Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability
Objective Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of...
Saved in:
| Published in | Skeletal radiology Vol. 48; no. 2; pp. 275 - 283 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2019
Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0364-2348 1432-2161 1432-2161 |
| DOI | 10.1007/s00256-018-3033-2 |
Cover
| Abstract | Objective
Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance.
Materials and methods
Six board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone age radiographs ranging from 5 to 18 years. Three of those radiologists then performed BAA with AI assistance. Bone age accuracy and root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation.
Results
AI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and 97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951.
Conclusions
AI improves radiologist’s bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance. |
|---|---|
| AbstractList | ObjectiveRadiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance.Materials and methodsSix board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone age radiographs ranging from 5 to 18 years. Three of those radiologists then performed BAA with AI assistance. Bone age accuracy and root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation.ResultsAI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and 97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951.ConclusionsAI improves radiologist’s bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance. Objective Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance. Materials and methods Six board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone age radiographs ranging from 5 to 18 years. Three of those radiologists then performed BAA with AI assistance. Bone age accuracy and root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation. Results AI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and 97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951. Conclusions AI improves radiologist's bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance. Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance.OBJECTIVERadiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance.Six board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone age radiographs ranging from 5 to 18 years. Three of those radiologists then performed BAA with AI assistance. Bone age accuracy and root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation.MATERIALS AND METHODSSix board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone age radiographs ranging from 5 to 18 years. Three of those radiologists then performed BAA with AI assistance. Bone age accuracy and root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation.AI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and 97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951.RESULTSAI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and 97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951.AI improves radiologist's bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance.CONCLUSIONSAI improves radiologist's bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance. Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance. Six board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone age radiographs ranging from 5 to 18 years. Three of those radiologists then performed BAA with AI assistance. Bone age accuracy and root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation. AI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and 97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951. AI improves radiologist's bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance. Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance. Six board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone age radiographs ranging from 5 to 18 years. Three of those radiologists then performed BAA with AI assistance. Bone age accuracy and root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation. AI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and 97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951. AI improves radiologist's bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance. Objective Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance. Materials and methods Six board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone age radiographs ranging from 5 to 18 years. Three of those radiologists then performed BAA with AI assistance. Bone age accuracy and root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation. Results AI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and 97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951. Conclusions AI improves radiologist’s bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance. |
| Audience | Academic |
| Author | Tajmir, Shahein H. Nguyen, Jie C. Westra, Sjirk J. Gale, Heather I. Lee, Hyunkwang Do, Synho Gee, Michael S. Shailam, Randheer Lim, Ruth Yune, Sehyo |
| Author_xml | – sequence: 1 givenname: Shahein H. surname: Tajmir fullname: Tajmir, Shahein H. email: shahein@stajmir.com organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School – sequence: 2 givenname: Hyunkwang surname: Lee fullname: Lee, Hyunkwang organization: Department of Radiology, Massachusetts General Hospital, Harvard John A. Paulson School of Engineering and Applied Sciences – sequence: 3 givenname: Randheer surname: Shailam fullname: Shailam, Randheer organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School – sequence: 4 givenname: Heather I. surname: Gale fullname: Gale, Heather I. organization: The Billings Clinic – sequence: 5 givenname: Jie C. surname: Nguyen fullname: Nguyen, Jie C. organization: Children’s Hospital of Philadelphia – sequence: 6 givenname: Sjirk J. surname: Westra fullname: Westra, Sjirk J. organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School – sequence: 7 givenname: Ruth surname: Lim fullname: Lim, Ruth organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School – sequence: 8 givenname: Sehyo surname: Yune fullname: Yune, Sehyo organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School – sequence: 9 givenname: Michael S. surname: Gee fullname: Gee, Michael S. organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School – sequence: 10 givenname: Synho surname: Do fullname: Do, Synho organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30069585$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstq3TAQhkVJaU7SPkA3xdBNN051sSVreQi9QaCb7MVYGrkKtnwq-QTO21eu04aGtmghGL5_5p_LBTmLc0RCXjN6xShV7zOlvJU1ZV0tqBA1f0Z2rBG85kyyM7KjQjY1F013Ti5yvqOUKdXKF-RcUCp127U7kvdpCT7YAGMV4oLjGAaMFmvIOeQF3c9oOiRcYAlzrGZf9cVFBQNWCVyYhwSHb7kK0yHN95grsPaYwJ4qiK5yaBNCLuF7SAH6MIbl9JI89zBmfPXwX5Lbjx9urz_XN18_fbne39S2pe1So9QepPOiV03nlVOO07YFlFQ775Chd62XTDja9Oi8BGgta7jXjmvf9OKSvNvSFmPfj5gXM4VsS4cQcT5mw2nHqWZc64K-fYLezccUi7mVYkxrxbtHaoARTYh-Xkqja1KzV4KJhquGF-rqL1R5Dqdgy-h8KPE_BG8eih_7CZ05pDBBOplfSyoA2wCb5pwT-t8Io2Y9BLMdgimHYNZDMGtS9URjw7bB4iaM_1XyTZlLlThgepzFv0U_AOxCx7A |
| CitedBy_id | crossref_primary_10_1186_s12887_022_03727_y crossref_primary_10_1038_s41598_019_55536_6 crossref_primary_10_1007_s00345_023_04323_0 crossref_primary_10_3390_app13063850 crossref_primary_10_1148_ryai_2019190053 crossref_primary_10_3390_app14188135 crossref_primary_10_3389_fped_2022_986500 crossref_primary_10_1007_s00142_023_00657_4 crossref_primary_10_5812_iranjradiol_136311 crossref_primary_10_3348_kjr_2020_0941 crossref_primary_10_4041_kjod_2022_52_2_112 crossref_primary_10_3345_cep_2020_01333 crossref_primary_10_2139_ssrn_4466664 crossref_primary_10_1097_ALN_0000000000002960 crossref_primary_10_1016_j_ejwf_2023_10_001 crossref_primary_10_2214_AJR_19_21117 crossref_primary_10_1177_0300060520945141 crossref_primary_10_1007_s11548_021_02550_7 crossref_primary_10_1007_s00256_022_04070_0 crossref_primary_10_1007_s00256_019_03284_z crossref_primary_10_1007_s00414_024_03167_6 crossref_primary_10_1186_s13640_022_00589_3 crossref_primary_10_1371_journal_pone_0269198 crossref_primary_10_1148_ryai_2020190198 crossref_primary_10_1259_dmfr_20190441 crossref_primary_10_1007_s12553_023_00763_1 crossref_primary_10_1007_s00330_023_10543_0 crossref_primary_10_1109_ACCESS_2021_3108219 crossref_primary_10_3348_kjr_2020_1468 crossref_primary_10_1177_09544119231173165 crossref_primary_10_1007_s00256_020_03469_x crossref_primary_10_1590_1414_431x20198962 crossref_primary_10_1016_j_ocl_2022_11_004 crossref_primary_10_1186_s12859_022_04935_0 crossref_primary_10_1148_radiol_2018180736 crossref_primary_10_1016_j_arthro_2023_12_027 crossref_primary_10_1016_j_rhum_2023_07_018 crossref_primary_10_1016_j_ultrasmedbio_2019_07_681 crossref_primary_10_1055_s_0042_1754341 crossref_primary_10_1007_s00330_022_09330_0 crossref_primary_10_3390_jcm10163591 crossref_primary_10_1016_j_yacr_2020_05_005 crossref_primary_10_1049_ipr2_12675 crossref_primary_10_1049_ipr2_12273 crossref_primary_10_1038_s42003_021_01697_y crossref_primary_10_1016_j_diii_2023_04_003 crossref_primary_10_1155_2020_8460493 crossref_primary_10_3390_healthcare12131311 crossref_primary_10_1007_s11604_020_01055_8 crossref_primary_10_3389_fradi_2023_1242902 crossref_primary_10_1016_j_jbspin_2022_105493 crossref_primary_10_1038_s41390_024_03282_5 crossref_primary_10_1111_ocr_12514 crossref_primary_10_3389_fphys_2024_1329145 crossref_primary_10_1016_j_mex_2019_06_004 crossref_primary_10_1148_radiol_2021204021 crossref_primary_10_1007_s00247_021_05130_8 crossref_primary_10_3390_diagnostics12061465 crossref_primary_10_1155_2020_8866700 crossref_primary_10_1016_j_yapd_2024_12_003 crossref_primary_10_7717_peerj_8854 crossref_primary_10_1111_acem_15066 crossref_primary_10_3390_diagnostics15030257 crossref_primary_10_1016_j_health_2023_100216 crossref_primary_10_1016_j_jisako_2023_10_015 crossref_primary_10_1097_CM9_0000000000000479 crossref_primary_10_3390_jcm13020344 crossref_primary_10_1097_01_CSS_0000772700_37126_33 crossref_primary_10_1007_s00256_024_04684_6 crossref_primary_10_1016_j_ajodo_2020_08_014 crossref_primary_10_4103_jdmimsu_jdmimsu_436_21 crossref_primary_10_3349_ymj_2022_63_7_683 crossref_primary_10_1259_bjr_20201119 |
| Cites_doi | 10.1097/00000441-195909000-00030 10.1001/jama.2016.17216 10.1109/TMI.2008.926067 10.1007/s10278-017-9988-z 10.1016/S0895-6111(00)00026-4 10.1007/s10278-017-9955-8 10.1148/radiol.2017170549 10.1148/radiol.2017170236 10.2307/2346874 10.1164/rccm.201705-0860OC 10.1259/0007-1285-67-801-848 10.21437/interspeech.2017-1673 10.1007/978-3-642-23762-1 10.2214/AJR.17.18224 10.1038/nature21056 10.1038/nature24270 10.1148/radiol.2017162326 10.1109/JTEHM.2015.2419612 10.1109/TMI.2016.2526689 10.1007/978-3-319-10590-1_53 10.1109/42.20363 |
| ContentType | Journal Article |
| Copyright | ISS 2018 COPYRIGHT 2019 Springer Skeletal Radiology is a copyright of Springer, (2018). All Rights Reserved. |
| Copyright_xml | – notice: ISS 2018 – notice: COPYRIGHT 2019 Springer – notice: Skeletal Radiology is a copyright of Springer, (2018). All Rights Reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7RV 7X7 7XB 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1007/s00256-018-3033-2 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection ProQuest Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological science database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1432-2161 |
| EndPage | 283 |
| ExternalDocumentID | A731342742 30069585 10_1007_s00256_018_3033_2 |
| Genre | Journal Article |
| GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .55 .86 .GJ .VR 04C 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3O- 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 78A 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHVE ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIHBH EIOEI EJD EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J5H JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW X7M YLTOR Z45 Z7U Z7X Z82 Z87 Z8O Z8V Z91 Z92 ZGI ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7QP 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 |
| ID | FETCH-LOGICAL-c505t-e69fa6df3b748f7d7d2055ae609dfde1efd5f613d04bedf6aa5c142f9d29f4b3 |
| IEDL.DBID | AGYKE |
| ISSN | 0364-2348 1432-2161 |
| IngestDate | Thu Oct 02 11:15:49 EDT 2025 Tue Oct 07 05:35:23 EDT 2025 Mon Oct 20 22:34:03 EDT 2025 Mon Oct 20 16:12:55 EDT 2025 Mon Jul 21 05:39:27 EDT 2025 Wed Oct 01 03:54:57 EDT 2025 Thu Apr 24 22:56:23 EDT 2025 Fri Feb 21 02:28:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Augmented intelligence Pediatric Bone age Radiographs Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c505t-e69fa6df3b748f7d7d2055ae609dfde1efd5f613d04bedf6aa5c142f9d29f4b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 30069585 |
| PQID | 2081199728 |
| PQPubID | 54043 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2082091299 proquest_journals_2081199728 gale_infotracmisc_A731342742 gale_infotracacademiconefile_A731342742 pubmed_primary_30069585 crossref_primary_10_1007_s00256_018_3033_2 crossref_citationtrail_10_1007_s00256_018_3033_2 springer_journals_10_1007_s00256_018_3033_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-01 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationSubtitle | Journal of the International Skeletal Society A Journal of Radiology, Pathology and Orthopedics |
| PublicationTitle | Skeletal radiology |
| PublicationTitleAbbrev | Skeletal Radiol |
| PublicationTitleAlternate | Skeletal Radiol |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
| References | Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017:162326. https://doi.org/10.1148/radiol.2017162326. ThodbergHHKreiborgSJuulAPedersenKDThe BoneXpert method for automated determination of skeletal maturityIEEE Trans Med Imaging2009281526610.1109/TMI.2008.92606719116188 SilverDSchrittwieserJSimonyanKMastering the game of go without human knowledgeNature201755076763543591:CAS:528:DC%2BC2sXhs12ltLvM10.1038/nature2427029052630 Johnson M, Schuster M, Le QV, et al. Google’s multilingual neural machine translation system: enabling zero-shot translation. arXiv [csCL]. 2016. http://arxiv.org/abs/1611.04558. Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology. 2017;170236. https://doi.org/10.1148/radiol.2017170236. Lee H, Tajmir S, Lee J, et al. Fully automated deep learning system for bone age assessment. J Digit Imaging. 2017. https://doi.org/10.1007/s10278-017-9955-8. González G, Ash SY, Vegas Sanchez-Ferrero G, et al. Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am J Respir Crit Care Med. 2017. https://doi.org/10.1164/rccm.201705-0860OC. Lewis-Kraus G. The Great A.I. Awakening. The New York Times. https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html. Published December 14, 2016. Accessed 23 Oct 2017. AbuzaghlehOBarkanaBDFaezipourMNoninvasive real-time automated skin lesion analysis system for melanoma early detection and preventionIEEE J Transl Eng Health Med20153290031010.1109/JTEHM.2015.241961227170906 Maas R, Rastrow A, Goehner K, Tiwari G, Joseph S, Hoffmeister B. Domain-specific utterance end-point detection for speech recognition. In: Interspeech 2017. 2017. https://doi.org/10.21437/interspeech.2017-1673. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T, editors. Computer vision – ECCV 2014. Lecture Notes in Computer Science. Springer International Publishing; 2014. p. 818-833. https://doi.org/10.1007/978-3-319-10590-1_53. GilsanzVRatibOHand bone age: a digital atlas of skeletal maturity2011Berlin HeidelbergSpringer10.1007/978-3-642-23762-1 van GrinsvenMJJPvan GinnekenBHoyngCBTheelenTSanchezCIFast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus imagesIEEE Trans Med Imaging20163551273128410.1109/TMI.2016.252668926886969 MichaelDJNelsonACHANDX: a model-based system for automatic segmentation of bones from digital hand radiographsIEEE Trans Med Imaging19898164691:STN:280:DC%2BD1c%2Fntlyktg%3D%3D10.1109/42.2036318230501 KimSYOhYJShinJYRhieYJLeeKHComparison of the Greulich-Pyle and Tanner Whitehouse (TW3) methods in bone age assessmentJ Korean Soc Pediatr Endocrinol20081315055https://www.koreamed.org/SearchBasic.php?RID=0113JKSPE/2008.13.1.50&DT=1 EstevaAKuprelBNovoaRADermatologist-level classification of skin cancer with deep neural networksNature201754276391151181:CAS:528:DC%2BC2sXhsFGltrY%3D10.1038/nature2105628117445 GulshanVPengLCoramMDevelopment and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographsJAMA2016316222402241010.1001/jama.2016.1721627898976 Lee H, Troschel FM, Tajmir S, et al. Pixel-level deep segmentation: artificial intelligence quantifies muscle on computed tomography for body morphometric analysis. J Digit Imaging. 2017. https://doi.org/10.1007/s10278-017-9988-z. CaoFHuangHKPietkaEGilsanzVDigital hand atlas and web-based bone age assessment: system design and implementationComput Med Imaging Graph20002452973071:STN:280:DC%2BD3M%2FhsV2jsA%3D%3D10.1016/S0895-6111(00)00026-4http://www.ncbi.nlm.nih.gov/pubmed/10940607 Bahl M, Barzilay R, Yedidia AB, Locascio NJ, Yu L, Lehman CD. High-risk breast lesions: a machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision. Radiology. 2017:170549. https://doi.org/10.1148/radiol.2017170549. KingDGSteventonDMO’SullivanMPReproducibility of bone ages when performed by radiology registrars: an audit of Tanner and Whitehouse II versus Greulich and Pyle methodsBr J Radiol1994678018488511:STN:280:DyaK2M%2FktFSisw%3D%3D10.1259/0007-1285-67-801-8487953224 Mukherjee S. A.I. Versus M.D. The New Yorker. https://www.newyorker.com/magazine/2017/04/03/ai-versus-md. Published March 27, 2017. Accessed 23 Oct 2017. EhrenbergASCJ R Stat Soc Ser C Appl Stat19772618010.2307/2346874 Kim JR, Shim WH, Yoon HM, et al. Computerized bone age estimation using deep learning-based program: evaluation of the accuracy and efficiency. AJR Am J Roentgenol. 2017:1-7. https://doi.org/10.2214/AJR.17.18224. GreulichWWPyleSIRadiographic atlas of skeletal development of the hand and wristAm J Med Sci1959238339310.1097/00000441-195909000-00030 3033_CR19 3033_CR18 SY Kim (3033_CR24) 2008; 13 WW Greulich (3033_CR9) 1959; 238 3033_CR11 V Gulshan (3033_CR4) 2016; 316 3033_CR12 3033_CR17 3033_CR16 V Gilsanz (3033_CR13) 2011 O Abuzaghleh (3033_CR14) 2015; 3 HH Thodberg (3033_CR21) 2009; 28 F Cao (3033_CR23) 2000; 24 A Esteva (3033_CR5) 2017; 542 DJ Michael (3033_CR20) 1989; 8 3033_CR2 3033_CR1 ASC Ehrenberg (3033_CR10) 1977; 26 3033_CR6 MJJP Grinsven van (3033_CR15) 2016; 35 3033_CR25 3033_CR8 3033_CR7 DG King (3033_CR22) 1994; 67 D Silver (3033_CR3) 2017; 550 |
| References_xml | – reference: Lewis-Kraus G. The Great A.I. Awakening. The New York Times. https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html. Published December 14, 2016. Accessed 23 Oct 2017. – reference: Johnson M, Schuster M, Le QV, et al. Google’s multilingual neural machine translation system: enabling zero-shot translation. arXiv [csCL]. 2016. http://arxiv.org/abs/1611.04558. – reference: van GrinsvenMJJPvan GinnekenBHoyngCBTheelenTSanchezCIFast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus imagesIEEE Trans Med Imaging20163551273128410.1109/TMI.2016.252668926886969 – reference: CaoFHuangHKPietkaEGilsanzVDigital hand atlas and web-based bone age assessment: system design and implementationComput Med Imaging Graph20002452973071:STN:280:DC%2BD3M%2FhsV2jsA%3D%3D10.1016/S0895-6111(00)00026-4http://www.ncbi.nlm.nih.gov/pubmed/10940607 – reference: ThodbergHHKreiborgSJuulAPedersenKDThe BoneXpert method for automated determination of skeletal maturityIEEE Trans Med Imaging2009281526610.1109/TMI.2008.92606719116188 – reference: Maas R, Rastrow A, Goehner K, Tiwari G, Joseph S, Hoffmeister B. Domain-specific utterance end-point detection for speech recognition. In: Interspeech 2017. 2017. https://doi.org/10.21437/interspeech.2017-1673. – reference: Lee H, Troschel FM, Tajmir S, et al. Pixel-level deep segmentation: artificial intelligence quantifies muscle on computed tomography for body morphometric analysis. J Digit Imaging. 2017. https://doi.org/10.1007/s10278-017-9988-z. – reference: Bahl M, Barzilay R, Yedidia AB, Locascio NJ, Yu L, Lehman CD. High-risk breast lesions: a machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision. Radiology. 2017:170549. https://doi.org/10.1148/radiol.2017170549. – reference: Lee H, Tajmir S, Lee J, et al. Fully automated deep learning system for bone age assessment. J Digit Imaging. 2017. https://doi.org/10.1007/s10278-017-9955-8. – reference: KingDGSteventonDMO’SullivanMPReproducibility of bone ages when performed by radiology registrars: an audit of Tanner and Whitehouse II versus Greulich and Pyle methodsBr J Radiol1994678018488511:STN:280:DyaK2M%2FktFSisw%3D%3D10.1259/0007-1285-67-801-8487953224 – reference: AbuzaghlehOBarkanaBDFaezipourMNoninvasive real-time automated skin lesion analysis system for melanoma early detection and preventionIEEE J Transl Eng Health Med20153290031010.1109/JTEHM.2015.241961227170906 – reference: Mukherjee S. A.I. Versus M.D. The New Yorker. https://www.newyorker.com/magazine/2017/04/03/ai-versus-md. Published March 27, 2017. Accessed 23 Oct 2017. – reference: GilsanzVRatibOHand bone age: a digital atlas of skeletal maturity2011Berlin HeidelbergSpringer10.1007/978-3-642-23762-1 – reference: GreulichWWPyleSIRadiographic atlas of skeletal development of the hand and wristAm J Med Sci1959238339310.1097/00000441-195909000-00030 – reference: González G, Ash SY, Vegas Sanchez-Ferrero G, et al. Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am J Respir Crit Care Med. 2017. https://doi.org/10.1164/rccm.201705-0860OC. – reference: KimSYOhYJShinJYRhieYJLeeKHComparison of the Greulich-Pyle and Tanner Whitehouse (TW3) methods in bone age assessmentJ Korean Soc Pediatr Endocrinol20081315055https://www.koreamed.org/SearchBasic.php?RID=0113JKSPE/2008.13.1.50&DT=1 – reference: Kim JR, Shim WH, Yoon HM, et al. Computerized bone age estimation using deep learning-based program: evaluation of the accuracy and efficiency. AJR Am J Roentgenol. 2017:1-7. https://doi.org/10.2214/AJR.17.18224. – reference: Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T, editors. Computer vision – ECCV 2014. Lecture Notes in Computer Science. Springer International Publishing; 2014. p. 818-833. https://doi.org/10.1007/978-3-319-10590-1_53. – reference: GulshanVPengLCoramMDevelopment and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographsJAMA2016316222402241010.1001/jama.2016.1721627898976 – reference: Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology. 2017;170236. https://doi.org/10.1148/radiol.2017170236. – reference: SilverDSchrittwieserJSimonyanKMastering the game of go without human knowledgeNature201755076763543591:CAS:528:DC%2BC2sXhs12ltLvM10.1038/nature2427029052630 – reference: EstevaAKuprelBNovoaRADermatologist-level classification of skin cancer with deep neural networksNature201754276391151181:CAS:528:DC%2BC2sXhsFGltrY%3D10.1038/nature2105628117445 – reference: EhrenbergASCJ R Stat Soc Ser C Appl Stat19772618010.2307/2346874 – reference: Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017:162326. https://doi.org/10.1148/radiol.2017162326. – reference: MichaelDJNelsonACHANDX: a model-based system for automatic segmentation of bones from digital hand radiographsIEEE Trans Med Imaging19898164691:STN:280:DC%2BD1c%2Fntlyktg%3D%3D10.1109/42.2036318230501 – volume: 238 start-page: 393 issue: 3 year: 1959 ident: 3033_CR9 publication-title: Am J Med Sci doi: 10.1097/00000441-195909000-00030 – volume: 316 start-page: 2402 issue: 22 year: 2016 ident: 3033_CR4 publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 28 start-page: 52 issue: 1 year: 2009 ident: 3033_CR21 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2008.926067 – ident: 3033_CR18 doi: 10.1007/s10278-017-9988-z – volume: 24 start-page: 297 issue: 5 year: 2000 ident: 3033_CR23 publication-title: Comput Med Imaging Graph doi: 10.1016/S0895-6111(00)00026-4 – ident: 3033_CR11 doi: 10.1007/s10278-017-9955-8 – ident: 3033_CR19 doi: 10.1148/radiol.2017170549 – ident: 3033_CR8 doi: 10.1148/radiol.2017170236 – ident: 3033_CR6 – volume: 26 start-page: 80 issue: 1 year: 1977 ident: 3033_CR10 publication-title: J R Stat Soc Ser C Appl Stat doi: 10.2307/2346874 – ident: 3033_CR17 doi: 10.1164/rccm.201705-0860OC – volume: 67 start-page: 848 issue: 801 year: 1994 ident: 3033_CR22 publication-title: Br J Radiol doi: 10.1259/0007-1285-67-801-848 – ident: 3033_CR2 doi: 10.21437/interspeech.2017-1673 – volume-title: Hand bone age: a digital atlas of skeletal maturity year: 2011 ident: 3033_CR13 doi: 10.1007/978-3-642-23762-1 – volume: 13 start-page: 50 issue: 1 year: 2008 ident: 3033_CR24 publication-title: J Korean Soc Pediatr Endocrinol – ident: 3033_CR25 doi: 10.2214/AJR.17.18224 – ident: 3033_CR1 – volume: 542 start-page: 115 issue: 7639 year: 2017 ident: 3033_CR5 publication-title: Nature doi: 10.1038/nature21056 – volume: 550 start-page: 354 issue: 7676 year: 2017 ident: 3033_CR3 publication-title: Nature doi: 10.1038/nature24270 – ident: 3033_CR16 doi: 10.1148/radiol.2017162326 – volume: 3 start-page: 2900310 year: 2015 ident: 3033_CR14 publication-title: IEEE J Transl Eng Health Med doi: 10.1109/JTEHM.2015.2419612 – ident: 3033_CR7 – volume: 35 start-page: 1273 issue: 5 year: 2016 ident: 3033_CR15 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2526689 – ident: 3033_CR12 doi: 10.1007/978-3-319-10590-1_53 – volume: 8 start-page: 64 issue: 1 year: 1989 ident: 3033_CR20 publication-title: IEEE Trans Med Imaging doi: 10.1109/42.20363 |
| SSID | ssj0017756 |
| Score | 2.5065956 |
| Snippet | Objective
Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated... Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated... Objective Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated... ObjectiveRadiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders. We previously developed an automated... |
| SourceID | proquest gale pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 275 |
| SubjectTerms | Accuracy Adolescent Age Age Determination by Skeleton - methods Algorithms Artificial Intelligence Artificial neural networks Bone Diseases, Metabolic - diagnostic imaging Child Child, Preschool Coefficient of variation Comparative analysis Correlation analysis Correlation coefficients Data mining Deep Learning Error analysis Female Humans Imaging Machine learning Male Medicine Medicine & Public Health Metabolic disorders Neural networks Nuclear Medicine Orthopedics Pathology Pediatrics Performance enhancement Radiographic Image Interpretation, Computer-Assisted - methods Radiographs Radiography Radiology Retrospective Studies Scientific Article |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3raxQxEB_qFcQv4tvTKhEEQQnsJtlHPohUaSmCh0iFfluyOwkclL16eyf0v3cm-7hewX7NY5lkJjOTzOxvAN6nPgmom1Sm3hp-ujGyxNzKWhVF1pAHn2HM8l3kZ7_N94vs4gAW478wnFY56sSoqHHV8Bs5XdLLlJMiVPnl6o_kqlEcXR1LaLihtAJ-jhBj9-BQMTLWDA6_nix-_priCkTAEL00UmlTjnHOJMKKkvmnq3UpdSxwtmepbuvrGwbrVgQ1GqbTR_Bw8CjFcS8Cj-HAt0_g_o8hZv4UOu7pcSLE8gYApyS3mXmMsXWXeChWQdSr1gvSNGLtcNmDWndiGd8ffCdoG7Zr11wL16LA6Hd21PyXrt096vf1Mzg_PTn_diaHUguyIRdoI31ug8sx6LowZSiwQJVkmfN5YjGgT33ALJDlx8TUHkPuHDNSBYvKBlPr5zBribKXIGpLOsF6bxGDwbxwjjwSVyq0tdZ5ruaQjLtaNQMMOVfDuKwmAOXIiIoYUTEjKprycZpy1WNw3DX4A7Oq4vNJ323c8JsBUcdIV9VxoVNtOEA9h6O9kXSumv3ukdnVcK67aieFc3g3dfNMzlVr_WobxyhaM9n5ObzohWQiWzMyNN3Q5vBplJrdx_-7pld3k_IaHpAbZ_tc8iOYbdZb_4ZcpU39dpD_f4k3D7c priority: 102 providerName: ProQuest |
| Title | Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability |
| URI | https://link.springer.com/article/10.1007/s00256-018-3033-2 https://www.ncbi.nlm.nih.gov/pubmed/30069585 https://www.proquest.com/docview/2081199728 https://www.proquest.com/docview/2082091299 |
| Volume | 48 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-2161 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017756 issn: 0364-2348 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-2161 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0017756 issn: 0364-2348 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-2161 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017756 issn: 0364-2348 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-2161 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017756 issn: 0364-2348 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bixMxFD64XRBfvF9G1xJBEJRZpsnc8thKu4tiEelCfRoyOQmUlal0WmH99Z5kLrstKuzLDOQ2Sebk5EvOyReAtyMTWRR6FI6MjN3WTRzmmMqw5FmWaELwCXov33l6fhF_WibL9hx33Xm7dyZJr6n7w25-eqalbx4KfwHZERx7uq0BHI_Pvn-e9sYD-kprooxDLuK8M2b-rZC96ehQKd-YlQ7MpH72mT2ARVfvxunk8nS3LU_17wNKx1s27CHcb9EoGzfi8wjumOox3P3S2tufQO1iGo4JtrpB3hkS5HbygT702mmRrS0r15VhpKXYRuGqIcSu2crvXZiaKa13G6WvmKqQocesNQX_oiV7wxh-9RQWs-ni43nYXtMQaoJP29Ck0qoUrSizOLcZZsijJFEmjSRaNCNjMbGEGjCKS4M2VcoJAbcSubRxKZ7BoKKavQBWStIn0hiJaGNMM6UIzaicoyyFSFMeQNT9rEK3FObuJo0fRU--7PuyoL4sXF8WlOV9n-Vnw9_xv8TvnAQUbmxTuVq1RxSodo4lqxhnYiRiZ9wO4GQvJY1JvR_dyVDR6oS64IS-nFsPzwN400e7nM7PrTLrnU_Dqc2EEQJ43sheX23hWKVpdRfAh06Orgv_Z5te3ir1K7hHiFA2buknMNhuduY1oa5tOYSjbJnRM5-dDWnEzSaT-bAdefSeTOdfv1HsBR__AYxmKCg |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA61BfVFvNbRqhEUQRmYSTKXPBSp2rK17SKyQt9CZk4CCzJbd3aV_XH-N08ymdluwb71NTeSnORcck6-Q8ib1CQWeJ3GqZHCPd2IuIRcxhUriqxGDT4DH-U7zkc_xNfz7HyL_O3_wriwyp4nekYNs9q9kaORXqYuKIKVHy9-xS5rlPOu9ik0dEitAPseYix87Dgxqz9owrX7x1-Q3m8ZOzqcfB7FIctAXKP0X8Qml1bnYHlViNIWUABLskybPJFgwaTGQmZR6EEiKgM219qtgVkJTFpRcRz2FtkRXEi0_XY-HY6_fR_cGLje4CwVMeOi7N2qiUcxRW0DLfky5j6f2oZgvCoeLsnHKw5bLweP7pN7QYGlB92Je0C2TPOQ3D4LLvpHpHU1HSwFnV7C-4xRS3dHCnzpOs6RziytZo2hyNjoXMO0w9Bu6dQ_d5iW4q4v57peUd0ABa_mtlj8G638DmR89ZhMbmLPn5DtBmf2lNBKIguSxkgAKyAvtEYFSJcMZMV5nrOIJP2uqjqgnrvkGz_VgNfsCaGQEMoRQmGX90OXiw7y47rG7xyplGMHOG6tw68GnJ0D1lIHBU-5cP7wiOxttMRrXG9W98RWgY20an3oI_J6qHY9XWhcY2ZL34bhmlGtiMhud0iGaXMHRI0GYUQ-9KdmPfh_1_Ts-qm8IndGk7NTdXo8PnlO7qIGKbsw9j2yvZgvzQvU0hbVy3AXKFE3fPv-AV1BTsk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA61QvFFvDtaNYIiKMGZJHPJg0ixLq3V4kOFfQuZnAQWZLbu7Cr70_x3nmQu2y3Yt75OLiQ5J-eSc-Y7hLzKXOpB2IxlTsnwdCNZBYViNS_L3KIFn0PM8j0tjn7IL9N8ukP-Dv_ChLTKQSZGQQ1zG97I0UmvspAUwav3vk-L-H44-Xj-i4UKUiHSOpTT6FjkxK3_oPvWfjg-RFq_5nzy-ezTEesrDDCLmn_JXKG8KcCLupSVL6EEnua5cUWqwIPLnIfco8KDVNYOfGFMWD_3CrjyshY47Q1ysxRChWzCcjr6ehnutA-TSsaFrIaAahrxS9HOQB--YiJWUttSiZcVwwXNeClUGzXg5A653Zuu9KDjtbtkxzX3yN63Pjh_n7ShpQOkoLMLSJ8M7fPATBC_bjIc6dzTet44iiKNLgzMOvTsls7iQ4drqbF2tTB2TU0DFKKB2-Ln3-jfd_Di6wfk7DpO_CHZbXBljwmtFQof5ZwC8BKK0hg0fUzFQdVCFAVPSDqcqrY93nkou_FTj0jNkRAaCaEDITQOeTsOOe_APq7q_CaQSgdBgPNa0__PgKsLkFr6oBSZkCESnpD9rZ54ge1280Bs3QuQVm_YPSEvx-YwMiTFNW6-in047hkNioQ86phkXLYIENToCibk3cA1m8n_u6cnVy_lBdnDO6e_Hp-ePCW30HRUXf76PtldLlbuGZpny_p5vAiU6Gu-eP8ANnBMYw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence-assisted+interpretation+of+bone+age+radiographs+improves+accuracy+and+decreases+variability&rft.jtitle=Skeletal+radiology&rft.au=Tajmir%2C+Shahein+H&rft.au=Lee%2C+Hyunkwang&rft.au=Shailam%2C+Randheer&rft.au=Gale%2C+Heather+I&rft.date=2019-02-01&rft.pub=Springer&rft.issn=0364-2348&rft.volume=48&rft.issue=2&rft.spage=275&rft_id=info:doi/10.1007%2Fs00256-018-3033-2&rft.externalDocID=A731342742 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-2348&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-2348&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-2348&client=summon |