A Highly Discriminative Hybrid Feature Selection Algorithm for Cancer Diagnosis

Cancer is a deadly disease that occurs due to rapid and uncontrolled cell growth. In this article, a machine learning (ML) algorithm is proposed to diagnose different cancer diseases from big data. The algorithm comprises a two-stage hybrid feature selection. In the first stage, an overall ranker is...

Full description

Saved in:
Bibliographic Details
Published inTheScientificWorld Vol. 2022; pp. 1 - 15
Main Authors Elemam, Tarneem, Elshrkawey, Mohamed
Format Journal Article
LanguageEnglish
Published Cairo Hindawi 09.08.2022
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN2356-6140
1537-744X
1537-744X
DOI10.1155/2022/1056490

Cover

Abstract Cancer is a deadly disease that occurs due to rapid and uncontrolled cell growth. In this article, a machine learning (ML) algorithm is proposed to diagnose different cancer diseases from big data. The algorithm comprises a two-stage hybrid feature selection. In the first stage, an overall ranker is initiated to combine the results of three filter-based feature evaluation methods, namely, chi-squared, F-statistic, and mutual information (MI). The features are then ordered according to this combination. In the second stage, the modified wrapper-based sequential forward selection is utilized to discover the optimal feature subset, using ML models such as support vector machine (SVM), decision tree (DT), random forest (RF), and K-nearest neighbor (KNN) classifiers. To examine the proposed algorithm, many tests have been carried out on four cancerous microarray datasets, employing in the process 10-fold cross-validation and hyperparameter tuning. The performance of the algorithm is evaluated by calculating the diagnostic accuracy. The results indicate that for the leukemia dataset, both SVM and KNN models register the highest accuracy at 100% using only 5 features. For the ovarian cancer dataset, the SVM model achieves the highest accuracy at 100% using only 6 features. For the small round blue cell tumor (SRBCT) dataset, the SVM model also achieves the highest accuracy at 100% using only 8 features. For the lung cancer dataset, the SVM model also achieves the highest accuracy at 99.57% using 19 features. By comparing with other algorithms, the results obtained from the proposed algorithm are superior in terms of the number of selected features and diagnostic accuracy.
AbstractList Cancer is a deadly disease that occurs due to rapid and uncontrolled cell growth. In this article, a machine learning (ML) algorithm is proposed to diagnose different cancer diseases from big data. The algorithm comprises a two-stage hybrid feature selection. In the first stage, an overall ranker is initiated to combine the results of three filter-based feature evaluation methods, namely, chi-squared, F-statistic, and mutual information (MI). The features are then ordered according to this combination. In the second stage, the modified wrapper-based sequential forward selection is utilized to discover the optimal feature subset, using ML models such as support vector machine (SVM), decision tree (DT), random forest (RF), and K-nearest neighbor (KNN) classifiers. To examine the proposed algorithm, many tests have been carried out on four cancerous microarray datasets, employing in the process 10-fold cross-validation and hyperparameter tuning. The performance of the algorithm is evaluated by calculating the diagnostic accuracy. The results indicate that for the leukemia dataset, both SVM and KNN models register the highest accuracy at 100% using only 5 features. For the ovarian cancer dataset, the SVM model achieves the highest accuracy at 100% using only 6 features. For the small round blue cell tumor (SRBCT) dataset, the SVM model also achieves the highest accuracy at 100% using only 8 features. For the lung cancer dataset, the SVM model also achieves the highest accuracy at 99.57% using 19 features. By comparing with other algorithms, the results obtained from the proposed algorithm are superior in terms of the number of selected features and diagnostic accuracy.
Cancer is a deadly disease that occurs due to rapid and uncontrolled cell growth. In this article, a machine learning (ML) algorithm is proposed to diagnose different cancer diseases from big data. The algorithm comprises a two-stage hybrid feature selection. In the first stage, an overall ranker is initiated to combine the results of three filter-based feature evaluation methods, namely, chi-squared, F-statistic, and mutual information (MI). The features are then ordered according to this combination. In the second stage, the modified wrapper-based sequential forward selection is utilized to discover the optimal feature subset, using ML models such as support vector machine (SVM), decision tree (DT), random forest (RF), and K-nearest neighbor (KNN) classifiers. To examine the proposed algorithm, many tests have been carried out on four cancerous microarray datasets, employing in the process 10-fold cross-validation and hyperparameter tuning. The performance of the algorithm is evaluated by calculating the diagnostic accuracy. The results indicate that for the leukemia dataset, both SVM and KNN models register the highest accuracy at 100% using only 5 features. For the ovarian cancer dataset, the SVM model achieves the highest accuracy at 100% using only 6 features. For the small round blue cell tumor (SRBCT) dataset, the SVM model also achieves the highest accuracy at 100% using only 8 features. For the lung cancer dataset, the SVM model also achieves the highest accuracy at 99.57% using 19 features. By comparing with other algorithms, the results obtained from the proposed algorithm are superior in terms of the number of selected features and diagnostic accuracy.Cancer is a deadly disease that occurs due to rapid and uncontrolled cell growth. In this article, a machine learning (ML) algorithm is proposed to diagnose different cancer diseases from big data. The algorithm comprises a two-stage hybrid feature selection. In the first stage, an overall ranker is initiated to combine the results of three filter-based feature evaluation methods, namely, chi-squared, F-statistic, and mutual information (MI). The features are then ordered according to this combination. In the second stage, the modified wrapper-based sequential forward selection is utilized to discover the optimal feature subset, using ML models such as support vector machine (SVM), decision tree (DT), random forest (RF), and K-nearest neighbor (KNN) classifiers. To examine the proposed algorithm, many tests have been carried out on four cancerous microarray datasets, employing in the process 10-fold cross-validation and hyperparameter tuning. The performance of the algorithm is evaluated by calculating the diagnostic accuracy. The results indicate that for the leukemia dataset, both SVM and KNN models register the highest accuracy at 100% using only 5 features. For the ovarian cancer dataset, the SVM model achieves the highest accuracy at 100% using only 6 features. For the small round blue cell tumor (SRBCT) dataset, the SVM model also achieves the highest accuracy at 100% using only 8 features. For the lung cancer dataset, the SVM model also achieves the highest accuracy at 99.57% using 19 features. By comparing with other algorithms, the results obtained from the proposed algorithm are superior in terms of the number of selected features and diagnostic accuracy.
Audience Academic
Author Elshrkawey, Mohamed
Elemam, Tarneem
AuthorAffiliation Information Systems Department, Suez Canal University, Ismailia 41522, Egypt
AuthorAffiliation_xml – name: Information Systems Department, Suez Canal University, Ismailia 41522, Egypt
Author_xml – sequence: 1
  givenname: Tarneem
  orcidid: 0000-0002-9302-2019
  surname: Elemam
  fullname: Elemam, Tarneem
  organization: Information Systems DepartmentSuez Canal UniversityIsmailia 41522Egyptscuegypt.edu.eg
– sequence: 2
  givenname: Mohamed
  orcidid: 0000-0001-9777-8086
  surname: Elshrkawey
  fullname: Elshrkawey, Mohamed
  organization: Information Systems DepartmentSuez Canal UniversityIsmailia 41522Egyptscuegypt.edu.eg
BookMark eNqNkk1r2zAch83oWNNut30Awy6Dzq0k6_UyCNm6FAo9bIPdhCxLjoIiZbLdkm8_pQ4bKXtDB4H0_H78eaSz4iTEYIriNQSXEBJyhQBCVxAQigV4VswgqVnFMP52UsxQTWhFIQanxVnfrwGoOYPkRXFaE8FrwtCsuJuXS9et_K784Hqd3MYFNbh7Uy53TXJteW3UMCZTfjbe6MHFUM59F5MbVpvSxlQuVNAm5bDqQuxd_7J4bpXvzavDfl58vf74ZbGsbu8-3Szmt5UmgILKooYbgRuBtTUGIAa0sJa3miBEEdQAAo5gwwGzAuBWME4Ebg2psWkgAKw-L26m3jaqtdzmwVXayaicfDyIqZMqDU57I0FDBaAYI95mFRwrrBRqBNIMM8uRzl3V1DWGrdo9KO9_FkIg95LlXrI8SM78-4nfjs3GtNqEISl_NMTxTXAr2cV7KWoOEaO54O2hIMXvo-kHucnyjfcqmDj2EjHIa0QxZP-BApwflVGc0TdP0HUcU8iv8EgxQigVv6hOZTcu2JhH1PtSOWcQE1EzAjN1-Rsqr9ZsnM4f0Lp8fhRAU0Cn2PfJWKndoPYfJged_5PId09C__B-MeErF1r14P5O_wCFsvFo
CitedBy_id crossref_primary_10_1007_s10462_024_11029_1
crossref_primary_10_1186_s40537_024_00887_9
crossref_primary_10_1093_comjnl_bxad127
crossref_primary_10_32604_cmc_2024_044065
crossref_primary_10_1016_j_cosrev_2023_100559
crossref_primary_10_3390_cancers16233913
crossref_primary_10_32604_cmes_2024_053373
Cites_doi 10.1016/j.chaos.2020.110027
10.1016/j.artmed.2020.101941
10.1016/j.bspc.2021.102872
10.1016/j.measurement.2021.109442
10.1007/s11045-018-0612-2
10.1186/s40246-021-00366-9
10.1016/j.ymeth.2018.04.004
10.1016/j.cam.2017.04.036
10.1016/j.procs.2020.04.279
10.1016/j.swevo.2020.100661
10.1007/s00521-021-06406-8
10.1016/j.procs.2020.03.053
10.1016/j.ins.2019.02.046
10.1007/978-3-030-95405-5_4
10.1016/j.jbi.2020.103575
10.1007/s00521-021-06775-0
10.1016/j.compbiomed.2020.103667
10.1007/s42452-019-0645-7
10.1016/j.matpr.2021.07.270
10.1007/s41060-016-0027-9
10.1016/j.eswa.2020.114012
10.1016/j.future.2017.08.011
10.1016/j.compbiolchem.2021.107566
10.1016/j.imu.2021.100572
10.1016/j.patcog.2007.02.007
10.1007/s10586-018-1884-x
10.1007/s00500-019-03988-3
10.1016/j.cmpb.2017.09.005
10.1016/j.cmpb.2019.04.008
10.1007/s11042-021-10597-6
10.1007/s00521-020-05157-2
10.1016/j.patcog.2019.01.047
10.1016/j.neucom.2021.07.047
10.1016/j.eswa.2022.117882
10.1007/s12539-020-00372-w
10.1007/s13369-021-05486-x
10.1016/j.asoc.2020.107009
10.1016/j.cegh.2018.04.001
10.1016/j.fcij.2018.02.002
10.1016/j.asoc.2020.106994
10.1186/s12920-018-0447-6
10.1007/978-981-15-0626-0_12
10.1186/s12911-019-1004-8
10.1016/j.cmpb.2020.105625
10.1007/s13369-021-06102-8
10.1007/978-3-030-35249-3_85
10.1007/s10462-019-09682-y
10.1186/s40537-019-0271-7
10.1007/s11517-021-02331-z
10.1016/j.jbi.2017.01.016
10.1007/s10916-019-1372-8
10.1016/j.jksuci.2017.12.002
10.1016/j.ins.2019.06.063
ContentType Journal Article
Copyright Copyright © 2022 Tarneem Elemam and Mohamed Elshrkawey.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Tarneem Elemam and Mohamed Elshrkawey. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Tarneem Elemam and Mohamed Elshrkawey. 2022
Copyright_xml – notice: Copyright © 2022 Tarneem Elemam and Mohamed Elshrkawey.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Tarneem Elemam and Mohamed Elshrkawey. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2022 Tarneem Elemam and Mohamed Elshrkawey. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7QP
7TK
7TM
7X2
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
FR3
FYUFA
GHDGH
HCIFZ
K9.
M0K
M0S
M1P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOA
DOI 10.1155/2022/1056490
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA



CrossRef
Agricultural Science Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1537-744X
Editor Mejía-Aranguré, Juan
Editor_xml – sequence: 1
  givenname: Juan
  surname: Mejía-Aranguré
  fullname: Mejía-Aranguré, Juan
EndPage 15
ExternalDocumentID oai_doaj_org_article_0b69064428d14084a4aa2b92c747f82c
10.1155/2022/1056490
PMC9381276
A714593751
10_1155_2022_1056490
GroupedDBID 123
3V.
53G
5VS
7X2
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJEY
AAWTL
ABUWG
ACHIH
ADBBV
ADDVE
ADRAZ
AEGXH
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DA7
DIK
E3Z
EBD
EBS
EMOBN
FAC
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ITC
KQ8
M0K
M1P
M48
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
PSQYO
RHU
RHW
RHX
RPM
SV3
TUS
UKHRP
0R~
24P
AAHBH
AAMMB
AAYXX
ACCMX
ADMLS
AEFGJ
AEUYN
AFKWF
AGXDD
AIDQK
AIDYY
CITATION
H13
IEP
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
7QP
7TK
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
K9.
P64
PKEHL
PQEST
PQUKI
RC3
7X8
7S9
L.6
5PM
4.4
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c5060-f2b8e94b94cfee0270c9ff8dc522621c010821b807f904d978594de534eb10073
IEDL.DBID RHX
ISSN 2356-6140
1537-744X
IngestDate Tue Oct 14 19:09:23 EDT 2025
Sun Oct 26 02:26:13 EDT 2025
Tue Sep 30 16:05:12 EDT 2025
Fri Sep 05 12:31:26 EDT 2025
Fri Sep 05 11:31:51 EDT 2025
Tue Oct 07 06:31:58 EDT 2025
Mon Oct 20 22:49:18 EDT 2025
Mon Oct 20 16:59:39 EDT 2025
Wed Oct 01 02:34:12 EDT 2025
Thu Apr 24 23:11:16 EDT 2025
Sun Jun 02 18:54:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5060-f2b8e94b94cfee0270c9ff8dc522621c010821b807f904d978594de534eb10073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Juan Mejía-Aranguré
ORCID 0000-0001-9777-8086
0000-0002-9302-2019
OpenAccessLink https://dx.doi.org/10.1155/2022/1056490
PMID 35983572
PQID 2704755669
PQPubID 1136335
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_0b69064428d14084a4aa2b92c747f82c
unpaywall_primary_10_1155_2022_1056490
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9381276
proquest_miscellaneous_2718326417
proquest_miscellaneous_2704871764
proquest_journals_2704755669
gale_infotracmisc_A714593751
gale_infotracacademiconefile_A714593751
crossref_citationtrail_10_1155_2022_1056490
crossref_primary_10_1155_2022_1056490
hindawi_primary_10_1155_2022_1056490
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220809
PublicationDateYYYYMMDD 2022-08-09
PublicationDate_xml – month: 8
  year: 2022
  text: 20220809
  day: 9
PublicationDecade 2020
PublicationPlace Cairo
PublicationPlace_xml – name: Cairo
PublicationTitle TheScientificWorld
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 44
45
46
47
48
49
J. Fu (56)
K. Tuncal (24)
H. Das (38) 2020; 34
50
52
53
10
54
11
55
13
57
15
16
A. K. Shukla (20) 2019; 503
17
18
19
J. M. Luna-Romera (51) 2019; 487
E. Pashaei (8) 2022; 34
S. Sazzed (9) 2022; 13087
N. Koul (14) 2020
3
4
6
7
21
22
23
25
26
27
28
29
M. J. Rani (5) 2021
30
31
32
33
34
35
36
37
39
A. Dabba (1) 2021; 166
K. Balabaeva (12) 2021
40
B. Haznedar (2) 2021; 59
41
42
43
References_xml – ident: 56
  article-title: Spark–a big data processing platform for machine learning
– ident: 29
  doi: 10.1016/j.chaos.2020.110027
– ident: 39
  doi: 10.1016/j.artmed.2020.101941
– ident: 45
  doi: 10.1016/j.bspc.2021.102872
– ident: 46
  doi: 10.1016/j.measurement.2021.109442
– ident: 50
  doi: 10.1007/s11045-018-0612-2
– ident: 11
  doi: 10.1186/s40246-021-00366-9
– ident: 22
  doi: 10.1016/j.ymeth.2018.04.004
– volume: 34
  year: 2020
  ident: 38
  article-title: A Jaya algorithm based wrapper method for optimal feature selection in supervised classification
  publication-title: Journal of King Saud University-Computer and Information Sciences
– ident: 52
  doi: 10.1016/j.cam.2017.04.036
– ident: 18
  doi: 10.1016/j.procs.2020.04.279
– ident: 33
  doi: 10.1016/j.swevo.2020.100661
– ident: 13
  doi: 10.1007/s00521-021-06406-8
– ident: 47
  doi: 10.1016/j.procs.2020.03.053
– volume: 487
  start-page: 1
  year: 2019
  ident: 51
  article-title: External clustering validity index based on chi-squared statistical test
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.02.046
– volume: 13087
  start-page: 45
  year: 2022
  ident: 9
  article-title: Feature selection in gene expression profile employing relevancy and redundancy measures and binary whale optimization algorithm (BWOA)
  publication-title: Advanced Data Mining and Applications
  doi: 10.1007/978-3-030-95405-5_4
– ident: 26
  doi: 10.1016/j.jbi.2020.103575
– volume: 34
  start-page: 6427
  year: 2022
  ident: 8
  article-title: An efficient binary chimp optimization algorithm for feature selection in biomedical data classification
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-06775-0
– ident: 32
  doi: 10.1016/j.compbiomed.2020.103667
– ident: 10
  doi: 10.1007/s42452-019-0645-7
– ident: 28
  doi: 10.1016/j.matpr.2021.07.270
– ident: 57
  doi: 10.1007/s41060-016-0027-9
– volume: 166
  year: 2021
  ident: 1
  article-title: Gene selection and classification of microarray data method based on mutual information and moth flame algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114012
– start-page: 623
  year: 2021
  ident: 12
  article-title: Comparison of efficiency, stability and interpretability of feature selection methods for multiclassification task on medical tabular data
  publication-title: International Conference on Computational Science
– ident: 48
  doi: 10.1016/j.future.2017.08.011
– ident: 25
  doi: 10.1016/j.compbiolchem.2021.107566
– ident: 42
  doi: 10.1016/j.imu.2021.100572
– ident: 54
  doi: 10.1016/j.patcog.2007.02.007
– ident: 53
  doi: 10.1007/s10586-018-1884-x
– ident: 16
  doi: 10.1007/s00500-019-03988-3
– ident: 23
  doi: 10.1016/j.cmpb.2017.09.005
– year: 2021
  ident: 5
  article-title: Bacterial foraging optimization algorithm based feature selection for microarray data classification
  publication-title: Materials Today Proceedings
– ident: 19
  doi: 10.1016/j.cmpb.2019.04.008
– ident: 49
  doi: 10.1007/s11042-021-10597-6
– ident: 44
  doi: 10.1007/s00521-020-05157-2
– ident: 4
  doi: 10.1016/j.patcog.2019.01.047
– ident: 3
  doi: 10.1016/j.neucom.2021.07.047
– ident: 27
  doi: 10.1016/j.eswa.2022.117882
– ident: 21
  doi: 10.1007/s12539-020-00372-w
– ident: 43
  doi: 10.1007/s13369-021-05486-x
– ident: 41
  doi: 10.1016/j.asoc.2020.107009
– ident: 36
  doi: 10.1016/j.cegh.2018.04.001
– ident: 34
  doi: 10.1016/j.fcij.2018.02.002
– ident: 6
  doi: 10.1016/j.asoc.2020.106994
– ident: 30
  doi: 10.1186/s12920-018-0447-6
– volume-title: Advances in Communication, Signal Processing, VLSI, and Embedded Systems,
  year: 2020
  ident: 14
  article-title: Feature selection from gene expression data using SVMRFE and feed-forward neural network classifier
  doi: 10.1007/978-981-15-0626-0_12
– ident: 17
  doi: 10.1186/s12911-019-1004-8
– ident: 37
  doi: 10.1016/j.cmpb.2020.105625
– ident: 15
  doi: 10.1007/s13369-021-06102-8
– ident: 24
  article-title: Tumor classification using gene expression and machine learning models
  doi: 10.1007/978-3-030-35249-3_85
– ident: 7
  doi: 10.1007/s10462-019-09682-y
– ident: 55
  doi: 10.1186/s40537-019-0271-7
– volume: 59
  start-page: 497
  issue: 3
  year: 2021
  ident: 2
  article-title: Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data
  publication-title: Medical, and Biological Engineering and Computing
  doi: 10.1007/s11517-021-02331-z
– ident: 31
  doi: 10.1016/j.jbi.2017.01.016
– ident: 35
  doi: 10.1007/s10916-019-1372-8
– ident: 40
  doi: 10.1016/j.jksuci.2017.12.002
– volume: 503
  start-page: 238
  year: 2019
  ident: 20
  article-title: A new hybrid wrapper TLBO and SA with SVM approach for gene expression data
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.06.063
SSID ssj0038715
ssib053847956
Score 2.440566
Snippet Cancer is a deadly disease that occurs due to rapid and uncontrolled cell growth. In this article, a machine learning (ML) algorithm is proposed to diagnose...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
crossref
hindawi
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Analysis
Big data
Biomarkers
Cancer
cell growth
Chi-square test
Classification
data collection
Datasets
decision support systems
Decision trees
Diagnosis
Diagnostic systems
Discriminant analysis
Disease
Feature selection
Gene expression
Leukemia
Lung cancer
lung neoplasms
Machine learning
Medical diagnosis
Methods
microarray technology
Neural networks
Optimization algorithms
Ovarian cancer
ovarian neoplasms
Performance evaluation
Support vector machines
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (WRLC)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUNpLafqgbjdFhfRFMbG1I1s6btOGpdD20AZyE7YsZQ2uN-yDsP8-M7Z2WReaXHq1xrY8Mxp9g0ffMHYstBxbqPLYlwAxgEti5bWIXeaTpNRpNZZ0Gvn7j2x6Dt8u5MVeqy-qCevpgXvFnSQlUekCouQKcwEFBRSFKLWwiIO9Epaib6L0NpnqY_AY0wC5LXOXkjJ8cUI95oFi794G1PH076Lx_Rnlwdf1AG3-XSv5YN1eFZvromn2NqKzx-xRQJB80s_8kN1z7RN2GNbokn8IRNIfn7KfE05lHM2Gf6kpOlDVC0U3Pt3QOS1O8G-9cPxX1wsHDcQnzeV8Ua9mfzhiWX5KHrHAm7tqvHr5jJ2fff19Oo1DA4XYEm9g7EWpnIZSg_XOYQKaWO29qiyBLpFazMWUSEuV5F4nUGFCKTVUTo4BIzj9w3vODtp5614wnumy8GjtCvEF5A43NW9lgfDOVZXSSkbs01arxgZ2cWpy0Zguy5DSkA1MsEHE3u6kr3pWjX_IfSYD7WSIC7u7gB5igoeYuzwkYu_JvIZWLE7JFuHgAX4YcV-ZSZ6CRJQm04iNBpK40uxg-Dg4yB2THm29x4SAsDSoe8glYmcdsTe7YXoBFbm1br7uZdBx8wxuk6EYnEGaRywfeOZAScORtp51xOEa4ZnIs4i92_nwrV_y8n-o_xV7SM_siib1iB2sFmt3hEBuVb7u1uwN-ZM_Bg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ri9NAEF_OHqJfxPPBRatEOF9IuGQ7m81-EOmddxTBKurBfQvJPq6FmtY-OPrfO5Nu6kWwfs1OSHbnsb9JZn_D2BFXoqfByMiVABGAjaPMKR7Z1MVxqRLTE3Qa-fMwHVzAp0txuceGzVkYKqtsYmIdqM1U0zfyYy5jkALBh_ow-xVR1yj6u9q00Ch8awXzvqYYu8X2OTFjddj-ydnw67fGwtC7QSpij9nE6h6mC6JuPydSTKIgbkrjhaCvAvyY-tIDxesbm1bN7b-N4LdHlDtfj1sI9e_6yjuralasr4vJ5MbmdX6f3fOoM-xvzOSA7dnqATvwfr0I33jy6bcP2Zd-SKUfk3X4cUwRhSplKCKGgzWd7QoJMq7mNvxe989BpYb9yRWu03L0M0T8G56SFc3x5rqCb7x4xC7Oz36cDiLfdCHSxDUYOV5mVkGpQDtrMWmNtXIuM5qAGk805m8ZT8oslk7FYDAJFQqMFT3AqE___R6zTjWt7CELU1UWDi3EICYBaXEjdFoUCAmtMZnKRMDeNauaa89ITo0xJnmdmQiRkw5yr4OAvdxKzzZMHP-QOyEFbWWIP7u-MJ1f5d4d87gkgmbA3Mug1jMooCh4qbjG7MplXAfsNak3Jy_HV9KFP6yAEyO-rLwvExCI7EQSsG5LEr1Tt4aPvIH856W7jfXkPogs8j8mH7AX22F6ABXGVXa62sigEcsUdslQ3E4hkQGTLctsLVJ7pBqParJxhZCOyzRgr7Y2vHMmT3bP5Cm7S9J1CaXqss5yvrLPENYty-feV38D4GxDpg
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELemIQQviPEhwgoy0vgSCiTpOYkfECqDqUIaPEClvVmJY6-RsnSkrUb_e-7cJJAJBo-pr43t-_Dvp57vGDuIpBhrKBLf5gA-gAn81MrIN7ENglyGxVjQbeTjz_F0Bp9OxMkO67qNthu4_CO1o35Ss6Z6_eP75h06_Fvn8EIQf4_eUAd5kEjer-EZJamJw_EvoI9eDYmkqjHbGD1GmiBc2zkRI3mCoEuJv_Rrg8PK1fTvI_f1OXHmi3KATC_nVd5Y1-fZ5iKrqt8OraPb7FaLNvlkax57bMfUd9he689L_qItOv3yLvsy4ZTyUW34h5IiCWXIUCTk0w3d6eIEFdeN4V9d3xxUJp9Up4umXM3POOJefkjW0-CXXeZeubzHZkcfvx1O_bbZgq-pxqBvozw1EnIJ2hqDZDXQ0tq00ATQolAjb0ujME-DxMoACiSfQkJhxBgw2tP_fffZbr2ozQPGY5lnFi2jQCwCicED0GqRIRQ0RZHKVHjsVberSreVyKkhRqUcIxFCkQ5UqwOPPe2lz7cVOP4i954U1MtQ3Wz3waI5Va0bqiCnwsyAnKtAraeQQZZFuYw0siqbRtpjz0m9iuwNp6Sz9pICLozqZKlJEoJARCdCj40GkuiVejB80BrIPyY96qxHdbavcO8hEYizpcee9MP0AkqIq81ivZVBI05iuEqG4nUMYeKxZGCZg00ajtTl3BUZlwjloiT22LPehq9cycP_W_A-u0mPLoVSjtjuqlmbRwjrVvlj57E_AevcQDE
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ti9NAEF7OHqJf1PMFo1UinG9Iekk6m82CX-rpUQRPQQv1wxGSfblWa1r6Qqm_3pl0U8yBp_ix3Wm7O3129hky-wxjh7HkXQVaBLYACABMGKRWxoFJbBgWMtJdTreRP5wm_QG8H_LhHntd34XRJBE_zfWiM6KcdD2uorXz6-JouVh_o3w9PqKO8SDDzkzbK2w_4cjEW2x_cPqp93UrkSoCATCsesvxBDMkCOu6d84bX9E4kSrh_l14vuom0aCfF4snr63KWb5Z55PJbyfTyU12Vq9pW5DyvbNaFh3184Lc4_8u-ha74Sir39ti7IDtmfI2O3BBYeG_cMrVL--wjz2f6kYmG__tmMIRldlQOPX7G7oY5hPfXM2N_7lqvoOI8HuT8-l8vBz98JE8-8cEwTl-uCr_Gy_ussHJuy_H_cB1bAgUCRUGNi5SI6GQoKwxmPGGSlqbakUsL44UJn9pHBVpKKwMQWMGyyVow7uARwY9NLzHWuW0NPeZn8gitwgvjYQGhMFT1CqeI580Wqcy5R57Vf9rmXJy5tRVY5JVaQ3nGXkscx7z2NOd9Wwr4_EHuzcEgJ0NiW9Xb0zn55nby1lYkLozYOKmEVUp5JDncSFjhamZTWPlsecEn4xCBE5J5e6mAy6MxLaynoiAIy3kkcfaDUvc2qoxfOgA8ZdJt2t0ZjVoMvQ9CI5kXXrsyW6YfoCq6kozXW1tMGEWCVxmQ0E_gUh4TDSQ33BSc6Qcjyqlcol8MBaJx57t9silK3nwr4YP2XV6WVViyjZrLecr8wjZ4bJ47ILALyM4XFg
  priority: 102
  providerName: Unpaywall
Title A Highly Discriminative Hybrid Feature Selection Algorithm for Cancer Diagnosis
URI https://dx.doi.org/10.1155/2022/1056490
https://www.proquest.com/docview/2704755669
https://www.proquest.com/docview/2704871764
https://www.proquest.com/docview/2718326417
https://pubmed.ncbi.nlm.nih.gov/PMC9381276
https://downloads.hindawi.com/journals/tswj/2022/1056490.pdf
https://doaj.org/article/0b69064428d14084a4aa2b92c747f82c
UnpaywallVersion publishedVersion
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038715
  issn: 1537-744X
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038715
  issn: 1537-744X
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038715
  issn: 1537-744X
  databaseCode: KQ8
  dateStart: 20120103
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038715
  issn: 1537-744X
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 1537-744X
  databaseCode: ADMLS
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038715
  issn: 1537-744X
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038715
  issn: 1537-744X
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038715
  issn: 1537-744X
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038715
  issn: 1537-744X
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 1537-744X
  databaseCode: CWDGH
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038715
  issn: 1537-744X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038715
  issn: 1537-744X
  databaseCode: 8FG
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0038715
  issn: 1537-744X
  databaseCode: M48
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038715
  issn: 1537-744X
  databaseCode: 24P
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwELfYEIIviPEQGaUy0ngJRSTpObY_dmOlQlqZBpXKpyhxbFqpS6c-NPW_5y51KzLE4Euk1tc29j38u-b8O8aOEi06BkoZugIgBLBRqJxOQpu6KCp0XHYEnUY-G6T9IXwZiZEnSVr8-QgfdztKz5OP1CAeNObmeyqlyq2L_mhrNuiyIDVRwmwCcAdzAFH3lBMpZkYQbevdb3xXYyeqCft3YfnemBLi60kDdt4smry_qq7y9XU-nf62I_UesYceSvLuRvcH7I6tHrMD76wL_s4zSr9_wr52OdVzTNf804TCBJW_UJjj_TUd2OKEA1dzy7_VTXFQU7w7_TmbT5bjS46glp-Qaczxw3VZ3mTxlA17p99P-qHvpBAaIhAMXVIoq6HQYJy1mIlGRjunSkPoK4kNJmUqiQsVSacjKDGzFBpKKzqAoZwe5j1j-9Wsss8ZT3WRO1R7iUADpMXdzRmRI86zZam0EgH7sF3VzHiacep2Mc3qdEOIjHSQeR0E7PVO-mpDr_EXuWNS0E6GSLHrN9BQMu9jWVQQ6zJgQlWi1hXkkOdJoRODKZNTiQnYW1JvRq6Lt2RyfwIBJ0YkWFlXxiAQrok4YK2GJLqcaQwfeQP5x023ttaT-ciwyHDtQQoE0Tpgr3bD9ANU7VbZ2Wojg0YsU7hNhoJxCrEMmGxYZmORmiPVZFwziGvEaYlMA_ZmZ8O3zuTw_yb8gj2gl3V9pG6x_eV8ZV8iZlsWbbYnRxKvqve5ze4enw7OL9r1_x94PQPVrj0aR4aD8-6PX23iOag
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVKhcgPIQhgBGagsVcmtvdm3vgUNIKCl9cKAVvRl7vW4ighPyUBR-FH-Fv8SMsw51JcqpB67e8WPX8_g-e3YGYINJ0VA8DZws4dzhXLtOmEnmaD9z3UR6aUPQbuSjY79zyj-cibMV-FnuhaG0ytInFo46HSj6Rr7LApcHAsGHNBmUB3o-Q342frPfxpe5ydjeu5NWxzEtBBxFlfOcjCWhljyRXGVaIwVzlcyyMFUEO5inkI2EzEtCN8iky1OkVELyVIsGRx9Gf7HwulvD7w51qaK_uaZlxw1YRT33WA1WW5_b7zulBqP34IGk6jSLWNBAOiKK9nbCR5LG3TL1Xgj66sB2qe89p3hwISgWvQOWEeJml7j5rFdBwJfzN9em-TCez-J-_0Jw3LsDv8plXeTEfN2ZTpId9eNSxcn_Z93vwm2D0-3mwrDWYUXn92DdeMKx_cqU696-Dx-bNiXL9Od2u0c-mHKLKIbYnTnthrMJZE9H2v5UdBxCM7Cb_XO846T7zUbGYLfI7kZ4cpHz2Bs_gNNrmetDqOWDXD8C25dJnKFNpYjieKAROmRKxAiidZqGMhQWvC71JFKmhju1EulHBZcTIiKtioxWWbC5lB4uapf8Re4tqdxShiqOFwcGo_PIOLDITaikNUe2mqIehzzmccwSyRTy0SxkyoKXpLAR-UV8JBWb7R04MaowFjUDjwvEwsKzoF6RRH-mKsMbRuX_8dD1Ul8j43bH0R9lteDFcphuQKmEuR5MFzJoloHPr5KhSOdzL7AgqNhaZZGqI3mvW5RnlwiCWeBbsLW0yitn8vjqmTyHtc7J0WF0uH988ARu0ZlFAqqsQ20ymuqnCIonyTPjiWz4ct12-RuvhbuO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVjwuQHkIQwAjtTyE3NqbXa_3gFBICCmFFgkqejP2ereJCE7IQ1H4afwV_gwzzjrUlQinHrhmx47HnvnmG3t2hpAtKnldsUx4JmXMY0z7XmQk9XRofD-VQVbnuBv5_UHYOWJvj_nxGvlZ7oXBssoSEwugzgYK35HvUuEzwYF8yF1jyyI-tNovh989nCCFX1rLcRoLE9nX8xmkb-MXey141tuUtl9_anY8O2HAU9hYzzM0jbRkqWTKaA0Zmq-kMVGmkJXQQEGyEtEgjXxhpM8yyLi4ZJnmdQYQhx-54LwXyEYUihBAYaP5ufWmU1ozIAkTEjvVLOJCHVITXoy64yEkbMwvy_A5xzcQFPCLhwxjw6kAWcwRWEaLi13M02e9Chs-W8t5eZoPk_ks6fdPBcr2NfKrvMWL-pivO9NJuqN-nOk--X8-g-vkquXvbmPhcJtkTec3yKZFyLH71LbxfnaTHDZcLKLpz91WD7EZa44wtridOe6Sc5F8T0fa_VhMIgL3cBv9E9Bw0v3mQibhNtEfR3BwUQvZG98iR-ei2G2yng9yfYe4oUwTA76WAbtjQgOlMIonQK51lkUy4g55XtpMrGxvdxwx0o-LHI_zGC0sthbmkO2l9HDR0-Qvcq_Q_JYy2Im8-GEwOoktsMV-iq2uGWSxGdh0xBKWJDSVVEGeaiKqHPIEjTdGvIRLUond9gGKYeexuCECxoEj88AhtYok4JyqLG9Z8__HRddK240tHI_jP4brkEfLZfwDLDHM9WC6kAEXFSFbJYMRMGSBcIio-F3lJlVX8l63aNsugRxTETrk8dJDV2pyd7UmD8klcL743d7B_j1yBQ8s6lJljaxPRlN9H7jyJH1gQcklX87bB38DXtnEVg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ti9NAEF7OHqJf1PMFo1UinG9Iekk6m82CX-rpUQRPQQv1wxGSfblWa1r6Qqm_3pl0U8yBp_ix3Wm7O3129hky-wxjh7HkXQVaBLYACABMGKRWxoFJbBgWMtJdTreRP5wm_QG8H_LhHntd34XRJBE_zfWiM6KcdD2uorXz6-JouVh_o3w9PqKO8SDDzkzbK2w_4cjEW2x_cPqp93UrkSoCATCsesvxBDMkCOu6d84bX9E4kSrh_l14vuom0aCfF4snr63KWb5Z55PJbyfTyU12Vq9pW5DyvbNaFh3184Lc4_8u-ha74Sir39ti7IDtmfI2O3BBYeG_cMrVL--wjz2f6kYmG__tmMIRldlQOPX7G7oY5hPfXM2N_7lqvoOI8HuT8-l8vBz98JE8-8cEwTl-uCr_Gy_ussHJuy_H_cB1bAgUCRUGNi5SI6GQoKwxmPGGSlqbakUsL44UJn9pHBVpKKwMQWMGyyVow7uARwY9NLzHWuW0NPeZn8gitwgvjYQGhMFT1CqeI580Wqcy5R57Vf9rmXJy5tRVY5JVaQ3nGXkscx7z2NOd9Wwr4_EHuzcEgJ0NiW9Xb0zn55nby1lYkLozYOKmEVUp5JDncSFjhamZTWPlsecEn4xCBE5J5e6mAy6MxLaynoiAIy3kkcfaDUvc2qoxfOgA8ZdJt2t0ZjVoMvQ9CI5kXXrsyW6YfoCq6kozXW1tMGEWCVxmQ0E_gUh4TDSQ33BSc6Qcjyqlcol8MBaJx57t9silK3nwr4YP2XV6WVViyjZrLecr8wjZ4bJ47ILALyM4XFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Highly+Discriminative+Hybrid+Feature+Selection+Algorithm+for+Cancer+Diagnosis&rft.jtitle=TheScientificWorld&rft.au=Elemam%2C+Tarneem&rft.au=Elshrkawey%2C+Mohamed&rft.date=2022-08-09&rft.pub=Hindawi&rft.issn=2356-6140&rft.eissn=1537-744X&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F1056490&rft.externalDocID=10_1155_2022_1056490
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2356-6140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2356-6140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2356-6140&client=summon