 435
  year: 2008
  end-page: 441
  ident: bb0300
  article-title: A novel in vivo mouse model for mechanically stimulated bone adaptation–a combined experimental and computational validation study
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
– volume: 28
  start-page: 1281
  year: 1995
  end-page: 1297
  ident: bb0050
  article-title: A case for bone canaliculi as the anatomical site of strain generated potentials
  publication-title: J. Biomech.
– volume: 34
  start-page: 1375
  year: 2001
  end-page: 1386
  ident: bb0120
  article-title: A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix
  publication-title: J. Biomech.
– volume: 283
  start-page: 380
  year: 2005
  end-page: 390
  ident: bb0220
  article-title: Finite element analysis of the mouse tibia: estimating endocortical strain during three-point bending in SAMP6 osteoporotic mice
  publication-title: The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology: An Official Publication of the American Association of Anatomists
– volume: 273
  start-page: E751
  year: 1997
  end-page: E758
  ident: bb0180
  article-title: Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain
  publication-title: American Journal of Physiology-Endocrinology and Metabolism
– volume: 46
  start-page: 2710
  year: 2013
  end-page: 2721
  ident: bb0270
  article-title: Intravoxel bone micromechanics for microCT-based finite element simulations
  publication-title: J. Biomech.
– volume: 16
  start-page: 2291
  year: 2001
  end-page: 2297
  ident: bb0090
  article-title: Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location
  publication-title: J. Bone Miner. Res.
– volume: 41
  start-page: 1590
  year: 2008
  end-page: 1598
  ident: bb0155
  article-title: Round versus flat: bone cell morphology, elasticity, and mechanosensing
  publication-title: J. Biomech.
– volume: 11
  start-page: 221
  year: 2012
  end-page: 230
  ident: bb0305
  article-title: Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation
  publication-title: Biomech. Model. Mechanobiol.
– volume: 278
  start-page: 505
  year: 2004
  end-page: 513
  ident: bb0385
  article-title: Ultrastructure of the osteocyte process and its pericellular matrix
  publication-title: Anat Rec A Discov Mol Cell Evol Biol
– volume: 16
  start-page: 1243
  year: 2017
  end-page: 1253
  ident: bb0255
  article-title: Comparison of strain measurement in the mouse forearm using subject-specific finite element models, strain gaging, and digital image correlation
  publication-title: Biomech. Model. Mechanobiol.
– volume: 36
  start-page: 877
  year: 2005
  end-page: 883
  ident: bb0395
  article-title: Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy
  publication-title: Bone
– volume: 316
  start-page: 184
  year: 1998
  ident: bb0125
  article-title: Strain amplification in the bone mechanosensory system
  publication-title: Am J Med Sci
– volume: 12
  start-page: 20150590
  year: 2015
  ident: bb0290
  article-title: Predicting cortical bone adaptation to axial loading in the mouse tibia
  publication-title: J. R. Soc. Interface
– volume: 3
  start-page: 111
  year: 1962
  end-page: 133
  ident: bb0150
  article-title: Stress concentrations in bone
  publication-title: J. Cell Sci.
– volume: 36
  start-page: 1409
  year: 2003
  end-page: 1424
  ident: bb0165
  article-title: “Whither flows the fluid in bone?” An osteocyte’s perspective
  publication-title: J. Biomech.
– volume: 9
  start-page: 2735
  year: 2012
  end-page: 2744
  ident: bb0310
  article-title: Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes
  publication-title: J. R. Soc. Interface
– volume: 36
  start-page: 19
  year: 1984
  end-page: 24
  ident: bb0020
  article-title: Mechanical loading histories and cortical bone remodeling
  publication-title: Calcif. Tissue Int.
– volume: 28
  start-page: 69
  year: 1995
  end-page: 81
  ident: bb0260
  article-title: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models
  publication-title: J. Biomech.
– year: 2013
  ident: bb0330
  article-title: Mechanobiological Origins of Osteoporosis
– volume: 32
  start-page: 323
  year: 1999
  end-page: 326
  ident: bb0420
  article-title: Accuracy of cancellous bone volume fraction measured by micro-CT scanning
  publication-title: J. Biomech.
– volume: 100
  start-page: 619
  year: 2017
  end-page: 630
  ident: bb0040
  article-title: Effect of macroanatomic bone type and estrogen loss on osteocyte lacunar properties in healthy adult women
  publication-title: Calcif. Tissue Int.
– volume: 108
  start-page: 1587
  year: 2015
  end-page: 1598
  ident: bb0145
  article-title: Altered mechanical environment of bone cells in an animal model of short- and long-term osteoporosis
  publication-title: Biophys. J.
– volume: 52
  start-page: 485
  year: 2013
  ident: 10.1016/j.bone.2020.115328_bb0285
  article-title: Strain-adaptive in silico modeling of bone adaptation—a computer simulation validated by in vivo micro-computed tomography data
  publication-title: Bone
  doi: 10.1016/j.bone.2012.09.008
– volume: 42
  start-page: 606
  year: 2008
  ident: 10.1016/j.bone.2020.115328_bb0210
  article-title: Osteocytes, mechanosensing and Wnt signaling
  publication-title: Bone
  doi: 10.1016/j.bone.2007.12.224
– volume: 16
  start-page: 222
  year: 2012
  ident: 10.1016/j.bone.2020.115328_bb0400
  article-title: Evaluation and comparison of decalcification agents on the human teeth
  publication-title: J Oral Maxillofac Pathol
  doi: 10.4103/0973-029X.99070
– volume: 32
  start-page: 323
  year: 1999
  ident: 10.1016/j.bone.2020.115328_bb0420
  article-title: Accuracy of cancellous bone volume fraction measured by micro-CT scanning
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00176-6
– volume: 28
  start-page: 1281
  year: 1995
  ident: 10.1016/j.bone.2020.115328_bb0050
  article-title: A case for bone canaliculi as the anatomical site of strain generated potentials
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00058-P
– volume: 20
  start-page: 785
  year: 1987
  ident: 10.1016/j.bone.2020.115328_bb0095
  article-title: Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(87)90058-3
– volume: 41
  start-page: 1590
  year: 2008
  ident: 10.1016/j.bone.2020.115328_bb0155
  article-title: Round versus flat: bone cell morphology, elasticity, and mechanosensing
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.01.031
– volume: 19
  start-page: 482
  year: 2005
  ident: 10.1016/j.bone.2020.115328_bb0185
  article-title: A comparison of strain and fluid shear stress in stimulating bone cell responses—a computational and experimental study
  publication-title: FASEB J.
  doi: 10.1096/fj.04-2210fje
– volume: 4
  start-page: 1198
  year: 2012
  ident: 10.1016/j.bone.2020.115328_bb0160
  article-title: Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model
  publication-title: Integr. Biol.
  doi: 10.1039/c2ib20092a
– volume: 7
  start-page: 151
  year: 2008
  ident: 10.1016/j.bone.2020.115328_bb0295
  article-title: Multilevel finite element modeling for the prediction of local cellular deformation in bone
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-007-0082-1
– volume: 3
  year: 2012
  ident: 10.1016/j.bone.2020.115328_bb0425
  article-title: Nonintrusive 3D reconstruction of human bone models to simulate their bio-mechanical response
  publication-title: 3D Res.
  doi: 10.1007/3DRes.03(2012)5
– volume: 101
  start-page: 16689
  year: 2004
  ident: 10.1016/j.bone.2020.115328_bb0105
  article-title: Mechanotransduction and strain amplification in osteocyte cell processes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0407429101
– volume: 12
  start-page: 20150590
  year: 2015
  ident: 10.1016/j.bone.2020.115328_bb0290
  article-title: Predicting cortical bone adaptation to axial loading in the mouse tibia
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2015.0590
– volume: 278
  start-page: 505
  year: 2004
  ident: 10.1016/j.bone.2020.115328_bb0385
  article-title: Ultrastructure of the osteocyte process and its pericellular matrix
  publication-title: Anat Rec A Discov Mol Cell Evol Biol
  doi: 10.1002/ar.a.20050
– volume: 76
  start-page: 58
  year: 2015
  ident: 10.1016/j.bone.2020.115328_bb0215
  article-title: In vivo mechanical loading rapidly activates β-catenin signaling in osteocytes through a prostaglandin mediated mechanism
  publication-title: Bone
  doi: 10.1016/j.bone.2015.03.019
– volume: 28
  start-page: 69
  year: 1995
  ident: 10.1016/j.bone.2020.115328_bb0260
  article-title: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)80008-5
– ident: 10.1016/j.bone.2020.115328_bb0355
– volume: 47
  start-page: 872
  year: 2010
  ident: 10.1016/j.bone.2020.115328_bb0195
  article-title: Activation of β-catenin signaling in MLO-Y4 osteocytic cells versus 2T3 osteoblastic cells by fluid flow shear stress and PGE2: implications for the study of mechanosensation in bone
  publication-title: Bone
  doi: 10.1016/j.bone.2010.08.007
– volume: 34
  start-page: 1375
  year: 2001
  ident: 10.1016/j.bone.2020.115328_bb0120
  article-title: A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00107-5
– volume: 54
  start-page: 285
  year: 2013
  ident: 10.1016/j.bone.2020.115328_bb0370
  article-title: Studying osteocytes within their environment
  publication-title: Bone
  doi: 10.1016/j.bone.2013.01.004
– volume: 36
  start-page: 877
  year: 2005
  ident: 10.1016/j.bone.2020.115328_bb0395
  article-title: Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy
  publication-title: Bone
  doi: 10.1016/j.bone.2004.10.008
– volume: 315
  start-page: 823
  year: 2004
  ident: 10.1016/j.bone.2020.115328_bb0350
  article-title: Nitric oxide production by bone cells is fluid shear stress rate dependent
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2004.01.138
– volume: 125
  start-page: 2020S
  year: 1995
  ident: 10.1016/j.bone.2020.115328_bb0055
  article-title: Function of osteocytes in bone—their role in mechanotransduction
  publication-title: J. Nutr.
  doi: 10.1093/jn/125.suppl_7.2020S
– volume: 23
  start-page: 399
  year: 1998
  ident: 10.1016/j.bone.2020.115328_bb0025
  article-title: Three rules for bone adaptation to mechanical stimuli
  publication-title: Bone
  doi: 10.1016/S8756-3282(98)00118-5
– volume: 39
  start-page: 1735
  year: 2006
  ident: 10.1016/j.bone.2020.115328_bb0135
  article-title: Osteocyte lacunae tissue strain in cortical bone
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.04.032
– volume: 9
  start-page: 2735
  year: 2012
  ident: 10.1016/j.bone.2020.115328_bb0110
  article-title: Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2012.0286
– year: 1986
  ident: 10.1016/j.bone.2020.115328_bb0030
– volume: 11
  start-page: 221
  year: 2012
  ident: 10.1016/j.bone.2020.115328_bb0305
  article-title: Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-011-0305-3
– volume: 17
  start-page: 897
  year: 1984
  ident: 10.1016/j.bone.2020.115328_bb0035
  article-title: Static vs dynamic loads as an influence on bone remodelling
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(84)90003-4
– volume: 207
  year: 1965
  ident: 10.1016/j.bone.2020.115328_bb0390
  article-title: Demineralization of bone
  publication-title: Nature
  doi: 10.1038/207094a0
– volume: 19
  start-page: 319
  year: 2009
  ident: 10.1016/j.bone.2020.115328_bb0100
  article-title: Mechanical signaling for bone modeling and remodeling
  publication-title: Crit. Rev. Eukaryot. Gene Expr.
  doi: 10.1615/CritRevEukarGeneExpr.v19.i4.50
– volume: 133
  start-page: 133
  year: 2016
  ident: 10.1016/j.bone.2020.115328_bb0345
  article-title: Numerical simulation of osteocyte cell in response to directional mechanical loadings and mechanotransduction analysis: considering lacunar–canalicular interstitial fluid flow
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2016.05.019
– volume: 43
  start-page: 599
  year: 2010
  ident: 10.1016/j.bone.2020.115328_bb0245
  article-title: Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.10.042
– volume: 36
  start-page: 19
  year: 1984
  ident: 10.1016/j.bone.2020.115328_bb0020
  article-title: Mechanical loading histories and cortical bone remodeling
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/BF02406129
– volume: 2015
  year: 2015
  ident: 10.1016/j.bone.2020.115328_bb0315
  article-title: Strain amplification analysis of an osteocyte under static and cyclic loading: a finite element study
  publication-title: Biomed. Res. Int.
– volume: 113
  start-page: 191
  year: 1991
  ident: 10.1016/j.bone.2020.115328_bb0045
  article-title: Candidates for the mechanosensory system in bone
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2891234
– volume: 20
  start-page: 735
  year: 1999
  ident: 10.1016/j.bone.2020.115328_bb0265
  article-title: Material properties assignment to finite element models of bone structures: a new method
  publication-title: Med. Eng. Phys.
  doi: 10.1016/S1350-4533(98)00081-2
– volume: 76
  start-page: 129
  year: 2015
  ident: 10.1016/j.bone.2020.115328_bb0410
  article-title: Novel approaches for two and three dimensional multiplexed imaging of osteocytes
  publication-title: Bone
  doi: 10.1016/j.bone.2015.02.011
– volume: 16
  start-page: 1243
  year: 2017
  ident: 10.1016/j.bone.2020.115328_bb0255
  article-title: Comparison of strain measurement in the mouse forearm using subject-specific finite element models, strain gaging, and digital image correlation
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-017-0885-7
– volume: 33
  start-page: 52
  year: 2005
  ident: 10.1016/j.bone.2020.115328_bb0200
  article-title: Nano? Microscale models of periosteocytic flow show differences in stresses imparted to cell body and processes
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-005-8962-y
– volume: 47
  start-page: 2490
  year: 2014
  ident: 10.1016/j.bone.2020.115328_bb0250
  article-title: Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.03.035
– volume: 11
  start-page: 403
  year: 2012
  ident: 10.1016/j.bone.2020.115328_bb0225
  article-title: 3D characterization of bone strains in the rat tibia loading model
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-011-0320-4
– volume: 2
  start-page: 261
  year: 2002
  ident: 10.1016/j.bone.2020.115328_bb0130
  article-title: Microstructural strain near osteocyte lacuna in cortical bone in vitro
  publication-title: J. Musculoskelet. Nueronal Interact.
– volume: 270
  start-page: E419
  year: 1996
  ident: 10.1016/j.bone.2020.115328_bb0070
  article-title: Increased bone formation in rat tibiae after a single short period of dynamic loading in vivo
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.1996.270.3.E419
– volume: 108
  start-page: 1587
  year: 2015
  ident: 10.1016/j.bone.2020.115328_bb0145
  article-title: Altered mechanical environment of bone cells in an animal model of short- and long-term osteoporosis
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2015.02.031
– volume: 9
  start-page: 2735
  year: 2012
  ident: 10.1016/j.bone.2020.115328_bb0310
  article-title: Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2012.0286
– volume: 42
  start-page: 172
  year: 2008
  ident: 10.1016/j.bone.2020.115328_bb0065
  article-title: Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading
  publication-title: Bone
  doi: 10.1016/j.bone.2007.09.047
– volume: 3
  start-page: 111
  year: 1962
  ident: 10.1016/j.bone.2020.115328_bb0150
  article-title: Stress concentrations in bone
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.s3-103.61.111
– volume: 47
  start-page: 451
  year: 2014
  ident: 10.1016/j.bone.2020.115328_bb0240
  article-title: Experimental and finite element analysis of strains induced by axial tibial compression in young-adult and old female C57Bl/6 mice
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.10.052
– volume: 14
  start-page: 703
  year: 2015
  ident: 10.1016/j.bone.2020.115328_bb0340
  article-title: Bone cell mechanosensation of fluid flow stimulation: a fluid–structure interaction model characterising the role integrin attachments and primary cilia
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-014-0631-3
– volume: 6
  start-page: 1
  year: 2017
  ident: 10.1016/j.bone.2020.115328_bb0380
  article-title: Laboratory x-ray micro-computed tomography: a user guideline for biological samples
  publication-title: Gigascience
  doi: 10.1093/gigascience/gix027
– volume: 283
  start-page: 380
  year: 2005
  ident: 10.1016/j.bone.2020.115328_bb0220
  article-title: Finite element analysis of the mouse tibia: estimating endocortical strain during three-point bending in SAMP6 osteoporotic mice
  publication-title: The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology: An Official Publication of the American Association of Anatomists
– volume: 66
  start-page: 131
  year: 2014
  ident: 10.1016/j.bone.2020.115328_bb0275
  article-title: Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis
  publication-title: Bone
  doi: 10.1016/j.bone.2014.05.019
– volume: 102
  start-page: 11911
  year: 2005
  ident: 10.1016/j.bone.2020.115328_bb0115
  article-title: In situ measurement of solute transport in the bone lacunar-canalicular system
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0505193102
– volume: 36
  start-page: 1409
  year: 2003
  ident: 10.1016/j.bone.2020.115328_bb0165
  article-title: “Whither flows the fluid in bone?” An osteocyte’s perspective
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00123-4
– volume: 41
  start-page: 1736
  year: 2008
  ident: 10.1016/j.bone.2020.115328_bb0325
  article-title: Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.02.035
– volume: 316
  start-page: 184
  year: 1998
  ident: 10.1016/j.bone.2020.115328_bb0125
  article-title: Strain amplification in the bone mechanosensory system
  publication-title: Am J Med Sci
– volume: 46
  start-page: 2710
  year: 2013
  ident: 10.1016/j.bone.2020.115328_bb0270
  article-title: Intravoxel bone micromechanics for microCT-based finite element simulations
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.06.036
– volume: 10
  year: 2015
  ident: 10.1016/j.bone.2020.115328_bb0405
  article-title: Optical clearing in dense connective tissues to visualize cellular connectivity in situ
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0116662
– volume: 46
  start-page: 12
  year: 2017
  ident: 10.1016/j.bone.2020.115328_bb0280
  article-title: MicroCT-based finite element models as a tool for virtual testing of cortical bone
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2017.04.011
– volume: 41
  start-page: 347
  year: 2009
  ident: 10.1016/j.bone.2020.115328_bb0170
  article-title: Fluid and solute transport in bone: flow-induced mechanotransduction
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.010908.165136
– volume: 53
  start-page: 102
  year: 1993
  ident: 10.1016/j.bone.2020.115328_bb0015
  article-title: Osteocytes, strain detection, bone modeling and remodeling
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/BF01673415
– start-page: 110
  year: 2015
  ident: 10.1016/j.bone.2020.115328_bb0335
  article-title: Stress concentration at the base of primary cilium due to application of a thin elastic layer
– volume: 235
  start-page: 176
  year: 2006
  ident: 10.1016/j.bone.2020.115328_bb0005
  article-title: Buried alive: how osteoblasts become osteocytes
  publication-title: Developmental Dynamics: An Official Publication of the American Association of Anatomists
  doi: 10.1002/dvdy.20603
– volume: 27
  start-page: 339
  year: 1994
  ident: 10.1016/j.bone.2020.115328_bb0175
  article-title: A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)90010-8
– volume: 33
  start-page: 1131
  year: 2000
  ident: 10.1016/j.bone.2020.115328_bb0140
  article-title: Observations of microdamage around osteocyte lacunae in bone
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00090-7
– volume: 30
  start-page: 781
  year: 2002
  ident: 10.1016/j.bone.2020.115328_bb0085
  article-title: Effects of biomechanical stress on bones in animals
  publication-title: Bone
  doi: 10.1016/S8756-3282(02)00707-X
– year: 2018
  ident: 10.1016/j.bone.2020.115328_bb0375
– volume: 53
  start-page: 576
  year: 2005
  ident: 10.1016/j.bone.2020.115328_bb0190
  article-title: Mechanobiology of bone tissue
  publication-title: Pathologie-Biologie
  doi: 10.1016/j.patbio.2004.12.005
– volume: 122
  start-page: 101
  year: 2019
  ident: 10.1016/j.bone.2020.115328_bb0365
  article-title: Changes in the osteocyte lacunocanalicular network with aging
  publication-title: Bone
  doi: 10.1016/j.bone.2019.01.025
– year: 2013
  ident: 10.1016/j.bone.2020.115328_bb0330
– volume: 13
  start-page: 101
  year: 1999
  ident: 10.1016/j.bone.2020.115328_bb0060
  article-title: Mechanotransduction in bone-role of the lacuno-canalicular network
  publication-title: FASEB J.
  doi: 10.1096/fasebj.13.9001.s101
– volume: 16
  start-page: 2291
  year: 2001
  ident: 10.1016/j.bone.2020.115328_bb0090
  article-title: Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2001.16.12.2291
– volume: 100
  start-page: 619
  year: 2017
  ident: 10.1016/j.bone.2020.115328_bb0040
  article-title: Effect of macroanatomic bone type and estrogen loss on osteocyte lacunar properties in healthy adult women
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-017-0247-6
– start-page: 179
  year: 2011
  ident: 10.1016/j.bone.2020.115328_bb0010
  article-title: Skeletal mechanobiology
– volume: 45
  start-page: 321
  year: 2009
  ident: 10.1016/j.bone.2020.115328_bb0205
  article-title: Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density—is there a role for mechanosensing?
  publication-title: Bone
  doi: 10.1016/j.bone.2009.04.238
– volume: 13
  start-page: 85
  year: 2014
  ident: 10.1016/j.bone.2020.115328_bb0320
  article-title: Fluid flow in the osteocyte mechanical environment: a fluid–structure interaction approach
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-013-0487-y
– volume: 72
  start-page: 1396
  year: 1983
  ident: 10.1016/j.bone.2020.115328_bb0360
  article-title: Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI111096
– volume: 34
  start-page: 350
  year: 2012
  ident: 10.1016/j.bone.2020.115328_bb0230
  article-title: Load/strain distribution between ulna and radius in the mouse forearm compression loading model
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2011.07.022
– volume: 31
  start-page: 562
  year: 2002
  ident: 10.1016/j.bone.2020.115328_bb0080
  article-title: Mechanotransduction in bone: genetic effects on mechanosensitivity in mice
  publication-title: Bone
  doi: 10.1016/S8756-3282(02)00871-2
– volume: 273
  start-page: E751
  year: 1997
  ident: 10.1016/j.bone.2020.115328_bb0180
  article-title: Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain
  publication-title: American Journal of Physiology-Endocrinology and Metabolism
  doi: 10.1152/ajpendo.1997.273.4.E751
– volume: 76
  start-page: 58
  year: 2015
  ident: 10.1016/j.bone.2020.115328_bb0415
  article-title: In vivo mechanical loading rapidly activates beta-catenin signaling in osteocytes through a prostaglandin mediated mechanism
  publication-title: Bone
  doi: 10.1016/j.bone.2015.03.019
– volume: 32
  start-page: 1580
  year: 2014
  ident: 10.1016/j.bone.2020.115328_bb0235
  article-title: Experimental and finite element analysis of dynamic loading of the mouse forearm
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22720
– volume: 11
  start-page: 435
  year: 2008
  ident: 10.1016/j.bone.2020.115328_bb0300
  article-title: A novel in vivo mouse model for mechanically stimulated bone adaptation–a combined experimental and computational validation study
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
  doi: 10.1080/10255840802078014
– volume: 37
  start-page: 411
  year: 1985
  ident: 10.1016/j.bone.2020.115328_bb0075
  article-title: Regulation of bone mass by mechanical strain magnitude
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/BF02553711
SSID ssj0003971
Score 2.5202243
SecondaryResourceType review_article
Snippet Osteocytes form over 90% of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in...
Osteocytes form over ninety percent of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 115328
SubjectTerms Finite element model
Fluid flow shear stress
Lacunae
Mechanotransduction
Osteocyte
Perilacunar matrix
Strain
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB7qFtQXL63aeGME8UWzzU4ukzwuYilCi4gL9SnMLRjNTpbuhrL-es-ZSYK1Uu1LIGQmZDJfzvkm851zCHktwQloVzTDyCRMlJRgB4UOtSqETIrYKIMBzien2fEi-XiWnu2Q2RAL40T7StZT2yyntv7mtJWrpTocdGKHPE4TNstukd0M95QmZHdx-mn-FRdWOY9Dxl31NKDhWRjDeqIPlPGaLtlaTI3J0FKkMVZg_7szuko2r2om73R2JbYXoml-c0hH98nnYSheh_Jj2m3kVP38I8vjjcb6gNzr6Smd-0sPyY6xe2R_bmFpvtzSN9QJRt2f-D1y-6Tfl98nSxfHu4b5NrSqkcZS43Xp1JXaAf9I24ouDcYZIyzo2tWmWFNhNa2arsZje0FrSzHqpFVbuEUjVGdblKU1tZPLUp93-hFZHH348v447As5hCqNsk1YVCbhkamMrDLNpSlEaiINrrHSLM9VniVKcZ0WOtdMSAOIMUpHnEWCF4rNdPyYTCxM3QEqsTBnW5LEzPBEcSa1Ehp8KtgiYCqmCMhsmNFS9VnOcUBNOcjZvpeIghJRUHoUBOTt2Gflc3xc2zoegFIO0atgb0twQdf2SsdePbfxnOWf_V4NWCzhw8fdHGFN261Lz7WAcbOAPPHYHJ8erDTm4osCwi-hdmyAScUvXwH8ueTiPeQC8m7E93-8lKc3a_6M3MUzL6R8Tiab8868AHK3kS_7z_kX9wVQdg
  priority: 102
  providerName: Unpaywall
Title Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system
URI https://www.clinicalkey.com/#!/content/1-s2.0-S8756328220301083
https://dx.doi.org/10.1016/j.bone.2020.115328
https://www.ncbi.nlm.nih.gov/pubmed/32201360
https://www.proquest.com/docview/2381850542
https://pubmed.ncbi.nlm.nih.gov/PMC7354216
https://www.ncbi.nlm.nih.gov/pmc/articles/7354216
UnpaywallVersion submittedVersion
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003971
  issn: 8756-3282
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003971
  issn: 8756-3282
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-2763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003971
  issn: 8756-3282
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003971
  issn: 8756-3282
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003971
  issn: 8756-3282
  databaseCode: AKRWK
  dateStart: 19850101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KBfWlaKs2fpQVxBeNl0s22cvjUVpOpYegB_Up7Fcwktsc3oVyL_7tzuwmsUelii8JSXZDsjOZ-WX3NzOEvJLgBLQrmmEkC5mSEuyg0KFWuZAsT4wyGOB8Mc9mC_bhMr3cI6d9LAzSKjvb7226s9bdmVE3mqNVVY0-A9LOEmRBIqoHJIER7CxDWt-7n79pHuBvx36OLwuxdRc44zlesrGYKjNGy5EmWJH9z87pJvi8yaG819qV2F6Jur7moM4fkIMOWdKpf_iHZM_YQ3I0tfBXvdzS19RxPd0k-iG5e9EtqR-RpQvBXYOoDC0rRKDUeEo5dVVywLXRpqRLgyHCKFG6dmUl1lRYTcu6rXDbXNHKUgwYadQWblEL1doGGWV15Ziu1KeMfkQW52dfTmdhV4MhVGmUbcK8NIxHpjSyzDSXJhepiTR4tVLHk4maZEwprtNcT3QspAFhG6UjHkeC5yoe6-Qx2bcwysdIosJ0a4wlseFM8VhqJTS4QzAjADJMHpBxP_iF6hKU4wvVRc9E-16gwAoUWOEFFpA3Q5-VT89xa-ukl2nRB56CqSzAe9zaKx167ajmX_u97NWmgG8WF2KENU27LjxMArAcB-SJV6Ph6cHAYhq9KCB8R8GGBpgPfPeKrb65vOA8gTuOs4C8HVTxHwbl6X--3jNyH488GfI52d_8aM0LAGgbeeK-wBNyZ_r-42wO-8X80_TrL3eOPok
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEB6ljtT0UrVJH-5zK1W9tMgYFjBHK2rkNLEvTaTcVvtCocJgxUaR_31mWEC1UqVVLz4YBsHO8M0HfDMD8FlhEjDN0AyruMe1UoiD0nhGp1LxNLTaUoHzfBHPLvmPq-hqD467WhiSVbbY7zC9Qev2n1G7mqNVno9-ItOOQ1JBEqtHJvEI9nmEmDyA_enp2WzRAzKm3LF7zRd7ZNDWzjiZl6pK6pYZEHhEIQ1l_3N-us8_78soD-pyJbe3sih-y1Enz-BpSy7Z1J3_c9iz5SEcTUt8sF5u2RfWyD2b9-iH8HjeflU_gmVThbtGb1mW5URCmXWqctYMysHsxqqMLS1VCZNT2bqZLLFmsjQsK-qcfqtblpeMakYqvcVDFFLXZUWisiJvxK7MdY1-AZcn3y-OZ147hsHTkR9vvDSzPPFtZlUWm0TZVEbWN5jYMhNMJnoSc60TE6VmYgKpLPrbauMngS-TVAdjE76EQYmr_Jp0VNRxjfMwsAnXSaCMlgYzIiIJ8gybDmHcLb7QbY9yuqBCdGK0X4IcJshhwjlsCF97m5Xr0PHg3mHnU9HVniJaCkwgD1pFvdVOdP7V7lMXNgJvW_oWI0tb1WvhmBLy5WAIr1wY9WePGEud9PwhJDsB1u9ALcF3t5T5ddMaPAnxiON4CN_6UPyHRXnzn5f3EQ5mF_NzcX66OHsLT2iL00a-g8Hmprbvka9t1If2frwDLIg_hA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB7qFtQXL63aeGME8UWzzU4ukzwuYilCi4gL9SnMLRjNTpbuhrL-es-ZSYK1Uu1LIGQmZDJfzvkm851zCHktwQloVzTDyCRMlJRgB4UOtSqETIrYKIMBzien2fEi-XiWnu2Q2RAL40T7StZT2yyntv7mtJWrpTocdGKHPE4TNstukd0M95QmZHdx-mn-FRdWOY9Dxl31NKDhWRjDeqIPlPGaLtlaTI3J0FKkMVZg_7szuko2r2om73R2JbYXoml-c0hH98nnYSheh_Jj2m3kVP38I8vjjcb6gNzr6Smd-0sPyY6xe2R_bmFpvtzSN9QJRt2f-D1y-6Tfl98nSxfHu4b5NrSqkcZS43Xp1JXaAf9I24ouDcYZIyzo2tWmWFNhNa2arsZje0FrSzHqpFVbuEUjVGdblKU1tZPLUp93-hFZHH348v447As5hCqNsk1YVCbhkamMrDLNpSlEaiINrrHSLM9VniVKcZ0WOtdMSAOIMUpHnEWCF4rNdPyYTCxM3QEqsTBnW5LEzPBEcSa1Ehp8KtgiYCqmCMhsmNFS9VnOcUBNOcjZvpeIghJRUHoUBOTt2Gflc3xc2zoegFIO0atgb0twQdf2SsdePbfxnOWf_V4NWCzhw8fdHGFN261Lz7WAcbOAPPHYHJ8erDTm4osCwi-hdmyAScUvXwH8ueTiPeQC8m7E93-8lKc3a_6M3MUzL6R8Tiab8868AHK3kS_7z_kX9wVQdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+finite+element+modeling+of+mechanical+strains+and+fluid+flow+in+osteocyte+lacunocanalicular+system&rft.jtitle=Bone+%28New+York%2C+N.Y.%29&rft.au=Ganesh%2C+Thiagarajan&rft.au=Laughrey%2C+Loretta+E&rft.au=Niroobakhsh%2C+Mohammadmehdi&rft.au=Lara-Castillo%2C+Nuria&rft.date=2020-08-01&rft.issn=1873-2763&rft.eissn=1873-2763&rft.volume=137&rft.spage=115328&rft_id=info:doi/10.1016%2Fj.bone.2020.115328&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-3282&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-3282&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-3282&client=summon