A Highly Discriminative Hybrid Feature Selection Algorithm for Cancer Diagnosis
Cancer is a deadly disease that occurs due to rapid and uncontrolled cell growth. In this article, a machine learning (ML) algorithm is proposed to diagnose different cancer diseases from big data. The algorithm comprises a two-stage hybrid feature selection. In the first stage, an overall ranker is...
        Saved in:
      
    
          | Published in | TheScientificWorld Vol. 2022; pp. 1 - 15 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cairo
          Hindawi
    
        09.08.2022
     John Wiley & Sons, Inc Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2356-6140 1537-744X 1537-744X  | 
| DOI | 10.1155/2022/1056490 | 
Cover
| Abstract | Cancer is a deadly disease that occurs due to rapid and uncontrolled cell growth. In this article, a machine learning (ML) algorithm is proposed to diagnose different cancer diseases from big data. The algorithm comprises a two-stage hybrid feature selection. In the first stage, an overall ranker is initiated to combine the results of three filter-based feature evaluation methods, namely, chi-squared, F-statistic, and mutual information (MI). The features are then ordered according to this combination. In the second stage, the modified wrapper-based sequential forward selection is utilized to discover the optimal feature subset, using ML models such as support vector machine (SVM), decision tree (DT), random forest (RF), and K-nearest neighbor (KNN) classifiers. To examine the proposed algorithm, many tests have been carried out on four cancerous microarray datasets, employing in the process 10-fold cross-validation and hyperparameter tuning. The performance of the algorithm is evaluated by calculating the diagnostic accuracy. The results indicate that for the leukemia dataset, both SVM and KNN models register the highest accuracy at 100% using only 5 features. For the ovarian cancer dataset, the SVM model achieves the highest accuracy at 100% using only 6 features. For the small round blue cell tumor (SRBCT) dataset, the SVM model also achieves the highest accuracy at 100% using only 8 features. For the lung cancer dataset, the SVM model also achieves the highest accuracy at 99.57% using 19 features. By comparing with other algorithms, the results obtained from the proposed algorithm are superior in terms of the number of selected features and diagnostic accuracy. | 
    
|---|---|
| AbstractList | Cancer is a deadly disease that occurs due to rapid and uncontrolled cell growth. In this article, a machine learning (ML) algorithm is proposed to diagnose different cancer diseases from big data. The algorithm comprises a two-stage hybrid feature selection. In the first stage, an overall ranker is initiated to combine the results of three filter-based feature evaluation methods, namely, chi-squared, F-statistic, and mutual information (MI). The features are then ordered according to this combination. In the second stage, the modified wrapper-based sequential forward selection is utilized to discover the optimal feature subset, using ML models such as support vector machine (SVM), decision tree (DT), random forest (RF), and K-nearest neighbor (KNN) classifiers. To examine the proposed algorithm, many tests have been carried out on four cancerous microarray datasets, employing in the process 10-fold cross-validation and hyperparameter tuning. The performance of the algorithm is evaluated by calculating the diagnostic accuracy. The results indicate that for the leukemia dataset, both SVM and KNN models register the highest accuracy at 100% using only 5 features. For the ovarian cancer dataset, the SVM model achieves the highest accuracy at 100% using only 6 features. For the small round blue cell tumor (SRBCT) dataset, the SVM model also achieves the highest accuracy at 100% using only 8 features. For the lung cancer dataset, the SVM model also achieves the highest accuracy at 99.57% using 19 features. By comparing with other algorithms, the results obtained from the proposed algorithm are superior in terms of the number of selected features and diagnostic accuracy. Cancer is a deadly disease that occurs due to rapid and uncontrolled cell growth. In this article, a machine learning (ML) algorithm is proposed to diagnose different cancer diseases from big data. The algorithm comprises a two-stage hybrid feature selection. In the first stage, an overall ranker is initiated to combine the results of three filter-based feature evaluation methods, namely, chi-squared, F-statistic, and mutual information (MI). The features are then ordered according to this combination. In the second stage, the modified wrapper-based sequential forward selection is utilized to discover the optimal feature subset, using ML models such as support vector machine (SVM), decision tree (DT), random forest (RF), and K-nearest neighbor (KNN) classifiers. To examine the proposed algorithm, many tests have been carried out on four cancerous microarray datasets, employing in the process 10-fold cross-validation and hyperparameter tuning. The performance of the algorithm is evaluated by calculating the diagnostic accuracy. The results indicate that for the leukemia dataset, both SVM and KNN models register the highest accuracy at 100% using only 5 features. For the ovarian cancer dataset, the SVM model achieves the highest accuracy at 100% using only 6 features. For the small round blue cell tumor (SRBCT) dataset, the SVM model also achieves the highest accuracy at 100% using only 8 features. For the lung cancer dataset, the SVM model also achieves the highest accuracy at 99.57% using 19 features. By comparing with other algorithms, the results obtained from the proposed algorithm are superior in terms of the number of selected features and diagnostic accuracy.Cancer is a deadly disease that occurs due to rapid and uncontrolled cell growth. In this article, a machine learning (ML) algorithm is proposed to diagnose different cancer diseases from big data. The algorithm comprises a two-stage hybrid feature selection. In the first stage, an overall ranker is initiated to combine the results of three filter-based feature evaluation methods, namely, chi-squared, F-statistic, and mutual information (MI). The features are then ordered according to this combination. In the second stage, the modified wrapper-based sequential forward selection is utilized to discover the optimal feature subset, using ML models such as support vector machine (SVM), decision tree (DT), random forest (RF), and K-nearest neighbor (KNN) classifiers. To examine the proposed algorithm, many tests have been carried out on four cancerous microarray datasets, employing in the process 10-fold cross-validation and hyperparameter tuning. The performance of the algorithm is evaluated by calculating the diagnostic accuracy. The results indicate that for the leukemia dataset, both SVM and KNN models register the highest accuracy at 100% using only 5 features. For the ovarian cancer dataset, the SVM model achieves the highest accuracy at 100% using only 6 features. For the small round blue cell tumor (SRBCT) dataset, the SVM model also achieves the highest accuracy at 100% using only 8 features. For the lung cancer dataset, the SVM model also achieves the highest accuracy at 99.57% using 19 features. By comparing with other algorithms, the results obtained from the proposed algorithm are superior in terms of the number of selected features and diagnostic accuracy.  | 
    
| Audience | Academic | 
    
| Author | Elshrkawey, Mohamed Elemam, Tarneem  | 
    
| AuthorAffiliation | Information Systems Department, Suez Canal University, Ismailia 41522, Egypt | 
    
| AuthorAffiliation_xml | – name: Information Systems Department, Suez Canal University, Ismailia 41522, Egypt | 
    
| Author_xml | – sequence: 1 givenname: Tarneem orcidid: 0000-0002-9302-2019 surname: Elemam fullname: Elemam, Tarneem organization: Information Systems DepartmentSuez Canal UniversityIsmailia 41522Egyptscuegypt.edu.eg – sequence: 2 givenname: Mohamed orcidid: 0000-0001-9777-8086 surname: Elshrkawey fullname: Elshrkawey, Mohamed organization: Information Systems DepartmentSuez Canal UniversityIsmailia 41522Egyptscuegypt.edu.eg  | 
    
| BookMark | eNqNkk1r2zAch83oWNNut30Awy6Dzq0k6_UyCNm6FAo9bIPdhCxLjoIiZbLdkm8_pQ4bKXtDB4H0_H78eaSz4iTEYIriNQSXEBJyhQBCVxAQigV4VswgqVnFMP52UsxQTWhFIQanxVnfrwGoOYPkRXFaE8FrwtCsuJuXS9et_K784Hqd3MYFNbh7Uy53TXJteW3UMCZTfjbe6MHFUM59F5MbVpvSxlQuVNAm5bDqQuxd_7J4bpXvzavDfl58vf74ZbGsbu8-3Szmt5UmgILKooYbgRuBtTUGIAa0sJa3miBEEdQAAo5gwwGzAuBWME4Ebg2psWkgAKw-L26m3jaqtdzmwVXayaicfDyIqZMqDU57I0FDBaAYI95mFRwrrBRqBNIMM8uRzl3V1DWGrdo9KO9_FkIg95LlXrI8SM78-4nfjs3GtNqEISl_NMTxTXAr2cV7KWoOEaO54O2hIMXvo-kHucnyjfcqmDj2EjHIa0QxZP-BApwflVGc0TdP0HUcU8iv8EgxQigVv6hOZTcu2JhH1PtSOWcQE1EzAjN1-Rsqr9ZsnM4f0Lp8fhRAU0Cn2PfJWKndoPYfJged_5PId09C__B-MeErF1r14P5O_wCFsvFo | 
    
| CitedBy_id | crossref_primary_10_1007_s10462_024_11029_1 crossref_primary_10_1186_s40537_024_00887_9 crossref_primary_10_1093_comjnl_bxad127 crossref_primary_10_32604_cmc_2024_044065 crossref_primary_10_1016_j_cosrev_2023_100559 crossref_primary_10_3390_cancers16233913 crossref_primary_10_32604_cmes_2024_053373  | 
    
| Cites_doi | 10.1016/j.chaos.2020.110027 10.1016/j.artmed.2020.101941 10.1016/j.bspc.2021.102872 10.1016/j.measurement.2021.109442 10.1007/s11045-018-0612-2 10.1186/s40246-021-00366-9 10.1016/j.ymeth.2018.04.004 10.1016/j.cam.2017.04.036 10.1016/j.procs.2020.04.279 10.1016/j.swevo.2020.100661 10.1007/s00521-021-06406-8 10.1016/j.procs.2020.03.053 10.1016/j.ins.2019.02.046 10.1007/978-3-030-95405-5_4 10.1016/j.jbi.2020.103575 10.1007/s00521-021-06775-0 10.1016/j.compbiomed.2020.103667 10.1007/s42452-019-0645-7 10.1016/j.matpr.2021.07.270 10.1007/s41060-016-0027-9 10.1016/j.eswa.2020.114012 10.1016/j.future.2017.08.011 10.1016/j.compbiolchem.2021.107566 10.1016/j.imu.2021.100572 10.1016/j.patcog.2007.02.007 10.1007/s10586-018-1884-x 10.1007/s00500-019-03988-3 10.1016/j.cmpb.2017.09.005 10.1016/j.cmpb.2019.04.008 10.1007/s11042-021-10597-6 10.1007/s00521-020-05157-2 10.1016/j.patcog.2019.01.047 10.1016/j.neucom.2021.07.047 10.1016/j.eswa.2022.117882 10.1007/s12539-020-00372-w 10.1007/s13369-021-05486-x 10.1016/j.asoc.2020.107009 10.1016/j.cegh.2018.04.001 10.1016/j.fcij.2018.02.002 10.1016/j.asoc.2020.106994 10.1186/s12920-018-0447-6 10.1007/978-981-15-0626-0_12 10.1186/s12911-019-1004-8 10.1016/j.cmpb.2020.105625 10.1007/s13369-021-06102-8 10.1007/978-3-030-35249-3_85 10.1007/s10462-019-09682-y 10.1186/s40537-019-0271-7 10.1007/s11517-021-02331-z 10.1016/j.jbi.2017.01.016 10.1007/s10916-019-1372-8 10.1016/j.jksuci.2017.12.002 10.1016/j.ins.2019.06.063  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2022 Tarneem Elemam and Mohamed Elshrkawey. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 Tarneem Elemam and Mohamed Elshrkawey. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 Tarneem Elemam and Mohamed Elshrkawey. 2022  | 
    
| Copyright_xml | – notice: Copyright © 2022 Tarneem Elemam and Mohamed Elshrkawey. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 Tarneem Elemam and Mohamed Elshrkawey. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2022 Tarneem Elemam and Mohamed Elshrkawey. 2022  | 
    
| DBID | RHU RHW RHX AAYXX CITATION 3V. 7QP 7TK 7TM 7X2 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU CWDGH DWQXO FR3 FYUFA GHDGH HCIFZ K9. M0K M0S M1P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 7S9 L.6 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1155/2022/1056490 | 
    
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Engineering Research Database ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Agricultural Science Database ProQuest Health & Medical Collection Medical Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals (WRLC)  | 
    
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA CrossRef Agricultural Science Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| EISSN | 1537-744X | 
    
| Editor | Mejía-Aranguré, Juan | 
    
| Editor_xml | – sequence: 1 givenname: Juan surname: Mejía-Aranguré fullname: Mejía-Aranguré, Juan  | 
    
| EndPage | 15 | 
    
| ExternalDocumentID | oai_doaj_org_article_0b69064428d14084a4aa2b92c747f82c 10.1155/2022/1056490 PMC9381276 A714593751 10_1155_2022_1056490  | 
    
| GroupedDBID | 123 3V. 53G 5VS 7X2 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJEY AAWTL ABUWG ACHIH ADBBV ADDVE ADRAZ AEGXH AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DA7 DIK E3Z EBD EBS EMOBN FAC FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ITC KQ8 M0K M1P M48 M~E OK1 P62 PIMPY PQQKQ PROAC PSQYO RHU RHW RHX RPM SV3 TUS UKHRP 0R~ 24P AAHBH AAMMB AAYXX ACCMX ADMLS AEFGJ AEUYN AFKWF AGXDD AIDQK AIDYY CITATION H13 IEP PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO 7QP 7TK 7TM 7XB 8FD 8FK AZQEC DWQXO FR3 K9. P64 PKEHL PQEST PQUKI RC3 7X8 7S9 L.6 5PM 4.4 ADTOC EJD IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c5060-f2b8e94b94cfee0270c9ff8dc522621c010821b807f904d978594de534eb10073 | 
    
| IEDL.DBID | RHX | 
    
| ISSN | 2356-6140 1537-744X  | 
    
| IngestDate | Tue Oct 14 19:09:23 EDT 2025 Sun Oct 26 02:26:13 EDT 2025 Tue Sep 30 16:05:12 EDT 2025 Fri Sep 05 12:31:26 EDT 2025 Fri Sep 05 11:31:51 EDT 2025 Tue Oct 07 06:31:58 EDT 2025 Mon Oct 20 22:49:18 EDT 2025 Mon Oct 20 16:59:39 EDT 2025 Wed Oct 01 02:34:12 EDT 2025 Thu Apr 24 23:11:16 EDT 2025 Sun Jun 02 18:54:03 EDT 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c5060-f2b8e94b94cfee0270c9ff8dc522621c010821b807f904d978594de534eb10073 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Juan Mejía-Aranguré  | 
    
| ORCID | 0000-0001-9777-8086 0000-0002-9302-2019  | 
    
| OpenAccessLink | https://dx.doi.org/10.1155/2022/1056490 | 
    
| PMID | 35983572 | 
    
| PQID | 2704755669 | 
    
| PQPubID | 1136335 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0b69064428d14084a4aa2b92c747f82c unpaywall_primary_10_1155_2022_1056490 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9381276 proquest_miscellaneous_2718326417 proquest_miscellaneous_2704871764 proquest_journals_2704755669 gale_infotracmisc_A714593751 gale_infotracacademiconefile_A714593751 crossref_citationtrail_10_1155_2022_1056490 crossref_primary_10_1155_2022_1056490 hindawi_primary_10_1155_2022_1056490  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220809 | 
    
| PublicationDateYYYYMMDD | 2022-08-09 | 
    
| PublicationDate_xml | – month: 8 year: 2022 text: 20220809 day: 9  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cairo | 
    
| PublicationPlace_xml | – name: Cairo | 
    
| PublicationTitle | TheScientificWorld | 
    
| PublicationYear | 2022 | 
    
| Publisher | Hindawi John Wiley & Sons, Inc Wiley  | 
    
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley  | 
    
| References | 44 45 46 47 48 49 J. Fu (56) K. Tuncal (24) H. Das (38) 2020; 34 50 52 53 10 54 11 55 13 57 15 16 A. K. Shukla (20) 2019; 503 17 18 19 J. M. Luna-Romera (51) 2019; 487 E. Pashaei (8) 2022; 34 S. Sazzed (9) 2022; 13087 N. Koul (14) 2020 3 4 6 7 21 22 23 25 26 27 28 29 M. J. Rani (5) 2021 30 31 32 33 34 35 36 37 39 A. Dabba (1) 2021; 166 K. Balabaeva (12) 2021 40 B. Haznedar (2) 2021; 59 41 42 43  | 
    
| References_xml | – ident: 56 article-title: Spark–a big data processing platform for machine learning – ident: 29 doi: 10.1016/j.chaos.2020.110027 – ident: 39 doi: 10.1016/j.artmed.2020.101941 – ident: 45 doi: 10.1016/j.bspc.2021.102872 – ident: 46 doi: 10.1016/j.measurement.2021.109442 – ident: 50 doi: 10.1007/s11045-018-0612-2 – ident: 11 doi: 10.1186/s40246-021-00366-9 – ident: 22 doi: 10.1016/j.ymeth.2018.04.004 – volume: 34 year: 2020 ident: 38 article-title: A Jaya algorithm based wrapper method for optimal feature selection in supervised classification publication-title: Journal of King Saud University-Computer and Information Sciences – ident: 52 doi: 10.1016/j.cam.2017.04.036 – ident: 18 doi: 10.1016/j.procs.2020.04.279 – ident: 33 doi: 10.1016/j.swevo.2020.100661 – ident: 13 doi: 10.1007/s00521-021-06406-8 – ident: 47 doi: 10.1016/j.procs.2020.03.053 – volume: 487 start-page: 1 year: 2019 ident: 51 article-title: External clustering validity index based on chi-squared statistical test publication-title: Information Sciences doi: 10.1016/j.ins.2019.02.046 – volume: 13087 start-page: 45 year: 2022 ident: 9 article-title: Feature selection in gene expression profile employing relevancy and redundancy measures and binary whale optimization algorithm (BWOA) publication-title: Advanced Data Mining and Applications doi: 10.1007/978-3-030-95405-5_4 – ident: 26 doi: 10.1016/j.jbi.2020.103575 – volume: 34 start-page: 6427 year: 2022 ident: 8 article-title: An efficient binary chimp optimization algorithm for feature selection in biomedical data classification publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-06775-0 – ident: 32 doi: 10.1016/j.compbiomed.2020.103667 – ident: 10 doi: 10.1007/s42452-019-0645-7 – ident: 28 doi: 10.1016/j.matpr.2021.07.270 – ident: 57 doi: 10.1007/s41060-016-0027-9 – volume: 166 year: 2021 ident: 1 article-title: Gene selection and classification of microarray data method based on mutual information and moth flame algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114012 – start-page: 623 year: 2021 ident: 12 article-title: Comparison of efficiency, stability and interpretability of feature selection methods for multiclassification task on medical tabular data publication-title: International Conference on Computational Science – ident: 48 doi: 10.1016/j.future.2017.08.011 – ident: 25 doi: 10.1016/j.compbiolchem.2021.107566 – ident: 42 doi: 10.1016/j.imu.2021.100572 – ident: 54 doi: 10.1016/j.patcog.2007.02.007 – ident: 53 doi: 10.1007/s10586-018-1884-x – ident: 16 doi: 10.1007/s00500-019-03988-3 – ident: 23 doi: 10.1016/j.cmpb.2017.09.005 – year: 2021 ident: 5 article-title: Bacterial foraging optimization algorithm based feature selection for microarray data classification publication-title: Materials Today Proceedings – ident: 19 doi: 10.1016/j.cmpb.2019.04.008 – ident: 49 doi: 10.1007/s11042-021-10597-6 – ident: 44 doi: 10.1007/s00521-020-05157-2 – ident: 4 doi: 10.1016/j.patcog.2019.01.047 – ident: 3 doi: 10.1016/j.neucom.2021.07.047 – ident: 27 doi: 10.1016/j.eswa.2022.117882 – ident: 21 doi: 10.1007/s12539-020-00372-w – ident: 43 doi: 10.1007/s13369-021-05486-x – ident: 41 doi: 10.1016/j.asoc.2020.107009 – ident: 36 doi: 10.1016/j.cegh.2018.04.001 – ident: 34 doi: 10.1016/j.fcij.2018.02.002 – ident: 6 doi: 10.1016/j.asoc.2020.106994 – ident: 30 doi: 10.1186/s12920-018-0447-6 – volume-title: Advances in Communication, Signal Processing, VLSI, and Embedded Systems, year: 2020 ident: 14 article-title: Feature selection from gene expression data using SVMRFE and feed-forward neural network classifier doi: 10.1007/978-981-15-0626-0_12 – ident: 17 doi: 10.1186/s12911-019-1004-8 – ident: 37 doi: 10.1016/j.cmpb.2020.105625 – ident: 15 doi: 10.1007/s13369-021-06102-8 – ident: 24 article-title: Tumor classification using gene expression and machine learning models doi: 10.1007/978-3-030-35249-3_85 – ident: 7 doi: 10.1007/s10462-019-09682-y – ident: 55 doi: 10.1186/s40537-019-0271-7 – volume: 59 start-page: 497 issue: 3 year: 2021 ident: 2 article-title: Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data publication-title: Medical, and Biological Engineering and Computing doi: 10.1007/s11517-021-02331-z – ident: 31 doi: 10.1016/j.jbi.2017.01.016 – ident: 35 doi: 10.1007/s10916-019-1372-8 – ident: 40 doi: 10.1016/j.jksuci.2017.12.002 – volume: 503 start-page: 238 year: 2019 ident: 20 article-title: A new hybrid wrapper TLBO and SA with SVM approach for gene expression data publication-title: Information Sciences doi: 10.1016/j.ins.2019.06.063  | 
    
| SSID | ssj0038715 ssib053847956  | 
    
| Score | 2.440566 | 
    
| Snippet | Cancer is a deadly disease that occurs due to rapid and uncontrolled cell growth. In this article, a machine learning (ML) algorithm is proposed to diagnose... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref hindawi  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Accuracy Algorithms Analysis Big data Biomarkers Cancer cell growth Chi-square test Classification data collection Datasets decision support systems Decision trees Diagnosis Diagnostic systems Discriminant analysis Disease Feature selection Gene expression Leukemia Lung cancer lung neoplasms Machine learning Medical diagnosis Methods microarray technology Neural networks Optimization algorithms Ovarian cancer ovarian neoplasms Performance evaluation Support vector machines Tumors  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (WRLC) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUNpLafqgbjdFhfRFMbG1I1s6btOGpdD20AZyE7YsZQ2uN-yDsP8-M7Z2WReaXHq1xrY8Mxp9g0ffMHYstBxbqPLYlwAxgEti5bWIXeaTpNRpNZZ0Gvn7j2x6Dt8u5MVeqy-qCevpgXvFnSQlUekCouQKcwEFBRSFKLWwiIO9Epaib6L0NpnqY_AY0wC5LXOXkjJ8cUI95oFi794G1PH076Lx_Rnlwdf1AG3-XSv5YN1eFZvromn2NqKzx-xRQJB80s_8kN1z7RN2GNbokn8IRNIfn7KfE05lHM2Gf6kpOlDVC0U3Pt3QOS1O8G-9cPxX1wsHDcQnzeV8Ua9mfzhiWX5KHrHAm7tqvHr5jJ2fff19Oo1DA4XYEm9g7EWpnIZSg_XOYQKaWO29qiyBLpFazMWUSEuV5F4nUGFCKTVUTo4BIzj9w3vODtp5614wnumy8GjtCvEF5A43NW9lgfDOVZXSSkbs01arxgZ2cWpy0Zguy5DSkA1MsEHE3u6kr3pWjX_IfSYD7WSIC7u7gB5igoeYuzwkYu_JvIZWLE7JFuHgAX4YcV-ZSZ6CRJQm04iNBpK40uxg-Dg4yB2THm29x4SAsDSoe8glYmcdsTe7YXoBFbm1br7uZdBx8wxuk6EYnEGaRywfeOZAScORtp51xOEa4ZnIs4i92_nwrV_y8n-o_xV7SM_siib1iB2sFmt3hEBuVb7u1uwN-ZM_Bg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ri9NAEF_OHqJfxPPBRatEOF9IuGQ7m81-EOmddxTBKurBfQvJPq6FmtY-OPrfO5Nu6kWwfs1OSHbnsb9JZn_D2BFXoqfByMiVABGAjaPMKR7Z1MVxqRLTE3Qa-fMwHVzAp0txuceGzVkYKqtsYmIdqM1U0zfyYy5jkALBh_ow-xVR1yj6u9q00Ch8awXzvqYYu8X2OTFjddj-ydnw67fGwtC7QSpij9nE6h6mC6JuPydSTKIgbkrjhaCvAvyY-tIDxesbm1bN7b-N4LdHlDtfj1sI9e_6yjuralasr4vJ5MbmdX6f3fOoM-xvzOSA7dnqATvwfr0I33jy6bcP2Zd-SKUfk3X4cUwRhSplKCKGgzWd7QoJMq7mNvxe989BpYb9yRWu03L0M0T8G56SFc3x5rqCb7x4xC7Oz36cDiLfdCHSxDUYOV5mVkGpQDtrMWmNtXIuM5qAGk805m8ZT8oslk7FYDAJFQqMFT3AqE___R6zTjWt7CELU1UWDi3EICYBaXEjdFoUCAmtMZnKRMDeNauaa89ITo0xJnmdmQiRkw5yr4OAvdxKzzZMHP-QOyEFbWWIP7u-MJ1f5d4d87gkgmbA3Mug1jMooCh4qbjG7MplXAfsNak3Jy_HV9KFP6yAEyO-rLwvExCI7EQSsG5LEr1Tt4aPvIH856W7jfXkPogs8j8mH7AX22F6ABXGVXa62sigEcsUdslQ3E4hkQGTLctsLVJ7pBqParJxhZCOyzRgr7Y2vHMmT3bP5Cm7S9J1CaXqss5yvrLPENYty-feV38D4GxDpg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELemIQQviPEhwgoy0vgSCiTpOYkfECqDqUIaPEClvVmJY6-RsnSkrUb_e-7cJJAJBo-pr43t-_Dvp57vGDuIpBhrKBLf5gA-gAn81MrIN7ENglyGxVjQbeTjz_F0Bp9OxMkO67qNthu4_CO1o35Ss6Z6_eP75h06_Fvn8EIQf4_eUAd5kEjer-EZJamJw_EvoI9eDYmkqjHbGD1GmiBc2zkRI3mCoEuJv_Rrg8PK1fTvI_f1OXHmi3KATC_nVd5Y1-fZ5iKrqt8OraPb7FaLNvlkax57bMfUd9he689L_qItOv3yLvsy4ZTyUW34h5IiCWXIUCTk0w3d6eIEFdeN4V9d3xxUJp9Up4umXM3POOJefkjW0-CXXeZeubzHZkcfvx1O_bbZgq-pxqBvozw1EnIJ2hqDZDXQ0tq00ATQolAjb0ujME-DxMoACiSfQkJhxBgw2tP_fffZbr2ozQPGY5lnFi2jQCwCicED0GqRIRQ0RZHKVHjsVberSreVyKkhRqUcIxFCkQ5UqwOPPe2lz7cVOP4i954U1MtQ3Wz3waI5Va0bqiCnwsyAnKtAraeQQZZFuYw0siqbRtpjz0m9iuwNp6Sz9pICLozqZKlJEoJARCdCj40GkuiVejB80BrIPyY96qxHdbavcO8hEYizpcee9MP0AkqIq81ivZVBI05iuEqG4nUMYeKxZGCZg00ajtTl3BUZlwjloiT22LPehq9cycP_W_A-u0mPLoVSjtjuqlmbRwjrVvlj57E_AevcQDE priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ti9NAEF7OHqJf1PMFo1UinG9Iekk6m82CX-rpUQRPQQv1wxGSfblWa1r6Qqm_3pl0U8yBp_ix3Wm7O3129hky-wxjh7HkXQVaBLYACABMGKRWxoFJbBgWMtJdTreRP5wm_QG8H_LhHntd34XRJBE_zfWiM6KcdD2uorXz6-JouVh_o3w9PqKO8SDDzkzbK2w_4cjEW2x_cPqp93UrkSoCATCsesvxBDMkCOu6d84bX9E4kSrh_l14vuom0aCfF4snr63KWb5Z55PJbyfTyU12Vq9pW5DyvbNaFh3184Lc4_8u-ha74Sir39ti7IDtmfI2O3BBYeG_cMrVL--wjz2f6kYmG__tmMIRldlQOPX7G7oY5hPfXM2N_7lqvoOI8HuT8-l8vBz98JE8-8cEwTl-uCr_Gy_ussHJuy_H_cB1bAgUCRUGNi5SI6GQoKwxmPGGSlqbakUsL44UJn9pHBVpKKwMQWMGyyVow7uARwY9NLzHWuW0NPeZn8gitwgvjYQGhMFT1CqeI580Wqcy5R57Vf9rmXJy5tRVY5JVaQ3nGXkscx7z2NOd9Wwr4_EHuzcEgJ0NiW9Xb0zn55nby1lYkLozYOKmEVUp5JDncSFjhamZTWPlsecEn4xCBE5J5e6mAy6MxLaynoiAIy3kkcfaDUvc2qoxfOgA8ZdJt2t0ZjVoMvQ9CI5kXXrsyW6YfoCq6kozXW1tMGEWCVxmQ0E_gUh4TDSQ33BSc6Qcjyqlcol8MBaJx57t9silK3nwr4YP2XV6WVViyjZrLecr8wjZ4bJ47ILALyM4XFg priority: 102 providerName: Unpaywall  | 
    
| Title | A Highly Discriminative Hybrid Feature Selection Algorithm for Cancer Diagnosis | 
    
| URI | https://dx.doi.org/10.1155/2022/1056490 https://www.proquest.com/docview/2704755669 https://www.proquest.com/docview/2704871764 https://www.proquest.com/docview/2718326417 https://pubmed.ncbi.nlm.nih.gov/PMC9381276 https://downloads.hindawi.com/journals/tswj/2022/1056490.pdf https://doaj.org/article/0b69064428d14084a4aa2b92c747f82c  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2022 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038715 issn: 1537-744X databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038715 issn: 1537-744X databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038715 issn: 1537-744X databaseCode: KQ8 dateStart: 20120103 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038715 issn: 1537-744X databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038715 issn: 1537-744X databaseCode: ADMLS dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038715 issn: 1537-744X databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038715 issn: 1537-744X databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038715 issn: 1537-744X databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038715 issn: 1537-744X databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038715 issn: 1537-744X databaseCode: CWDGH dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1537-744X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038715 issn: 1537-744X databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038715 issn: 1537-744X databaseCode: 8FG dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 1537-744X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0038715 issn: 1537-744X databaseCode: M48 dateStart: 20011201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038715 issn: 1537-744X databaseCode: 24P dateStart: 20000101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwELfYEIIviPEQGaUy0ngJRSTpObY_dmOlQlqZBpXKpyhxbFqpS6c-NPW_5y51KzLE4Euk1tc29j38u-b8O8aOEi06BkoZugIgBLBRqJxOQpu6KCp0XHYEnUY-G6T9IXwZiZEnSVr8-QgfdztKz5OP1CAeNObmeyqlyq2L_mhrNuiyIDVRwmwCcAdzAFH3lBMpZkYQbevdb3xXYyeqCft3YfnemBLi60kDdt4smry_qq7y9XU-nf62I_UesYceSvLuRvcH7I6tHrMD76wL_s4zSr9_wr52OdVzTNf804TCBJW_UJjj_TUd2OKEA1dzy7_VTXFQU7w7_TmbT5bjS46glp-Qaczxw3VZ3mTxlA17p99P-qHvpBAaIhAMXVIoq6HQYJy1mIlGRjunSkPoK4kNJmUqiQsVSacjKDGzFBpKKzqAoZwe5j1j-9Wsss8ZT3WRO1R7iUADpMXdzRmRI86zZam0EgH7sF3VzHiacep2Mc3qdEOIjHSQeR0E7PVO-mpDr_EXuWNS0E6GSLHrN9BQMu9jWVQQ6zJgQlWi1hXkkOdJoRODKZNTiQnYW1JvRq6Lt2RyfwIBJ0YkWFlXxiAQrok4YK2GJLqcaQwfeQP5x023ttaT-ciwyHDtQQoE0Tpgr3bD9ANU7VbZ2Wojg0YsU7hNhoJxCrEMmGxYZmORmiPVZFwziGvEaYlMA_ZmZ8O3zuTw_yb8gj2gl3V9pG6x_eV8ZV8iZlsWbbYnRxKvqve5ze4enw7OL9r1_x94PQPVrj0aR4aD8-6PX23iOag | 
    
| linkProvider | Hindawi Publishing | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVKhcgPIQhgBGagsVcmtvdm3vgUNIKCl9cKAVvRl7vW4ighPyUBR-FH-Fv8SMsw51JcqpB67e8WPX8_g-e3YGYINJ0VA8DZws4dzhXLtOmEnmaD9z3UR6aUPQbuSjY79zyj-cibMV-FnuhaG0ytInFo46HSj6Rr7LApcHAsGHNBmUB3o-Q342frPfxpe5ydjeu5NWxzEtBBxFlfOcjCWhljyRXGVaIwVzlcyyMFUEO5inkI2EzEtCN8iky1OkVELyVIsGRx9Gf7HwulvD7w51qaK_uaZlxw1YRT33WA1WW5_b7zulBqP34IGk6jSLWNBAOiKK9nbCR5LG3TL1Xgj66sB2qe89p3hwISgWvQOWEeJml7j5rFdBwJfzN9em-TCez-J-_0Jw3LsDv8plXeTEfN2ZTpId9eNSxcn_Z93vwm2D0-3mwrDWYUXn92DdeMKx_cqU696-Dx-bNiXL9Od2u0c-mHKLKIbYnTnthrMJZE9H2v5UdBxCM7Cb_XO846T7zUbGYLfI7kZ4cpHz2Bs_gNNrmetDqOWDXD8C25dJnKFNpYjieKAROmRKxAiidZqGMhQWvC71JFKmhju1EulHBZcTIiKtioxWWbC5lB4uapf8Re4tqdxShiqOFwcGo_PIOLDITaikNUe2mqIehzzmccwSyRTy0SxkyoKXpLAR-UV8JBWb7R04MaowFjUDjwvEwsKzoF6RRH-mKsMbRuX_8dD1Ul8j43bH0R9lteDFcphuQKmEuR5MFzJoloHPr5KhSOdzL7AgqNhaZZGqI3mvW5RnlwiCWeBbsLW0yitn8vjqmTyHtc7J0WF0uH988ARu0ZlFAqqsQ20ymuqnCIonyTPjiWz4ct12-RuvhbuO | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVjwuQHkIQwAjtTyE3NqbXa_3gFBICCmFFgkqejP2ereJCE7IQ1H4afwV_gwzzjrUlQinHrhmx47HnvnmG3t2hpAtKnldsUx4JmXMY0z7XmQk9XRofD-VQVbnuBv5_UHYOWJvj_nxGvlZ7oXBssoSEwugzgYK35HvUuEzwYF8yF1jyyI-tNovh989nCCFX1rLcRoLE9nX8xmkb-MXey141tuUtl9_anY8O2HAU9hYzzM0jbRkqWTKaA0Zmq-kMVGmkJXQQEGyEtEgjXxhpM8yyLi4ZJnmdQYQhx-54LwXyEYUihBAYaP5ufWmU1ozIAkTEjvVLOJCHVITXoy64yEkbMwvy_A5xzcQFPCLhwxjw6kAWcwRWEaLi13M02e9Chs-W8t5eZoPk_ks6fdPBcr2NfKrvMWL-pivO9NJuqN-nOk--X8-g-vkquXvbmPhcJtkTec3yKZFyLH71LbxfnaTHDZcLKLpz91WD7EZa44wtridOe6Sc5F8T0fa_VhMIgL3cBv9E9Bw0v3mQibhNtEfR3BwUQvZG98iR-ei2G2yng9yfYe4oUwTA76WAbtjQgOlMIonQK51lkUy4g55XtpMrGxvdxwx0o-LHI_zGC0sthbmkO2l9HDR0-Qvcq_Q_JYy2Im8-GEwOoktsMV-iq2uGWSxGdh0xBKWJDSVVEGeaiKqHPIEjTdGvIRLUond9gGKYeexuCECxoEj88AhtYok4JyqLG9Z8__HRddK240tHI_jP4brkEfLZfwDLDHM9WC6kAEXFSFbJYMRMGSBcIio-F3lJlVX8l63aNsugRxTETrk8dJDV2pyd7UmD8klcL743d7B_j1yBQ8s6lJljaxPRlN9H7jyJH1gQcklX87bB38DXtnEVg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ti9NAEF7OHqJf1PMFo1UinG9Iekk6m82CX-rpUQRPQQv1wxGSfblWa1r6Qqm_3pl0U8yBp_ix3Wm7O3129hky-wxjh7HkXQVaBLYACABMGKRWxoFJbBgWMtJdTreRP5wm_QG8H_LhHntd34XRJBE_zfWiM6KcdD2uorXz6-JouVh_o3w9PqKO8SDDzkzbK2w_4cjEW2x_cPqp93UrkSoCATCsesvxBDMkCOu6d84bX9E4kSrh_l14vuom0aCfF4snr63KWb5Z55PJbyfTyU12Vq9pW5DyvbNaFh3184Lc4_8u-ha74Sir39ti7IDtmfI2O3BBYeG_cMrVL--wjz2f6kYmG__tmMIRldlQOPX7G7oY5hPfXM2N_7lqvoOI8HuT8-l8vBz98JE8-8cEwTl-uCr_Gy_ussHJuy_H_cB1bAgUCRUGNi5SI6GQoKwxmPGGSlqbakUsL44UJn9pHBVpKKwMQWMGyyVow7uARwY9NLzHWuW0NPeZn8gitwgvjYQGhMFT1CqeI580Wqcy5R57Vf9rmXJy5tRVY5JVaQ3nGXkscx7z2NOd9Wwr4_EHuzcEgJ0NiW9Xb0zn55nby1lYkLozYOKmEVUp5JDncSFjhamZTWPlsecEn4xCBE5J5e6mAy6MxLaynoiAIy3kkcfaDUvc2qoxfOgA8ZdJt2t0ZjVoMvQ9CI5kXXrsyW6YfoCq6kozXW1tMGEWCVxmQ0E_gUh4TDSQ33BSc6Qcjyqlcol8MBaJx57t9silK3nwr4YP2XV6WVViyjZrLecr8wjZ4bJ47ILALyM4XFg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Highly+Discriminative+Hybrid+Feature+Selection+Algorithm+for+Cancer+Diagnosis&rft.jtitle=TheScientificWorld&rft.au=Elemam%2C+Tarneem&rft.au=Elshrkawey%2C+Mohamed&rft.date=2022-08-09&rft.pub=Hindawi&rft.issn=2356-6140&rft.eissn=1537-744X&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F1056490&rft.externalDocID=10_1155_2022_1056490 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2356-6140&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2356-6140&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2356-6140&client=summon |