A lower extremity model for muscle-driven simulation of activity using explicit finite element modeling

A key strength of computational modeling is that it can provide estimates of muscle, ligament, and joint loads, stresses, and strains through non-invasive means. However, simulations that can predict the forces in the muscles during activity while maintaining sufficient complexity to realistically r...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 84; pp. 153 - 160
Main Authors Hume, Donald R., Navacchia, Alessandro, Rullkoetter, Paul J., Shelburne, Kevin B.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 14.02.2019
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2018.12.040

Cover

Abstract A key strength of computational modeling is that it can provide estimates of muscle, ligament, and joint loads, stresses, and strains through non-invasive means. However, simulations that can predict the forces in the muscles during activity while maintaining sufficient complexity to realistically represent the muscles and joint structures can be computationally challenging. For this reason, the current state of the art is to apply separate rigid-body dynamic and finite-element (FE) analyses in series. However, the use of two or more disconnected models often fails to capture key interactions between the joint-level and whole-body scales. Single framework MSFE models have the potential to overcome the limitations associated with disconnected models in series. The objectives of the current study were to create a multi-scale FE model of the human lower extremity that combines optimization, dynamic muscle modeling, and structural FE analysis in a single framework and to apply this framework to evaluate the mechanics of healthy knee specimens during two activities. Two subject-specific FE models (Model 1, Model 2) of the lower extremity were developed in ABAQUS/Explicit including detailed representations of the muscles. Muscle forces, knee joint loading, and articular contact were calculated for two activities using an inverse dynamics approach and static optimization. Quadriceps muscle forces peaked at the onset of chair rise (2174 N, 1962 N) and in early stance phase (510 N, 525 N), while gait saw peak forces in the hamstrings (851 N, 868 N) in midstance. Joint forces were similar in magnitude to available telemetric patient data. This study demonstrates the feasibility of detailed quasi-static, muscle-driven simulations in an FE framework.
AbstractList A key strength of computational modeling is that it can provide estimates of muscle, ligament, and joint loads, stresses, and strains through non-invasive means. However, simulations that can predict the forces in the muscles during activity while maintaining sufficient complexity to realistically represent the muscles and joint structures can be computationally challenging. For this reason, the current state of the art is to apply separate rigid-body dynamic and finite-element (FE) analyses in series. However, the use of two or more disconnected models often fails to capture key interactions between the joint-level and whole-body scales. Single framework MSFE models have the potential to overcome the limitations associated with disconnected models in series. The objectives of the current study were to create a multi-scale FE model of the human lower extremity that combines optimization, dynamic muscle modeling, and structural FE analysis in a single framework and to apply this framework to evaluate the mechanics of healthy knee specimens during two activities. Two subject-specific FE models (Model 1, Model 2) of the lower extremity were developed in ABAQUS/Explicit including detailed representations of the muscles. Muscle forces, knee joint loading, and articular contact were calculated for two activities using an inverse dynamics approach and static optimization. Quadriceps muscle forces peaked at the onset of chair rise (2174N, 1962N) and in early stance phase (510N, 525N), while gait saw peak forces in the hamstrings (851N, 868N) in midstance. Joint forces were similar in magnitude to available telemetric patient data. This study demonstrates the feasibility of detailed quasi-static, muscle-driven simulations in a FE framework.
A key strength of computational modeling is that it can provide estimates of muscle, ligament, and joint loads, stresses, and strains through non-invasive means. However, simulations that can predict the forces in the muscles during activity while maintaining sufficient complexity to realistically represent the muscles and joint structures can be computationally challenging. For this reason, the current state of the art is to apply separate rigid-body dynamic and finite-element (FE) analyses in series. However, the use of two or more disconnected models often fails to capture key interactions between the joint-level and whole-body scales. Single framework MSFE models have the potential to overcome the limitations associated with disconnected models in series. The objectives of the current study were to create a multi-scale FE model of the human lower extremity that combines optimization, dynamic muscle modeling, and structural FE analysis in a single framework and to apply this framework to evaluate the mechanics of healthy knee specimens during two activities. Two subject-specific FE models (Model 1, Model 2) of the lower extremity were developed in ABAQUS/Explicit including detailed representations of the muscles. Muscle forces, knee joint loading, and articular contact were calculated for two activities using an inverse dynamics approach and static optimization. Quadriceps muscle forces peaked at the onset of chair rise (2174 N, 1962 N) and in early stance phase (510 N, 525 N), while gait saw peak forces in the hamstrings (851 N, 868 N) in midstance. Joint forces were similar in magnitude to available telemetric patient data. This study demonstrates the feasibility of detailed quasi-static, muscle-driven simulations in an FE framework.
A key strength of computational modeling is that it can provide estimates of muscle, ligament, and joint loads, stresses, and strains through non-invasive means. However, simulations that can predict the forces in the muscles during activity while maintaining sufficient complexity to realistically represent the muscles and joint structures can be computationally challenging. For this reason, the current state of the art is to apply separate rigid-body dynamic and finite-element (FE) analyses in series. However, the use of two or more disconnected models often fails to capture key interactions between the joint-level and whole-body scales. Single framework MSFE models have the potential to overcome the limitations associated with disconnected models in series. The objectives of the current study were to create a multi-scale FE model of the human lower extremity that combines optimization, dynamic muscle modeling, and structural FE analysis in a single framework and to apply this framework to evaluate the mechanics of healthy knee specimens during two activities. Two subject-specific FE models (Model 1, Model 2) of the lower extremity were developed in ABAQUS/Explicit including detailed representations of the muscles. Muscle forces, knee joint loading, and articular contact were calculated for two activities using an inverse dynamics approach and static optimization. Quadriceps muscle forces peaked at the onset of chair rise (2174 N, 1962 N) and in early stance phase (510 N, 525 N), while gait saw peak forces in the hamstrings (851 N, 868 N) in midstance. Joint forces were similar in magnitude to available telemetric patient data. This study demonstrates the feasibility of detailed quasi-static, muscle-driven simulations in an FE framework.A key strength of computational modeling is that it can provide estimates of muscle, ligament, and joint loads, stresses, and strains through non-invasive means. However, simulations that can predict the forces in the muscles during activity while maintaining sufficient complexity to realistically represent the muscles and joint structures can be computationally challenging. For this reason, the current state of the art is to apply separate rigid-body dynamic and finite-element (FE) analyses in series. However, the use of two or more disconnected models often fails to capture key interactions between the joint-level and whole-body scales. Single framework MSFE models have the potential to overcome the limitations associated with disconnected models in series. The objectives of the current study were to create a multi-scale FE model of the human lower extremity that combines optimization, dynamic muscle modeling, and structural FE analysis in a single framework and to apply this framework to evaluate the mechanics of healthy knee specimens during two activities. Two subject-specific FE models (Model 1, Model 2) of the lower extremity were developed in ABAQUS/Explicit including detailed representations of the muscles. Muscle forces, knee joint loading, and articular contact were calculated for two activities using an inverse dynamics approach and static optimization. Quadriceps muscle forces peaked at the onset of chair rise (2174 N, 1962 N) and in early stance phase (510 N, 525 N), while gait saw peak forces in the hamstrings (851 N, 868 N) in midstance. Joint forces were similar in magnitude to available telemetric patient data. This study demonstrates the feasibility of detailed quasi-static, muscle-driven simulations in an FE framework.
Author Rullkoetter, Paul J.
Navacchia, Alessandro
Shelburne, Kevin B.
Hume, Donald R.
AuthorAffiliation 1 University of Denver, Center for Orthopaedic Biomechanics, Denver, CO. Submitted to Journal of Biomechanics
AuthorAffiliation_xml – name: 1 University of Denver, Center for Orthopaedic Biomechanics, Denver, CO. Submitted to Journal of Biomechanics
Author_xml – sequence: 1
  givenname: Donald R.
  orcidid: 0000-0001-9081-358X
  surname: Hume
  fullname: Hume, Donald R.
  email: don.hume@du.edu
– sequence: 2
  givenname: Alessandro
  surname: Navacchia
  fullname: Navacchia, Alessandro
– sequence: 3
  givenname: Paul J.
  surname: Rullkoetter
  fullname: Rullkoetter, Paul J.
– sequence: 4
  givenname: Kevin B.
  surname: Shelburne
  fullname: Shelburne, Kevin B.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30630624$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKeFv1BFYsMmwY88JVRRVbykSmxgbTnOzfQGxx5sZ2D-PR6mg2A2RbLkhb9zfO49F-TMOguEXDFaMMrq11Mx9ehm0PcFp6wtGC9oSZ-QFWsbkXPR0jOyopSzvOMdPScXIUyU0qZsumfkXNA6HV6uyPomM-4H-Ax-Rg8zxl02uwFMNjqfzUvQBvLB4xZsFnBejIrobObGTOmI2z2-BLTrJN8Y1BizES1GyMDADDYezBLwnDwdlQnw4uG-JF_fv_ty-zG_-_zh0-3NXa4rWse8KinXqlXjMKiuEXXFac9ZWzMuNG_alnc1YyVrVTekYaDvODT92Ay8KseqE524JNcH383SzzDolMErIzceZ-V30imU_75YvJdrt5W1qFnDymTw6sHAu-8LhChnDBqMURbcEiRnTScEr5hI6MsTdHKLt2m8PVXyklZlk6irvxP9iXLsIAFvDoD2LgQPo0x7_L3nFBCNZFTuK5eTPFYu95VLxmWqPMnrE_nxh0eFbw9CSH1sEbwMGsFqGNCDjnJw-LjF9YmFTmWjVuYb7P7H4BdQ5eAM
CitedBy_id crossref_primary_10_1016_j_jbiomech_2021_110439
crossref_primary_10_3389_fbioe_2021_703508
crossref_primary_10_1007_s40846_022_00734_3
crossref_primary_10_1049_bsbt_2019_0012
crossref_primary_10_1002_cnm_3396
crossref_primary_10_3389_fbioe_2024_1274496
crossref_primary_10_1016_j_cmpb_2020_105328
crossref_primary_10_1080_10255842_2024_2431892
crossref_primary_10_1007_s10237_021_01465_1
crossref_primary_10_3389_fbioe_2023_1153692
crossref_primary_10_3389_fninf_2019_00024
crossref_primary_10_1142_S0219519419400463
crossref_primary_10_1016_j_clinbiomech_2024_106170
crossref_primary_10_1115_1_4063950
crossref_primary_10_3389_fbioe_2022_957435
crossref_primary_10_1177_03635465231174899
crossref_primary_10_1038_s41598_021_02298_9
crossref_primary_10_1177_23259671211034487
crossref_primary_10_1016_j_jmbbm_2020_104136
crossref_primary_10_1016_j_ostima_2024_100244
crossref_primary_10_1177_2325967121989095
crossref_primary_10_1186_s12891_024_07372_7
crossref_primary_10_1115_1_4053211
Cites_doi 10.1016/S0021-9290(00)00155-X
10.1007/s10439-016-1728-x
10.1371/journal.pone.0086035
10.1016/j.jbiomech.2015.12.020
10.1109/TBME.2007.901024
10.1115/1.4026359
10.1016/0021-9290(81)90035-X
10.1016/j.jbiomech.2018.05.030
10.1016/j.jbiomech.2012.05.040
10.1007/s10237-005-0072-0
10.1016/j.jbiomech.2017.04.008
10.1109/86.650292
10.1007/s10439-015-1326-3
10.1002/jor.22948
10.1016/j.jbiomech.2014.02.028
10.1098/rstb.2010.0345
10.1115/1.4032379
10.1016/j.cmpb.2006.09.013
10.1016/S0966-6362(02)00073-5
10.1016/j.jbiomech.2009.10.048
10.1115/1.4023523
10.1115/1.4002854
10.1115/1.4026358
10.1002/jor.22472
10.1016/j.jbiomech.2010.05.036
10.1115/1.4033882
10.1115/1.3005333
10.1007/s00167-003-0352-0
10.1055/s-0035-1558858
10.1249/MSS.0000000000001350
10.1093/ptj/61.2.190
10.1080/10255840290010265
10.1002/jor.23171
10.1115/1.1392310
10.1016/j.jbiomech.2009.01.032
10.1002/jor.20255
10.1007/s10439-014-1181-7
10.1249/01.mss.0000180404.86078.ff
10.1016/j.jbiomech.2009.06.028
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
2019. Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: 2019. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1016/j.jbiomech.2018.12.040
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Research Library Prep

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 160
ExternalDocumentID PMC6361714
30630624
10_1016_j_jbiomech_2018_12_040
S0021929018309394
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB015497
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUFD
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
~HD
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
LCYCR
.GJ
29J
53G
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AI.
AIGII
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
PUEGO
R2-
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c506t-5402ca8afdda9736520b2186123c278829611418a9d007eb92e7bf7d254f59393
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Tue Sep 30 16:08:00 EDT 2025
Sat Sep 27 20:45:23 EDT 2025
Tue Oct 07 06:24:21 EDT 2025
Wed Feb 19 02:30:39 EST 2025
Thu Apr 24 23:01:21 EDT 2025
Wed Oct 01 01:19:21 EDT 2025
Fri Feb 23 02:28:49 EST 2024
Tue Oct 14 19:30:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Knee
Musculoskeletal modeling
Muscle
Squatting
Gait
Finite element
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c506t-5402ca8afdda9736520b2186123c278829611418a9d007eb92e7bf7d254f59393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9081-358X
PMID 30630624
PQID 2174240547
PQPubID 1226346
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6361714
proquest_miscellaneous_2179332513
proquest_journals_2174240547
pubmed_primary_30630624
crossref_citationtrail_10_1016_j_jbiomech_2018_12_040
crossref_primary_10_1016_j_jbiomech_2018_12_040
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2018_12_040
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2018_12_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-14
PublicationDateYYYYMMDD 2019-02-14
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Bergmann, Bender, Graichen, Dymke, Rohlmann, Trepczynski, Heller, Kutzner (b0055) 2014; 9
Anderson, Pandy (b0040) 2003; 17
Thelen, Won Choi, Schmitz (b0195) 2014; 136
Smith, Lenhart, Kaiser, Vignos, Thelen (b0185) 2015; 29
Ali, Harris, Shalhoub, Maletsky, Rullkoetter, Shelburne (b0020) 2017; 57
Walter, Korkmaz, Fregley, Pandy (b0200) 2015
Harris, Cyr, Ali, Fitzpatrick, Rullkoetter, Maletsky, Shelburne (b0115) 2016; 138
Fitzpatrick, Baldwin, Rullkoetter (b0095) 2010; 132
Crowninshield, Brand (b0070) 1981; 14
Navacchia, Kefala, Shelburne (b0155) 2017; 45
Ali, Shalhoub, Cyr, Fitzpatrick, Maletsky, Rullkoetter, Shelburne (b0025) 2016; 49
Arnold, Delp (b0045) 2011; 366
Shelburne, K.B., Torry, M.R., Pandy, M.G., 2006. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait, 1983–1990.
Navacchia, Rullkoetter, Schütz, List, Fitzpatrick, Shelburne (b0165) 2016; 34
Baldwin, Clary, Maletsky, Rullkoetter (b0050) 2009; 42
Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (b0075) 2007; 54
Fiorentino (b0090) 2013; 135
Jagodzinski, Leis, Iselborn, Mall, Nerlich, Bosch (b0125) 2003; 11
Anderson, Pandy (b0035) 2001; 34
Lunnen, Yack, LeVeau (b0145) 1981; 61
Adouni, Shirazi-Adl, Shirazi (b0015) 2012; 45
Guess, Stylianou, Kia (b0100) 2014; 136
Shelburne, Pandy (b0170) 2002; 5
Lin, Walter, Banks, Pandy, Fregly (b0140) 2010; 43
Smoger, Fitzpatrick, Clary, Cyr, Maletsky, Rullkoetter, Laz (b0190) 2015; 33
Anderson, Pandy (b0030) 2001; 123
Halloran, Ackermann, Erdemir, van den Bogert (b0105) 2010; 43
Shelburne, Torry, Pandy (b0175) 2005; 37
Kefala, Cyr, Harris, Hume, Davidson, Kim, Shelburne (b0130) 2017; 49
Hume, Navacchia, Ali, Shelburne (b0120) 2018; 76
Easley, Pal, Tomaszewski, Petrella, Rullkoetter, Laz (b0080) 2007; 85
Fernandez, Hunter (b0085) 2005; 4
Navacchia, Myers, Rullkoetter, Shelburne (b0160) 2016; 138
Adouni, Shirazi-Adl (b0010) 2014; 47
Myers, Laz, Shelburne, Davidson (b0150) 2015; 43
Besier, Fredericson, Gold, Beaupré, Delp (b0060) 2009; 42
Halloran, Erdemir, van den Bogert (b0110) 2009; 131
Buford, Ivey, Malone, Patterson, Peare, Nguyen, Stewart (b0065) 1997; 5
Lenhart, Kaiser, Smith, Thelen (b0135) 2015; 43
Adouni, Shirazi-Adl (b0005) 2014; 32
Lunnen (10.1016/j.jbiomech.2018.12.040_b0145) 1981; 61
Bergmann (10.1016/j.jbiomech.2018.12.040_b0055) 2014; 9
Fitzpatrick (10.1016/j.jbiomech.2018.12.040_b0095) 2010; 132
Navacchia (10.1016/j.jbiomech.2018.12.040_b0160) 2016; 138
Myers (10.1016/j.jbiomech.2018.12.040_b0150) 2015; 43
Smoger (10.1016/j.jbiomech.2018.12.040_b0190) 2015; 33
Jagodzinski (10.1016/j.jbiomech.2018.12.040_b0125) 2003; 11
Adouni (10.1016/j.jbiomech.2018.12.040_b0010) 2014; 47
Ali (10.1016/j.jbiomech.2018.12.040_b0020) 2017; 57
Fernandez (10.1016/j.jbiomech.2018.12.040_b0085) 2005; 4
Harris (10.1016/j.jbiomech.2018.12.040_b0115) 2016; 138
Kefala (10.1016/j.jbiomech.2018.12.040_b0130) 2017; 49
Anderson (10.1016/j.jbiomech.2018.12.040_b0040) 2003; 17
Navacchia (10.1016/j.jbiomech.2018.12.040_b0165) 2016; 34
Adouni (10.1016/j.jbiomech.2018.12.040_b0005) 2014; 32
Easley (10.1016/j.jbiomech.2018.12.040_b0080) 2007; 85
Buford (10.1016/j.jbiomech.2018.12.040_b0065) 1997; 5
Lin (10.1016/j.jbiomech.2018.12.040_b0140) 2010; 43
Delp (10.1016/j.jbiomech.2018.12.040_b0075) 2007; 54
Shelburne (10.1016/j.jbiomech.2018.12.040_b0175) 2005; 37
Thelen (10.1016/j.jbiomech.2018.12.040_b0195) 2014; 136
Halloran (10.1016/j.jbiomech.2018.12.040_b0110) 2009; 131
Anderson (10.1016/j.jbiomech.2018.12.040_b0035) 2001; 34
Hume (10.1016/j.jbiomech.2018.12.040_b0120) 2018; 76
Lenhart (10.1016/j.jbiomech.2018.12.040_b0135) 2015; 43
Fiorentino (10.1016/j.jbiomech.2018.12.040_b0090) 2013; 135
Guess (10.1016/j.jbiomech.2018.12.040_b0100) 2014; 136
Walter (10.1016/j.jbiomech.2018.12.040_b0200) 2015
Halloran (10.1016/j.jbiomech.2018.12.040_b0105) 2010; 43
Anderson (10.1016/j.jbiomech.2018.12.040_b0030) 2001; 123
Arnold (10.1016/j.jbiomech.2018.12.040_b0045) 2011; 366
Besier (10.1016/j.jbiomech.2018.12.040_b0060) 2009; 42
Smith (10.1016/j.jbiomech.2018.12.040_b0185) 2015; 29
10.1016/j.jbiomech.2018.12.040_b0180
Adouni (10.1016/j.jbiomech.2018.12.040_b0015) 2012; 45
Ali (10.1016/j.jbiomech.2018.12.040_b0025) 2016; 49
Navacchia (10.1016/j.jbiomech.2018.12.040_b0155) 2017; 45
Baldwin (10.1016/j.jbiomech.2018.12.040_b0050) 2009; 42
Crowninshield (10.1016/j.jbiomech.2018.12.040_b0070) 1981; 14
Shelburne (10.1016/j.jbiomech.2018.12.040_b0170) 2002; 5
References_xml – volume: 49
  start-page: 302
  year: 2016
  end-page: 309
  ident: b0025
  article-title: Validation of predicted patellofemoral mechanics in a finite element model of the healthy and cruciate-deficient knee
  publication-title: J. Biomech.
– volume: 132
  start-page: 121013
  year: 2010
  ident: b0095
  article-title: Computationally efficient finite element evaluation of natural patellofemoral mechanics
  publication-title: J. Biomech. Eng.
– volume: 85
  start-page: 32
  year: 2007
  end-page: 40
  ident: b0080
  article-title: Finite element-based probabilistic analysis tool for orthopaedic applications
  publication-title: Comput. Methods Programs Biomed.
– volume: 43
  start-page: 1098
  year: 2015
  end-page: 1111
  ident: b0150
  article-title: A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations
  publication-title: Ann. Biomed. Eng.
– volume: 49
  start-page: 2260
  year: 2017
  end-page: 2267
  ident: b0130
  article-title: Assessment of knee kinematics in older adults using high-speed stereo radiography
  publication-title: Med. Sci. Sports Exerc.
– volume: 32
  start-page: 69
  year: 2014
  end-page: 78
  ident: b0005
  article-title: Evaluation of knee joint muscle forces and tissue stresses-strains during gait in severe OA versus normal subjects
  publication-title: J. Orthop. Res.
– volume: 366
  start-page: 1530
  year: 2011
  end-page: 1539
  ident: b0045
  article-title: Fibre operating lengths of human lower limb muscles during walking
  publication-title: Philos. Trans. R. Soc. Lond. B. Biol. Sci.
– volume: 54
  start-page: 1940
  year: 2007
  end-page: 1950
  ident: b0075
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 42
  start-page: 2341
  year: 2009
  end-page: 2348
  ident: b0050
  article-title: Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend
  publication-title: J. Biomech.
– volume: 43
  start-page: 2675
  year: 2015
  end-page: 2685
  ident: b0135
  article-title: Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement
  publication-title: Ann. Biomed. Eng.
– volume: 5
  start-page: 367
  year: 1997
  end-page: 379
  ident: b0065
  article-title: Muscle balance at the knee – moment arms for the normal knee and the ACL-minus knee
  publication-title: IEEE Trans. Rehabil. Eng.
– reference: Shelburne, K.B., Torry, M.R., Pandy, M.G., 2006. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait, 1983–1990.
– volume: 76
  start-page: 173
  year: 2018
  end-page: 180
  ident: b0120
  article-title: The interaction of muscle moment arm, knee laxity, and torque in a multi-scale musculoskeletal model of the lower limb
  publication-title: J. Biomech.
– volume: 5
  start-page: 149
  year: 2002
  end-page: 159
  ident: b0170
  article-title: A dynamic model of the knee and lower limb for simulating rising movements
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 33
  start-page: 1620
  year: 2015
  end-page: 1630
  ident: b0190
  article-title: Statistical modeling to characterize relationships between knee anatomy and kinematics
  publication-title: J. Orthop. Res.
– volume: 136
  start-page: 021032
  year: 2014
  ident: b0100
  article-title: Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait
  publication-title: J. Biomech. Eng.
– volume: 37
  start-page: 1948
  year: 2005
  end-page: 1956
  ident: b0175
  article-title: Muscle, ligament, and joint-contact forces at the knee during walking
  publication-title: Med. Sci. Sports Exerc.
– volume: 43
  start-page: 2810
  year: 2010
  end-page: 2815
  ident: b0105
  article-title: Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading
  publication-title: J. Biomech.
– volume: 14
  start-page: 793
  year: 1981
  end-page: 801
  ident: b0070
  article-title: A physiologically based criterion of muscle force prediction in locomotion
  publication-title: J. Biomech.
– volume: 34
  start-page: 153
  year: 2001
  end-page: 161
  ident: b0035
  article-title: Static and dynamic optimization solutions for gait are practically equivalent
  publication-title: J. Biomech.
– start-page: 33
  year: 2015
  ident: b0200
  article-title: Contribution of tibiofemoral joint contact to net loads at the knee in gait
  publication-title: J. Orthop. Res.
– volume: 4
  start-page: 20
  year: 2005
  end-page: 38
  ident: b0085
  article-title: An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool
  publication-title: Biomech. Model. Mechanobiol.
– volume: 9
  start-page: e86035
  year: 2014
  ident: b0055
  article-title: Standardized loads acting in knee implants
  publication-title: PLoS One
– volume: 136
  start-page: 021033
  year: 2014
  ident: b0195
  article-title: Co-simulation of neuromuscular dynamics and knee mechanics during human walking
  publication-title: J. Biomech. Eng.
– volume: 42
  start-page: 898
  year: 2009
  end-page: 905
  ident: b0060
  article-title: Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls
  publication-title: J. Biomech.
– volume: 138
  start-page: 081004
  year: 2016
  ident: b0115
  article-title: A combined experimental and computational approach to subject-specific analysis of knee joint laxity
  publication-title: J. Biomech. Eng.
– volume: 43
  start-page: 945
  year: 2010
  end-page: 952
  ident: b0140
  article-title: Simultaneous prediction of muscle and contact forces in the knee during gait
  publication-title: J. Biomech.
– volume: 17
  start-page: 159
  year: 2003
  end-page: 169
  ident: b0040
  article-title: Individual muscle contributions to support in normal walking
  publication-title: Gait Posture
– volume: 135
  start-page: 044501
  year: 2013
  ident: b0090
  article-title: Rectus femoris knee muscle moment arms measured in vivo during dynamic motion with real-time magnetic resonance imaging
  publication-title: J. Biomech. Eng.
– volume: 47
  start-page: 1696
  year: 2014
  end-page: 1703
  ident: b0010
  article-title: Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduction moment
  publication-title: J. Biomech.
– volume: 61
  start-page: 190
  year: 1981
  end-page: 195
  ident: b0145
  article-title: Relationship between muscle length, muscle activity, and torque of the hamstring muscles
  publication-title: Phys. Ther.
– volume: 123
  start-page: 381
  year: 2001
  ident: b0030
  article-title: Dynamic optimization of human walking
  publication-title: J. Biomech. Eng.
– volume: 57
  start-page: 117
  year: 2017
  end-page: 124
  ident: b0020
  article-title: Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions
  publication-title: J. Biomech.
– volume: 45
  start-page: 2149
  year: 2012
  end-page: 2156
  ident: b0015
  article-title: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses
  publication-title: J. Biomech.
– volume: 138
  start-page: 031002
  year: 2016
  ident: b0160
  article-title: Prediction of in vivo knee joint loads using a global probabilistic analysis
  publication-title: J. Biomech. Eng.
– volume: 29
  start-page: 099
  year: 2015
  end-page: 106
  ident: b0185
  article-title: Influence of ligament properties on tibiofemoral mechanics in walking
  publication-title: J. Knee Surg.
– volume: 45
  start-page: 789
  year: 2017
  end-page: 798
  ident: b0155
  article-title: Dependence of muscle moment arms on in vivo three-dimensional kinematics of the knee
  publication-title: Ann. Biomed. Eng.
– volume: 11
  start-page: 85
  year: 2003
  end-page: 90
  ident: b0125
  article-title: Impingement pressure and tension forces of the anterior cruciate ligament
  publication-title: Knee Surgery Sport. Traumatol. Arthrosc.
– volume: 34
  start-page: 1576
  year: 2016
  end-page: 1587
  ident: b0165
  article-title: Subject-specific modeling of muscle force and knee contact in total knee arthroplasty
  publication-title: J. Orthop. Res.
– volume: 131
  start-page: 011014
  year: 2009
  ident: b0110
  article-title: Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models
  publication-title: J. Biomech. Eng.
– volume: 34
  start-page: 153
  year: 2001
  ident: 10.1016/j.jbiomech.2018.12.040_b0035
  article-title: Static and dynamic optimization solutions for gait are practically equivalent
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00155-X
– volume: 45
  start-page: 789
  year: 2017
  ident: 10.1016/j.jbiomech.2018.12.040_b0155
  article-title: Dependence of muscle moment arms on in vivo three-dimensional kinematics of the knee
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-016-1728-x
– volume: 9
  start-page: e86035
  year: 2014
  ident: 10.1016/j.jbiomech.2018.12.040_b0055
  article-title: Standardized loads acting in knee implants
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0086035
– volume: 49
  start-page: 302
  year: 2016
  ident: 10.1016/j.jbiomech.2018.12.040_b0025
  article-title: Validation of predicted patellofemoral mechanics in a finite element model of the healthy and cruciate-deficient knee
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.12.020
– volume: 54
  start-page: 1940
  year: 2007
  ident: 10.1016/j.jbiomech.2018.12.040_b0075
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.901024
– volume: 136
  start-page: 021032
  year: 2014
  ident: 10.1016/j.jbiomech.2018.12.040_b0100
  article-title: Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4026359
– volume: 14
  start-page: 793
  year: 1981
  ident: 10.1016/j.jbiomech.2018.12.040_b0070
  article-title: A physiologically based criterion of muscle force prediction in locomotion
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(81)90035-X
– volume: 76
  start-page: 173
  year: 2018
  ident: 10.1016/j.jbiomech.2018.12.040_b0120
  article-title: The interaction of muscle moment arm, knee laxity, and torque in a multi-scale musculoskeletal model of the lower limb
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.05.030
– volume: 45
  start-page: 2149
  year: 2012
  ident: 10.1016/j.jbiomech.2018.12.040_b0015
  article-title: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.05.040
– volume: 4
  start-page: 20
  year: 2005
  ident: 10.1016/j.jbiomech.2018.12.040_b0085
  article-title: An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-005-0072-0
– volume: 57
  start-page: 117
  year: 2017
  ident: 10.1016/j.jbiomech.2018.12.040_b0020
  article-title: Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.04.008
– volume: 5
  start-page: 367
  year: 1997
  ident: 10.1016/j.jbiomech.2018.12.040_b0065
  article-title: Muscle balance at the knee – moment arms for the normal knee and the ACL-minus knee
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.650292
– volume: 43
  start-page: 2675
  year: 2015
  ident: 10.1016/j.jbiomech.2018.12.040_b0135
  article-title: Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1326-3
– volume: 33
  start-page: 1620
  year: 2015
  ident: 10.1016/j.jbiomech.2018.12.040_b0190
  article-title: Statistical modeling to characterize relationships between knee anatomy and kinematics
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22948
– volume: 47
  start-page: 1696
  year: 2014
  ident: 10.1016/j.jbiomech.2018.12.040_b0010
  article-title: Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduction moment
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.02.028
– volume: 366
  start-page: 1530
  year: 2011
  ident: 10.1016/j.jbiomech.2018.12.040_b0045
  article-title: Fibre operating lengths of human lower limb muscles during walking
  publication-title: Philos. Trans. R. Soc. Lond. B. Biol. Sci.
  doi: 10.1098/rstb.2010.0345
– volume: 138
  start-page: 031002
  year: 2016
  ident: 10.1016/j.jbiomech.2018.12.040_b0160
  article-title: Prediction of in vivo knee joint loads using a global probabilistic analysis
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4032379
– volume: 85
  start-page: 32
  year: 2007
  ident: 10.1016/j.jbiomech.2018.12.040_b0080
  article-title: Finite element-based probabilistic analysis tool for orthopaedic applications
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2006.09.013
– volume: 17
  start-page: 159
  year: 2003
  ident: 10.1016/j.jbiomech.2018.12.040_b0040
  article-title: Individual muscle contributions to support in normal walking
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(02)00073-5
– volume: 43
  start-page: 945
  year: 2010
  ident: 10.1016/j.jbiomech.2018.12.040_b0140
  article-title: Simultaneous prediction of muscle and contact forces in the knee during gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.10.048
– volume: 135
  start-page: 044501
  year: 2013
  ident: 10.1016/j.jbiomech.2018.12.040_b0090
  article-title: Rectus femoris knee muscle moment arms measured in vivo during dynamic motion with real-time magnetic resonance imaging
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4023523
– volume: 132
  start-page: 121013
  year: 2010
  ident: 10.1016/j.jbiomech.2018.12.040_b0095
  article-title: Computationally efficient finite element evaluation of natural patellofemoral mechanics
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4002854
– volume: 136
  start-page: 021033
  year: 2014
  ident: 10.1016/j.jbiomech.2018.12.040_b0195
  article-title: Co-simulation of neuromuscular dynamics and knee mechanics during human walking
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4026358
– volume: 32
  start-page: 69
  year: 2014
  ident: 10.1016/j.jbiomech.2018.12.040_b0005
  article-title: Evaluation of knee joint muscle forces and tissue stresses-strains during gait in severe OA versus normal subjects
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22472
– volume: 43
  start-page: 2810
  year: 2010
  ident: 10.1016/j.jbiomech.2018.12.040_b0105
  article-title: Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.05.036
– volume: 138
  start-page: 081004
  year: 2016
  ident: 10.1016/j.jbiomech.2018.12.040_b0115
  article-title: A combined experimental and computational approach to subject-specific analysis of knee joint laxity
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4033882
– volume: 131
  start-page: 011014
  year: 2009
  ident: 10.1016/j.jbiomech.2018.12.040_b0110
  article-title: Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3005333
– volume: 11
  start-page: 85
  year: 2003
  ident: 10.1016/j.jbiomech.2018.12.040_b0125
  article-title: Impingement pressure and tension forces of the anterior cruciate ligament
  publication-title: Knee Surgery Sport. Traumatol. Arthrosc.
  doi: 10.1007/s00167-003-0352-0
– volume: 29
  start-page: 099
  year: 2015
  ident: 10.1016/j.jbiomech.2018.12.040_b0185
  article-title: Influence of ligament properties on tibiofemoral mechanics in walking
  publication-title: J. Knee Surg.
  doi: 10.1055/s-0035-1558858
– volume: 49
  start-page: 2260
  year: 2017
  ident: 10.1016/j.jbiomech.2018.12.040_b0130
  article-title: Assessment of knee kinematics in older adults using high-speed stereo radiography
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0000000000001350
– start-page: 33
  year: 2015
  ident: 10.1016/j.jbiomech.2018.12.040_b0200
  article-title: Contribution of tibiofemoral joint contact to net loads at the knee in gait
  publication-title: J. Orthop. Res.
– volume: 61
  start-page: 190
  year: 1981
  ident: 10.1016/j.jbiomech.2018.12.040_b0145
  article-title: Relationship between muscle length, muscle activity, and torque of the hamstring muscles
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/61.2.190
– volume: 5
  start-page: 149
  year: 2002
  ident: 10.1016/j.jbiomech.2018.12.040_b0170
  article-title: A dynamic model of the knee and lower limb for simulating rising movements
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840290010265
– volume: 34
  start-page: 1576
  year: 2016
  ident: 10.1016/j.jbiomech.2018.12.040_b0165
  article-title: Subject-specific modeling of muscle force and knee contact in total knee arthroplasty
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.23171
– volume: 123
  start-page: 381
  year: 2001
  ident: 10.1016/j.jbiomech.2018.12.040_b0030
  article-title: Dynamic optimization of human walking
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1392310
– volume: 42
  start-page: 898
  year: 2009
  ident: 10.1016/j.jbiomech.2018.12.040_b0060
  article-title: Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.01.032
– ident: 10.1016/j.jbiomech.2018.12.040_b0180
  doi: 10.1002/jor.20255
– volume: 43
  start-page: 1098
  year: 2015
  ident: 10.1016/j.jbiomech.2018.12.040_b0150
  article-title: A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-014-1181-7
– volume: 37
  start-page: 1948
  year: 2005
  ident: 10.1016/j.jbiomech.2018.12.040_b0175
  article-title: Muscle, ligament, and joint-contact forces at the knee during walking
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/01.mss.0000180404.86078.ff
– volume: 42
  start-page: 2341
  year: 2009
  ident: 10.1016/j.jbiomech.2018.12.040_b0050
  article-title: Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.06.028
SSID ssj0007479
Score 2.4188867
Snippet A key strength of computational modeling is that it can provide estimates of muscle, ligament, and joint loads, stresses, and strains through non-invasive...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 153
SubjectTerms Activities of daily living
Biomechanical Phenomena
Computer applications
Computer simulation
Feasibility studies
Finite element
Finite Element Analysis
Finite element method
Force
Gait
Geometry
Humans
Inverse dynamics
Joints (anatomy)
Kinematics
Knee
Laboratories
Lower Extremity - physiology
Mathematical analysis
Mathematical models
Mechanical Phenomena
Mechanics
Multiscale analysis
Muscle
Muscle, Skeletal - physiology
Muscles
Musculoskeletal modeling
Optimization
Patient-Specific Modeling
Quadriceps muscle
Series (mathematics)
Squatting
State of the art
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VrYTggMqWx9KCjIS4hSax8_ChQlvUqkLqCiEq9WZ5E7vdVTdb9nHov--MY4ctIMo5HiuOJzOfPY8P4IOtbVZQcYyUIo6EzXlUaq4jXtrSSGPTzFKh8NkoPz0XXy-yiy0YhVoYSqsMNtEZ6npe0R35AUFn9D6ZKD7f_IyINYqiq4FCQ3tqhfrQtRh7BNspdcbqwfbR8ejb9842I3j2SR9JhMAg3qgZnn6auop3F6JISndJSFcif3dXf8LR37MqN9zUyQ488_iSDVuFeA5bpunD7rDBs_Xsln1kLuPTXaX34elGM8I-PD7zYfZduByya2JPY2i5F2aGQJ05xhyGCJfN1kucOaoXZCfZcjLzBGBsbhlVSRAZBaN0-ksUp-j4ZMXshKAtM22uejsZDngB5yfHP76cRp6RIaqyOF9RFkVa6VLbutay4HmWxmMitUL3V6V4mE5ljuerpNSyxm9txjI1xdgWNZ5CbSa55C-h18wb8xqYQLeoM2PwfJYL1AtdyVjzyibcCiuFHkAWPryqfLtyYs24ViEvbarChinaMJWkCjdsAAed3E3bsONBiSLsqwrlqGhAFfqUByVlJ-kBSwtE_kt2P6iQ8mZjqX4p-QDed4_xh6cojm7MfO3GSM4RlvIBvGo1rlsopw5qeSpwSfd0sRtAzcTvP2kmV66peM4Ryybizb9faw-e4Bokpa0nYh96q8XavEVUthq_87_aHTTrOMs
  priority: 102
  providerName: ProQuest
Title A lower extremity model for muscle-driven simulation of activity using explicit finite element modeling
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929018309394
https://dx.doi.org/10.1016/j.jbiomech.2018.12.040
https://www.ncbi.nlm.nih.gov/pubmed/30630624
https://www.proquest.com/docview/2174240547
https://www.proquest.com/docview/2179332513
https://pubmed.ncbi.nlm.nih.gov/PMC6361714
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AKRWK
  dateStart: 19680101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1873-2380
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8DQNCcEDgo6PwpiMhHjL2sR2Ej-WaVMBrUKISX2z3MQeqdZ06scDL_x27hwntIA0JF5SpfFFse98H74vgLeudDKj5BilxDASLuVRbriJeO5yq6xLpKNE4ctJOr4SH6dyegBnbS4MhVUG3t_wdM-twz-DsJqD26qiHF_cbeQGzMmbp6gmqBAZdTE4_fErzAPV5RDmEUc0eidLeH469znu3ikR5_5YkA5B_i6g_lRAf4-j3BFMF4_hUdAo2aj56CdwYOseHI1qtKYX39k75mM8_eF5Dx7ulB_swf3L4Fg_gusRu6F-aQx59couUDVnvkcOQ52WLbZrfHNUrogzsnW1CC2_2NIxyoug9hOMAuivEZz84dWGuYqUWWab6PTmZTjgKVxdnH89G0ehB0NUyGG6obiJpDC5cWVpVMZTmQxn1MYKBV6RoPmcqBQtqjg3qsS1tjOV2GzmshLtTicRK_wZHNbL2r4AJlAQGmktWmSpQEowhRoaXriYO-GUMH2Q7cLrIhQopz4ZN7qNRJvrFmGaEKbjRCPC-jDo4G6bEh13QmQtXnWbgIosU6MUuRNSdZB7ZPpPsMctCenAKNaaLEJUqqTI-vCme4xbnPw2prbLrR-jOEdFlPfheUNx3UQ51UxLE4FT2qPFbgCVD99_UlfffBnxlKP2GouX_zGlV_AA7xRFscfiGA43q619jUraZnbidyFes2l2AvdGHz6NJ_j7_nzy-ctPYClA0g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrcTjgGDLY6GAkYBb6MZ2Hj5UaIFWW9pdIdRKvRlvYpdddbNlH0L9c_w2ZhInbAFRLj3HE8WZ8cw3nhfAS5e7KKHiGKVkJ5AuFkFqhAlE6lKrrOORo0Lh_iDuHcuPJ9HJGvyoa2EorbLWiaWizqcZ3ZFvE3RG6xPJ5O35t4CmRlF0tR6hYfxohXynbDHmCzsO7MV3dOHmO_sfkN-vON_bPXrfC_yUgSCLOvGCMgN4ZlLj8tyoRMQR7wxpUBOq9Iyjg8hVjD5DmBqVoz21Q8VtMnRJjp6Vi5SgZkxoAjakkAqdv413u4NPnxtbgGDdJ5mEAQKRzkqN8vjNuKywL0MiYVpeStIVzN_N45_w9_cszhWzuHcX7ng8y7qVAN6DNVu0YLNboC8_uWCvWZlhWl7dt-D2SvPDFtzo-7D-Jpx22RlNa2NoKWZ2go4BKyf0METUbLKc45uDfEZ6mc1HEz9wjE0do6oMGn7BKH3_FMkpGj9aMDciKM1slRtfvQwX3Ifja-HNA1gvpoV9BEyiGTaRtegPxhLl0GSqY0TmQuGkU9K0Iap_vM58e3Sa0nGm6zy4sa4ZpolhOuQaGdaG7YbuvGoQciVFUvNV1-WvqLA12rArKVVD6QFSBXz-i3arFiHt1dRc_zpUbXjRPEYFQ1EjU9jpslyjhEAYLNrwsJK4ZqOCOrbFXOKWLslis4Cal19-Uoy-lk3MY4HYOZSP__1Zz-Fm76h_qA_3BwdP4BbuR1HKfCi3YH0xW9qniAgXw2f-2DH4ct0n_ScDr3NX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRarggCDlEVrASMBtya7tffiAUESJWkorDlTKzTi7dknUbNo8hPrX-HXMeB-kgCiXntezWu-MZ77xvABeusLFKRXHKCXDQLpEBJkRJhCZy6yyjseOCoWPjpP9E_lxGA834EdTC0NplY1O9Iq6mOV0R94j6IzWJ5Zpz9VpEZ_3Bu_OLwKaIEWR1macRiUih_byO7pvi7cHe8jrV5wPPnx5vx_UEwaCPA6TJWUF8NxkxhWFUalIYh6OaEgTqvOco3PIVYL-QpQZVaAttSPFbTpyaYFelYuVoEZMqP5vpUIoSidMh62zR33p6_SSKEAIEq5VJ0_eTHxtvQ-GRJm_jqTLl78bxj-B7-_5m2sGcXAP7tZIlvUr0bsPG7bswHa_RC9-esleM59b6i_tO3Bnre1hB7aO6oD-Npz22RnNaWP4o-d2ii4B87N5GGJpNl0t8M1BMSeNzBbjaT1qjM0co3oMGnvBKHH_FMkpDj9eMjcmEM1slRVfvQwXPICTG-HMQ9gsZ6V9DEyiATaxtegJJhIl0OQqNCJ3kXDSKWm6EDc_Xud1Y3Saz3Gmmwy4iW4YpolhOuIaGdaFXkt3XrUGuZYibfiqm8JXVNUarde1lKqlrKFRBXn-i3a3ESFdK6iF_nWcuvCifYyqheJFprSzlV-jhEAALLrwqJK4dqOCerUlXOKWrshiu4Dall99Uo6_-fbliUDUHMkn__6s57CF51t_Ojg-3IHbuB1FufKR3IXN5XxlnyIUXI6e-TPH4OtNH_Kf1tBw8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lower+extremity+model+for+muscle-driven+simulation+of+activity+using+explicit+finite+element+modeling&rft.jtitle=Journal+of+biomechanics&rft.au=Hume%2C+Donald+R.&rft.au=Navacchia%2C+Alessandro&rft.au=Rullkoetter%2C+Paul+J.&rft.au=Shelburne%2C+Kevin+B.&rft.date=2019-02-14&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=84&rft.spage=153&rft.epage=160&rft_id=info:doi/10.1016%2Fj.jbiomech.2018.12.040&rft.externalDocID=S0021929018309394
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon