Radiomics and deep learning model based on X-ray imaging for the assisted diagnosis of early Legg-Calvé-Perthes disease

Background X-rays are the most commonly used method for diagnosing Legg–Calvé–Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only show subtle changes, making diagnosis highly dependent on the radiologist’s experience. The aim of this study was to develop and validate a comb...

Full description

Saved in:
Bibliographic Details
Published inBMC musculoskeletal disorders Vol. 26; no. 1; pp. 910 - 14
Main Authors Zhang, Dian, Li, Ya-nan, Li, Cheng-long, Guo, Wan-liang
Format Journal Article
LanguageEnglish
Published London BioMed Central 01.10.2025
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2474
1471-2474
DOI10.1186/s12891-025-09189-4

Cover

Abstract Background X-rays are the most commonly used method for diagnosing Legg–Calvé–Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only show subtle changes, making diagnosis highly dependent on the radiologist’s experience. The aim of this study was to develop and validate a combined radiomics and deep learning model based on anteroposterior and frog-leg lateral X-rays for identifying early LCPD patients. Methods We retrospectively collected imaging data of children diagnosed with early LCPD and normal control groups from two centers between January 2013 and December 2023. Logistic regression (LR), Support vector machine (SVM), and Extreme gradient boosting (XGBoost) algorithms were used to build radiomics and Deep Learning (DL) models, and the performance of individual models was compared. The development of the ensemble model involved a stacking strategy to integrate the best radiomics and DL models. The diagnostic performance of the combined model was compared with that of radiologists of varying experience levels. Model evaluation was conducted using metrics such as the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Finally, the model was validated using calibration and clinical decision curves. Results A total of 200 early LCPD hips (Center A, n  = 157; Center B, n  = 43) and 236 normal hips (Center A, n  = 188; Center B, n  = 48) were included. Among the individual radiomics and DL models, the XGBoost algorithm performed the best: the radiomics model achieved an AUC of 0.845 (95% CI, 0.758–0.933), and the DL model achieved an AUC of 0.848 (95% CI, 0.766–0.929). The ensemble model’s performance was further improved, with an AUC of 0.878 (95% CI, 0.810, 0.945). The combined model significantly outperformed junior radiologists. Calibration and clinical decision curves demonstrated that the combined model had high predictive value. Conclusion The integrated radiomics and DL model using both anteroposterior and frog-leg lateral X-rays demonstrated superior performance over individual radiomics or DL approaches, highlighting its potential as an effective tool for early screening of LCPD.
AbstractList Background X-rays are the most commonly used method for diagnosing Legg-Calvé-Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only show subtle changes, making diagnosis highly dependent on the radiologist's experience. The aim of this study was to develop and validate a combined radiomics and deep learning model based on anteroposterior and frog-leg lateral X-rays for identifying early LCPD patients. Methods We retrospectively collected imaging data of children diagnosed with early LCPD and normal control groups from two centers between January 2013 and December 2023. Logistic regression (LR), Support vector machine (SVM), and Extreme gradient boosting (XGBoost) algorithms were used to build radiomics and Deep Learning (DL) models, and the performance of individual models was compared. The development of the ensemble model involved a stacking strategy to integrate the best radiomics and DL models. The diagnostic performance of the combined model was compared with that of radiologists of varying experience levels. Model evaluation was conducted using metrics such as the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Finally, the model was validated using calibration and clinical decision curves. Results A total of 200 early LCPD hips (Center A, n = 157; Center B, n = 43) and 236 normal hips (Center A, n = 188; Center B, n = 48) were included. Among the individual radiomics and DL models, the XGBoost algorithm performed the best: the radiomics model achieved an AUC of 0.845 (95% CI, 0.758-0.933), and the DL model achieved an AUC of 0.848 (95% CI, 0.766-0.929). The ensemble model's performance was further improved, with an AUC of 0.878 (95% CI, 0.810, 0.945). The combined model significantly outperformed junior radiologists. Calibration and clinical decision curves demonstrated that the combined model had high predictive value. Conclusion The integrated radiomics and DL model using both anteroposterior and frog-leg lateral X-rays demonstrated superior performance over individual radiomics or DL approaches, highlighting its potential as an effective tool for early screening of LCPD. Keywords: Legg-Calvé-Perthes disease, Radiomics, Deep learning, X-ray image, Early detection
X-rays are the most commonly used method for diagnosing Legg-Calvé-Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only show subtle changes, making diagnosis highly dependent on the radiologist's experience. The aim of this study was to develop and validate a combined radiomics and deep learning model based on anteroposterior and frog-leg lateral X-rays for identifying early LCPD patients. We retrospectively collected imaging data of children diagnosed with early LCPD and normal control groups from two centers between January 2013 and December 2023. Logistic regression (LR), Support vector machine (SVM), and Extreme gradient boosting (XGBoost) algorithms were used to build radiomics and Deep Learning (DL) models, and the performance of individual models was compared. The development of the ensemble model involved a stacking strategy to integrate the best radiomics and DL models. The diagnostic performance of the combined model was compared with that of radiologists of varying experience levels. Model evaluation was conducted using metrics such as the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Finally, the model was validated using calibration and clinical decision curves. A total of 200 early LCPD hips (Center A, n = 157; Center B, n = 43) and 236 normal hips (Center A, n = 188; Center B, n = 48) were included. Among the individual radiomics and DL models, the XGBoost algorithm performed the best: the radiomics model achieved an AUC of 0.845 (95% CI, 0.758-0.933), and the DL model achieved an AUC of 0.848 (95% CI, 0.766-0.929). The ensemble model's performance was further improved, with an AUC of 0.878 (95% CI, 0.810, 0.945). The combined model significantly outperformed junior radiologists. Calibration and clinical decision curves demonstrated that the combined model had high predictive value. The integrated radiomics and DL model using both anteroposterior and frog-leg lateral X-rays demonstrated superior performance over individual radiomics or DL approaches, highlighting its potential as an effective tool for early screening of LCPD.
Section BackgroundX-rays are the most commonly used method for diagnosing Legg–Calvé–Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only show subtle changes, making diagnosis highly dependent on the radiologist’s experience. The aim of this study was to develop and validate a combined radiomics and deep learning model based on anteroposterior and frog-leg lateral X-rays for identifying early LCPD patients.AbstractSection MethodsWe retrospectively collected imaging data of children diagnosed with early LCPD and normal control groups from two centers between January 2013 and December 2023. Logistic regression (LR), Support vector machine (SVM), and Extreme gradient boosting (XGBoost) algorithms were used to build radiomics and Deep Learning (DL) models, and the performance of individual models was compared. The development of the ensemble model involved a stacking strategy to integrate the best radiomics and DL models. The diagnostic performance of the combined model was compared with that of radiologists of varying experience levels. Model evaluation was conducted using metrics such as the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Finally, the model was validated using calibration and clinical decision curves.AbstractSection ResultsA total of 200 early LCPD hips (Center A, n = 157; Center B, n = 43) and 236 normal hips (Center A, n = 188; Center B, n = 48) were included. Among the individual radiomics and DL models, the XGBoost algorithm performed the best: the radiomics model achieved an AUC of 0.845 (95% CI, 0.758–0.933), and the DL model achieved an AUC of 0.848 (95% CI, 0.766–0.929). The ensemble model’s performance was further improved, with an AUC of 0.878 (95% CI, 0.810, 0.945). The combined model significantly outperformed junior radiologists. Calibration and clinical decision curves demonstrated that the combined model had high predictive value.AbstractSection ConclusionThe integrated radiomics and DL model using both anteroposterior and frog-leg lateral X-rays demonstrated superior performance over individual radiomics or DL approaches, highlighting its potential as an effective tool for early screening of LCPD.
Abstract Background X-rays are the most commonly used method for diagnosing Legg–Calvé–Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only show subtle changes, making diagnosis highly dependent on the radiologist’s experience. The aim of this study was to develop and validate a combined radiomics and deep learning model based on anteroposterior and frog-leg lateral X-rays for identifying early LCPD patients. Methods We retrospectively collected imaging data of children diagnosed with early LCPD and normal control groups from two centers between January 2013 and December 2023. Logistic regression (LR), Support vector machine (SVM), and Extreme gradient boosting (XGBoost) algorithms were used to build radiomics and Deep Learning (DL) models, and the performance of individual models was compared. The development of the ensemble model involved a stacking strategy to integrate the best radiomics and DL models. The diagnostic performance of the combined model was compared with that of radiologists of varying experience levels. Model evaluation was conducted using metrics such as the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Finally, the model was validated using calibration and clinical decision curves. Results A total of 200 early LCPD hips (Center A, n = 157; Center B, n = 43) and 236 normal hips (Center A, n = 188; Center B, n = 48) were included. Among the individual radiomics and DL models, the XGBoost algorithm performed the best: the radiomics model achieved an AUC of 0.845 (95% CI, 0.758–0.933), and the DL model achieved an AUC of 0.848 (95% CI, 0.766–0.929). The ensemble model’s performance was further improved, with an AUC of 0.878 (95% CI, 0.810, 0.945). The combined model significantly outperformed junior radiologists. Calibration and clinical decision curves demonstrated that the combined model had high predictive value. Conclusion The integrated radiomics and DL model using both anteroposterior and frog-leg lateral X-rays demonstrated superior performance over individual radiomics or DL approaches, highlighting its potential as an effective tool for early screening of LCPD.
Background X-rays are the most commonly used method for diagnosing Legg–Calvé–Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only show subtle changes, making diagnosis highly dependent on the radiologist’s experience. The aim of this study was to develop and validate a combined radiomics and deep learning model based on anteroposterior and frog-leg lateral X-rays for identifying early LCPD patients. Methods We retrospectively collected imaging data of children diagnosed with early LCPD and normal control groups from two centers between January 2013 and December 2023. Logistic regression (LR), Support vector machine (SVM), and Extreme gradient boosting (XGBoost) algorithms were used to build radiomics and Deep Learning (DL) models, and the performance of individual models was compared. The development of the ensemble model involved a stacking strategy to integrate the best radiomics and DL models. The diagnostic performance of the combined model was compared with that of radiologists of varying experience levels. Model evaluation was conducted using metrics such as the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Finally, the model was validated using calibration and clinical decision curves. Results A total of 200 early LCPD hips (Center A, n  = 157; Center B, n  = 43) and 236 normal hips (Center A, n  = 188; Center B, n  = 48) were included. Among the individual radiomics and DL models, the XGBoost algorithm performed the best: the radiomics model achieved an AUC of 0.845 (95% CI, 0.758–0.933), and the DL model achieved an AUC of 0.848 (95% CI, 0.766–0.929). The ensemble model’s performance was further improved, with an AUC of 0.878 (95% CI, 0.810, 0.945). The combined model significantly outperformed junior radiologists. Calibration and clinical decision curves demonstrated that the combined model had high predictive value. Conclusion The integrated radiomics and DL model using both anteroposterior and frog-leg lateral X-rays demonstrated superior performance over individual radiomics or DL approaches, highlighting its potential as an effective tool for early screening of LCPD.
ArticleNumber 910
Audience Academic
Author Li, Ya-nan
Guo, Wan-liang
Zhang, Dian
Li, Cheng-long
Author_xml – sequence: 1
  givenname: Dian
  surname: Zhang
  fullname: Zhang, Dian
  organization: Department of Radiology, Children’s Hospital of Soochow University
– sequence: 2
  givenname: Ya-nan
  surname: Li
  fullname: Li, Ya-nan
  organization: Department of Radiology, Xuzhou Children’s Hospital
– sequence: 3
  givenname: Cheng-long
  surname: Li
  fullname: Li, Cheng-long
  email: lcllmm@163.com
  organization: Department of Radiology, Xuzhou Children’s Hospital
– sequence: 4
  givenname: Wan-liang
  surname: Guo
  fullname: Guo, Wan-liang
  email: gwlsuzhou@163.com
  organization: Department of Radiology, Children’s Hospital of Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41034891$$D View this record in MEDLINE/PubMed
BookMark eNqNksuOFCEUhitmjHPRF3BhSNy4qREoKGA5mXiZpBON0cQdOQWnyupUQwvVo_1IPocvJj3dzqgxxrDg9v0_HH5Oq6MQA1bVY0bPGdPt88y4NqymXNbUMG1qca86YUKxmgsljn4ZH1enOS8pZUo35kF1LBhtRNGeVF_fgR_janSZQPDEI67JhJDCGAayih4n0kFGT2IgH-sEWzKuYNht9jGR-RMSyHnMcyH8CEOIZUJiT4rFtCULHIb6Eqbr79_qt5gKnguWsTg-rO73MGV8dOjPqg8vX7y_fF0v3ry6urxY1E5SOddaqVZKjhydbnvtjehQce8FB8mh49o7ToE3yFuhKffGN6bXDKRxiinHm7Pqau_rIyztOpXrp62NMNqbhZgGC2ke3YTWaNfpVupymhRdD10neiek4Q4840IWr2bvtQlr2H6Babo1ZNTuMrH7TGzJxN5kYkVRPdur1il-3mCe7WrMDqcJAsZNtg2XbWOaluuCPv0DXcZNCuV9dpTiDdWK3lEDlFuPoY9zArcztRdaaqqMMrvCz_9CleaxxF1-Uj-W9d8ETw6Hb7oV-tvSfn6WAvA94FLMOWH_f9Uf3iwXOAyY7kr6h-oHzdneww
Cites_doi 10.1111/ceo.14498
10.1016/j.mri.2012.05.001
10.1186/s12903-022-02170-w
10.1007/s11042-022-12226-2
10.1002/jbmr.4814
10.3390/diagnostics12081870
10.1093/aje/kwr293
10.3389/fphar.2024.1375112
10.1097/BPO.0b013e318223b423
10.1007/s11517-022-02595-z
10.3389/fradi.2023.1175473
10.1016/j.ejrad.2024.111793
10.1142/S0219720005001004
10.1016/j.ejrad.2021.109878
10.1158/0008-5472.CAN-17-0339
10.55095/achot2022/020
10.1148/radiol.210407
10.3389/fonc.2022.1028577
10.7717/peerj.17098
10.1002/jmri.28586
10.1038/s41598-021-85223-4
10.1155/2020/3462363
10.1148/radiol.2015151169
10.1007/s00432-023-05574-5
10.1148/radiol.230657
10.1111/j.1467-9868.2011.00771.x
10.1080/17453674.2016.1227055
10.1007/s00256-018-3016-3
10.3389/fonc.2022.897596
10.1007/s10654-018-0390-z
10.1186/s12891-021-04260-2
10.12998/wjcc.v12.i21.4661
10.1148/radiol.2020191145
10.1007/s00330-023-10186-1
10.1007/s00330-023-09995-1
10.1002/jmri.27909
10.1007/s00330-023-10104-5
10.1186/s12880-023-01089-0
10.1073/pnas.1806905115
10.1002/jmri.28069
10.1016/j.jposna.2024.100039
10.1249/JSR.0000000000001139
10.1097/01241398-200309000-00005
ContentType Journal Article
Copyright The Author(s) 2025
COPYRIGHT 2025 BioMed Central Ltd.
2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QP
7RV
7TK
7TS
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
ADTOC
UNPAY
DOA
DOI 10.1186/s12891-025-09189-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: Proquest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1471-2474
EndPage 14
ExternalDocumentID oai_doaj_org_article_98cb86582e254bfabb4fc4592cad1245
10.1186/s12891-025-09189-4
A858079792
41034891
10_1186_s12891_025_09189_4
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7RV
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
IAO
IHR
INH
INR
ITC
KQ8
M1P
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
NPM
3V.
7QP
7TK
7TS
7XB
8FK
AZQEC
DWQXO
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
7X8
2VQ
4.4
ADTOC
AHSBF
C1A
EJD
H13
HYE
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c505t-8776552e2ec86f8d94be72dd42a52ab28dc20a23e264802d9d39f81a59c717c23
IEDL.DBID BENPR
ISSN 1471-2474
IngestDate Mon Oct 13 19:20:30 EDT 2025
Sun Oct 26 04:05:15 EDT 2025
Mon Oct 06 16:42:40 EDT 2025
Sat Oct 25 03:17:55 EDT 2025
Mon Oct 20 22:40:51 EDT 2025
Tue Oct 14 03:50:59 EDT 2025
Mon Oct 06 01:43:37 EDT 2025
Thu Oct 09 00:38:58 EDT 2025
Thu Oct 02 04:43:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Legg-Calvé-Perthes disease
X-ray image
Early detection
Radiomics
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-8776552e2ec86f8d94be72dd42a52ab28dc20a23e264802d9d39f81a59c717c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3257230870?pq-origsite=%requestingapplication%&accountid=15518
PMID 41034891
PQID 3257230870
PQPubID 44767
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_98cb86582e254bfabb4fc4592cad1245
unpaywall_primary_10_1186_s12891_025_09189_4
proquest_miscellaneous_3256393628
proquest_journals_3257230870
gale_infotracmisc_A858079792
gale_infotracacademiconefile_A858079792
pubmed_primary_41034891
crossref_primary_10_1186_s12891_025_09189_4
springer_journals_10_1186_s12891_025_09189_4
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC musculoskeletal disorders
PublicationTitleAbbrev BMC Musculoskelet Disord
PublicationTitleAlternate BMC Musculoskelet Disord
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References XZ Zhao (9189_CR11) 2019; 27
B Joseph (9189_CR19) 2011; 31
R Sinha (9189_CR21) 2024; 7
JZ Jiang (9189_CR44) 2021
ME Klontzas (9189_CR42) 2022
Y Shi (9189_CR31) 2022; 12
9189_CR46
9189_CR25
J Yang (9189_CR26) 2022; 60
RK Mahto (9189_CR28) 2022; 22
X Cheng (9189_CR33) 2023; 23
DC Perry (9189_CR1) 2012; 175
T Ng (9189_CR4) 2024; 23
YF Zhang (9189_CR24) 2024; 150
Y Du (9189_CR17) 2024; 34
JY Ye (9189_CR32) 2024; 34
Y Xiang (9189_CR40) 2022; 55
ME Klontzas (9189_CR43) 2024; 34
T Urakawa (9189_CR15) 2019; 48
A Fedorov (9189_CR22) 2012; 30
Y Sato (9189_CR12) 2021; 22
O Kalenderer (9189_CR5) 2022; 89
R Tibshirani (9189_CR30) 2011; 73
N Hong (9189_CR13) 2023; 38
R Lindsey (9189_CR16) 2018; 115
QH He (9189_CR37) 2022; 12
B Joseph (9189_CR38) 2003; 23
Y Zhang (9189_CR45) 2024
K Dev (9189_CR10) 2022; 81
T Johansson (9189_CR2) 2017; 88
AI Naimi (9189_CR34) 2018; 33
MKH Khan (9189_CR39) 2023; 248
M Ni (9189_CR41) 2022; 56
M Nelitz (9189_CR3) 2009; 106
RM Summers (9189_CR9) 2023
A Mortazi (9189_CR27) 2023; 3
D Zhang (9189_CR18) 2024; 181
R Hou (9189_CR8) 2022; 303
Y Yang (9189_CR20) 2023; 58
H Jiang (9189_CR36) 2024; 12
A Zwanenburg (9189_CR7) 2020; 295
J Ma (9189_CR14) 2021; 142
JJM Van Griethuysen (9189_CR23) 2017; 77
Z Li (9189_CR35) 2024; 15
C Ding (9189_CR29) 2005; 3
RJ Gillies (9189_CR6) 2016; 278
References_xml – ident: 9189_CR25
  doi: 10.1111/ceo.14498
– volume: 30
  start-page: 1323
  issue: 9
  year: 2012
  ident: 9189_CR22
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.05.001
– volume: 22
  issue: 1
  year: 2022
  ident: 9189_CR28
  publication-title: BMC Oral Health
  doi: 10.1186/s12903-022-02170-w
– volume: 81
  start-page: 22379
  issue: 16
  year: 2022
  ident: 9189_CR10
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12226-2
– volume: 38
  start-page: 887
  issue: 6
  year: 2023
  ident: 9189_CR13
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.4814
– year: 2022
  ident: 9189_CR42
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12081870
– volume: 175
  start-page: 159
  issue: 3
  year: 2012
  ident: 9189_CR1
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwr293
– volume: 15
  start-page: 1375112
  year: 2024
  ident: 9189_CR35
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2024.1375112
– volume: 31
  year: 2011
  ident: 9189_CR19
  publication-title: J Pediatr Orthop
  doi: 10.1097/BPO.0b013e318223b423
– volume: 60
  start-page: 2665
  issue: 9
  year: 2022
  ident: 9189_CR26
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-022-02595-z
– volume: 3
  year: 2023
  ident: 9189_CR27
  publication-title: Front Radiol
  doi: 10.3389/fradi.2023.1175473
– volume: 181
  year: 2024
  ident: 9189_CR18
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2024.111793
– volume: 3
  start-page: 185
  issue: 2
  year: 2005
  ident: 9189_CR29
  publication-title: J Bioinform Comput Biol
  doi: 10.1142/S0219720005001004
– volume: 142
  year: 2021
  ident: 9189_CR14
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2021.109878
– volume: 77
  start-page: e104
  issue: 21
  year: 2017
  ident: 9189_CR23
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0339
– volume: 89
  start-page: 134
  issue: 2
  year: 2022
  ident: 9189_CR5
  publication-title: Acta Chir Orthop Traumatol Cech
  doi: 10.55095/achot2022/020
– volume: 303
  start-page: 54
  issue: 1
  year: 2022
  ident: 9189_CR8
  publication-title: Radiology
  doi: 10.1148/radiol.210407
– volume: 12
  year: 2022
  ident: 9189_CR37
  publication-title: Front Oncol
  doi: 10.3389/fonc.2022.1028577
– year: 2024
  ident: 9189_CR45
  publication-title: PeerJ
  doi: 10.7717/peerj.17098
– volume: 58
  start-page: 605
  issue: 2
  year: 2023
  ident: 9189_CR20
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.28586
– year: 2021
  ident: 9189_CR44
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-85223-4
– ident: 9189_CR46
  doi: 10.1155/2020/3462363
– volume: 278
  start-page: 563
  issue: 2
  year: 2016
  ident: 9189_CR6
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 150
  issue: 2
  year: 2024
  ident: 9189_CR24
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-023-05574-5
– volume: 27
  start-page: 615
  issue: 4
  year: 2019
  ident: 9189_CR11
  publication-title: Journal of X-Ray Science and Technology: Clinical Applications of Diagnosis and Therapeutics
– year: 2023
  ident: 9189_CR9
  publication-title: Radiology
  doi: 10.1148/radiol.230657
– volume: 73
  start-page: 273
  year: 2011
  ident: 9189_CR30
  publication-title: J Royal Stat Soc Ser B-Statistical Methodol
  doi: 10.1111/j.1467-9868.2011.00771.x
– volume: 88
  start-page: 96
  issue: 1
  year: 2017
  ident: 9189_CR2
  publication-title: Acta Orthop
  doi: 10.1080/17453674.2016.1227055
– volume: 48
  start-page: 239
  issue: 2
  year: 2019
  ident: 9189_CR15
  publication-title: Skeletal Radiol
  doi: 10.1007/s00256-018-3016-3
– volume: 12
  year: 2022
  ident: 9189_CR31
  publication-title: Front Oncol
  doi: 10.3389/fonc.2022.897596
– volume: 33
  start-page: 459
  issue: 5
  year: 2018
  ident: 9189_CR34
  publication-title: Eur J Epidemiol
  doi: 10.1007/s10654-018-0390-z
– volume: 22
  start-page: 407
  issue: 1
  year: 2021
  ident: 9189_CR12
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/s12891-021-04260-2
– volume: 12
  start-page: 4661
  issue: 21
  year: 2024
  ident: 9189_CR36
  publication-title: World J Clin Cases
  doi: 10.12998/wjcc.v12.i21.4661
– volume: 248
  start-page: 1974
  issue: 21
  year: 2023
  ident: 9189_CR39
  publication-title: Exp Biol Med (Maywood)
– volume: 295
  start-page: 328
  issue: 2
  year: 2020
  ident: 9189_CR7
  publication-title: Radiology
  doi: 10.1148/radiol.2020191145
– volume: 34
  start-page: 1994
  issue: 3
  year: 2024
  ident: 9189_CR32
  publication-title: Eur Radiol
  doi: 10.1007/s00330-023-10186-1
– volume: 106
  start-page: 517
  issue: 31–32
  year: 2009
  ident: 9189_CR3
  publication-title: Dtsch Arztebl Int
– volume: 34
  start-page: 136
  issue: 1
  year: 2024
  ident: 9189_CR17
  publication-title: Eur Radiol
  doi: 10.1007/s00330-023-09995-1
– volume: 55
  start-page: 1082
  issue: 4
  year: 2022
  ident: 9189_CR40
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.27909
– volume: 34
  start-page: 1179
  issue: 2
  year: 2024
  ident: 9189_CR43
  publication-title: Eur Radiol
  doi: 10.1007/s00330-023-10104-5
– volume: 23
  issue: 1
  year: 2023
  ident: 9189_CR33
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-023-01089-0
– volume: 115
  start-page: 11591
  issue: 45
  year: 2018
  ident: 9189_CR16
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1806905115
– volume: 56
  start-page: 625
  issue: 2
  year: 2022
  ident: 9189_CR41
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.28069
– volume: 7
  year: 2024
  ident: 9189_CR21
  publication-title: J Pediatr Orthop Soc North Am
  doi: 10.1016/j.jposna.2024.100039
– volume: 23
  start-page: 45
  issue: 2
  year: 2024
  ident: 9189_CR4
  publication-title: Curr Sports Med Rep
  doi: 10.1249/JSR.0000000000001139
– volume: 23
  start-page: 590
  issue: 5
  year: 2003
  ident: 9189_CR38
  publication-title: J Pediatr Orthop
  doi: 10.1097/01241398-200309000-00005
SSID ssj0017839
Score 2.4302506
Snippet Background X-rays are the most commonly used method for diagnosing Legg–Calvé–Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only...
Background X-rays are the most commonly used method for diagnosing Legg-Calvé-Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only...
X-rays are the most commonly used method for diagnosing Legg-Calvé-Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only show subtle...
Section BackgroundX-rays are the most commonly used method for diagnosing Legg–Calvé–Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays...
Abstract Background X-rays are the most commonly used method for diagnosing Legg–Calvé–Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays...
SourceID doaj
unpaywall
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 910
SubjectTerms Algorithms
Artificial intelligence
Computer-aided medical diagnosis
Data mining
Deep learning
Diagnosis
Diagnosis, Radioscopic
Disease
Early detection
Epidemiology
Hip
Internal Medicine
Legg-Calve-Perthes disease
Legg-Calvé-Perthes disease
Machine learning
Medical diagnosis
Medicine
Medicine & Public Health
Methods
Orthopedics
Osteochondrosis
Pediatrics
Radiomics
Rehabilitation
Reproducibility
Rheumatology
Sports Medicine
X-ray image
X-rays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQXoADApZH2AUZCcGBjTZ17MQ-lhWrFQKEECv1Zo0fqSp106ppYfuT-B38McbOg1ZIwIFrYkfJPPzNxONvCHkBDvIRN6MUXCDVzq1KTSlUOirBM1v6TMhwwPnDx-Likr-biMlOq69QE9bSA7eCO1XSGokwyTymMqYCY3hluVDMgkNsiuylmVR9MtXtH5SI-_0RGVmcNrgKhwofJlLER6lSvgdDka3_9zV5B5SGXdLb5OamXsL2G8znO0B0fpfc6SJIOm7f_B654ev75HBcY_Z8taUvaazpjD_LD8n1Z3CzcO64oVA76rxf0q5PxJTGJjg0wJiji5pO0hVs6ewqti2iGMtSjA0pxtbBEHBuW5M3a-iioj7QItP3fjpNz2D-9cf39JNf4fCGdhs-D8jl-dsvZxdp12shtRgDrXFRLAshUMjeyqKSTnHjS-YcZyAYGCadZRmw3IeKuIw55XJVyREIZTEhtCx_SA7qRe0fE6rA-tyCAS4FtwzBwBZ5aTKDyvelsgl53YteL1tKDR1TEVnoVlEaFaWjojRPyJugnWFkoMOOF9BIdGck-m9GkpBXQbc6OO16BRa6swf4woH-So-lkFmpSsUScrw3Ep3N7t_urUN3zt7oHJc9FpgVs4Q8H26HmaGArfaLTRyDsSBGCzIhj1qrGj6Jj7Kc42cn5KQ3s18P_5NkTgZT_AdBPvkfgjwit1jwoljNeEwO1quNf4pR2do8iw74E2AlMSI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgSFweEGzAAgMZCcEDi0gdO7Efy8Q0IYYQolLfrONLqkpdWjXtoD-J38Ef49hNwioQgtf4Itvn9jnnYkJegIN8wM0gBReKaudWpaYUKh2U4JktfSZkSHA-_1icjfj7sRi3SWFNF-3euSSjpo5iLYs3DWrSEKXDRIo2TqqUXyc3RCjnhVw8YsPed1Cize_SY_44bscExUr9v-vjKwap95DeIbfW9QI2X2E2u2KETu-Ruy16pMMtue-Ta77eJwfDGm_OFxv6ksZ4zvijfJ_cPG_d5gfk22dw05B-3FCoHXXeL2j7XMSExrdwaLBmjs5rOk6XsKHTi_h6EUVISxEiUoTYgR9w7DY0b9rQeUV9qI5MP_jJJD2B2eWP7-knv8TuDW39Pg_I6PTdl5OztH1yIbUIhVaoG8tCCOaZt7KopFPc-JI5xxkIBoZJZ1kGLPchMC5jTrlcVXIAQlm8F1qWPyR79bz2h4QqsD63YIBLwS1Dm2CLvDSZQR7wpbIJed1RQS-2lTV0vJHIQm9pppFmOtJM84S8DYTqe4aq2PHDfDnRrZBpJa2RCKlw_YKbCozhleVCMQsOcYxIyKtAZh1kd7UEC20KAi44VMHSQylkVqpSsYQc7fREmbO7zR2j6FbmG52j9mOhwGKWkOd9cxgZ4thqP1_HPggJETTIhDzaMli_JT7Ico7bTshxx3G_Jv_byRz3XPkPB_n4_2Z_Qm6zIDoxfPGI7K2Wa_8UYdjKPItS9xMnLyhu
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gE48FoWAgsyEoIDm27q2Il9LCtWKwSrFaKinCy_UlXbJlXTwpZ_xO_gjzHOo7SAEBy4JuMonoxnPscz3yD0VFkV96juhcp6Uu3YiFCnTIS9VDliUhcx7guc354lpwP6esiGO-hDWwujp2a69CmYRXkBfndhKw7K7mYt-qQudfCtFNz8aGazeuXz5KgEZ-sTeQgLIQxyEdIraDdhANI7aHdwdt7_WNUapb2Q0JS2JTS_HbgVpio2_1999kbQWp-iXkdXl_lMrT6ryWQjUJ3cRJftFOv8lIvucqG75stP7I__QQe30I0G3OJ-bY230Y7L76C9fg4b--kKP8NVumn1H38PXb5TduxLokuscoutczPctLAY4ao_D_YR1uIix8NwrlZ4PK06KmGA2RhgKwbY720UxtbpguMSFxl2nrEZv3GjUXisJp--fQ3P3RzES9ycRd1Fg5NX749Pw6YNRGgAni3AX6cJY8QRZ3iScSuodimxlhLFiNKEW0MiRWLnk_UiYoWNRcZ7igkDe1VD4n3UyYvc3UdYKONio7SinFFDIE6ZJE51pMEuXSpMgF60X13OarYPWe2SeCJrxUpQrKwUK2mAXnrDWEt6pu7qQjEfyWbhS8GN5gDz4P0Z1ZnSmmaGMkGMsoCtWICee7OS3p_AhzWqKYuAF_bMXLLPGY9SkQoSoIMtSfADZvt2a5iy8UOljMEjE0_6GAXoyfq2H-lz63JXLCsZgKkAZHiA7tUGvZ4S7UUxhWkH6LC18B8P_5NmDter4C8U-eDfxB-ia8Tbd5VSeYA6i_nSPQJouNCPm2X-HUzdXh8
  priority: 102
  providerName: Unpaywall
Title Radiomics and deep learning model based on X-ray imaging for the assisted diagnosis of early Legg-Calvé-Perthes disease
URI https://link.springer.com/article/10.1186/s12891-025-09189-4
https://www.ncbi.nlm.nih.gov/pubmed/41034891
https://www.proquest.com/docview/3257230870
https://www.proquest.com/docview/3256393628
https://bmcmusculoskeletdisord.biomedcentral.com/counter/pdf/10.1186/s12891-025-09189-4
https://doaj.org/article/98cb86582e254bfabb4fc4592cad1245
UnpaywallVersion publishedVersion
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2474
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017839
  issn: 1471-2474
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2474
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017839
  issn: 1471-2474
  databaseCode: KQ8
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2474
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017839
  issn: 1471-2474
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 1471-2474
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017839
  issn: 1471-2474
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2474
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017839
  issn: 1471-2474
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1471-2474
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017839
  issn: 1471-2474
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2474
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017839
  issn: 1471-2474
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2474
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017839
  issn: 1471-2474
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (WRLC)
  customDbUrl:
  eissn: 1471-2474
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017839
  issn: 1471-2474
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2474
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017839
  issn: 1471-2474
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2474
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017839
  issn: 1471-2474
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2474
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017839
  issn: 1471-2474
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2474
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017839
  issn: 1471-2474
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2474
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017839
  issn: 1471-2474
  databaseCode: U2A
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtMwGLa29gK4QMBgBEZlJAQXLFrq2Il9gVBWbZoqqKZBpXIV-dSqUpeUHoA-Es_Bi_HbTbJVSBM3ubCdyPF_-mz_B4TeSCPjLlXdUBqXVDvWIlQpE2E3lZbo1EaMuwDnz4PkYkj7IzbaQ4M6Fsa5VdY60StqU2p3Rn4SA28Rl74u-jj_HrqqUe52tS6hIavSCuaDTzG2j9rEZcZqofbp2eDyqrlXSAEP1KEzPDlZgnZ2nj-EhWA3uQjpjnnyWfz_1dW3jFVze_oA3VsXc7n5KWezWwbq_BF6WCFLnG1Z4THas8UTdJAVsKu-3uC32Pt6-kP0A_TrSpqpi0deYlkYbKyd46p-xAT74jjYmTeDywKPwoXc4Om1L2eEAeNiwIwYMLdjEHh366s3XeJyjK1Ll4w_2ckk7MnZjz-_w0u7gOFLXF0EPUXD87OvvYuwqsEQasBGK1CWacIYscRqnoy5EVTZlBhDiWREKsKNJpEksXWechExwsRizLuSCQ0bRU3iZ6hVlIV9jrCQ2sZaKkk5o5qAkdBJnKpIAVPYVOgAva-XPp9vU23kfovCk3xLqBwIlXtC5TRAp446zUiXJts3lItJXkldLrhWHDAWzJ9RNZZK0bGmTBAtDQAbFqB3jra5E-bVQmpZxSTAhF1arDzjjEepSAUJ0NHOSBBCvdtdc0deKYFlfsOyAXrddLs3nWNbYcu1HwMYEVAED9DhlquaX6LdKKbw2wE6rtns5uN3rcxxw4r_sZAv7p76S3SfOPnw_otHqLVarO0rwGEr1UH76SjtoHaW9b_0O5WoQWsv6XX82QY8hwSe7eHgMvv2F1NlNXk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtMwGLam7WJwgYBxCAwwEocLFi117MS-mFA3NnWsq6Zpk3ZnfGpVqUtK0zL6SLwEN7wYv9MkW4U0cbPbxIkc_4fvc_wfEHqnrIpbVLdCZX1R7diIUKdMhK1UOWJSFzHuE5yPe0nnnH69YBcr6HedC-PDKmufWDpqmxv_j3w7Bt0ivnxd9Hn8PfRdo_zpat1CQ1WtFexOWWKsSuw4cvMr2MIVO4dfQN7vCTnYP9vrhFWXgdAA-k_BHaQJY8QRZ3jS51ZQ7VJiLSWKEaUJt4ZEisTOx4JFxAobiz5vKSYMbIWML3wAELBGYypg87e2u987OW3OMVLgH3WqDk-2C0ADH2lEWAg4zUVIl-Cw7BrwLzbcAMfmtPY-Wp9lYzW_UqPRDUA8eIgeVEwWtxeq9wituOwx2mhnsIu_nOMPuIwtLX_ab6Cfp8oOff5zgVVmsXVujKt-FQNcNuPBHk4tzjN8EU7UHA8vy_ZJGDg1Bo6KgeN7hYRnF7GBwwLnfex8eWbcdYNBuKdGP_78Ck_cBIYXuDp4eoLO70QaT9FqlmfuOcJCGRcbpRXljBoCoGSSONWRBiV0qTAB-lQvvRwvSnvIckvEE7kQlARByVJQkgZo10unGenLcpcX8slAVlYuBTeaA6eD-TOq-0pr2jeUCWKUBSLFAvTRy1Z65zGdKKOqHAiYsC_DJduc8SgVqSAB2lwaCUZvlm_X2iErp1PIaxMJ0Nvmtn_SB9JlLp-VY4CTAmvhAXq20Krmk2griil8doC2ajW7fvltK7PVqOJ_LOSL26f-Bq13zo67snvYO3qJ7hFvK2Xs5CZanU5m7hVwwKl-XRkaRt_u2rb_AndyarE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgSAMeEGwMAgOMhOCBRUsdO7EfS6EasE0TYlLfLN9SVerSKk2B_iR-B3-MYycNrUAIXuOLbJ9zfD7n3BB6oaxKe1T3YmV9Uu3UiFjnTMS9XDlicpcw7gOcz86zk0v6YcRGG1H8wdt9bZJsYhp8lqayPp7bohFxnh0v4Fb1HjuExaDvuIjpdXSDgnbzNQwG2aCzI-Sg_9ehMn8ct6WOQtb-3-_mDeXUWUtvo5vLcq5WX9V0uqGQhnfRnRZJ4n5D-nvomiv30H6_hFf01Qq_xMG3M_w030O7Z60JfR99-6TsxIciL7AqLbbOzXFbOmKMQ10c7DWbxbMSj-JKrfDkKlQywgBvMcBFDHDb8waMbdz0Jgs8K7DzmZLxqRuP44GafvnxPb5wFXRf4NYGdB9dDt99HpzEbfmF2AAsquGezDPGiCPO8KzgVlDtcmItJYoRpQm3hiSKpM47ySXECpuKgvcUEwbeiIakB2innJXuIcJCGZcapRXljBoC-sFkaa4TDfzgcmEi9HpNBTlvsmzI8DrhmWxoJoFmMtBM0gi98YTqevoM2eHDrBrLVuCk4EZzgFewfkZ1obSmhaFMEKMsYBoWoVeezNLLcV0po9pwBFiwz4gl-5zxJBe5IBE63OoJ8me2m9eMIlv5X8gUbkLiky0mEXreNfuR3qetdLNl6APwEAAEj9CDhsG6LdFeklLYdoSO1hz3a_K_ncxRx5X_cJCP_m_2Z2j34u1Qnr4___gY3SJeioJX4yHaqaulewLorNZPgwD-BOMcL4A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gE48FoWAgsyEoIDm27q2Il9LCtWKwSrFaKinCy_UlXbJlXTwpZ_xO_gjzHOo7SAEBy4JuMonoxnPscz3yD0VFkV96juhcp6Uu3YiFCnTIS9VDliUhcx7guc354lpwP6esiGO-hDWwujp2a69CmYRXkBfndhKw7K7mYt-qQudfCtFNz8aGazeuXz5KgEZ-sTeQgLIQxyEdIraDdhANI7aHdwdt7_WNUapb2Q0JS2JTS_HbgVpio2_1999kbQWp-iXkdXl_lMrT6ryWQjUJ3cRJftFOv8lIvucqG75stP7I__QQe30I0G3OJ-bY230Y7L76C9fg4b--kKP8NVumn1H38PXb5TduxLokuscoutczPctLAY4ao_D_YR1uIix8NwrlZ4PK06KmGA2RhgKwbY720UxtbpguMSFxl2nrEZv3GjUXisJp--fQ3P3RzES9ycRd1Fg5NX749Pw6YNRGgAni3AX6cJY8QRZ3iScSuodimxlhLFiNKEW0MiRWLnk_UiYoWNRcZ7igkDe1VD4n3UyYvc3UdYKONio7SinFFDIE6ZJE51pMEuXSpMgF60X13OarYPWe2SeCJrxUpQrKwUK2mAXnrDWEt6pu7qQjEfyWbhS8GN5gDz4P0Z1ZnSmmaGMkGMsoCtWICee7OS3p_AhzWqKYuAF_bMXLLPGY9SkQoSoIMtSfADZvt2a5iy8UOljMEjE0_6GAXoyfq2H-lz63JXLCsZgKkAZHiA7tUGvZ4S7UUxhWkH6LC18B8P_5NmDter4C8U-eDfxB-ia8Tbd5VSeYA6i_nSPQJouNCPm2X-HUzdXh8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomics+and+deep+learning+model+based+on+X-ray+imaging+for+the+assisted+diagnosis+of+early+Legg-Calv%C3%A9-Perthes+disease&rft.jtitle=BMC+musculoskeletal+disorders&rft.au=Zhang%2C+Dian&rft.au=Li%2C+Ya-Nan&rft.au=Li%2C+Cheng-Long&rft.au=Guo%2C+Wan-Liang&rft.date=2025-10-01&rft.issn=1471-2474&rft.eissn=1471-2474&rft.volume=26&rft.issue=1&rft.spage=910&rft_id=info:doi/10.1186%2Fs12891-025-09189-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2474&client=summon