Relational reasoning network for anatomical landmarking

We perform anatomical landmarking for craniomaxillofacial (CMF) bones without explicitly segmenting them. Toward this, we propose a simple, yet efficient, deep network architecture, called relational reasoning network (RRN), to accurately learn the local and the global relations among the landmarks...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical imaging (Bellingham, Wash.) Vol. 10; no. 2; p. 024002
Main Authors Torosdagli, Neslisah, Anwar, Syed, Verma, Payal, Liberton, Denise K., Lee, Janice S., Han, Wade W., Bagci, Ulas
Format Journal Article
LanguageEnglish
Published United States Society of Photo-Optical Instrumentation Engineers 01.03.2023
SPIE
Subjects
Online AccessGet full text
ISSN2329-4302
2329-4310
2329-4310
DOI10.1117/1.JMI.10.2.024002

Cover

Abstract We perform anatomical landmarking for craniomaxillofacial (CMF) bones without explicitly segmenting them. Toward this, we propose a simple, yet efficient, deep network architecture, called relational reasoning network (RRN), to accurately learn the local and the global relations among the landmarks in CMF bones; specifically, mandible, maxilla, and nasal bones. The proposed RRN works in an end-to-end manner, utilizing learned relations of the landmarks based on dense-block units. For a given few landmarks as input, RRN treats the landmarking process similar to a data imputation problem where predicted landmarks are considered missing. We applied RRN to cone-beam computed tomography scans obtained from 250 patients. With a fourfold cross-validation technique, we obtained an average root mean squared error of per landmark. Our proposed RRN has revealed unique relationships among the landmarks that help us in inferring informativeness of the landmark points. The proposed system identifies the missing landmark locations accurately even when severe pathology or deformations are present in the bones. Accurately identifying anatomical landmarks is a crucial step in deformation analysis and surgical planning for CMF surgeries. Achieving this goal without the need for explicit bone segmentation addresses a major limitation of segmentation-based approaches, where segmentation failure (as often is the case in bones with severe pathology or deformation) could easily lead to incorrect landmarking. To the best of our knowledge, this is the first-of-its-kind algorithm finding anatomical relations of the objects using deep learning.
AbstractList We perform anatomical landmarking for craniomaxillofacial (CMF) bones without explicitly segmenting them. Toward this, we propose a simple, yet efficient, deep network architecture, called relational reasoning network (RRN), to accurately learn the local and the global relations among the landmarks in CMF bones; specifically, mandible, maxilla, and nasal bones. The proposed RRN works in an end-to-end manner, utilizing learned relations of the landmarks based on dense-block units. For a given few landmarks as input, RRN treats the landmarking process similar to a data imputation problem where predicted landmarks are considered missing. We applied RRN to cone-beam computed tomography scans obtained from 250 patients. With a fourfold cross-validation technique, we obtained an average root mean squared error of per landmark. Our proposed RRN has revealed unique relationships among the landmarks that help us in inferring informativeness of the landmark points. The proposed system identifies the missing landmark locations accurately even when severe pathology or deformations are present in the bones. Accurately identifying anatomical landmarks is a crucial step in deformation analysis and surgical planning for CMF surgeries. Achieving this goal without the need for explicit bone segmentation addresses a major limitation of segmentation-based approaches, where segmentation failure (as often is the case in bones with severe pathology or deformation) could easily lead to incorrect landmarking. To the best of our knowledge, this is the first-of-its-kind algorithm finding anatomical relations of the objects using deep learning.
We perform anatomical landmarking for craniomaxillofacial (CMF) bones without explicitly segmenting them. Toward this, we propose a simple, yet efficient, deep network architecture, called relational reasoning network (RRN), to accurately learn the local and the global relations among the landmarks in CMF bones; specifically, mandible, maxilla, and nasal bones.PurposeWe perform anatomical landmarking for craniomaxillofacial (CMF) bones without explicitly segmenting them. Toward this, we propose a simple, yet efficient, deep network architecture, called relational reasoning network (RRN), to accurately learn the local and the global relations among the landmarks in CMF bones; specifically, mandible, maxilla, and nasal bones.The proposed RRN works in an end-to-end manner, utilizing learned relations of the landmarks based on dense-block units. For a given few landmarks as input, RRN treats the landmarking process similar to a data imputation problem where predicted landmarks are considered missing.ApproachThe proposed RRN works in an end-to-end manner, utilizing learned relations of the landmarks based on dense-block units. For a given few landmarks as input, RRN treats the landmarking process similar to a data imputation problem where predicted landmarks are considered missing.We applied RRN to cone-beam computed tomography scans obtained from 250 patients. With a fourfold cross-validation technique, we obtained an average root mean squared error of < 2    mm per landmark. Our proposed RRN has revealed unique relationships among the landmarks that help us in inferring informativeness of the landmark points. The proposed system identifies the missing landmark locations accurately even when severe pathology or deformations are present in the bones.ResultsWe applied RRN to cone-beam computed tomography scans obtained from 250 patients. With a fourfold cross-validation technique, we obtained an average root mean squared error of < 2    mm per landmark. Our proposed RRN has revealed unique relationships among the landmarks that help us in inferring informativeness of the landmark points. The proposed system identifies the missing landmark locations accurately even when severe pathology or deformations are present in the bones.Accurately identifying anatomical landmarks is a crucial step in deformation analysis and surgical planning for CMF surgeries. Achieving this goal without the need for explicit bone segmentation addresses a major limitation of segmentation-based approaches, where segmentation failure (as often is the case in bones with severe pathology or deformation) could easily lead to incorrect landmarking. To the best of our knowledge, this is the first-of-its-kind algorithm finding anatomical relations of the objects using deep learning.ConclusionsAccurately identifying anatomical landmarks is a crucial step in deformation analysis and surgical planning for CMF surgeries. Achieving this goal without the need for explicit bone segmentation addresses a major limitation of segmentation-based approaches, where segmentation failure (as often is the case in bones with severe pathology or deformation) could easily lead to incorrect landmarking. To the best of our knowledge, this is the first-of-its-kind algorithm finding anatomical relations of the objects using deep learning.
Audience Academic
Author Anwar, Syed
Torosdagli, Neslisah
Lee, Janice S.
Liberton, Denise K.
Han, Wade W.
Verma, Payal
Bagci, Ulas
Author_xml – sequence: 1
  givenname: Neslisah
  surname: Torosdagli
  fullname: Torosdagli, Neslisah
  email: neslisah.torosdagli@ucf.edu
  organization: University of Central Florida, Orlando, Florida, United States
– sequence: 2
  givenname: Syed
  surname: Anwar
  fullname: Anwar, Syed
  email: SANWAR@childrensnational.org
  organization: George Washington University, Washington, District of Columbia, United States
– sequence: 3
  givenname: Payal
  surname: Verma
  fullname: Verma, Payal
  email: payal.verma@nih.gov
  organization: National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Craniofacial Anomalies and Regeneration Section, Bethesda, Maryland, United States
– sequence: 4
  givenname: Denise K.
  surname: Liberton
  fullname: Liberton, Denise K.
  email: denise.liberton@nih.gov
  organization: National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Craniofacial Anomalies and Regeneration Section, Bethesda, Maryland, United States
– sequence: 5
  givenname: Janice S.
  surname: Lee
  fullname: Lee, Janice S.
  email: janice.lee@nih.gov
  organization: National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Craniofacial Anomalies and Regeneration Section, Bethesda, Maryland, United States
– sequence: 6
  givenname: Wade W.
  surname: Han
  fullname: Han, Wade W.
  email: wadehanmd@gmail.com
  organization: Ther-AI, LLC, Kissimmee, Florida, United States
– sequence: 7
  givenname: Ulas
  orcidid: 0000-0001-7379-6829
  surname: Bagci
  fullname: Bagci, Ulas
  email: ulasbagci@gmail.com
  organization: Northwestern University, Departments of Radiology, BME, and ECE, Machine and Hybrid Intelligence Lab, Chicago, Illinois, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36891503$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1UREvpD2CDRmLDZsL1a2JvkKqKR1EREoK15Tg3g6eJPdgJVf89HjKUPhCyJdvJd46uz_VTchBiQEKeU6gopfVrWn38dF6VE6uACQD2iBwxzvRScAoHN3tgh-Qk5w0AUAqSUfGEHPKV0lQCPyL1F-zt6GOw_SKhzTH4sF4EHK9iulx0MS1ssGMcvCtAb0M72HRZkGfkcWf7jCf79Zh8e_f269mH5cXn9-dnpxdLJ0GOSwSN2EounWx42yrWMNaAaIVrgWrtVMPqMjVnKJigK2yZBa4VSFWLrkF-TNjsO4Wtvb6yfW-2yZcirg0FswvCULMZ_O7EzBxEEb2ZRdupGbB1GMZk_wqj9ebun-C_m3X8abRWq3qli8GrvUGKPybMoxl8dtiXADBO2bBaSaqVBlrQlzO6tj0aH7pYHN0ON6dKcKGUFDvD6h9UGS2WaEtjO1--3xG8uH2Fm9r_dK4A9Qy4FHNO2Bnnx9-dLM6-v5VOeSb30qH3lA8TfajZ15-3Hs0mTqk8mPwfwS9-Wsp_
CitedBy_id crossref_primary_10_1088_1361_6560_acb483
crossref_primary_10_1051_bioconf_20249700054
crossref_primary_10_1016_j_neucom_2023_127051
Cites_doi 10.1088/1757-899X/265/1/012028
10.5624/isd.2016.46.2.93
10.1109/TMI.2018.2875814
10.1146/annurev-bioeng-071516-044442
10.1016/j.patrec.2009.09.007
10.1186/1471-2342-14-32
10.1371/journal.pone.0175906
10.1007/978-3-030-59719-1_79
10.1016/j.media.2019.101621
10.1109/TNN.2008.2005605
10.1007/978-3-319-59050-9_50
10.1016/j.media.2020.101729
10.1007/978-3-030-01246-5_49
10.5856/JKDS.2019.12.1.20
10.1016/j.joms.2009.04.057
10.1007/s11548-015-1173-6
10.1109/TMI.2011.2180920
10.1007/978-3-319-66182-7_23
10.1109/TMI.2021.3099509
10.1118/1.3602070
10.1016/j.patcog.2020.107541
10.1016/j.ijom.2017.02.1264
10.1080/13645706.2018.1488734
10.1109/TBME.2015.2503421
10.1109/ISBI.2017.7950734
10.2319/122121-928.1
10.1007/978-3-319-24553-9_69
ContentType Journal Article
Copyright The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
2023 The Authors.
COPYRIGHT 2023 SPIE
2023 The Authors 2023 The Authors
Copyright_xml – notice: The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
– notice: 2023 The Authors.
– notice: COPYRIGHT 2023 SPIE
– notice: 2023 The Authors 2023 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1117/1.JMI.10.2.024002
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2329-4310
EndPage 024002
ExternalDocumentID 10.1117/1.jmi.10.2.024002
PMC9986769
A843488549
36891503
10_1117_1_JMI_10_2_024002
Genre Journal Article
GrantInformation_xml – fundername: NIH
  grantid: R01-CA246704; R01-CA240639
– fundername: NCI NIH HHS
  grantid: R01 CA240639
– fundername: NCI NIH HHS
  grantid: R01 CA246704
GroupedDBID 0R~
4.4
ACGFS
ALMA_UNASSIGNED_HOLDINGS
EBS
FQ0
O9-
OK1
RPM
SPBNH
UT2
AAYXX
ABJNI
ADMLS
AKROS
CITATION
HYE
IAO
M4X
EJD
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c505t-e09eed535c5b3dd82b22b04d4cd0199c8b27b27932e42416ed2a039805874fbe3
IEDL.DBID UNPAY
ISSN 2329-4302
2329-4310
IngestDate Sun Oct 26 03:45:41 EDT 2025
Tue Sep 30 17:10:19 EDT 2025
Thu Oct 02 04:15:42 EDT 2025
Mon Oct 20 22:41:41 EDT 2025
Mon Oct 20 16:52:20 EDT 2025
Wed Feb 19 02:04:00 EST 2025
Wed Oct 01 02:57:31 EDT 2025
Thu Apr 24 22:53:08 EDT 2025
Sun Apr 30 04:10:41 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords anatomical landmarking
deep relational learning
craniomaxillofacial bones
surgical modeling
relational reasoning
Language English
License 2023 The Authors.
Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-e09eed535c5b3dd82b22b04d4cd0199c8b27b27932e42416ed2a039805874fbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7379-6829
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.spiedigitallibrary.org/journals/journal-of-medical-imaging/volume-10/issue-2/024002/Relational-reasoning-network-for-anatomical-landmarking/10.1117/1.JMI.10.2.024002.pdf
PMID 36891503
PQID 2785198901
PQPubID 23479
PageCount 1
ParticipantIDs gale_infotracmisc_A843488549
crossref_primary_10_1117_1_JMI_10_2_024002
crossref_citationtrail_10_1117_1_JMI_10_2_024002
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9986769
gale_infotracacademiconefile_A843488549
unpaywall_primary_10_1117_1_jmi_10_2_024002
proquest_miscellaneous_2785198901
pubmed_primary_36891503
spie_journals_10_1117_1_JMI_10_2_024002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of medical imaging (Bellingham, Wash.)
PublicationTitleAlternate J. Med. Imag
PublicationYear 2023
Publisher Society of Photo-Optical Instrumentation Engineers
SPIE
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
– name: SPIE
References r3
r4
r5
r6
r7
r8
r9
Battaglia (r21) 2016
r30
Srivastava (r32) 2014
r10
Battaglia (r23) 2018
r31
r12
r34
r11
r14
r36
r13
r35
r38
r15
r37
r18
r17
r39
Xu (r20) 2018
Raposo (r16) 2017
Zhang (r2) 2017
Kingma (r26) 2015
Li (r19) 2015
Santoro (r22) 2017
r25
r24
r29
r28
Gal (r33) 2016
Gomez (r27) 2019
r1
References_xml – start-page: 720
  year: 2017
  ident: r2
– ident: r3
  doi: 10.1088/1757-899X/265/1/012028
– ident: r38
  doi: 10.5624/isd.2016.46.2.93
– ident: r5
  doi: 10.1109/TMI.2018.2875814
– ident: r11
  doi: 10.1146/annurev-bioeng-071516-044442
– year: 2017
  ident: r22
  article-title: A simple neural network module for relational reasoning
– ident: r31
  doi: 10.1016/j.patrec.2009.09.007
– ident: r12
  doi: 10.1186/1471-2342-14-32
– ident: r13
  doi: 10.1371/journal.pone.0175906
– year: 2019
  ident: r27
  article-title: Learning sparse networks using targeted dropout
– start-page: 1027
  year: 2016
  ident: r33
  article-title: A theoretically grounded application of dropout in recurrent neural networks
– year: 2015
  ident: r19
  article-title: Gated graph sequence neural networks
– ident: r4
  doi: 10.1007/978-3-030-59719-1_79
– ident: r7
  doi: 10.1016/j.media.2019.101621
– ident: r18
  doi: 10.1109/TNN.2008.2005605
– ident: r35
  doi: 10.1007/978-3-319-59050-9_50
– ident: r9
  doi: 10.1016/j.media.2020.101729
– year: 2017
  ident: r16
  article-title: Discovering objects and their relations from entangled scene representations
– ident: r24
  doi: 10.1007/978-3-030-01246-5_49
– ident: r8
  doi: 10.1186/1471-2342-14-32
– start-page: 4509
  year: 2016
  ident: r21
  article-title: Interaction networks for learning about objects, relations and physics
– ident: r37
  doi: 10.5856/JKDS.2019.12.1.20
– ident: r1
  doi: 10.1016/j.joms.2009.04.057
– ident: r10
  doi: 10.1007/s11548-015-1173-6
– year: 2018
  ident: r23
  article-title: Relational inductive biases, deep learning, and graph networks
– year: 2018
  ident: r20
  article-title: How powerful are graph neural networks?
– ident: r29
  doi: 10.1109/TMI.2011.2180920
– start-page: 2575
  year: 2015
  ident: r26
  article-title: Variational dropout and the local reparameterization trick
– ident: r36
  doi: 10.1007/978-3-319-66182-7_23
– ident: r15
  doi: 10.1109/TMI.2021.3099509
– ident: r30
  doi: 10.1118/1.3602070
– start-page: 1929
  year: 2014
  ident: r32
  article-title: Dropout: a simple way to prevent neural networks from overfitting
– ident: r17
  doi: 10.1016/j.patcog.2020.107541
– ident: r28
  doi: 10.1016/j.ijom.2017.02.1264
– ident: r25
  doi: 10.1080/13645706.2018.1488734
– ident: r14
  doi: 10.1109/TBME.2015.2503421
– ident: r6
  doi: 10.1109/ISBI.2017.7950734
– ident: r39
  doi: 10.2319/122121-928.1
– ident: r34
  doi: 10.1007/978-3-319-24553-9_69
SSID ssj0001105214
Score 2.2513604
Snippet We perform anatomical landmarking for craniomaxillofacial (CMF) bones without explicitly segmenting them. Toward this, we propose a simple, yet efficient, deep...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
spie
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 024002
SubjectTerms Ablation (Surgery)
Birth defects
CT imaging
Image Processing
Orthodontics
Title Relational reasoning network for anatomical landmarking
URI http://www.dx.doi.org/10.1117/1.JMI.10.2.024002
https://www.ncbi.nlm.nih.gov/pubmed/36891503
https://www.proquest.com/docview/2785198901
https://pubmed.ncbi.nlm.nih.gov/PMC9986769
https://www.spiedigitallibrary.org/journals/journal-of-medical-imaging/volume-10/issue-2/024002/Relational-reasoning-network-for-anatomical-landmarking/10.1117/1.JMI.10.2.024002.pdf
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2329-4310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105214
  issn: 2329-4310
  databaseCode: ADMLS
  dateStart: 20140701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2329-4310
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0001105214
  issn: 2329-4310
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bi9QwFD6ss-Dlwfului4VBEFJm0l6SR4HcVkXZvHBgfWpNGmzjjqdYWcG0f_lX_H3eNK03XaQBR-FeeiQ05zkcJJ8Sb-cA_CyUBQXEWEIjQUnEY8kkXFpiJU2aaI0TexF4elpcjyLTs7isz341d6FsbTK9QrR1_zcJs3o4j5cnIeNcdftA1kasnBfM8h8Uef0Cd2QxrklrJtNWGhjeFEWttQylLVk7_qok1SOaU0QHpK8wk1ufUOfWErhIq-PqptJJQ3Hwcn0fWCJ04GrMVgV5hrsJzFuAUawPzv9MPlUJ7JjErtccx2b53H7NdXV82Ux79czWA93V4XesrhL2RxZK92CG9tqlf_4jpbqLYtHd-B3a1DHhvkabDcq0D93Yk3-dxa_C7cboO5P3Mi6B3tldR-uTxsqwgNILzX7nWa_0eyjZv9Ss9_T_BBmR-8-vj0mTRYKohEdbkhJJeKImMc6VrwoBFOMKRoVkS4QHkstFEvxhzi4jBAOJWXBcsqlQOdPI6NK_ghG1bIqn4DPc2VSno9zirIyiuWY0choXZiEacMTD2jrC5luQrTbTCHfMrdVS7Nxhkax_1jmjOLB6-6VlYtPcpXwK-tgmZ27sF6dN1cwsHU2Clg2EThYhYgj6cHBQBLnHD0oftG6aGaLLFGvKpfbdcZShPBSIMr04LFz2a5dPBES9x_cg3TgzJ2ADXU-LKnmn-uQ51IKy8XGDlhXzVrHvKqrb7qR8RfD4CDsSz_9J-lncJMh1HVMxAMYbS625XOEpht1WJ8WHjbTwR-cPI4p
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bi9QwFD6ss-DlwfulukoFQVDSZpJeksdBXNaFWXxwYH0qTdrsjjqdYWcG0f_lX_H3eNK03XaQBR-FPrTkNCc5nCRf2i_nALwqFMVFRBhCY8FJxCNJZFwaYqVNmihNE3tQeHqSHM2i49P4dA9-tWdhLK1yvUL0NT-zSTO6uA8XZ2Fj3HV7Q5aGLNzfDDJf1Dl9QjekcW4J62YTFtoYXpSFLbUMZS3Zu_7USSrHtCYID0le4Sa3PqFPLKVwkdefqptJJQ3HwfH0Q2CJ04GrMVgV5hrsJzFuAUawPzv5OPlcJ7JjErtccx2b-3H7N9XV82Ux79czWA93V4XesrhL2RxZK92CG9tqlf_4jpbqLYuHd-B3a1DHhvkabDcq0D93Yk3-dxa_C7cboO5P3Mi6B3tldR-uTxsqwgNILzX7nWa_0eyjZv9Ss9_T_BBmh-8_vTsiTRYKohEdbkhJJeKImMc6VrwoBFOMKRoVkS4QHkstFEvxQhxcRgiHkrJgOeVSoPOnkVElfwSjalmVT8DnuTIpz8c5RVkZxXLMaGS0LkzCtOGJB7T1hUw3IdptppBvmduqpdk4Q6PYJ5Y5o3jwpntl5eKTXCX82jpYZucurFfnzREMbJ2NApZNBA5WIeJIenAwkMQ5Rw-KX7YumtkiS9SryuV2nbEUIbwUiDI9eOxctmsXT4TE_Qf3IB04cydgQ50PS6r5eR3yXEphudjYAeuqWeuYV3X1bTcy_mIYHIR96af_JP0MbjKEuo6JeACjzcW2fI7QdKNeNBPBH0x2jRk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relational+reasoning+network+for+anatomical+landmarking&rft.jtitle=Journal+of+medical+imaging+%28Bellingham%2C+Wash.%29&rft.au=Torosdagli%2C+Neslisah&rft.au=Anwar%2C+Syed&rft.au=Verma%2C+Payal&rft.au=Liberton%2C+Denise+K&rft.date=2023-03-01&rft.issn=2329-4302&rft.volume=10&rft.issue=2&rft.spage=024002&rft_id=info:doi/10.1117%2F1.JMI.10.2.024002&rft_id=info%3Apmid%2F36891503&rft.externalDocID=36891503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-4302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-4302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-4302&client=summon