Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability

Objective Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of...

Full description

Saved in:
Bibliographic Details
Published inSkeletal radiology Vol. 48; no. 2; pp. 275 - 283
Main Authors Tajmir, Shahein H., Lee, Hyunkwang, Shailam, Randheer, Gale, Heather I., Nguyen, Jie C., Westra, Sjirk J., Lim, Ruth, Yune, Sehyo, Gee, Michael S., Do, Synho
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0364-2348
1432-2161
1432-2161
DOI10.1007/s00256-018-3033-2

Cover

Abstract Objective Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance. Materials and methods Six board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone age radiographs ranging from 5 to 18 years. Three of those radiologists then performed BAA with AI assistance. Bone age accuracy and root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation. Results AI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and 97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951. Conclusions AI improves radiologist’s bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance.
AbstractList ObjectiveRadiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance.Materials and methodsSix board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone age radiographs ranging from 5 to 18 years. Three of those radiologists then performed BAA with AI assistance. Bone age accuracy and root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation.ResultsAI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and 97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951.ConclusionsAI improves radiologist’s bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance.
Objective Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance. Materials and methods Six board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone age radiographs ranging from 5 to 18 years. Three of those radiologists then performed BAA with AI assistance. Bone age accuracy and root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation. Results AI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and 97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951. Conclusions AI improves radiologist's bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance.
Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance.OBJECTIVERadiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance.Six board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone age radiographs ranging from 5 to 18 years. Three of those radiologists then performed BAA with AI assistance. Bone age accuracy and root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation.MATERIALS AND METHODSSix board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone age radiographs ranging from 5 to 18 years. Three of those radiologists then performed BAA with AI assistance. Bone age accuracy and root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation.AI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and 97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951.RESULTSAI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and 97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951.AI improves radiologist's bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance.CONCLUSIONSAI improves radiologist's bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance.
Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance. Six board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone age radiographs ranging from 5 to 18 years. Three of those radiologists then performed BAA with AI assistance. Bone age accuracy and root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation. AI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and 97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951. AI improves radiologist's bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance.
Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance. Six board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone age radiographs ranging from 5 to 18 years. Three of those radiologists then performed BAA with AI assistance. Bone age accuracy and root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation. AI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and 97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951. AI improves radiologist's bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance.
Objective Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance. Materials and methods Six board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone age radiographs ranging from 5 to 18 years. Three of those radiologists then performed BAA with AI assistance. Bone age accuracy and root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation. Results AI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and 97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951. Conclusions AI improves radiologist’s bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance.
Audience Academic
Author Tajmir, Shahein H.
Nguyen, Jie C.
Westra, Sjirk J.
Gale, Heather I.
Lee, Hyunkwang
Do, Synho
Gee, Michael S.
Shailam, Randheer
Lim, Ruth
Yune, Sehyo
Author_xml – sequence: 1
  givenname: Shahein H.
  surname: Tajmir
  fullname: Tajmir, Shahein H.
  email: shahein@stajmir.com
  organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School
– sequence: 2
  givenname: Hyunkwang
  surname: Lee
  fullname: Lee, Hyunkwang
  organization: Department of Radiology, Massachusetts General Hospital, Harvard John A. Paulson School of Engineering and Applied Sciences
– sequence: 3
  givenname: Randheer
  surname: Shailam
  fullname: Shailam, Randheer
  organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School
– sequence: 4
  givenname: Heather I.
  surname: Gale
  fullname: Gale, Heather I.
  organization: The Billings Clinic
– sequence: 5
  givenname: Jie C.
  surname: Nguyen
  fullname: Nguyen, Jie C.
  organization: Children’s Hospital of Philadelphia
– sequence: 6
  givenname: Sjirk J.
  surname: Westra
  fullname: Westra, Sjirk J.
  organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School
– sequence: 7
  givenname: Ruth
  surname: Lim
  fullname: Lim, Ruth
  organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School
– sequence: 8
  givenname: Sehyo
  surname: Yune
  fullname: Yune, Sehyo
  organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School
– sequence: 9
  givenname: Michael S.
  surname: Gee
  fullname: Gee, Michael S.
  organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School
– sequence: 10
  givenname: Synho
  surname: Do
  fullname: Do, Synho
  organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30069585$$D View this record in MEDLINE/PubMed
BookMark eNp9kstq3TAQhkVJaU7SPkA3xdBNN051sSVreQi9QaCb7MVYGrkKtnwq-QTO21eu04aGtmghGL5_5p_LBTmLc0RCXjN6xShV7zOlvJU1ZV0tqBA1f0Z2rBG85kyyM7KjQjY1F013Ti5yvqOUKdXKF-RcUCp127U7kvdpCT7YAGMV4oLjGAaMFmvIOeQF3c9oOiRcYAlzrGZf9cVFBQNWCVyYhwSHb7kK0yHN95grsPaYwJ4qiK5yaBNCLuF7SAH6MIbl9JI89zBmfPXwX5Lbjx9urz_XN18_fbne39S2pe1So9QepPOiV03nlVOO07YFlFQ775Chd62XTDja9Oi8BGgta7jXjmvf9OKSvNvSFmPfj5gXM4VsS4cQcT5mw2nHqWZc64K-fYLezccUi7mVYkxrxbtHaoARTYh-Xkqja1KzV4KJhquGF-rqL1R5Dqdgy-h8KPE_BG8eih_7CZ05pDBBOplfSyoA2wCb5pwT-t8Io2Y9BLMdgimHYNZDMGtS9URjw7bB4iaM_1XyTZlLlThgepzFv0U_AOxCx7A
CitedBy_id crossref_primary_10_1186_s12887_022_03727_y
crossref_primary_10_1038_s41598_019_55536_6
crossref_primary_10_1007_s00345_023_04323_0
crossref_primary_10_3390_app13063850
crossref_primary_10_1148_ryai_2019190053
crossref_primary_10_3390_app14188135
crossref_primary_10_3389_fped_2022_986500
crossref_primary_10_1007_s00142_023_00657_4
crossref_primary_10_5812_iranjradiol_136311
crossref_primary_10_3348_kjr_2020_0941
crossref_primary_10_4041_kjod_2022_52_2_112
crossref_primary_10_3345_cep_2020_01333
crossref_primary_10_2139_ssrn_4466664
crossref_primary_10_1097_ALN_0000000000002960
crossref_primary_10_1016_j_ejwf_2023_10_001
crossref_primary_10_2214_AJR_19_21117
crossref_primary_10_1177_0300060520945141
crossref_primary_10_1007_s11548_021_02550_7
crossref_primary_10_1007_s00256_022_04070_0
crossref_primary_10_1007_s00256_019_03284_z
crossref_primary_10_1007_s00414_024_03167_6
crossref_primary_10_1186_s13640_022_00589_3
crossref_primary_10_1371_journal_pone_0269198
crossref_primary_10_1148_ryai_2020190198
crossref_primary_10_1259_dmfr_20190441
crossref_primary_10_1007_s12553_023_00763_1
crossref_primary_10_1007_s00330_023_10543_0
crossref_primary_10_1109_ACCESS_2021_3108219
crossref_primary_10_3348_kjr_2020_1468
crossref_primary_10_1177_09544119231173165
crossref_primary_10_1007_s00256_020_03469_x
crossref_primary_10_1590_1414_431x20198962
crossref_primary_10_1016_j_ocl_2022_11_004
crossref_primary_10_1186_s12859_022_04935_0
crossref_primary_10_1148_radiol_2018180736
crossref_primary_10_1016_j_arthro_2023_12_027
crossref_primary_10_1016_j_rhum_2023_07_018
crossref_primary_10_1016_j_ultrasmedbio_2019_07_681
crossref_primary_10_1055_s_0042_1754341
crossref_primary_10_1007_s00330_022_09330_0
crossref_primary_10_3390_jcm10163591
crossref_primary_10_1016_j_yacr_2020_05_005
crossref_primary_10_1049_ipr2_12675
crossref_primary_10_1049_ipr2_12273
crossref_primary_10_1038_s42003_021_01697_y
crossref_primary_10_1016_j_diii_2023_04_003
crossref_primary_10_1155_2020_8460493
crossref_primary_10_3390_healthcare12131311
crossref_primary_10_1007_s11604_020_01055_8
crossref_primary_10_3389_fradi_2023_1242902
crossref_primary_10_1016_j_jbspin_2022_105493
crossref_primary_10_1038_s41390_024_03282_5
crossref_primary_10_1111_ocr_12514
crossref_primary_10_3389_fphys_2024_1329145
crossref_primary_10_1016_j_mex_2019_06_004
crossref_primary_10_1148_radiol_2021204021
crossref_primary_10_1007_s00247_021_05130_8
crossref_primary_10_3390_diagnostics12061465
crossref_primary_10_1155_2020_8866700
crossref_primary_10_1016_j_yapd_2024_12_003
crossref_primary_10_7717_peerj_8854
crossref_primary_10_1111_acem_15066
crossref_primary_10_3390_diagnostics15030257
crossref_primary_10_1016_j_health_2023_100216
crossref_primary_10_1016_j_jisako_2023_10_015
crossref_primary_10_1097_CM9_0000000000000479
crossref_primary_10_3390_jcm13020344
crossref_primary_10_1097_01_CSS_0000772700_37126_33
crossref_primary_10_1007_s00256_024_04684_6
crossref_primary_10_1016_j_ajodo_2020_08_014
crossref_primary_10_4103_jdmimsu_jdmimsu_436_21
crossref_primary_10_3349_ymj_2022_63_7_683
crossref_primary_10_1259_bjr_20201119
Cites_doi 10.1097/00000441-195909000-00030
10.1001/jama.2016.17216
10.1109/TMI.2008.926067
10.1007/s10278-017-9988-z
10.1016/S0895-6111(00)00026-4
10.1007/s10278-017-9955-8
10.1148/radiol.2017170549
10.1148/radiol.2017170236
10.2307/2346874
10.1164/rccm.201705-0860OC
10.1259/0007-1285-67-801-848
10.21437/interspeech.2017-1673
10.1007/978-3-642-23762-1
10.2214/AJR.17.18224
10.1038/nature21056
10.1038/nature24270
10.1148/radiol.2017162326
10.1109/JTEHM.2015.2419612
10.1109/TMI.2016.2526689
10.1007/978-3-319-10590-1_53
10.1109/42.20363
ContentType Journal Article
Copyright ISS 2018
COPYRIGHT 2019 Springer
Skeletal Radiology is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: ISS 2018
– notice: COPYRIGHT 2019 Springer
– notice: Skeletal Radiology is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7RV
7X7
7XB
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00256-018-3033-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological science database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student

MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-2161
EndPage 283
ExternalDocumentID A731342742
30069585
10_1007_s00256_018_3033_2
Genre Journal Article
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.55
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3O-
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHVE
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IHR
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J5H
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
X7M
YLTOR
Z45
Z7U
Z7X
Z82
Z87
Z8O
Z8V
Z91
Z92
ZGI
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c505t-e69fa6df3b748f7d7d2055ae609dfde1efd5f613d04bedf6aa5c142f9d29f4b3
IEDL.DBID AGYKE
ISSN 0364-2348
1432-2161
IngestDate Thu Oct 02 11:15:49 EDT 2025
Tue Oct 07 05:35:23 EDT 2025
Mon Oct 20 22:34:03 EDT 2025
Mon Oct 20 16:12:55 EDT 2025
Mon Jul 21 05:39:27 EDT 2025
Wed Oct 01 03:54:57 EDT 2025
Thu Apr 24 22:56:23 EDT 2025
Fri Feb 21 02:28:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Augmented intelligence
Pediatric
Bone age
Radiographs
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-e69fa6df3b748f7d7d2055ae609dfde1efd5f613d04bedf6aa5c142f9d29f4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30069585
PQID 2081199728
PQPubID 54043
PageCount 9
ParticipantIDs proquest_miscellaneous_2082091299
proquest_journals_2081199728
gale_infotracmisc_A731342742
gale_infotracacademiconefile_A731342742
pubmed_primary_30069585
crossref_primary_10_1007_s00256_018_3033_2
crossref_citationtrail_10_1007_s00256_018_3033_2
springer_journals_10_1007_s00256_018_3033_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle Journal of the International Skeletal Society A Journal of Radiology, Pathology and Orthopedics
PublicationTitle Skeletal radiology
PublicationTitleAbbrev Skeletal Radiol
PublicationTitleAlternate Skeletal Radiol
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017:162326. https://doi.org/10.1148/radiol.2017162326.
ThodbergHHKreiborgSJuulAPedersenKDThe BoneXpert method for automated determination of skeletal maturityIEEE Trans Med Imaging2009281526610.1109/TMI.2008.92606719116188
SilverDSchrittwieserJSimonyanKMastering the game of go without human knowledgeNature201755076763543591:CAS:528:DC%2BC2sXhs12ltLvM10.1038/nature2427029052630
Johnson M, Schuster M, Le QV, et al. Google’s multilingual neural machine translation system: enabling zero-shot translation. arXiv [csCL]. 2016. http://arxiv.org/abs/1611.04558.
Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology. 2017;170236. https://doi.org/10.1148/radiol.2017170236.
Lee H, Tajmir S, Lee J, et al. Fully automated deep learning system for bone age assessment. J Digit Imaging. 2017. https://doi.org/10.1007/s10278-017-9955-8.
González G, Ash SY, Vegas Sanchez-Ferrero G, et al. Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am J Respir Crit Care Med. 2017. https://doi.org/10.1164/rccm.201705-0860OC.
Lewis-Kraus G. The Great A.I. Awakening. The New York Times. https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html. Published December 14, 2016. Accessed 23 Oct 2017.
AbuzaghlehOBarkanaBDFaezipourMNoninvasive real-time automated skin lesion analysis system for melanoma early detection and preventionIEEE J Transl Eng Health Med20153290031010.1109/JTEHM.2015.241961227170906
Maas R, Rastrow A, Goehner K, Tiwari G, Joseph S, Hoffmeister B. Domain-specific utterance end-point detection for speech recognition. In: Interspeech 2017. 2017. https://doi.org/10.21437/interspeech.2017-1673.
Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T, editors. Computer vision – ECCV 2014. Lecture Notes in Computer Science. Springer International Publishing; 2014. p. 818-833. https://doi.org/10.1007/978-3-319-10590-1_53.
GilsanzVRatibOHand bone age: a digital atlas of skeletal maturity2011Berlin HeidelbergSpringer10.1007/978-3-642-23762-1
van GrinsvenMJJPvan GinnekenBHoyngCBTheelenTSanchezCIFast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus imagesIEEE Trans Med Imaging20163551273128410.1109/TMI.2016.252668926886969
MichaelDJNelsonACHANDX: a model-based system for automatic segmentation of bones from digital hand radiographsIEEE Trans Med Imaging19898164691:STN:280:DC%2BD1c%2Fntlyktg%3D%3D10.1109/42.2036318230501
KimSYOhYJShinJYRhieYJLeeKHComparison of the Greulich-Pyle and Tanner Whitehouse (TW3) methods in bone age assessmentJ Korean Soc Pediatr Endocrinol20081315055https://www.koreamed.org/SearchBasic.php?RID=0113JKSPE/2008.13.1.50&DT=1
EstevaAKuprelBNovoaRADermatologist-level classification of skin cancer with deep neural networksNature201754276391151181:CAS:528:DC%2BC2sXhsFGltrY%3D10.1038/nature2105628117445
GulshanVPengLCoramMDevelopment and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographsJAMA2016316222402241010.1001/jama.2016.1721627898976
Lee H, Troschel FM, Tajmir S, et al. Pixel-level deep segmentation: artificial intelligence quantifies muscle on computed tomography for body morphometric analysis. J Digit Imaging. 2017. https://doi.org/10.1007/s10278-017-9988-z.
CaoFHuangHKPietkaEGilsanzVDigital hand atlas and web-based bone age assessment: system design and implementationComput Med Imaging Graph20002452973071:STN:280:DC%2BD3M%2FhsV2jsA%3D%3D10.1016/S0895-6111(00)00026-4http://www.ncbi.nlm.nih.gov/pubmed/10940607
Bahl M, Barzilay R, Yedidia AB, Locascio NJ, Yu L, Lehman CD. High-risk breast lesions: a machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision. Radiology. 2017:170549. https://doi.org/10.1148/radiol.2017170549.
KingDGSteventonDMO’SullivanMPReproducibility of bone ages when performed by radiology registrars: an audit of Tanner and Whitehouse II versus Greulich and Pyle methodsBr J Radiol1994678018488511:STN:280:DyaK2M%2FktFSisw%3D%3D10.1259/0007-1285-67-801-8487953224
Mukherjee S. A.I. Versus M.D. The New Yorker. https://www.newyorker.com/magazine/2017/04/03/ai-versus-md. Published March 27, 2017. Accessed 23 Oct 2017.
EhrenbergASCJ R Stat Soc Ser C Appl Stat19772618010.2307/2346874
Kim JR, Shim WH, Yoon HM, et al. Computerized bone age estimation using deep learning-based program: evaluation of the accuracy and efficiency. AJR Am J Roentgenol. 2017:1-7. https://doi.org/10.2214/AJR.17.18224.
GreulichWWPyleSIRadiographic atlas of skeletal development of the hand and wristAm J Med Sci1959238339310.1097/00000441-195909000-00030
3033_CR19
3033_CR18
SY Kim (3033_CR24) 2008; 13
WW Greulich (3033_CR9) 1959; 238
3033_CR11
V Gulshan (3033_CR4) 2016; 316
3033_CR12
3033_CR17
3033_CR16
V Gilsanz (3033_CR13) 2011
O Abuzaghleh (3033_CR14) 2015; 3
HH Thodberg (3033_CR21) 2009; 28
F Cao (3033_CR23) 2000; 24
A Esteva (3033_CR5) 2017; 542
DJ Michael (3033_CR20) 1989; 8
3033_CR2
3033_CR1
ASC Ehrenberg (3033_CR10) 1977; 26
3033_CR6
MJJP Grinsven van (3033_CR15) 2016; 35
3033_CR25
3033_CR8
3033_CR7
DG King (3033_CR22) 1994; 67
D Silver (3033_CR3) 2017; 550
References_xml – reference: Lewis-Kraus G. The Great A.I. Awakening. The New York Times. https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html. Published December 14, 2016. Accessed 23 Oct 2017.
– reference: Johnson M, Schuster M, Le QV, et al. Google’s multilingual neural machine translation system: enabling zero-shot translation. arXiv [csCL]. 2016. http://arxiv.org/abs/1611.04558.
– reference: van GrinsvenMJJPvan GinnekenBHoyngCBTheelenTSanchezCIFast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus imagesIEEE Trans Med Imaging20163551273128410.1109/TMI.2016.252668926886969
– reference: CaoFHuangHKPietkaEGilsanzVDigital hand atlas and web-based bone age assessment: system design and implementationComput Med Imaging Graph20002452973071:STN:280:DC%2BD3M%2FhsV2jsA%3D%3D10.1016/S0895-6111(00)00026-4http://www.ncbi.nlm.nih.gov/pubmed/10940607
– reference: ThodbergHHKreiborgSJuulAPedersenKDThe BoneXpert method for automated determination of skeletal maturityIEEE Trans Med Imaging2009281526610.1109/TMI.2008.92606719116188
– reference: Maas R, Rastrow A, Goehner K, Tiwari G, Joseph S, Hoffmeister B. Domain-specific utterance end-point detection for speech recognition. In: Interspeech 2017. 2017. https://doi.org/10.21437/interspeech.2017-1673.
– reference: Lee H, Troschel FM, Tajmir S, et al. Pixel-level deep segmentation: artificial intelligence quantifies muscle on computed tomography for body morphometric analysis. J Digit Imaging. 2017. https://doi.org/10.1007/s10278-017-9988-z.
– reference: Bahl M, Barzilay R, Yedidia AB, Locascio NJ, Yu L, Lehman CD. High-risk breast lesions: a machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision. Radiology. 2017:170549. https://doi.org/10.1148/radiol.2017170549.
– reference: Lee H, Tajmir S, Lee J, et al. Fully automated deep learning system for bone age assessment. J Digit Imaging. 2017. https://doi.org/10.1007/s10278-017-9955-8.
– reference: KingDGSteventonDMO’SullivanMPReproducibility of bone ages when performed by radiology registrars: an audit of Tanner and Whitehouse II versus Greulich and Pyle methodsBr J Radiol1994678018488511:STN:280:DyaK2M%2FktFSisw%3D%3D10.1259/0007-1285-67-801-8487953224
– reference: AbuzaghlehOBarkanaBDFaezipourMNoninvasive real-time automated skin lesion analysis system for melanoma early detection and preventionIEEE J Transl Eng Health Med20153290031010.1109/JTEHM.2015.241961227170906
– reference: Mukherjee S. A.I. Versus M.D. The New Yorker. https://www.newyorker.com/magazine/2017/04/03/ai-versus-md. Published March 27, 2017. Accessed 23 Oct 2017.
– reference: GilsanzVRatibOHand bone age: a digital atlas of skeletal maturity2011Berlin HeidelbergSpringer10.1007/978-3-642-23762-1
– reference: GreulichWWPyleSIRadiographic atlas of skeletal development of the hand and wristAm J Med Sci1959238339310.1097/00000441-195909000-00030
– reference: González G, Ash SY, Vegas Sanchez-Ferrero G, et al. Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am J Respir Crit Care Med. 2017. https://doi.org/10.1164/rccm.201705-0860OC.
– reference: KimSYOhYJShinJYRhieYJLeeKHComparison of the Greulich-Pyle and Tanner Whitehouse (TW3) methods in bone age assessmentJ Korean Soc Pediatr Endocrinol20081315055https://www.koreamed.org/SearchBasic.php?RID=0113JKSPE/2008.13.1.50&DT=1
– reference: Kim JR, Shim WH, Yoon HM, et al. Computerized bone age estimation using deep learning-based program: evaluation of the accuracy and efficiency. AJR Am J Roentgenol. 2017:1-7. https://doi.org/10.2214/AJR.17.18224.
– reference: Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T, editors. Computer vision – ECCV 2014. Lecture Notes in Computer Science. Springer International Publishing; 2014. p. 818-833. https://doi.org/10.1007/978-3-319-10590-1_53.
– reference: GulshanVPengLCoramMDevelopment and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographsJAMA2016316222402241010.1001/jama.2016.1721627898976
– reference: Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology. 2017;170236. https://doi.org/10.1148/radiol.2017170236.
– reference: SilverDSchrittwieserJSimonyanKMastering the game of go without human knowledgeNature201755076763543591:CAS:528:DC%2BC2sXhs12ltLvM10.1038/nature2427029052630
– reference: EstevaAKuprelBNovoaRADermatologist-level classification of skin cancer with deep neural networksNature201754276391151181:CAS:528:DC%2BC2sXhsFGltrY%3D10.1038/nature2105628117445
– reference: EhrenbergASCJ R Stat Soc Ser C Appl Stat19772618010.2307/2346874
– reference: Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017:162326. https://doi.org/10.1148/radiol.2017162326.
– reference: MichaelDJNelsonACHANDX: a model-based system for automatic segmentation of bones from digital hand radiographsIEEE Trans Med Imaging19898164691:STN:280:DC%2BD1c%2Fntlyktg%3D%3D10.1109/42.2036318230501
– volume: 238
  start-page: 393
  issue: 3
  year: 1959
  ident: 3033_CR9
  publication-title: Am J Med Sci
  doi: 10.1097/00000441-195909000-00030
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  ident: 3033_CR4
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 28
  start-page: 52
  issue: 1
  year: 2009
  ident: 3033_CR21
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2008.926067
– ident: 3033_CR18
  doi: 10.1007/s10278-017-9988-z
– volume: 24
  start-page: 297
  issue: 5
  year: 2000
  ident: 3033_CR23
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/S0895-6111(00)00026-4
– ident: 3033_CR11
  doi: 10.1007/s10278-017-9955-8
– ident: 3033_CR19
  doi: 10.1148/radiol.2017170549
– ident: 3033_CR8
  doi: 10.1148/radiol.2017170236
– ident: 3033_CR6
– volume: 26
  start-page: 80
  issue: 1
  year: 1977
  ident: 3033_CR10
  publication-title: J R Stat Soc Ser C Appl Stat
  doi: 10.2307/2346874
– ident: 3033_CR17
  doi: 10.1164/rccm.201705-0860OC
– volume: 67
  start-page: 848
  issue: 801
  year: 1994
  ident: 3033_CR22
  publication-title: Br J Radiol
  doi: 10.1259/0007-1285-67-801-848
– ident: 3033_CR2
  doi: 10.21437/interspeech.2017-1673
– volume-title: Hand bone age: a digital atlas of skeletal maturity
  year: 2011
  ident: 3033_CR13
  doi: 10.1007/978-3-642-23762-1
– volume: 13
  start-page: 50
  issue: 1
  year: 2008
  ident: 3033_CR24
  publication-title: J Korean Soc Pediatr Endocrinol
– ident: 3033_CR25
  doi: 10.2214/AJR.17.18224
– ident: 3033_CR1
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 3033_CR5
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 550
  start-page: 354
  issue: 7676
  year: 2017
  ident: 3033_CR3
  publication-title: Nature
  doi: 10.1038/nature24270
– ident: 3033_CR16
  doi: 10.1148/radiol.2017162326
– volume: 3
  start-page: 2900310
  year: 2015
  ident: 3033_CR14
  publication-title: IEEE J Transl Eng Health Med
  doi: 10.1109/JTEHM.2015.2419612
– ident: 3033_CR7
– volume: 35
  start-page: 1273
  issue: 5
  year: 2016
  ident: 3033_CR15
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2526689
– ident: 3033_CR12
  doi: 10.1007/978-3-319-10590-1_53
– volume: 8
  start-page: 64
  issue: 1
  year: 1989
  ident: 3033_CR20
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.20363
SSID ssj0017756
Score 2.5065956
Snippet Objective Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated...
Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated...
Objective Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated...
ObjectiveRadiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 275
SubjectTerms Accuracy
Adolescent
Age
Age Determination by Skeleton - methods
Algorithms
Artificial Intelligence
Artificial neural networks
Bone Diseases, Metabolic - diagnostic imaging
Child
Child, Preschool
Coefficient of variation
Comparative analysis
Correlation analysis
Correlation coefficients
Data mining
Deep Learning
Error analysis
Female
Humans
Imaging
Machine learning
Male
Medicine
Medicine & Public Health
Metabolic disorders
Neural networks
Nuclear Medicine
Orthopedics
Pathology
Pediatrics
Performance enhancement
Radiographic Image Interpretation, Computer-Assisted - methods
Radiographs
Radiography
Radiology
Retrospective Studies
Scientific Article
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3raxQxEB_qFcQv4tvTKhEEQQnsJtlHPohUaSmCh0iFfluyOwkclL16eyf0v3cm-7hewX7NY5lkJjOTzOxvAN6nPgmom1Sm3hp-ujGyxNzKWhVF1pAHn2HM8l3kZ7_N94vs4gAW478wnFY56sSoqHHV8Bs5XdLLlJMiVPnl6o_kqlEcXR1LaLihtAJ-jhBj9-BQMTLWDA6_nix-_priCkTAEL00UmlTjnHOJMKKkvmnq3UpdSxwtmepbuvrGwbrVgQ1GqbTR_Bw8CjFcS8Cj-HAt0_g_o8hZv4UOu7pcSLE8gYApyS3mXmMsXWXeChWQdSr1gvSNGLtcNmDWndiGd8ffCdoG7Zr11wL16LA6Hd21PyXrt096vf1Mzg_PTn_diaHUguyIRdoI31ug8sx6LowZSiwQJVkmfN5YjGgT33ALJDlx8TUHkPuHDNSBYvKBlPr5zBribKXIGpLOsF6bxGDwbxwjjwSVyq0tdZ5ruaQjLtaNQMMOVfDuKwmAOXIiIoYUTEjKprycZpy1WNw3DX4A7Oq4vNJ323c8JsBUcdIV9VxoVNtOEA9h6O9kXSumv3ukdnVcK67aieFc3g3dfNMzlVr_WobxyhaM9n5ObzohWQiWzMyNN3Q5vBplJrdx_-7pld3k_IaHpAbZ_tc8iOYbdZb_4ZcpU39dpD_f4k3D7c
  priority: 102
  providerName: ProQuest
Title Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability
URI https://link.springer.com/article/10.1007/s00256-018-3033-2
https://www.ncbi.nlm.nih.gov/pubmed/30069585
https://www.proquest.com/docview/2081199728
https://www.proquest.com/docview/2082091299
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-2161
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017756
  issn: 0364-2348
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-2161
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0017756
  issn: 0364-2348
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-2161
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017756
  issn: 0364-2348
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-2161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017756
  issn: 0364-2348
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bixMxFD64XRBfvF9G1xJBEJRZpsnc8thKu4tiEelCfRoyOQmUlal0WmH99Z5kLrstKuzLDOQ2Sebk5EvOyReAtyMTWRR6FI6MjN3WTRzmmMqw5FmWaELwCXov33l6fhF_WibL9hx33Xm7dyZJr6n7w25-eqalbx4KfwHZERx7uq0BHI_Pvn-e9sYD-kprooxDLuK8M2b-rZC96ehQKd-YlQ7MpH72mT2ARVfvxunk8nS3LU_17wNKx1s27CHcb9EoGzfi8wjumOox3P3S2tufQO1iGo4JtrpB3hkS5HbygT702mmRrS0r15VhpKXYRuGqIcSu2crvXZiaKa13G6WvmKqQocesNQX_oiV7wxh-9RQWs-ni43nYXtMQaoJP29Ck0qoUrSizOLcZZsijJFEmjSRaNCNjMbGEGjCKS4M2VcoJAbcSubRxKZ7BoKKavQBWStIn0hiJaGNMM6UIzaicoyyFSFMeQNT9rEK3FObuJo0fRU--7PuyoL4sXF8WlOV9n-Vnw9_xv8TvnAQUbmxTuVq1RxSodo4lqxhnYiRiZ9wO4GQvJY1JvR_dyVDR6oS64IS-nFsPzwN400e7nM7PrTLrnU_Dqc2EEQJ43sheX23hWKVpdRfAh06Orgv_Z5te3ir1K7hHiFA2buknMNhuduY1oa5tOYSjbJnRM5-dDWnEzSaT-bAdefSeTOdfv1HsBR__AYxmKCg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA61BfVFvNbRqhEUQRmYSTKXPBSp2rK17SKyQt9CZk4CCzJbd3aV_XH-N08ymdluwb71NTeSnORcck6-Q8ib1CQWeJ3GqZHCPd2IuIRcxhUriqxGDT4DH-U7zkc_xNfz7HyL_O3_wriwyp4nekYNs9q9kaORXqYuKIKVHy9-xS5rlPOu9ik0dEitAPseYix87Dgxqz9owrX7x1-Q3m8ZOzqcfB7FIctAXKP0X8Qml1bnYHlViNIWUABLskybPJFgwaTGQmZR6EEiKgM219qtgVkJTFpRcRz2FtkRXEi0_XY-HY6_fR_cGLje4CwVMeOi7N2qiUcxRW0DLfky5j6f2oZgvCoeLsnHKw5bLweP7pN7QYGlB92Je0C2TPOQ3D4LLvpHpHU1HSwFnV7C-4xRS3dHCnzpOs6RziytZo2hyNjoXMO0w9Bu6dQ_d5iW4q4v57peUd0ABa_mtlj8G638DmR89ZhMbmLPn5DtBmf2lNBKIguSxkgAKyAvtEYFSJcMZMV5nrOIJP2uqjqgnrvkGz_VgNfsCaGQEMoRQmGX90OXiw7y47rG7xyplGMHOG6tw68GnJ0D1lIHBU-5cP7wiOxttMRrXG9W98RWgY20an3oI_J6qHY9XWhcY2ZL34bhmlGtiMhud0iGaXMHRI0GYUQ-9KdmPfh_1_Ts-qm8IndGk7NTdXo8PnlO7qIGKbsw9j2yvZgvzQvU0hbVy3AXKFE3fPv-AV1BTsk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA61QvFFvDtaNYIiKMGZJHPJg0ixLq3V4kOFfQuZnAQWZLbu7Cr70_x3nmQu2y3Yt75OLiQ5J-eSc-Y7hLzKXOpB2IxlTsnwdCNZBYViNS_L3KIFn0PM8j0tjn7IL9N8ukP-Dv_ChLTKQSZGQQ1zG97I0UmvspAUwav3vk-L-H44-Xj-i4UKUiHSOpTT6FjkxK3_oPvWfjg-RFq_5nzy-ezTEesrDDCLmn_JXKG8KcCLupSVL6EEnua5cUWqwIPLnIfco8KDVNYOfGFMWD_3CrjyshY47Q1ysxRChWzCcjr6ehnutA-TSsaFrIaAahrxS9HOQB--YiJWUttSiZcVwwXNeClUGzXg5A653Zuu9KDjtbtkxzX3yN63Pjh_n7ShpQOkoLMLSJ8M7fPATBC_bjIc6dzTet44iiKNLgzMOvTsls7iQ4drqbF2tTB2TU0DFKKB2-Ln3-jfd_Di6wfk7DpO_CHZbXBljwmtFQof5ZwC8BKK0hg0fUzFQdVCFAVPSDqcqrY93nkou_FTj0jNkRAaCaEDITQOeTsOOe_APq7q_CaQSgdBgPNa0__PgKsLkFr6oBSZkCESnpD9rZ54ge1280Bs3QuQVm_YPSEvx-YwMiTFNW6-in047hkNioQ86phkXLYIENToCibk3cA1m8n_u6cnVy_lBdnDO6e_Hp-ePCW30HRUXf76PtldLlbuGZpny_p5vAiU6Gu-eP8ANnBMYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence-assisted+interpretation+of+bone+age+radiographs+improves+accuracy+and+decreases+variability&rft.jtitle=Skeletal+radiology&rft.au=Tajmir%2C+Shahein+H&rft.au=Lee%2C+Hyunkwang&rft.au=Shailam%2C+Randheer&rft.au=Gale%2C+Heather+I&rft.date=2019-02-01&rft.pub=Springer&rft.issn=0364-2348&rft.volume=48&rft.issue=2&rft.spage=275&rft_id=info:doi/10.1007%2Fs00256-018-3033-2&rft.externalDocID=A731342742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-2348&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-2348&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-2348&client=summon