Effects of Evolocumab on the Postprandial Kinetics of Apo (Apolipoprotein) B100- and B48-Containing Lipoproteins in Subjects With Type 2 Diabetes

Increased risk of atherosclerotic cardiovascular disease in subjects with type 2 diabetes is linked to elevated levels of triglyceride-rich lipoproteins and their remnants. The metabolic effects of PCSK9 (proprotein convertase subtilisin/kexin 9) inhibitors on this dyslipidemia were investigated usi...

Full description

Saved in:
Bibliographic Details
Published inArteriosclerosis, thrombosis, and vascular biology Vol. 41; no. 2; pp. 962 - 975
Main Authors Taskinen, Marja-Riitta, Björnson, Elias, Kahri, Juhani, Söderlund, Sanni, Matikainen, Niina, Porthan, Kimmo, Ainola, Mari, Hakkarainen, Antti, Lundbom, Nina, Fermanelli, Valentina, Fuchs, Johannes, Thorsell, Annika, Kronenberg, Florian, Andersson, Linda, Adiels, Martin, Packard, Chris J., Borén, Jan
Format Journal Article
LanguageEnglish
Published United States American Heart Association, Inc 01.02.2021
Subjects
Online AccessGet full text
ISSN1079-5642
1524-4636
1524-4636
DOI10.1161/ATVBAHA.120.315446

Cover

Abstract Increased risk of atherosclerotic cardiovascular disease in subjects with type 2 diabetes is linked to elevated levels of triglyceride-rich lipoproteins and their remnants. The metabolic effects of PCSK9 (proprotein convertase subtilisin/kexin 9) inhibitors on this dyslipidemia were investigated using stable-isotope-labeled tracers. Approach and Results: Triglyceride transport and the metabolism of apos (apolipoproteins) B48, B100, C-III, and E after a fat-rich meal were investigated before and on evolocumab treatment in 13 subjects with type 2 diabetes. Kinetic parameters were determined for the following: apoB48 in chylomicrons; triglyceride in VLDL (very low-density lipoprotein) and VLDL ; and apoB100 in VLDL , VLDL , IDL (intermediate-density lipoprotein), and LDL (low-density lipoprotein). Evolocumab did not alter the kinetics of apoB48 in chylomicrons or apoB100 or triglyceride in VLDL . In contrast, the fractional catabolic rates of VLDL -apoB100 and VLDL -triglyceride were both increased by about 45%, which led to a 28% fall in the VLDL plasma level. LDL-apoB100 was markedly reduced by evolocumab, which was linked to metabolic heterogeneity in this fraction. Evolocumab increased clearance of the more rapidly metabolized LDL by 61% and decreased production of the more slowly cleared LDL by 75%. ApoC-III kinetics were not altered by evolocumab, but the apoE fractional catabolic rates increased by 45% and the apoE plasma level fell by 33%. The apoE fractional catabolic rates was associated with the decrease in VLDL - and IDL-apoB100 concentrations. Evolocumab had only minor effects on lipoproteins that are involved in triglyceride transport (chylomicrons and VLDL ) but, in contrast, had a profound impact on lipoproteins that carry cholesterol (VLDL , IDL, LDL). Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02948777.
AbstractList Increased risk of atherosclerotic cardiovascular disease in subjects with type 2 diabetes is linked to elevated levels of triglyceride-rich lipoproteins and their remnants. The metabolic effects of PCSK9 (proprotein convertase subtilisin/kexin 9) inhibitors on this dyslipidemia were investigated using stable-isotope-labeled tracers. Approach and Results: Triglyceride transport and the metabolism of apos (apolipoproteins) B48, B100, C-III, and E after a fat-rich meal were investigated before and on evolocumab treatment in 13 subjects with type 2 diabetes. Kinetic parameters were determined for the following: apoB48 in chylomicrons; triglyceride in VLDL1 (very low-density lipoprotein) and VLDL2; and apoB100 in VLDL1, VLDL2, IDL (intermediate-density lipoprotein), and LDL (low-density lipoprotein). Evolocumab did not alter the kinetics of apoB48 in chylomicrons or apoB100 or triglyceride in VLDL1. In contrast, the fractional catabolic rates of VLDL2-apoB100 and VLDL2-triglyceride were both increased by about 45%, which led to a 28% fall in the VLDL2 plasma level. LDL-apoB100 was markedly reduced by evolocumab, which was linked to metabolic heterogeneity in this fraction. Evolocumab increased clearance of the more rapidly metabolized LDL by 61% and decreased production of the more slowly cleared LDL by 75%. ApoC-III kinetics were not altered by evolocumab, but the apoE fractional catabolic rates increased by 45% and the apoE plasma level fell by 33%. The apoE fractional catabolic rates was associated with the decrease in VLDL2- and IDL-apoB100 concentrations.Evolocumab had only minor effects on lipoproteins that are involved in triglyceride transport (chylomicrons and VLDL1) but, in contrast, had a profound impact on lipoproteins that carry cholesterol (VLDL2, IDL, LDL). Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02948777.
Increased risk of atherosclerotic cardiovascular disease in subjects with type 2 diabetes is linked to elevated levels of triglyceride-rich lipoproteins and their remnants. The metabolic effects of PCSK9 (proprotein convertase subtilisin/kexin 9) inhibitors on this dyslipidemia were investigated using stable-isotope-labeled tracers. Approach and Results: Triglyceride transport and the metabolism of apos (apolipoproteins) B48, B100, C-III, and E after a fat-rich meal were investigated before and on evolocumab treatment in 13 subjects with type 2 diabetes. Kinetic parameters were determined for the following: apoB48 in chylomicrons; triglyceride in VLDL1 (very low-density lipoprotein) and VLDL2; and apoB100 in VLDL1, VLDL2, IDL (intermediate-density lipoprotein), and LDL (low-density lipoprotein). Evolocumab did not alter the kinetics of apoB48 in chylomicrons or apoB100 or triglyceride in VLDL1. In contrast, the fractional catabolic rates of VLDL2-apoB100 and VLDL2-triglyceride were both increased by about 45%, which led to a 28% fall in the VLDL2 plasma level. LDL-apoB100 was markedly reduced by evolocumab, which was linked to metabolic heterogeneity in this fraction. Evolocumab increased clearance of the more rapidly metabolized LDL by 61% and decreased production of the more slowly cleared LDL by 75%. ApoC-III kinetics were not altered by evolocumab, but the apoE fractional catabolic rates increased by 45% and the apoE plasma level fell by 33%. The apoE fractional catabolic rates was associated with the decrease in VLDL2- and IDL-apoB100 concentrations.OBJECTIVEIncreased risk of atherosclerotic cardiovascular disease in subjects with type 2 diabetes is linked to elevated levels of triglyceride-rich lipoproteins and their remnants. The metabolic effects of PCSK9 (proprotein convertase subtilisin/kexin 9) inhibitors on this dyslipidemia were investigated using stable-isotope-labeled tracers. Approach and Results: Triglyceride transport and the metabolism of apos (apolipoproteins) B48, B100, C-III, and E after a fat-rich meal were investigated before and on evolocumab treatment in 13 subjects with type 2 diabetes. Kinetic parameters were determined for the following: apoB48 in chylomicrons; triglyceride in VLDL1 (very low-density lipoprotein) and VLDL2; and apoB100 in VLDL1, VLDL2, IDL (intermediate-density lipoprotein), and LDL (low-density lipoprotein). Evolocumab did not alter the kinetics of apoB48 in chylomicrons or apoB100 or triglyceride in VLDL1. In contrast, the fractional catabolic rates of VLDL2-apoB100 and VLDL2-triglyceride were both increased by about 45%, which led to a 28% fall in the VLDL2 plasma level. LDL-apoB100 was markedly reduced by evolocumab, which was linked to metabolic heterogeneity in this fraction. Evolocumab increased clearance of the more rapidly metabolized LDL by 61% and decreased production of the more slowly cleared LDL by 75%. ApoC-III kinetics were not altered by evolocumab, but the apoE fractional catabolic rates increased by 45% and the apoE plasma level fell by 33%. The apoE fractional catabolic rates was associated with the decrease in VLDL2- and IDL-apoB100 concentrations.Evolocumab had only minor effects on lipoproteins that are involved in triglyceride transport (chylomicrons and VLDL1) but, in contrast, had a profound impact on lipoproteins that carry cholesterol (VLDL2, IDL, LDL). Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02948777.CONCLUSIONSEvolocumab had only minor effects on lipoproteins that are involved in triglyceride transport (chylomicrons and VLDL1) but, in contrast, had a profound impact on lipoproteins that carry cholesterol (VLDL2, IDL, LDL). Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02948777.
Increased risk of atherosclerotic cardiovascular disease in subjects with type 2 diabetes is linked to elevated levels of triglyceride-rich lipoproteins and their remnants. The metabolic effects of PCSK9 (proprotein convertase subtilisin/kexin 9) inhibitors on this dyslipidemia were investigated using stable-isotope-labeled tracers. Approach and Results: Triglyceride transport and the metabolism of apos (apolipoproteins) B48, B100, C-III, and E after a fat-rich meal were investigated before and on evolocumab treatment in 13 subjects with type 2 diabetes. Kinetic parameters were determined for the following: apoB48 in chylomicrons; triglyceride in VLDL (very low-density lipoprotein) and VLDL ; and apoB100 in VLDL , VLDL , IDL (intermediate-density lipoprotein), and LDL (low-density lipoprotein). Evolocumab did not alter the kinetics of apoB48 in chylomicrons or apoB100 or triglyceride in VLDL . In contrast, the fractional catabolic rates of VLDL -apoB100 and VLDL -triglyceride were both increased by about 45%, which led to a 28% fall in the VLDL plasma level. LDL-apoB100 was markedly reduced by evolocumab, which was linked to metabolic heterogeneity in this fraction. Evolocumab increased clearance of the more rapidly metabolized LDL by 61% and decreased production of the more slowly cleared LDL by 75%. ApoC-III kinetics were not altered by evolocumab, but the apoE fractional catabolic rates increased by 45% and the apoE plasma level fell by 33%. The apoE fractional catabolic rates was associated with the decrease in VLDL - and IDL-apoB100 concentrations. Evolocumab had only minor effects on lipoproteins that are involved in triglyceride transport (chylomicrons and VLDL ) but, in contrast, had a profound impact on lipoproteins that carry cholesterol (VLDL , IDL, LDL). Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02948777.
Author Andersson, Linda
Kronenberg, Florian
Ainola, Mari
Lundbom, Nina
Borén, Jan
Porthan, Kimmo
Adiels, Martin
Söderlund, Sanni
Taskinen, Marja-Riitta
Hakkarainen, Antti
Fuchs, Johannes
Thorsell, Annika
Fermanelli, Valentina
Kahri, Juhani
Matikainen, Niina
Packard, Chris J.
Björnson, Elias
AuthorAffiliation Research Program for Clinical and Molecular Metabolism, Faculty of Medicine (M.-R.T., J.K., S.S., N.M., K.P., M. Ainola), University of Helsinki, Finland. Department of Radiology, HUS Medical Imaging Center, Helsinki University Hospital (A.H., N.L.), University of Helsinki, Finland. Department of Molecular and Clinical Medicine (E.B., L.A., M. Adiels, J.B.), University of Gothenburg, Sweden. Department of Mathematical Sciences (V.F.), University of Gothenburg, Sweden. Proteomics Core Facility (J.F., A.T.), University of Gothenburg, Sweden. Department of Biostatistics, School of Public Health and Community Medicine (M. Adiels), University of Gothenburg, Sweden. Department of Internal Medicine and Rehabilitation (J.A.), Helsinki University Hospital, Finland. Department of Endocrinology, Abdominal Center (S.S., N.M.), Helsinki University Hospital, Finland. Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland (A.H.). Institute of Genetic
AuthorAffiliation_xml – name: Research Program for Clinical and Molecular Metabolism, Faculty of Medicine (M.-R.T., J.K., S.S., N.M., K.P., M. Ainola), University of Helsinki, Finland. Department of Radiology, HUS Medical Imaging Center, Helsinki University Hospital (A.H., N.L.), University of Helsinki, Finland. Department of Molecular and Clinical Medicine (E.B., L.A., M. Adiels, J.B.), University of Gothenburg, Sweden. Department of Mathematical Sciences (V.F.), University of Gothenburg, Sweden. Proteomics Core Facility (J.F., A.T.), University of Gothenburg, Sweden. Department of Biostatistics, School of Public Health and Community Medicine (M. Adiels), University of Gothenburg, Sweden. Department of Internal Medicine and Rehabilitation (J.A.), Helsinki University Hospital, Finland. Department of Endocrinology, Abdominal Center (S.S., N.M.), Helsinki University Hospital, Finland. Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland (A.H.). Institute of Genetic Epidemiology, Medical University of Innsbruck, Austria (F.K.). Isnstitute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (C.J.P.). Department of Cardiology, Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden (J.B.)
Author_xml – sequence: 1
  givenname: Marja-Riitta
  surname: Taskinen
  fullname: Taskinen, Marja-Riitta
  organization: Research Program for Clinical and Molecular Metabolism, Faculty of Medicine (M.-R.T., J.K., S.S., N.M., K.P., M. Ainola), University of Helsinki, Finland. Department of Radiology, HUS Medical Imaging Center, Helsinki University Hospital (A.H., N.L.), University of Helsinki, Finland. Department of Molecular and Clinical Medicine (E.B., L.A., M. Adiels, J.B.), University of Gothenburg, Sweden. Department of Mathematical Sciences (V.F.), University of Gothenburg, Sweden. Proteomics Core Facility (J.F., A.T.), University of Gothenburg, Sweden. Department of Biostatistics, School of Public Health and Community Medicine (M. Adiels), University of Gothenburg, Sweden. Department of Internal Medicine and Rehabilitation (J.A.), Helsinki University Hospital, Finland. Department of Endocrinology, Abdominal Center (S.S., N.M.), Helsinki University Hospital, Finland. Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland (A.H.). Institute of Genetic Epidemiology, Medical University of Innsbruck, Austria (F.K.). Isnstitute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (C.J.P.). Department of Cardiology, Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden (J.B.)
– sequence: 2
  givenname: Elias
  surname: Björnson
  fullname: Björnson, Elias
– sequence: 3
  givenname: Juhani
  surname: Kahri
  fullname: Kahri, Juhani
– sequence: 4
  givenname: Sanni
  surname: Söderlund
  fullname: Söderlund, Sanni
– sequence: 5
  givenname: Niina
  surname: Matikainen
  fullname: Matikainen, Niina
– sequence: 6
  givenname: Kimmo
  surname: Porthan
  fullname: Porthan, Kimmo
– sequence: 7
  givenname: Mari
  surname: Ainola
  fullname: Ainola, Mari
– sequence: 8
  givenname: Antti
  surname: Hakkarainen
  fullname: Hakkarainen, Antti
– sequence: 9
  givenname: Nina
  surname: Lundbom
  fullname: Lundbom, Nina
– sequence: 10
  givenname: Valentina
  surname: Fermanelli
  fullname: Fermanelli, Valentina
– sequence: 11
  givenname: Johannes
  surname: Fuchs
  fullname: Fuchs, Johannes
– sequence: 12
  givenname: Annika
  surname: Thorsell
  fullname: Thorsell, Annika
– sequence: 13
  givenname: Florian
  surname: Kronenberg
  fullname: Kronenberg, Florian
– sequence: 14
  givenname: Linda
  surname: Andersson
  fullname: Andersson, Linda
– sequence: 15
  givenname: Martin
  surname: Adiels
  fullname: Adiels, Martin
– sequence: 16
  givenname: Chris
  surname: Packard
  middlename: J.
  fullname: Packard, Chris J.
– sequence: 17
  givenname: Jan
  surname: Borén
  fullname: Borén, Jan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33356392$$D View this record in MEDLINE/PubMed
https://gup.ub.gu.se/publication/300763$$DView record from Swedish Publication Index
https://research.chalmers.se/publication/547189$$DView record from Swedish Publication Index
BookMark eNp9ksuO0zAUhiM0iLnAC7BAXg6LlONb0izboTCISiBNgaVlOyethzTOxA7VPAZvjDstg4QEG1-Ovv-3fM5_np10vsMse0lhQmlB38xWX-ez69mEMphwKoUonmRnVDKRi4IXJ-kMZZXLQrDT7DyEWwAQjMGz7JRzLgtesbPs56Jp0MZAfEMWP3zr7bjVhviOxA2Szz7EftBd7XRLProOo7MP6Kz35DItret9P_iIrntN5hQgJ4kmczHNr3wXtetctybLP1QgriM3o7l9ePSbixuyuu-RMPLWaYMRw_PsaaPbgC-O-0X25d1idXWdLz-9_3A1W-ZWQgH5tIaaccFMA7xBbqfMgtSlobIAaCQtENCWZUWxtoh8CoxKawStSpDTsmr4RXZz8A077Eej-sFt9XCvvHZqwIB6sBtlN7rd4hBUQGUFSkkrrgwao0SNkE5FrYw2pcGmRMNZcs3_6boee5VK63HvxgHKgif-8sCn_tyNGKLaumCxbXWHfgyKiTJ9EsqSJvTVER3NFutH69_DTAA7AHbwIQzYPCIU1D4x6pgYlRKjDolJoulfIuuiji5Nb9Cu_b9UHKQ738bUpO_tuMNBbVC3caP2aeMFyJyl1gNL13xfAv4L9r3VvQ
CitedBy_id crossref_primary_10_1016_j_plabm_2021_e00248
crossref_primary_10_1038_s41569_022_00676_y
crossref_primary_10_1016_j_phymed_2024_155505
crossref_primary_10_1016_j_jnutbio_2024_109708
crossref_primary_10_1530_EJE_21_1187
crossref_primary_10_1097_MOL_0000000000000795
crossref_primary_10_1172_jci_insight_160607
crossref_primary_10_1016_j_jacc_2024_10_124
crossref_primary_10_1016_j_jlr_2022_100278
crossref_primary_10_1146_annurev_nutr_062222_020716
crossref_primary_10_3390_nu13061774
crossref_primary_10_1016_j_jacl_2022_10_006
crossref_primary_10_1093_eurheartj_ehab551
crossref_primary_10_1186_s12933_024_02531_5
crossref_primary_10_1016_j_metabol_2021_154887
crossref_primary_10_1111_dom_16305
crossref_primary_10_1016_j_jacl_2023_07_004
crossref_primary_10_1007_s00125_023_06008_0
crossref_primary_10_3389_fcvm_2021_764038
crossref_primary_10_1186_s12933_021_01287_6
crossref_primary_10_1097_CD9_0000000000000088
crossref_primary_10_3390_metabo11120807
crossref_primary_10_1016_j_jacc_2023_03_384
Cites_doi 10.1111/joim.12877
10.1111/dom.13257
10.1016/j.atherosclerosis.2018.07.017
10.1007/s00125-019-4856-7
10.1016/S0140-6736(14)61368-4
10.1016/S0022-2275(20)33334-4
10.1016/S0022-2275(20)40065-3
10.1161/ATVBAHA.118.310882
10.1161/JAHA.119.014129
10.1042/CS20140559
10.1016/s0021-9150(02)00052-7
10.1016/j.atherosclerosis.2007.01.001
10.1056/NEJMoa1800256
10.1056/NEJMoa1501031
10.1007/s00125-003-1111-y
10.1016/j.jacl.2019.12.003
10.1056/NEJMoa1500858
10.1056/NEJMoa1316222
10.1007/s40618-019-01019-4
10.1161/CIRCRESAHA.118.313238
10.1093/eurheartj/ehx144
10.1016/s0026-0495(98)90064-6
10.1016/j.jacc.2014.09.042
10.1021/bi980828m
10.2337/diabetes.49.5.749
10.1007/s11886-019-1161-5
10.1172/JCI1847
10.1056/NEJMoa1615664
10.1155/2017/8356537
10.1161/01.atv.17.12.3542
10.1111/joim.13017
10.1002/oby.20781
10.1016/0009-8981(75)90055-8
10.1007/s10557-016-6666-1
10.1007/s00125-006-0340-2
10.1016/j.cca.2014.01.015
10.1161/ATVBAHA.108.181586
10.1016/S2213-8587(17)30313-3
10.1161/CIRCULATIONAHA.113.006720
10.1161/CIRCULATIONAHA.116.025897
10.1016/S2213-8587(16)30156-5
10.1111/dom.13744
10.1111/j.1749-6632.1990.tb42274.x
10.1161/CIRCRESAHA.115.306249
10.1016/S0022-2275(20)41629-3
10.1210/jcem-72-4-934
10.1056/NEJMoa0907569
10.1161/ATVBAHA.118.310865
10.1056/NEJMoa1410489
10.1016/S2213-8587(19)30158-5
10.1161/CIRCULATIONAHA.116.025253
10.1073/pnas.0501652102
10.1097/MOL.0000000000000678
10.7555/JBR.29.20150052
10.2337/dbi19-0007
10.1194/jlr.M400108-JLR200
10.1016/S0022-2275(20)38378-4
10.1016/j.metabol.2020.154221
10.1161/JAHA.118.011781
10.3389/fendo.2020.00252
10.1161/ATVBAHA.111.224808
10.1161/CIRCULATIONAHA.116.025080
10.1021/bi036208p
10.1016/S0140-6736(10)61350-5
10.1002/dmrr.504
10.1016/j.cca.2018.02.006
10.1016/j.jacc.2016.11.070
10.1016/j.atherosclerosis.2012.02.001
10.1016/0002-8703(87)90621-1
ContentType Journal Article
Copyright American Heart Association, Inc.
Copyright_xml – notice: American Heart Association, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
F1U
F1S
DOI 10.1161/ATVBAHA.120.315446
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4636
EndPage 975
ExternalDocumentID oai_research_chalmers_se_c4e55193_bebb_4de0_be6d_bab7bef7eb32
oai_gup_ub_gu_se_300763
33356392
10_1161_ATVBAHA_120_315446
00043605-202102000-00040
Genre Research Support, Non-U.S. Gov't
Journal Article
Clinical Trial, Phase IV
GroupedDBID ---
.Z2
01R
0R~
1J1
23N
2WC
40H
4Q1
4Q2
4Q3
5GY
5RE
5VS
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABPXF
ABQRW
ABVCZ
ABXVJ
ABZAD
ABZZY
ACDDN
ACEWG
ACGFS
ACGOD
ACILI
ACLDA
ACPRK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADGGA
ADHPY
AE6
AENEX
AFBFQ
AFDTB
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
AYCSE
BAWUL
BOYCO
BQLVK
C45
CS3
DIK
DIWNM
E.X
E3Z
EBS
EEVPB
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
GNXGY
GQDEL
GX1
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OB2
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OWW
OWY
OXXIT
P2P
PQQKQ
PZZ
RAH
RIG
RLZ
S4R
S4S
TEORI
TR2
TSPGW
V2I
VVN
W3M
W8F
WOQ
WOW
X3V
X3W
YFH
.3C
.55
.GJ
3O-
53G
71W
AAYXX
ACCJW
ADFPA
ADGHP
ADNKB
AE3
AEETU
AFFNX
AHJKT
AHRYX
AJNYG
BS7
C1A
CITATION
DUNZO
EJD
FW0
H13
J5H
JF9
JG8
N~M
OCUKA
ODA
ORVUJ
OUVQU
OWU
OWV
OWX
OWZ
P-K
T8P
X7M
XXN
XYM
ZGI
ZZMQN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADKSD
ADSXY
ADTPV
AOWAS
F1U
F1S
ID FETCH-LOGICAL-c5060-8d0d2342bf03fe3c82c05a7b15600f516e0ec7791edcee380215cb419705879f3
ISSN 1079-5642
1524-4636
IngestDate Tue Sep 09 23:20:35 EDT 2025
Tue Sep 09 23:32:35 EDT 2025
Sun Sep 28 00:58:44 EDT 2025
Tue Jul 29 01:37:21 EDT 2025
Thu Apr 24 23:05:10 EDT 2025
Tue Jul 01 00:38:35 EDT 2025
Fri May 16 04:11:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords apolipoprotein
cardiovascular diseases
kinetics
chylomicrons
evolocumab
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5060-8d0d2342bf03fe3c82c05a7b15600f516e0ec7791edcee380215cb419705879f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3667-589X
0000-0002-1089-2319
0000-0003-2853-5851
0000-0002-0003-6463
0000-0003-0041-1240
0000-0003-0786-8091
0000-0003-2229-1120
0000-0002-7367-2532
0000-0001-9317-6969
0000-0002-2386-9927
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/ATVBAHA.120.315446
PMID 33356392
PQID 2473420771
PQPubID 23479
PageCount 14
ParticipantIDs swepub_primary_oai_research_chalmers_se_c4e55193_bebb_4de0_be6d_bab7bef7eb32
swepub_primary_oai_gup_ub_gu_se_300763
proquest_miscellaneous_2473420771
pubmed_primary_33356392
crossref_primary_10_1161_ATVBAHA_120_315446
crossref_citationtrail_10_1161_ATVBAHA_120_315446
wolterskluwer_health_00043605-202102000-00040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-February-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-February-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Arteriosclerosis, thrombosis, and vascular biology
PublicationTitleAlternate Arterioscler Thromb Vasc Biol
PublicationYear 2021
Publisher American Heart Association, Inc
Publisher_xml – name: American Heart Association, Inc
References e_1_3_5_27_2
e_1_3_5_25_2
e_1_3_5_23_2
e_1_3_5_21_2
e_1_3_5_44_2
e_1_3_5_65_2
e_1_3_5_46_2
e_1_3_5_67_2
e_1_3_5_48_2
e_1_3_5_69_2
e_1_3_5_29_2
e_1_3_5_40_2
e_1_3_5_61_2
e_1_3_5_42_2
e_1_3_5_63_2
e_1_3_5_7_2
e_1_3_5_9_2
e_1_3_5_3_2
e_1_3_5_5_2
e_1_3_5_39_2
e_1_3_5_16_2
e_1_3_5_37_2
e_1_3_5_14_2
e_1_3_5_12_2
e_1_3_5_35_2
e_1_3_5_10_2
e_1_3_5_33_2
e_1_3_5_54_2
e_1_3_5_56_2
e_1_3_5_58_2
e_1_3_5_18_2
e_1_3_5_50_2
e_1_3_5_52_2
e_1_3_5_31_2
e_1_3_5_28_2
e_1_3_5_26_2
e_1_3_5_24_2
e_1_3_5_22_2
e_1_3_5_43_2
e_1_3_5_66_2
e_1_3_5_45_2
e_1_3_5_68_2
e_1_3_5_47_2
e_1_3_5_49_2
e_1_3_5_2_2
e_1_3_5_60_2
e_1_3_5_62_2
e_1_3_5_41_2
e_1_3_5_64_2
e_1_3_5_8_2
e_1_3_5_20_2
e_1_3_5_4_2
e_1_3_5_6_2
e_1_3_5_17_2
e_1_3_5_38_2
e_1_3_5_15_2
e_1_3_5_36_2
e_1_3_5_13_2
e_1_3_5_34_2
e_1_3_5_11_2
e_1_3_5_32_2
e_1_3_5_55_2
e_1_3_5_57_2
e_1_3_5_59_2
e_1_3_5_19_2
e_1_3_5_70_2
e_1_3_5_51_2
e_1_3_5_53_2
e_1_3_5_30_2
References_xml – ident: e_1_3_5_37_2
  doi: 10.1111/joim.12877
– ident: e_1_3_5_22_2
  doi: 10.1111/dom.13257
– ident: e_1_3_5_21_2
  doi: 10.1016/j.atherosclerosis.2018.07.017
– ident: e_1_3_5_33_2
  doi: 10.1007/s00125-019-4856-7
– ident: e_1_3_5_5_2
  doi: 10.1016/S0140-6736(14)61368-4
– ident: e_1_3_5_36_2
  doi: 10.1016/S0022-2275(20)33334-4
– ident: e_1_3_5_45_2
  doi: 10.1016/S0022-2275(20)40065-3
– ident: e_1_3_5_24_2
  doi: 10.1161/ATVBAHA.118.310882
– ident: e_1_3_5_48_2
  doi: 10.1161/JAHA.119.014129
– ident: e_1_3_5_54_2
  doi: 10.1042/CS20140559
– ident: e_1_3_5_58_2
  doi: 10.1016/s0021-9150(02)00052-7
– ident: e_1_3_5_65_2
  doi: 10.1016/j.atherosclerosis.2007.01.001
– ident: e_1_3_5_2_2
  doi: 10.1056/NEJMoa1800256
– ident: e_1_3_5_16_2
  doi: 10.1056/NEJMoa1501031
– ident: e_1_3_5_29_2
  doi: 10.1007/s00125-003-1111-y
– ident: e_1_3_5_34_2
  doi: 10.1016/j.jacl.2019.12.003
– ident: e_1_3_5_14_2
  doi: 10.1056/NEJMoa1500858
– ident: e_1_3_5_15_2
  doi: 10.1056/NEJMoa1316222
– ident: e_1_3_5_55_2
  doi: 10.1007/s40618-019-01019-4
– ident: e_1_3_5_13_2
  doi: 10.1161/CIRCRESAHA.118.313238
– ident: e_1_3_5_68_2
  doi: 10.1093/eurheartj/ehx144
– ident: e_1_3_5_42_2
  doi: 10.1016/s0026-0495(98)90064-6
– ident: e_1_3_5_6_2
  doi: 10.1016/j.jacc.2014.09.042
– ident: e_1_3_5_69_2
  doi: 10.1021/bi980828m
– ident: e_1_3_5_47_2
  doi: 10.2337/diabetes.49.5.749
– ident: e_1_3_5_63_2
  doi: 10.1007/s11886-019-1161-5
– ident: e_1_3_5_67_2
  doi: 10.1172/JCI1847
– ident: e_1_3_5_17_2
  doi: 10.1056/NEJMoa1615664
– ident: e_1_3_5_61_2
  doi: 10.1155/2017/8356537
– ident: e_1_3_5_64_2
  doi: 10.1161/01.atv.17.12.3542
– ident: e_1_3_5_38_2
  doi: 10.1111/joim.13017
– ident: e_1_3_5_39_2
  doi: 10.1002/oby.20781
– ident: e_1_3_5_35_2
  doi: 10.1016/0009-8981(75)90055-8
– ident: e_1_3_5_23_2
  doi: 10.1007/s10557-016-6666-1
– ident: e_1_3_5_43_2
  doi: 10.1007/s00125-006-0340-2
– ident: e_1_3_5_4_2
  doi: 10.1016/j.cca.2014.01.015
– ident: e_1_3_5_27_2
  doi: 10.1161/ATVBAHA.108.181586
– ident: e_1_3_5_18_2
  doi: 10.1016/S2213-8587(17)30313-3
– ident: e_1_3_5_28_2
  doi: 10.1161/CIRCULATIONAHA.113.006720
– ident: e_1_3_5_62_2
  doi: 10.1161/CIRCULATIONAHA.116.025897
– ident: e_1_3_5_9_2
  doi: 10.1016/S2213-8587(16)30156-5
– ident: e_1_3_5_41_2
  doi: 10.1111/dom.13744
– ident: e_1_3_5_56_2
  doi: 10.1111/j.1749-6632.1990.tb42274.x
– ident: e_1_3_5_7_2
  doi: 10.1161/CIRCRESAHA.115.306249
– ident: e_1_3_5_70_2
  doi: 10.1016/S0022-2275(20)41629-3
– ident: e_1_3_5_30_2
  doi: 10.1210/jcem-72-4-934
– ident: e_1_3_5_11_2
  doi: 10.1056/NEJMoa0907569
– ident: e_1_3_5_44_2
  doi: 10.1161/ATVBAHA.118.310865
– ident: e_1_3_5_10_2
  doi: 10.1056/NEJMoa1410489
– ident: e_1_3_5_19_2
  doi: 10.1016/S2213-8587(19)30158-5
– ident: e_1_3_5_25_2
  doi: 10.1161/CIRCULATIONAHA.116.025253
– ident: e_1_3_5_26_2
  doi: 10.1073/pnas.0501652102
– ident: e_1_3_5_51_2
  doi: 10.1097/MOL.0000000000000678
– ident: e_1_3_5_20_2
  doi: 10.7555/JBR.29.20150052
– ident: e_1_3_5_3_2
  doi: 10.2337/dbi19-0007
– ident: e_1_3_5_40_2
  doi: 10.1194/jlr.M400108-JLR200
– ident: e_1_3_5_59_2
  doi: 10.1016/S0022-2275(20)38378-4
– ident: e_1_3_5_50_2
  doi: 10.1016/j.metabol.2020.154221
– ident: e_1_3_5_49_2
  doi: 10.1161/JAHA.118.011781
– ident: e_1_3_5_52_2
  doi: 10.3389/fendo.2020.00252
– ident: e_1_3_5_46_2
  doi: 10.1161/ATVBAHA.111.224808
– ident: e_1_3_5_53_2
  doi: 10.1161/CIRCULATIONAHA.116.025080
– ident: e_1_3_5_60_2
  doi: 10.1021/bi036208p
– ident: e_1_3_5_8_2
  doi: 10.1016/S0140-6736(10)61350-5
– ident: e_1_3_5_31_2
  doi: 10.1002/dmrr.504
– ident: e_1_3_5_57_2
  doi: 10.1016/j.cca.2018.02.006
– ident: e_1_3_5_12_2
  doi: 10.1016/j.jacc.2016.11.070
– ident: e_1_3_5_32_2
  doi: 10.1016/j.atherosclerosis.2012.02.001
– ident: e_1_3_5_66_2
  doi: 10.1016/0002-8703(87)90621-1
SSID ssj0004220
Score 2.4873471
Snippet Increased risk of atherosclerotic cardiovascular disease in subjects with type 2 diabetes is linked to elevated levels of triglyceride-rich lipoproteins and...
SourceID swepub
proquest
pubmed
crossref
wolterskluwer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 962
SubjectTerms Adolescent
Adult
Aged
Antibodies, Monoclonal, Humanized - adverse effects
Antibodies, Monoclonal, Humanized - therapeutic use
Anticholesteremic Agents - adverse effects
Anticholesteremic Agents - therapeutic use
Apolipoprotein B-100 - blood
Apolipoprotein B-48 - blood
Biomarkers - blood
Cholesterol - blood
Cholesterol, LDL - blood
Cholesterol, VLDL - blood
Chylomicron Remnants - blood
Diabetes Mellitus, Type 2 - blood
Diabetes Mellitus, Type 2 - diagnosis
Diabetes Mellitus, Type 2 - drug therapy
Dietary Fats - administration & dosage
Dietary Fats - blood
Dyslipidemias - blood
Dyslipidemias - diagnosis
Dyslipidemias - drug therapy
Endocrinology and Diabetes
Endokrinologi och diabetes
Female
Humans
Kinetics
Lipoproteins - blood
Lipoproteins, VLDL - blood
Male
Middle Aged
PCSK9 Inhibitors
Postprandial Period
Proprotein Convertase 9 - metabolism
Serine Proteinase Inhibitors - adverse effects
Serine Proteinase Inhibitors - therapeutic use
Time Factors
Treatment Outcome
Triglycerides - blood
Young Adult
Title Effects of Evolocumab on the Postprandial Kinetics of Apo (Apolipoprotein) B100- and B48-Containing Lipoproteins in Subjects With Type 2 Diabetes
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00043605-202102000-00040
https://www.ncbi.nlm.nih.gov/pubmed/33356392
https://www.proquest.com/docview/2473420771
https://gup.ub.gu.se/publication/300763
https://research.chalmers.se/publication/547189
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9NAFB6WFUQR8W69MYKIItHJZHJ7bKWyrK6gdHXfhkwy2XYvSWkbBP-Ff9Lf4TkzkzR1F9HFl5Imk1vP1zNnzuU7hDwrElUUIsPQoI48mKEzLykL5mk_T4ssLtPIRM_3PkY7-2L3IDzY2vrZy1pqVup1_v3cupKLSBX2gVyxSvYfJNtdFHbANsgXPkHC8PlXMh6vkzHGoGbqvDnNlHP_mza88wVWrYAU3oMxaQiZjeFZo105xP4M89oQNVjvwMhnzDPRhJFIPOStsu0jYOHejTPps6BtjsyNv6IXd2K9uC63Ztk3d4eYMDqrl_DcMBtbOgNszHCq2m94ty4b1jFCrb0Jy2N47srVFB1l3ufZbLVauxCOMMw_ihZtAdv4ZJatg1PZ1FbR7zbTrJp1riR7TqEXJ03lnOKVO-y8H9xvE6Y7hc3i1AsjsaHRhd9DLu-p59Rq_rPTRoTTxnDyZTTcQfcwujJCIX7j6O7ouB0P01TmU9PkZimXWuZCh2gOS6WVkqLQDLaiAqwRFStdxloFYCpc4jHYeJg88KnHas-5Zc1w72I4frnwkMytLfSK_Ddnn2_TmDqzQurob6-Sa99qzL5YHpvii54JNblBrru1Dx1aIN8kW7q6RS7vueyO2-SHwzOtS7rGM60rCnimfTzTFs84FIBMX2yi-SU1WKYwmm5imfaxTGcVbbFMEcsUsUw5bbF8h-y_G0_e7niuZYiXI1OmlxSs4IHgqmRBqYM84TkLs1ghXwArQz_STOdxnPqY_KyDBC3eXAk_jVmYxGkZ3CXbVV3p-4RmnPsZzG7Ym0YwnYDZVgQgWjCAU5WGbED89reXuePTx7YuJ9KsqyNfOnlJkJe08hqQV905c8sm88fRT1uRSlD6GMnLKl03S8lFDC_J4tgfkHtW1t31giAIYdnBB-S5FX53BKF72Mwl7DpsELIBxuGDAflwzsALY3xAvA2sSVvQLU3SQcRCjxs3U8towR7839s_JFfWeuIR2V4tGv0Y1g0r9cT86X4BR0wZFA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Evolocumab+on+the+Postprandial+Kinetics+of+Apo+%28Apolipoprotein%29+B100-+and+B48-Containing+Lipoproteins+in+Subjects+With+Type+2+Diabetes&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Taskinen%2C+Marja-Riitta&rft.au=Bj%C3%B6rnson%2C+Elias&rft.au=Kahri%2C+Juhani&rft.au=S%C3%B6derlund%2C+Sanni&rft.date=2021-02-01&rft.issn=1079-5642&rft.volume=41&rft.issue=2&rft.spage=962&rft_id=info:doi/10.1161%2FATVBAHA.120.315446&rft.externalDocID=oai_research_chalmers_se_c4e55193_bebb_4de0_be6d_bab7bef7eb32
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon