A lower extremity model for muscle-driven simulation of activity using explicit finite element modeling
A key strength of computational modeling is that it can provide estimates of muscle, ligament, and joint loads, stresses, and strains through non-invasive means. However, simulations that can predict the forces in the muscles during activity while maintaining sufficient complexity to realistically r...
Saved in:
| Published in | Journal of biomechanics Vol. 84; pp. 153 - 160 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
14.02.2019
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9290 1873-2380 1873-2380 |
| DOI | 10.1016/j.jbiomech.2018.12.040 |
Cover
| Abstract | A key strength of computational modeling is that it can provide estimates of muscle, ligament, and joint loads, stresses, and strains through non-invasive means. However, simulations that can predict the forces in the muscles during activity while maintaining sufficient complexity to realistically represent the muscles and joint structures can be computationally challenging. For this reason, the current state of the art is to apply separate rigid-body dynamic and finite-element (FE) analyses in series. However, the use of two or more disconnected models often fails to capture key interactions between the joint-level and whole-body scales. Single framework MSFE models have the potential to overcome the limitations associated with disconnected models in series. The objectives of the current study were to create a multi-scale FE model of the human lower extremity that combines optimization, dynamic muscle modeling, and structural FE analysis in a single framework and to apply this framework to evaluate the mechanics of healthy knee specimens during two activities. Two subject-specific FE models (Model 1, Model 2) of the lower extremity were developed in ABAQUS/Explicit including detailed representations of the muscles. Muscle forces, knee joint loading, and articular contact were calculated for two activities using an inverse dynamics approach and static optimization. Quadriceps muscle forces peaked at the onset of chair rise (2174 N, 1962 N) and in early stance phase (510 N, 525 N), while gait saw peak forces in the hamstrings (851 N, 868 N) in midstance. Joint forces were similar in magnitude to available telemetric patient data. This study demonstrates the feasibility of detailed quasi-static, muscle-driven simulations in an FE framework. |
|---|---|
| AbstractList | A key strength of computational modeling is that it can provide estimates of muscle, ligament, and joint loads, stresses, and strains through non-invasive means. However, simulations that can predict the forces in the muscles during activity while maintaining sufficient complexity to realistically represent the muscles and joint structures can be computationally challenging. For this reason, the current state of the art is to apply separate rigid-body dynamic and finite-element (FE) analyses in series. However, the use of two or more disconnected models often fails to capture key interactions between the joint-level and whole-body scales. Single framework MSFE models have the potential to overcome the limitations associated with disconnected models in series. The objectives of the current study were to create a multi-scale FE model of the human lower extremity that combines optimization, dynamic muscle modeling, and structural FE analysis in a single framework and to apply this framework to evaluate the mechanics of healthy knee specimens during two activities. Two subject-specific FE models (Model 1, Model 2) of the lower extremity were developed in ABAQUS/Explicit including detailed representations of the muscles. Muscle forces, knee joint loading, and articular contact were calculated for two activities using an inverse dynamics approach and static optimization. Quadriceps muscle forces peaked at the onset of chair rise (2174N, 1962N) and in early stance phase (510N, 525N), while gait saw peak forces in the hamstrings (851N, 868N) in midstance. Joint forces were similar in magnitude to available telemetric patient data. This study demonstrates the feasibility of detailed quasi-static, muscle-driven simulations in a FE framework. A key strength of computational modeling is that it can provide estimates of muscle, ligament, and joint loads, stresses, and strains through non-invasive means. However, simulations that can predict the forces in the muscles during activity while maintaining sufficient complexity to realistically represent the muscles and joint structures can be computationally challenging. For this reason, the current state of the art is to apply separate rigid-body dynamic and finite-element (FE) analyses in series. However, the use of two or more disconnected models often fails to capture key interactions between the joint-level and whole-body scales. Single framework MSFE models have the potential to overcome the limitations associated with disconnected models in series. The objectives of the current study were to create a multi-scale FE model of the human lower extremity that combines optimization, dynamic muscle modeling, and structural FE analysis in a single framework and to apply this framework to evaluate the mechanics of healthy knee specimens during two activities. Two subject-specific FE models (Model 1, Model 2) of the lower extremity were developed in ABAQUS/Explicit including detailed representations of the muscles. Muscle forces, knee joint loading, and articular contact were calculated for two activities using an inverse dynamics approach and static optimization. Quadriceps muscle forces peaked at the onset of chair rise (2174 N, 1962 N) and in early stance phase (510 N, 525 N), while gait saw peak forces in the hamstrings (851 N, 868 N) in midstance. Joint forces were similar in magnitude to available telemetric patient data. This study demonstrates the feasibility of detailed quasi-static, muscle-driven simulations in an FE framework. A key strength of computational modeling is that it can provide estimates of muscle, ligament, and joint loads, stresses, and strains through non-invasive means. However, simulations that can predict the forces in the muscles during activity while maintaining sufficient complexity to realistically represent the muscles and joint structures can be computationally challenging. For this reason, the current state of the art is to apply separate rigid-body dynamic and finite-element (FE) analyses in series. However, the use of two or more disconnected models often fails to capture key interactions between the joint-level and whole-body scales. Single framework MSFE models have the potential to overcome the limitations associated with disconnected models in series. The objectives of the current study were to create a multi-scale FE model of the human lower extremity that combines optimization, dynamic muscle modeling, and structural FE analysis in a single framework and to apply this framework to evaluate the mechanics of healthy knee specimens during two activities. Two subject-specific FE models (Model 1, Model 2) of the lower extremity were developed in ABAQUS/Explicit including detailed representations of the muscles. Muscle forces, knee joint loading, and articular contact were calculated for two activities using an inverse dynamics approach and static optimization. Quadriceps muscle forces peaked at the onset of chair rise (2174 N, 1962 N) and in early stance phase (510 N, 525 N), while gait saw peak forces in the hamstrings (851 N, 868 N) in midstance. Joint forces were similar in magnitude to available telemetric patient data. This study demonstrates the feasibility of detailed quasi-static, muscle-driven simulations in an FE framework.A key strength of computational modeling is that it can provide estimates of muscle, ligament, and joint loads, stresses, and strains through non-invasive means. However, simulations that can predict the forces in the muscles during activity while maintaining sufficient complexity to realistically represent the muscles and joint structures can be computationally challenging. For this reason, the current state of the art is to apply separate rigid-body dynamic and finite-element (FE) analyses in series. However, the use of two or more disconnected models often fails to capture key interactions between the joint-level and whole-body scales. Single framework MSFE models have the potential to overcome the limitations associated with disconnected models in series. The objectives of the current study were to create a multi-scale FE model of the human lower extremity that combines optimization, dynamic muscle modeling, and structural FE analysis in a single framework and to apply this framework to evaluate the mechanics of healthy knee specimens during two activities. Two subject-specific FE models (Model 1, Model 2) of the lower extremity were developed in ABAQUS/Explicit including detailed representations of the muscles. Muscle forces, knee joint loading, and articular contact were calculated for two activities using an inverse dynamics approach and static optimization. Quadriceps muscle forces peaked at the onset of chair rise (2174 N, 1962 N) and in early stance phase (510 N, 525 N), while gait saw peak forces in the hamstrings (851 N, 868 N) in midstance. Joint forces were similar in magnitude to available telemetric patient data. This study demonstrates the feasibility of detailed quasi-static, muscle-driven simulations in an FE framework. |
| Author | Rullkoetter, Paul J. Navacchia, Alessandro Shelburne, Kevin B. Hume, Donald R. |
| AuthorAffiliation | 1 University of Denver, Center for Orthopaedic Biomechanics, Denver, CO. Submitted to Journal of Biomechanics |
| AuthorAffiliation_xml | – name: 1 University of Denver, Center for Orthopaedic Biomechanics, Denver, CO. Submitted to Journal of Biomechanics |
| Author_xml | – sequence: 1 givenname: Donald R. orcidid: 0000-0001-9081-358X surname: Hume fullname: Hume, Donald R. email: don.hume@du.edu – sequence: 2 givenname: Alessandro surname: Navacchia fullname: Navacchia, Alessandro – sequence: 3 givenname: Paul J. surname: Rullkoetter fullname: Rullkoetter, Paul J. – sequence: 4 givenname: Kevin B. surname: Shelburne fullname: Shelburne, Kevin B. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30630624$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1DAUhS1URKeFv1BFYsMmwY88JVRRVbykSmxgbTnOzfQGxx5sZ2D-PR6mg2A2RbLkhb9zfO49F-TMOguEXDFaMMrq11Mx9ehm0PcFp6wtGC9oSZ-QFWsbkXPR0jOyopSzvOMdPScXIUyU0qZsumfkXNA6HV6uyPomM-4H-Ax-Rg8zxl02uwFMNjqfzUvQBvLB4xZsFnBejIrobObGTOmI2z2-BLTrJN8Y1BizES1GyMDADDYezBLwnDwdlQnw4uG-JF_fv_ty-zG_-_zh0-3NXa4rWse8KinXqlXjMKiuEXXFac9ZWzMuNG_alnc1YyVrVTekYaDvODT92Ay8KseqE524JNcH383SzzDolMErIzceZ-V30imU_75YvJdrt5W1qFnDymTw6sHAu-8LhChnDBqMURbcEiRnTScEr5hI6MsTdHKLt2m8PVXyklZlk6irvxP9iXLsIAFvDoD2LgQPo0x7_L3nFBCNZFTuK5eTPFYu95VLxmWqPMnrE_nxh0eFbw9CSH1sEbwMGsFqGNCDjnJw-LjF9YmFTmWjVuYb7P7H4BdQ5eAM |
| CitedBy_id | crossref_primary_10_1016_j_jbiomech_2021_110439 crossref_primary_10_3389_fbioe_2021_703508 crossref_primary_10_1007_s40846_022_00734_3 crossref_primary_10_1049_bsbt_2019_0012 crossref_primary_10_1002_cnm_3396 crossref_primary_10_3389_fbioe_2024_1274496 crossref_primary_10_1016_j_cmpb_2020_105328 crossref_primary_10_1080_10255842_2024_2431892 crossref_primary_10_1007_s10237_021_01465_1 crossref_primary_10_3389_fbioe_2023_1153692 crossref_primary_10_3389_fninf_2019_00024 crossref_primary_10_1142_S0219519419400463 crossref_primary_10_1016_j_clinbiomech_2024_106170 crossref_primary_10_1115_1_4063950 crossref_primary_10_3389_fbioe_2022_957435 crossref_primary_10_1177_03635465231174899 crossref_primary_10_1038_s41598_021_02298_9 crossref_primary_10_1177_23259671211034487 crossref_primary_10_1016_j_jmbbm_2020_104136 crossref_primary_10_1016_j_ostima_2024_100244 crossref_primary_10_1177_2325967121989095 crossref_primary_10_1186_s12891_024_07372_7 crossref_primary_10_1115_1_4053211 |
| Cites_doi | 10.1016/S0021-9290(00)00155-X 10.1007/s10439-016-1728-x 10.1371/journal.pone.0086035 10.1016/j.jbiomech.2015.12.020 10.1109/TBME.2007.901024 10.1115/1.4026359 10.1016/0021-9290(81)90035-X 10.1016/j.jbiomech.2018.05.030 10.1016/j.jbiomech.2012.05.040 10.1007/s10237-005-0072-0 10.1016/j.jbiomech.2017.04.008 10.1109/86.650292 10.1007/s10439-015-1326-3 10.1002/jor.22948 10.1016/j.jbiomech.2014.02.028 10.1098/rstb.2010.0345 10.1115/1.4032379 10.1016/j.cmpb.2006.09.013 10.1016/S0966-6362(02)00073-5 10.1016/j.jbiomech.2009.10.048 10.1115/1.4023523 10.1115/1.4002854 10.1115/1.4026358 10.1002/jor.22472 10.1016/j.jbiomech.2010.05.036 10.1115/1.4033882 10.1115/1.3005333 10.1007/s00167-003-0352-0 10.1055/s-0035-1558858 10.1249/MSS.0000000000001350 10.1093/ptj/61.2.190 10.1080/10255840290010265 10.1002/jor.23171 10.1115/1.1392310 10.1016/j.jbiomech.2009.01.032 10.1002/jor.20255 10.1007/s10439-014-1181-7 10.1249/01.mss.0000180404.86078.ff 10.1016/j.jbiomech.2009.06.028 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. 2019. Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: 2019. Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.1016/j.jbiomech.2018.12.040 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Anatomy & Physiology |
| EISSN | 1873-2380 |
| EndPage | 160 |
| ExternalDocumentID | PMC6361714 30630624 10_1016_j_jbiomech_2018_12_040 S0021929018309394 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB015497 |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUFD ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- ~HD 3V. AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AI. AIGII APXCP ASPBG AVWKF AZFZN CITATION EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT PUEGO R2- RPZ SAE SEW VH1 WUQ XOL XPP ZGI ALIPV CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c506t-5402ca8afdda9736520b2186123c278829611418a9d007eb92e7bf7d254f59393 |
| IEDL.DBID | .~1 |
| ISSN | 0021-9290 1873-2380 |
| IngestDate | Tue Sep 30 16:08:00 EDT 2025 Sat Sep 27 20:45:23 EDT 2025 Tue Oct 07 06:24:21 EDT 2025 Wed Feb 19 02:30:39 EST 2025 Thu Apr 24 23:01:21 EDT 2025 Wed Oct 01 01:19:21 EDT 2025 Fri Feb 23 02:28:49 EST 2024 Tue Oct 14 19:30:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Knee Musculoskeletal modeling Muscle Squatting Gait Finite element |
| Language | English |
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c506t-5402ca8afdda9736520b2186123c278829611418a9d007eb92e7bf7d254f59393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9081-358X |
| PMID | 30630624 |
| PQID | 2174240547 |
| PQPubID | 1226346 |
| PageCount | 8 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6361714 proquest_miscellaneous_2179332513 proquest_journals_2174240547 pubmed_primary_30630624 crossref_citationtrail_10_1016_j_jbiomech_2018_12_040 crossref_primary_10_1016_j_jbiomech_2018_12_040 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2018_12_040 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2018_12_040 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-14 |
| PublicationDateYYYYMMDD | 2019-02-14 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-14 day: 14 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Kidlington |
| PublicationTitle | Journal of biomechanics |
| PublicationTitleAlternate | J Biomech |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Bergmann, Bender, Graichen, Dymke, Rohlmann, Trepczynski, Heller, Kutzner (b0055) 2014; 9 Anderson, Pandy (b0040) 2003; 17 Thelen, Won Choi, Schmitz (b0195) 2014; 136 Smith, Lenhart, Kaiser, Vignos, Thelen (b0185) 2015; 29 Ali, Harris, Shalhoub, Maletsky, Rullkoetter, Shelburne (b0020) 2017; 57 Walter, Korkmaz, Fregley, Pandy (b0200) 2015 Harris, Cyr, Ali, Fitzpatrick, Rullkoetter, Maletsky, Shelburne (b0115) 2016; 138 Fitzpatrick, Baldwin, Rullkoetter (b0095) 2010; 132 Crowninshield, Brand (b0070) 1981; 14 Navacchia, Kefala, Shelburne (b0155) 2017; 45 Ali, Shalhoub, Cyr, Fitzpatrick, Maletsky, Rullkoetter, Shelburne (b0025) 2016; 49 Arnold, Delp (b0045) 2011; 366 Shelburne, K.B., Torry, M.R., Pandy, M.G., 2006. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait, 1983–1990. Navacchia, Rullkoetter, Schütz, List, Fitzpatrick, Shelburne (b0165) 2016; 34 Baldwin, Clary, Maletsky, Rullkoetter (b0050) 2009; 42 Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (b0075) 2007; 54 Fiorentino (b0090) 2013; 135 Jagodzinski, Leis, Iselborn, Mall, Nerlich, Bosch (b0125) 2003; 11 Anderson, Pandy (b0035) 2001; 34 Lunnen, Yack, LeVeau (b0145) 1981; 61 Adouni, Shirazi-Adl, Shirazi (b0015) 2012; 45 Guess, Stylianou, Kia (b0100) 2014; 136 Shelburne, Pandy (b0170) 2002; 5 Lin, Walter, Banks, Pandy, Fregly (b0140) 2010; 43 Smoger, Fitzpatrick, Clary, Cyr, Maletsky, Rullkoetter, Laz (b0190) 2015; 33 Anderson, Pandy (b0030) 2001; 123 Halloran, Ackermann, Erdemir, van den Bogert (b0105) 2010; 43 Shelburne, Torry, Pandy (b0175) 2005; 37 Kefala, Cyr, Harris, Hume, Davidson, Kim, Shelburne (b0130) 2017; 49 Hume, Navacchia, Ali, Shelburne (b0120) 2018; 76 Easley, Pal, Tomaszewski, Petrella, Rullkoetter, Laz (b0080) 2007; 85 Fernandez, Hunter (b0085) 2005; 4 Navacchia, Myers, Rullkoetter, Shelburne (b0160) 2016; 138 Adouni, Shirazi-Adl (b0010) 2014; 47 Myers, Laz, Shelburne, Davidson (b0150) 2015; 43 Besier, Fredericson, Gold, Beaupré, Delp (b0060) 2009; 42 Halloran, Erdemir, van den Bogert (b0110) 2009; 131 Buford, Ivey, Malone, Patterson, Peare, Nguyen, Stewart (b0065) 1997; 5 Lenhart, Kaiser, Smith, Thelen (b0135) 2015; 43 Adouni, Shirazi-Adl (b0005) 2014; 32 Lunnen (10.1016/j.jbiomech.2018.12.040_b0145) 1981; 61 Bergmann (10.1016/j.jbiomech.2018.12.040_b0055) 2014; 9 Fitzpatrick (10.1016/j.jbiomech.2018.12.040_b0095) 2010; 132 Navacchia (10.1016/j.jbiomech.2018.12.040_b0160) 2016; 138 Myers (10.1016/j.jbiomech.2018.12.040_b0150) 2015; 43 Smoger (10.1016/j.jbiomech.2018.12.040_b0190) 2015; 33 Jagodzinski (10.1016/j.jbiomech.2018.12.040_b0125) 2003; 11 Adouni (10.1016/j.jbiomech.2018.12.040_b0010) 2014; 47 Ali (10.1016/j.jbiomech.2018.12.040_b0020) 2017; 57 Fernandez (10.1016/j.jbiomech.2018.12.040_b0085) 2005; 4 Harris (10.1016/j.jbiomech.2018.12.040_b0115) 2016; 138 Kefala (10.1016/j.jbiomech.2018.12.040_b0130) 2017; 49 Anderson (10.1016/j.jbiomech.2018.12.040_b0040) 2003; 17 Navacchia (10.1016/j.jbiomech.2018.12.040_b0165) 2016; 34 Adouni (10.1016/j.jbiomech.2018.12.040_b0005) 2014; 32 Easley (10.1016/j.jbiomech.2018.12.040_b0080) 2007; 85 Buford (10.1016/j.jbiomech.2018.12.040_b0065) 1997; 5 Lin (10.1016/j.jbiomech.2018.12.040_b0140) 2010; 43 Delp (10.1016/j.jbiomech.2018.12.040_b0075) 2007; 54 Shelburne (10.1016/j.jbiomech.2018.12.040_b0175) 2005; 37 Thelen (10.1016/j.jbiomech.2018.12.040_b0195) 2014; 136 Halloran (10.1016/j.jbiomech.2018.12.040_b0110) 2009; 131 Anderson (10.1016/j.jbiomech.2018.12.040_b0035) 2001; 34 Hume (10.1016/j.jbiomech.2018.12.040_b0120) 2018; 76 Lenhart (10.1016/j.jbiomech.2018.12.040_b0135) 2015; 43 Fiorentino (10.1016/j.jbiomech.2018.12.040_b0090) 2013; 135 Guess (10.1016/j.jbiomech.2018.12.040_b0100) 2014; 136 Walter (10.1016/j.jbiomech.2018.12.040_b0200) 2015 Halloran (10.1016/j.jbiomech.2018.12.040_b0105) 2010; 43 Anderson (10.1016/j.jbiomech.2018.12.040_b0030) 2001; 123 Arnold (10.1016/j.jbiomech.2018.12.040_b0045) 2011; 366 Besier (10.1016/j.jbiomech.2018.12.040_b0060) 2009; 42 Smith (10.1016/j.jbiomech.2018.12.040_b0185) 2015; 29 10.1016/j.jbiomech.2018.12.040_b0180 Adouni (10.1016/j.jbiomech.2018.12.040_b0015) 2012; 45 Ali (10.1016/j.jbiomech.2018.12.040_b0025) 2016; 49 Navacchia (10.1016/j.jbiomech.2018.12.040_b0155) 2017; 45 Baldwin (10.1016/j.jbiomech.2018.12.040_b0050) 2009; 42 Crowninshield (10.1016/j.jbiomech.2018.12.040_b0070) 1981; 14 Shelburne (10.1016/j.jbiomech.2018.12.040_b0170) 2002; 5 |
| References_xml | – volume: 49 start-page: 302 year: 2016 end-page: 309 ident: b0025 article-title: Validation of predicted patellofemoral mechanics in a finite element model of the healthy and cruciate-deficient knee publication-title: J. Biomech. – volume: 132 start-page: 121013 year: 2010 ident: b0095 article-title: Computationally efficient finite element evaluation of natural patellofemoral mechanics publication-title: J. Biomech. Eng. – volume: 85 start-page: 32 year: 2007 end-page: 40 ident: b0080 article-title: Finite element-based probabilistic analysis tool for orthopaedic applications publication-title: Comput. Methods Programs Biomed. – volume: 43 start-page: 1098 year: 2015 end-page: 1111 ident: b0150 article-title: A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations publication-title: Ann. Biomed. Eng. – volume: 49 start-page: 2260 year: 2017 end-page: 2267 ident: b0130 article-title: Assessment of knee kinematics in older adults using high-speed stereo radiography publication-title: Med. Sci. Sports Exerc. – volume: 32 start-page: 69 year: 2014 end-page: 78 ident: b0005 article-title: Evaluation of knee joint muscle forces and tissue stresses-strains during gait in severe OA versus normal subjects publication-title: J. Orthop. Res. – volume: 366 start-page: 1530 year: 2011 end-page: 1539 ident: b0045 article-title: Fibre operating lengths of human lower limb muscles during walking publication-title: Philos. Trans. R. Soc. Lond. B. Biol. Sci. – volume: 54 start-page: 1940 year: 2007 end-page: 1950 ident: b0075 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Trans. Biomed. Eng. – volume: 42 start-page: 2341 year: 2009 end-page: 2348 ident: b0050 article-title: Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend publication-title: J. Biomech. – volume: 43 start-page: 2675 year: 2015 end-page: 2685 ident: b0135 article-title: Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement publication-title: Ann. Biomed. Eng. – volume: 5 start-page: 367 year: 1997 end-page: 379 ident: b0065 article-title: Muscle balance at the knee – moment arms for the normal knee and the ACL-minus knee publication-title: IEEE Trans. Rehabil. Eng. – reference: Shelburne, K.B., Torry, M.R., Pandy, M.G., 2006. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait, 1983–1990. – volume: 76 start-page: 173 year: 2018 end-page: 180 ident: b0120 article-title: The interaction of muscle moment arm, knee laxity, and torque in a multi-scale musculoskeletal model of the lower limb publication-title: J. Biomech. – volume: 5 start-page: 149 year: 2002 end-page: 159 ident: b0170 article-title: A dynamic model of the knee and lower limb for simulating rising movements publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 33 start-page: 1620 year: 2015 end-page: 1630 ident: b0190 article-title: Statistical modeling to characterize relationships between knee anatomy and kinematics publication-title: J. Orthop. Res. – volume: 136 start-page: 021032 year: 2014 ident: b0100 article-title: Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait publication-title: J. Biomech. Eng. – volume: 37 start-page: 1948 year: 2005 end-page: 1956 ident: b0175 article-title: Muscle, ligament, and joint-contact forces at the knee during walking publication-title: Med. Sci. Sports Exerc. – volume: 43 start-page: 2810 year: 2010 end-page: 2815 ident: b0105 article-title: Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading publication-title: J. Biomech. – volume: 14 start-page: 793 year: 1981 end-page: 801 ident: b0070 article-title: A physiologically based criterion of muscle force prediction in locomotion publication-title: J. Biomech. – volume: 34 start-page: 153 year: 2001 end-page: 161 ident: b0035 article-title: Static and dynamic optimization solutions for gait are practically equivalent publication-title: J. Biomech. – start-page: 33 year: 2015 ident: b0200 article-title: Contribution of tibiofemoral joint contact to net loads at the knee in gait publication-title: J. Orthop. Res. – volume: 4 start-page: 20 year: 2005 end-page: 38 ident: b0085 article-title: An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool publication-title: Biomech. Model. Mechanobiol. – volume: 9 start-page: e86035 year: 2014 ident: b0055 article-title: Standardized loads acting in knee implants publication-title: PLoS One – volume: 136 start-page: 021033 year: 2014 ident: b0195 article-title: Co-simulation of neuromuscular dynamics and knee mechanics during human walking publication-title: J. Biomech. Eng. – volume: 42 start-page: 898 year: 2009 end-page: 905 ident: b0060 article-title: Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls publication-title: J. Biomech. – volume: 138 start-page: 081004 year: 2016 ident: b0115 article-title: A combined experimental and computational approach to subject-specific analysis of knee joint laxity publication-title: J. Biomech. Eng. – volume: 43 start-page: 945 year: 2010 end-page: 952 ident: b0140 article-title: Simultaneous prediction of muscle and contact forces in the knee during gait publication-title: J. Biomech. – volume: 17 start-page: 159 year: 2003 end-page: 169 ident: b0040 article-title: Individual muscle contributions to support in normal walking publication-title: Gait Posture – volume: 135 start-page: 044501 year: 2013 ident: b0090 article-title: Rectus femoris knee muscle moment arms measured in vivo during dynamic motion with real-time magnetic resonance imaging publication-title: J. Biomech. Eng. – volume: 47 start-page: 1696 year: 2014 end-page: 1703 ident: b0010 article-title: Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduction moment publication-title: J. Biomech. – volume: 61 start-page: 190 year: 1981 end-page: 195 ident: b0145 article-title: Relationship between muscle length, muscle activity, and torque of the hamstring muscles publication-title: Phys. Ther. – volume: 123 start-page: 381 year: 2001 ident: b0030 article-title: Dynamic optimization of human walking publication-title: J. Biomech. Eng. – volume: 57 start-page: 117 year: 2017 end-page: 124 ident: b0020 article-title: Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions publication-title: J. Biomech. – volume: 45 start-page: 2149 year: 2012 end-page: 2156 ident: b0015 article-title: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses publication-title: J. Biomech. – volume: 138 start-page: 031002 year: 2016 ident: b0160 article-title: Prediction of in vivo knee joint loads using a global probabilistic analysis publication-title: J. Biomech. Eng. – volume: 29 start-page: 099 year: 2015 end-page: 106 ident: b0185 article-title: Influence of ligament properties on tibiofemoral mechanics in walking publication-title: J. Knee Surg. – volume: 45 start-page: 789 year: 2017 end-page: 798 ident: b0155 article-title: Dependence of muscle moment arms on in vivo three-dimensional kinematics of the knee publication-title: Ann. Biomed. Eng. – volume: 11 start-page: 85 year: 2003 end-page: 90 ident: b0125 article-title: Impingement pressure and tension forces of the anterior cruciate ligament publication-title: Knee Surgery Sport. Traumatol. Arthrosc. – volume: 34 start-page: 1576 year: 2016 end-page: 1587 ident: b0165 article-title: Subject-specific modeling of muscle force and knee contact in total knee arthroplasty publication-title: J. Orthop. Res. – volume: 131 start-page: 011014 year: 2009 ident: b0110 article-title: Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models publication-title: J. Biomech. Eng. – volume: 34 start-page: 153 year: 2001 ident: 10.1016/j.jbiomech.2018.12.040_b0035 article-title: Static and dynamic optimization solutions for gait are practically equivalent publication-title: J. Biomech. doi: 10.1016/S0021-9290(00)00155-X – volume: 45 start-page: 789 year: 2017 ident: 10.1016/j.jbiomech.2018.12.040_b0155 article-title: Dependence of muscle moment arms on in vivo three-dimensional kinematics of the knee publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-016-1728-x – volume: 9 start-page: e86035 year: 2014 ident: 10.1016/j.jbiomech.2018.12.040_b0055 article-title: Standardized loads acting in knee implants publication-title: PLoS One doi: 10.1371/journal.pone.0086035 – volume: 49 start-page: 302 year: 2016 ident: 10.1016/j.jbiomech.2018.12.040_b0025 article-title: Validation of predicted patellofemoral mechanics in a finite element model of the healthy and cruciate-deficient knee publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.12.020 – volume: 54 start-page: 1940 year: 2007 ident: 10.1016/j.jbiomech.2018.12.040_b0075 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.901024 – volume: 136 start-page: 021032 year: 2014 ident: 10.1016/j.jbiomech.2018.12.040_b0100 article-title: Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait publication-title: J. Biomech. Eng. doi: 10.1115/1.4026359 – volume: 14 start-page: 793 year: 1981 ident: 10.1016/j.jbiomech.2018.12.040_b0070 article-title: A physiologically based criterion of muscle force prediction in locomotion publication-title: J. Biomech. doi: 10.1016/0021-9290(81)90035-X – volume: 76 start-page: 173 year: 2018 ident: 10.1016/j.jbiomech.2018.12.040_b0120 article-title: The interaction of muscle moment arm, knee laxity, and torque in a multi-scale musculoskeletal model of the lower limb publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.05.030 – volume: 45 start-page: 2149 year: 2012 ident: 10.1016/j.jbiomech.2018.12.040_b0015 article-title: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.05.040 – volume: 4 start-page: 20 year: 2005 ident: 10.1016/j.jbiomech.2018.12.040_b0085 article-title: An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-005-0072-0 – volume: 57 start-page: 117 year: 2017 ident: 10.1016/j.jbiomech.2018.12.040_b0020 article-title: Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.04.008 – volume: 5 start-page: 367 year: 1997 ident: 10.1016/j.jbiomech.2018.12.040_b0065 article-title: Muscle balance at the knee – moment arms for the normal knee and the ACL-minus knee publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.650292 – volume: 43 start-page: 2675 year: 2015 ident: 10.1016/j.jbiomech.2018.12.040_b0135 article-title: Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1326-3 – volume: 33 start-page: 1620 year: 2015 ident: 10.1016/j.jbiomech.2018.12.040_b0190 article-title: Statistical modeling to characterize relationships between knee anatomy and kinematics publication-title: J. Orthop. Res. doi: 10.1002/jor.22948 – volume: 47 start-page: 1696 year: 2014 ident: 10.1016/j.jbiomech.2018.12.040_b0010 article-title: Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduction moment publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.02.028 – volume: 366 start-page: 1530 year: 2011 ident: 10.1016/j.jbiomech.2018.12.040_b0045 article-title: Fibre operating lengths of human lower limb muscles during walking publication-title: Philos. Trans. R. Soc. Lond. B. Biol. Sci. doi: 10.1098/rstb.2010.0345 – volume: 138 start-page: 031002 year: 2016 ident: 10.1016/j.jbiomech.2018.12.040_b0160 article-title: Prediction of in vivo knee joint loads using a global probabilistic analysis publication-title: J. Biomech. Eng. doi: 10.1115/1.4032379 – volume: 85 start-page: 32 year: 2007 ident: 10.1016/j.jbiomech.2018.12.040_b0080 article-title: Finite element-based probabilistic analysis tool for orthopaedic applications publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2006.09.013 – volume: 17 start-page: 159 year: 2003 ident: 10.1016/j.jbiomech.2018.12.040_b0040 article-title: Individual muscle contributions to support in normal walking publication-title: Gait Posture doi: 10.1016/S0966-6362(02)00073-5 – volume: 43 start-page: 945 year: 2010 ident: 10.1016/j.jbiomech.2018.12.040_b0140 article-title: Simultaneous prediction of muscle and contact forces in the knee during gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.10.048 – volume: 135 start-page: 044501 year: 2013 ident: 10.1016/j.jbiomech.2018.12.040_b0090 article-title: Rectus femoris knee muscle moment arms measured in vivo during dynamic motion with real-time magnetic resonance imaging publication-title: J. Biomech. Eng. doi: 10.1115/1.4023523 – volume: 132 start-page: 121013 year: 2010 ident: 10.1016/j.jbiomech.2018.12.040_b0095 article-title: Computationally efficient finite element evaluation of natural patellofemoral mechanics publication-title: J. Biomech. Eng. doi: 10.1115/1.4002854 – volume: 136 start-page: 021033 year: 2014 ident: 10.1016/j.jbiomech.2018.12.040_b0195 article-title: Co-simulation of neuromuscular dynamics and knee mechanics during human walking publication-title: J. Biomech. Eng. doi: 10.1115/1.4026358 – volume: 32 start-page: 69 year: 2014 ident: 10.1016/j.jbiomech.2018.12.040_b0005 article-title: Evaluation of knee joint muscle forces and tissue stresses-strains during gait in severe OA versus normal subjects publication-title: J. Orthop. Res. doi: 10.1002/jor.22472 – volume: 43 start-page: 2810 year: 2010 ident: 10.1016/j.jbiomech.2018.12.040_b0105 article-title: Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.05.036 – volume: 138 start-page: 081004 year: 2016 ident: 10.1016/j.jbiomech.2018.12.040_b0115 article-title: A combined experimental and computational approach to subject-specific analysis of knee joint laxity publication-title: J. Biomech. Eng. doi: 10.1115/1.4033882 – volume: 131 start-page: 011014 year: 2009 ident: 10.1016/j.jbiomech.2018.12.040_b0110 article-title: Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models publication-title: J. Biomech. Eng. doi: 10.1115/1.3005333 – volume: 11 start-page: 85 year: 2003 ident: 10.1016/j.jbiomech.2018.12.040_b0125 article-title: Impingement pressure and tension forces of the anterior cruciate ligament publication-title: Knee Surgery Sport. Traumatol. Arthrosc. doi: 10.1007/s00167-003-0352-0 – volume: 29 start-page: 099 year: 2015 ident: 10.1016/j.jbiomech.2018.12.040_b0185 article-title: Influence of ligament properties on tibiofemoral mechanics in walking publication-title: J. Knee Surg. doi: 10.1055/s-0035-1558858 – volume: 49 start-page: 2260 year: 2017 ident: 10.1016/j.jbiomech.2018.12.040_b0130 article-title: Assessment of knee kinematics in older adults using high-speed stereo radiography publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0000000000001350 – start-page: 33 year: 2015 ident: 10.1016/j.jbiomech.2018.12.040_b0200 article-title: Contribution of tibiofemoral joint contact to net loads at the knee in gait publication-title: J. Orthop. Res. – volume: 61 start-page: 190 year: 1981 ident: 10.1016/j.jbiomech.2018.12.040_b0145 article-title: Relationship between muscle length, muscle activity, and torque of the hamstring muscles publication-title: Phys. Ther. doi: 10.1093/ptj/61.2.190 – volume: 5 start-page: 149 year: 2002 ident: 10.1016/j.jbiomech.2018.12.040_b0170 article-title: A dynamic model of the knee and lower limb for simulating rising movements publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840290010265 – volume: 34 start-page: 1576 year: 2016 ident: 10.1016/j.jbiomech.2018.12.040_b0165 article-title: Subject-specific modeling of muscle force and knee contact in total knee arthroplasty publication-title: J. Orthop. Res. doi: 10.1002/jor.23171 – volume: 123 start-page: 381 year: 2001 ident: 10.1016/j.jbiomech.2018.12.040_b0030 article-title: Dynamic optimization of human walking publication-title: J. Biomech. Eng. doi: 10.1115/1.1392310 – volume: 42 start-page: 898 year: 2009 ident: 10.1016/j.jbiomech.2018.12.040_b0060 article-title: Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.01.032 – ident: 10.1016/j.jbiomech.2018.12.040_b0180 doi: 10.1002/jor.20255 – volume: 43 start-page: 1098 year: 2015 ident: 10.1016/j.jbiomech.2018.12.040_b0150 article-title: A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-014-1181-7 – volume: 37 start-page: 1948 year: 2005 ident: 10.1016/j.jbiomech.2018.12.040_b0175 article-title: Muscle, ligament, and joint-contact forces at the knee during walking publication-title: Med. Sci. Sports Exerc. doi: 10.1249/01.mss.0000180404.86078.ff – volume: 42 start-page: 2341 year: 2009 ident: 10.1016/j.jbiomech.2018.12.040_b0050 article-title: Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.06.028 |
| SSID | ssj0007479 |
| Score | 2.4188867 |
| Snippet | A key strength of computational modeling is that it can provide estimates of muscle, ligament, and joint loads, stresses, and strains through non-invasive... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 153 |
| SubjectTerms | Activities of daily living Biomechanical Phenomena Computer applications Computer simulation Feasibility studies Finite element Finite Element Analysis Finite element method Force Gait Geometry Humans Inverse dynamics Joints (anatomy) Kinematics Knee Laboratories Lower Extremity - physiology Mathematical analysis Mathematical models Mechanical Phenomena Mechanics Multiscale analysis Muscle Muscle, Skeletal - physiology Muscles Musculoskeletal modeling Optimization Patient-Specific Modeling Quadriceps muscle Series (mathematics) Squatting State of the art |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VrYTggMqWx9KCjIS4hSax8_ChQlvUqkLqCiEq9WZ5E7vdVTdb9nHov--MY4ctIMo5HiuOJzOfPY8P4IOtbVZQcYyUIo6EzXlUaq4jXtrSSGPTzFKh8NkoPz0XXy-yiy0YhVoYSqsMNtEZ6npe0R35AUFn9D6ZKD7f_IyINYqiq4FCQ3tqhfrQtRh7BNspdcbqwfbR8ejb9842I3j2SR9JhMAg3qgZnn6auop3F6JISndJSFcif3dXf8LR37MqN9zUyQ488_iSDVuFeA5bpunD7rDBs_Xsln1kLuPTXaX34elGM8I-PD7zYfZduByya2JPY2i5F2aGQJ05xhyGCJfN1kucOaoXZCfZcjLzBGBsbhlVSRAZBaN0-ksUp-j4ZMXshKAtM22uejsZDngB5yfHP76cRp6RIaqyOF9RFkVa6VLbutay4HmWxmMitUL3V6V4mE5ljuerpNSyxm9txjI1xdgWNZ5CbSa55C-h18wb8xqYQLeoM2PwfJYL1AtdyVjzyibcCiuFHkAWPryqfLtyYs24ViEvbarChinaMJWkCjdsAAed3E3bsONBiSLsqwrlqGhAFfqUByVlJ-kBSwtE_kt2P6iQ8mZjqX4p-QDed4_xh6cojm7MfO3GSM4RlvIBvGo1rlsopw5qeSpwSfd0sRtAzcTvP2kmV66peM4Ryybizb9faw-e4Bokpa0nYh96q8XavEVUthq_87_aHTTrOMs priority: 102 providerName: ProQuest |
| Title | A lower extremity model for muscle-driven simulation of activity using explicit finite element modeling |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929018309394 https://dx.doi.org/10.1016/j.jbiomech.2018.12.040 https://www.ncbi.nlm.nih.gov/pubmed/30630624 https://www.proquest.com/docview/2174240547 https://www.proquest.com/docview/2179332513 https://pubmed.ncbi.nlm.nih.gov/PMC6361714 |
| Volume | 84 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AKRWK dateStart: 19680101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1873-2380 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1873-2380 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8DQNCcEDgo6PwpiMhHjL2sR2Ej-WaVMBrUKISX2z3MQeqdZ06scDL_x27hwntIA0JF5SpfFFse98H74vgLeudDKj5BilxDASLuVRbriJeO5yq6xLpKNE4ctJOr4SH6dyegBnbS4MhVUG3t_wdM-twz-DsJqD26qiHF_cbeQGzMmbp6gmqBAZdTE4_fErzAPV5RDmEUc0eidLeH469znu3ikR5_5YkA5B_i6g_lRAf4-j3BFMF4_hUdAo2aj56CdwYOseHI1qtKYX39k75mM8_eF5Dx7ulB_swf3L4Fg_gusRu6F-aQx59couUDVnvkcOQ52WLbZrfHNUrogzsnW1CC2_2NIxyoug9hOMAuivEZz84dWGuYqUWWab6PTmZTjgKVxdnH89G0ehB0NUyGG6obiJpDC5cWVpVMZTmQxn1MYKBV6RoPmcqBQtqjg3qsS1tjOV2GzmshLtTicRK_wZHNbL2r4AJlAQGmktWmSpQEowhRoaXriYO-GUMH2Q7cLrIhQopz4ZN7qNRJvrFmGaEKbjRCPC-jDo4G6bEh13QmQtXnWbgIosU6MUuRNSdZB7ZPpPsMctCenAKNaaLEJUqqTI-vCme4xbnPw2prbLrR-jOEdFlPfheUNx3UQ51UxLE4FT2qPFbgCVD99_UlfffBnxlKP2GouX_zGlV_AA7xRFscfiGA43q619jUraZnbidyFes2l2AvdGHz6NJ_j7_nzy-ctPYClA0g |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrcTjgGDLY6GAkYBb6MZ2Hj5UaIFWW9pdIdRKvRlvYpdddbNlH0L9c_w2ZhInbAFRLj3HE8WZ8cw3nhfAS5e7KKHiGKVkJ5AuFkFqhAlE6lKrrOORo0Lh_iDuHcuPJ9HJGvyoa2EorbLWiaWizqcZ3ZFvE3RG6xPJ5O35t4CmRlF0tR6hYfxohXynbDHmCzsO7MV3dOHmO_sfkN-vON_bPXrfC_yUgSCLOvGCMgN4ZlLj8tyoRMQR7wxpUBOq9Iyjg8hVjD5DmBqVoz21Q8VtMnRJjp6Vi5SgZkxoAjakkAqdv413u4NPnxtbgGDdJ5mEAQKRzkqN8vjNuKywL0MiYVpeStIVzN_N45_w9_cszhWzuHcX7ng8y7qVAN6DNVu0YLNboC8_uWCvWZlhWl7dt-D2SvPDFtzo-7D-Jpx22RlNa2NoKWZ2go4BKyf0METUbLKc45uDfEZ6mc1HEz9wjE0do6oMGn7BKH3_FMkpGj9aMDciKM1slRtfvQwX3Ifja-HNA1gvpoV9BEyiGTaRtegPxhLl0GSqY0TmQuGkU9K0Iap_vM58e3Sa0nGm6zy4sa4ZpolhOuQaGdaG7YbuvGoQciVFUvNV1-WvqLA12rArKVVD6QFSBXz-i3arFiHt1dRc_zpUbXjRPEYFQ1EjU9jpslyjhEAYLNrwsJK4ZqOCOrbFXOKWLslis4Cal19-Uoy-lk3MY4HYOZSP__1Zz-Fm76h_qA_3BwdP4BbuR1HKfCi3YH0xW9qniAgXw2f-2DH4ct0n_ScDr3NX |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRarggCDlEVrASMBtya7tffiAUESJWkorDlTKzTi7dknUbNo8hPrX-HXMeB-kgCiXntezWu-MZ77xvABeusLFKRXHKCXDQLpEBJkRJhCZy6yyjseOCoWPjpP9E_lxGA834EdTC0NplY1O9Iq6mOV0R94j6IzWJ5Zpz9VpEZ_3Bu_OLwKaIEWR1macRiUih_byO7pvi7cHe8jrV5wPPnx5vx_UEwaCPA6TJWUF8NxkxhWFUalIYh6OaEgTqvOco3PIVYL-QpQZVaAttSPFbTpyaYFelYuVoEZMqP5vpUIoSidMh62zR33p6_SSKEAIEq5VJ0_eTHxtvQ-GRJm_jqTLl78bxj-B7-_5m2sGcXAP7tZIlvUr0bsPG7bswHa_RC9-esleM59b6i_tO3Bnre1hB7aO6oD-Npz22RnNaWP4o-d2ii4B87N5GGJpNl0t8M1BMSeNzBbjaT1qjM0co3oMGnvBKHH_FMkpDj9eMjcmEM1slRVfvQwXPICTG-HMQ9gsZ6V9DEyiATaxtegJJhIl0OQqNCJ3kXDSKWm6EDc_Xud1Y3Saz3Gmmwy4iW4YpolhOuIaGdaFXkt3XrUGuZYibfiqm8JXVNUarde1lKqlrKFRBXn-i3a3ESFdK6iF_nWcuvCifYyqheJFprSzlV-jhEAALLrwqJK4dqOCerUlXOKWrshiu4Dall99Uo6_-fbliUDUHMkn__6s57CF51t_Ojg-3IHbuB1FufKR3IXN5XxlnyIUXI6e-TPH4OtNH_Kf1tBw8Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lower+extremity+model+for+muscle-driven+simulation+of+activity+using+explicit+finite+element+modeling&rft.jtitle=Journal+of+biomechanics&rft.au=Hume%2C+Donald+R.&rft.au=Navacchia%2C+Alessandro&rft.au=Rullkoetter%2C+Paul+J.&rft.au=Shelburne%2C+Kevin+B.&rft.date=2019-02-14&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=84&rft.spage=153&rft.epage=160&rft_id=info:doi/10.1016%2Fj.jbiomech.2018.12.040&rft.externalDocID=S0021929018309394 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |