Radiomics and deep learning model based on X-ray imaging for the assisted diagnosis of early Legg-Calvé-Perthes disease
Background X-rays are the most commonly used method for diagnosing Legg–Calvé–Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only show subtle changes, making diagnosis highly dependent on the radiologist’s experience. The aim of this study was to develop and validate a comb...
Saved in:
| Published in | BMC musculoskeletal disorders Vol. 26; no. 1; pp. 910 - 14 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
01.10.2025
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2474 1471-2474 |
| DOI | 10.1186/s12891-025-09189-4 |
Cover
| Abstract | Background
X-rays are the most commonly used method for diagnosing Legg–Calvé–Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only show subtle changes, making diagnosis highly dependent on the radiologist’s experience. The aim of this study was to develop and validate a combined radiomics and deep learning model based on anteroposterior and frog-leg lateral X-rays for identifying early LCPD patients.
Methods
We retrospectively collected imaging data of children diagnosed with early LCPD and normal control groups from two centers between January 2013 and December 2023. Logistic regression (LR), Support vector machine (SVM), and Extreme gradient boosting (XGBoost) algorithms were used to build radiomics and Deep Learning (DL) models, and the performance of individual models was compared. The development of the ensemble model involved a stacking strategy to integrate the best radiomics and DL models. The diagnostic performance of the combined model was compared with that of radiologists of varying experience levels. Model evaluation was conducted using metrics such as the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Finally, the model was validated using calibration and clinical decision curves.
Results
A total of 200 early LCPD hips (Center A,
n
= 157; Center B,
n
= 43) and 236 normal hips (Center A,
n
= 188; Center B,
n
= 48) were included. Among the individual radiomics and DL models, the XGBoost algorithm performed the best: the radiomics model achieved an AUC of 0.845 (95% CI, 0.758–0.933), and the DL model achieved an AUC of 0.848 (95% CI, 0.766–0.929). The ensemble model’s performance was further improved, with an AUC of 0.878 (95% CI, 0.810, 0.945). The combined model significantly outperformed junior radiologists. Calibration and clinical decision curves demonstrated that the combined model had high predictive value.
Conclusion
The integrated radiomics and DL model using both anteroposterior and frog-leg lateral X-rays demonstrated superior performance over individual radiomics or DL approaches, highlighting its potential as an effective tool for early screening of LCPD. |
|---|---|
| AbstractList | Background X-rays are the most commonly used method for diagnosing Legg-Calvé-Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only show subtle changes, making diagnosis highly dependent on the radiologist's experience. The aim of this study was to develop and validate a combined radiomics and deep learning model based on anteroposterior and frog-leg lateral X-rays for identifying early LCPD patients. Methods We retrospectively collected imaging data of children diagnosed with early LCPD and normal control groups from two centers between January 2013 and December 2023. Logistic regression (LR), Support vector machine (SVM), and Extreme gradient boosting (XGBoost) algorithms were used to build radiomics and Deep Learning (DL) models, and the performance of individual models was compared. The development of the ensemble model involved a stacking strategy to integrate the best radiomics and DL models. The diagnostic performance of the combined model was compared with that of radiologists of varying experience levels. Model evaluation was conducted using metrics such as the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Finally, the model was validated using calibration and clinical decision curves. Results A total of 200 early LCPD hips (Center A, n = 157; Center B, n = 43) and 236 normal hips (Center A, n = 188; Center B, n = 48) were included. Among the individual radiomics and DL models, the XGBoost algorithm performed the best: the radiomics model achieved an AUC of 0.845 (95% CI, 0.758-0.933), and the DL model achieved an AUC of 0.848 (95% CI, 0.766-0.929). The ensemble model's performance was further improved, with an AUC of 0.878 (95% CI, 0.810, 0.945). The combined model significantly outperformed junior radiologists. Calibration and clinical decision curves demonstrated that the combined model had high predictive value. Conclusion The integrated radiomics and DL model using both anteroposterior and frog-leg lateral X-rays demonstrated superior performance over individual radiomics or DL approaches, highlighting its potential as an effective tool for early screening of LCPD. Keywords: Legg-Calvé-Perthes disease, Radiomics, Deep learning, X-ray image, Early detection X-rays are the most commonly used method for diagnosing Legg-Calvé-Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only show subtle changes, making diagnosis highly dependent on the radiologist's experience. The aim of this study was to develop and validate a combined radiomics and deep learning model based on anteroposterior and frog-leg lateral X-rays for identifying early LCPD patients. We retrospectively collected imaging data of children diagnosed with early LCPD and normal control groups from two centers between January 2013 and December 2023. Logistic regression (LR), Support vector machine (SVM), and Extreme gradient boosting (XGBoost) algorithms were used to build radiomics and Deep Learning (DL) models, and the performance of individual models was compared. The development of the ensemble model involved a stacking strategy to integrate the best radiomics and DL models. The diagnostic performance of the combined model was compared with that of radiologists of varying experience levels. Model evaluation was conducted using metrics such as the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Finally, the model was validated using calibration and clinical decision curves. A total of 200 early LCPD hips (Center A, n = 157; Center B, n = 43) and 236 normal hips (Center A, n = 188; Center B, n = 48) were included. Among the individual radiomics and DL models, the XGBoost algorithm performed the best: the radiomics model achieved an AUC of 0.845 (95% CI, 0.758-0.933), and the DL model achieved an AUC of 0.848 (95% CI, 0.766-0.929). The ensemble model's performance was further improved, with an AUC of 0.878 (95% CI, 0.810, 0.945). The combined model significantly outperformed junior radiologists. Calibration and clinical decision curves demonstrated that the combined model had high predictive value. The integrated radiomics and DL model using both anteroposterior and frog-leg lateral X-rays demonstrated superior performance over individual radiomics or DL approaches, highlighting its potential as an effective tool for early screening of LCPD. Section BackgroundX-rays are the most commonly used method for diagnosing Legg–Calvé–Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only show subtle changes, making diagnosis highly dependent on the radiologist’s experience. The aim of this study was to develop and validate a combined radiomics and deep learning model based on anteroposterior and frog-leg lateral X-rays for identifying early LCPD patients.AbstractSection MethodsWe retrospectively collected imaging data of children diagnosed with early LCPD and normal control groups from two centers between January 2013 and December 2023. Logistic regression (LR), Support vector machine (SVM), and Extreme gradient boosting (XGBoost) algorithms were used to build radiomics and Deep Learning (DL) models, and the performance of individual models was compared. The development of the ensemble model involved a stacking strategy to integrate the best radiomics and DL models. The diagnostic performance of the combined model was compared with that of radiologists of varying experience levels. Model evaluation was conducted using metrics such as the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Finally, the model was validated using calibration and clinical decision curves.AbstractSection ResultsA total of 200 early LCPD hips (Center A, n = 157; Center B, n = 43) and 236 normal hips (Center A, n = 188; Center B, n = 48) were included. Among the individual radiomics and DL models, the XGBoost algorithm performed the best: the radiomics model achieved an AUC of 0.845 (95% CI, 0.758–0.933), and the DL model achieved an AUC of 0.848 (95% CI, 0.766–0.929). The ensemble model’s performance was further improved, with an AUC of 0.878 (95% CI, 0.810, 0.945). The combined model significantly outperformed junior radiologists. Calibration and clinical decision curves demonstrated that the combined model had high predictive value.AbstractSection ConclusionThe integrated radiomics and DL model using both anteroposterior and frog-leg lateral X-rays demonstrated superior performance over individual radiomics or DL approaches, highlighting its potential as an effective tool for early screening of LCPD. Abstract Background X-rays are the most commonly used method for diagnosing Legg–Calvé–Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only show subtle changes, making diagnosis highly dependent on the radiologist’s experience. The aim of this study was to develop and validate a combined radiomics and deep learning model based on anteroposterior and frog-leg lateral X-rays for identifying early LCPD patients. Methods We retrospectively collected imaging data of children diagnosed with early LCPD and normal control groups from two centers between January 2013 and December 2023. Logistic regression (LR), Support vector machine (SVM), and Extreme gradient boosting (XGBoost) algorithms were used to build radiomics and Deep Learning (DL) models, and the performance of individual models was compared. The development of the ensemble model involved a stacking strategy to integrate the best radiomics and DL models. The diagnostic performance of the combined model was compared with that of radiologists of varying experience levels. Model evaluation was conducted using metrics such as the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Finally, the model was validated using calibration and clinical decision curves. Results A total of 200 early LCPD hips (Center A, n = 157; Center B, n = 43) and 236 normal hips (Center A, n = 188; Center B, n = 48) were included. Among the individual radiomics and DL models, the XGBoost algorithm performed the best: the radiomics model achieved an AUC of 0.845 (95% CI, 0.758–0.933), and the DL model achieved an AUC of 0.848 (95% CI, 0.766–0.929). The ensemble model’s performance was further improved, with an AUC of 0.878 (95% CI, 0.810, 0.945). The combined model significantly outperformed junior radiologists. Calibration and clinical decision curves demonstrated that the combined model had high predictive value. Conclusion The integrated radiomics and DL model using both anteroposterior and frog-leg lateral X-rays demonstrated superior performance over individual radiomics or DL approaches, highlighting its potential as an effective tool for early screening of LCPD. Background X-rays are the most commonly used method for diagnosing Legg–Calvé–Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only show subtle changes, making diagnosis highly dependent on the radiologist’s experience. The aim of this study was to develop and validate a combined radiomics and deep learning model based on anteroposterior and frog-leg lateral X-rays for identifying early LCPD patients. Methods We retrospectively collected imaging data of children diagnosed with early LCPD and normal control groups from two centers between January 2013 and December 2023. Logistic regression (LR), Support vector machine (SVM), and Extreme gradient boosting (XGBoost) algorithms were used to build radiomics and Deep Learning (DL) models, and the performance of individual models was compared. The development of the ensemble model involved a stacking strategy to integrate the best radiomics and DL models. The diagnostic performance of the combined model was compared with that of radiologists of varying experience levels. Model evaluation was conducted using metrics such as the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Finally, the model was validated using calibration and clinical decision curves. Results A total of 200 early LCPD hips (Center A, n = 157; Center B, n = 43) and 236 normal hips (Center A, n = 188; Center B, n = 48) were included. Among the individual radiomics and DL models, the XGBoost algorithm performed the best: the radiomics model achieved an AUC of 0.845 (95% CI, 0.758–0.933), and the DL model achieved an AUC of 0.848 (95% CI, 0.766–0.929). The ensemble model’s performance was further improved, with an AUC of 0.878 (95% CI, 0.810, 0.945). The combined model significantly outperformed junior radiologists. Calibration and clinical decision curves demonstrated that the combined model had high predictive value. Conclusion The integrated radiomics and DL model using both anteroposterior and frog-leg lateral X-rays demonstrated superior performance over individual radiomics or DL approaches, highlighting its potential as an effective tool for early screening of LCPD. |
| ArticleNumber | 910 |
| Audience | Academic |
| Author | Li, Ya-nan Guo, Wan-liang Zhang, Dian Li, Cheng-long |
| Author_xml | – sequence: 1 givenname: Dian surname: Zhang fullname: Zhang, Dian organization: Department of Radiology, Children’s Hospital of Soochow University – sequence: 2 givenname: Ya-nan surname: Li fullname: Li, Ya-nan organization: Department of Radiology, Xuzhou Children’s Hospital – sequence: 3 givenname: Cheng-long surname: Li fullname: Li, Cheng-long email: lcllmm@163.com organization: Department of Radiology, Xuzhou Children’s Hospital – sequence: 4 givenname: Wan-liang surname: Guo fullname: Guo, Wan-liang email: gwlsuzhou@163.com organization: Department of Radiology, Children’s Hospital of Soochow University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41034891$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNksuOFCEUhitmjHPRF3BhSNy4qREoKGA5mXiZpBON0cQdOQWnyupUQwvVo_1IPocvJj3dzqgxxrDg9v0_HH5Oq6MQA1bVY0bPGdPt88y4NqymXNbUMG1qca86YUKxmgsljn4ZH1enOS8pZUo35kF1LBhtRNGeVF_fgR_janSZQPDEI67JhJDCGAayih4n0kFGT2IgH-sEWzKuYNht9jGR-RMSyHnMcyH8CEOIZUJiT4rFtCULHIb6Eqbr79_qt5gKnguWsTg-rO73MGV8dOjPqg8vX7y_fF0v3ry6urxY1E5SOddaqVZKjhydbnvtjehQce8FB8mh49o7ToE3yFuhKffGN6bXDKRxiinHm7Pqau_rIyztOpXrp62NMNqbhZgGC2ke3YTWaNfpVupymhRdD10neiek4Q4840IWr2bvtQlr2H6Babo1ZNTuMrH7TGzJxN5kYkVRPdur1il-3mCe7WrMDqcJAsZNtg2XbWOaluuCPv0DXcZNCuV9dpTiDdWK3lEDlFuPoY9zArcztRdaaqqMMrvCz_9CleaxxF1-Uj-W9d8ETw6Hb7oV-tvSfn6WAvA94FLMOWH_f9Uf3iwXOAyY7kr6h-oHzdneww |
| Cites_doi | 10.1111/ceo.14498 10.1016/j.mri.2012.05.001 10.1186/s12903-022-02170-w 10.1007/s11042-022-12226-2 10.1002/jbmr.4814 10.3390/diagnostics12081870 10.1093/aje/kwr293 10.3389/fphar.2024.1375112 10.1097/BPO.0b013e318223b423 10.1007/s11517-022-02595-z 10.3389/fradi.2023.1175473 10.1016/j.ejrad.2024.111793 10.1142/S0219720005001004 10.1016/j.ejrad.2021.109878 10.1158/0008-5472.CAN-17-0339 10.55095/achot2022/020 10.1148/radiol.210407 10.3389/fonc.2022.1028577 10.7717/peerj.17098 10.1002/jmri.28586 10.1038/s41598-021-85223-4 10.1155/2020/3462363 10.1148/radiol.2015151169 10.1007/s00432-023-05574-5 10.1148/radiol.230657 10.1111/j.1467-9868.2011.00771.x 10.1080/17453674.2016.1227055 10.1007/s00256-018-3016-3 10.3389/fonc.2022.897596 10.1007/s10654-018-0390-z 10.1186/s12891-021-04260-2 10.12998/wjcc.v12.i21.4661 10.1148/radiol.2020191145 10.1007/s00330-023-10186-1 10.1007/s00330-023-09995-1 10.1002/jmri.27909 10.1007/s00330-023-10104-5 10.1186/s12880-023-01089-0 10.1073/pnas.1806905115 10.1002/jmri.28069 10.1016/j.jposna.2024.100039 10.1249/JSR.0000000000001139 10.1097/01241398-200309000-00005 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 COPYRIGHT 2025 BioMed Central Ltd. 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: COPYRIGHT 2025 BioMed Central Ltd. – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7QP 7RV 7TK 7TS 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 ADTOC UNPAY DOA |
| DOI | 10.1186/s12891-025-09189-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Nursing & Allied Health Database Neurosciences Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: Proquest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1471-2474 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_98cb86582e254bfabb4fc4592cad1245 10.1186/s12891-025-09189-4 A858079792 41034891 10_1186_s12891_025_09189_4 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7RV 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK IAO IHR INH INR ITC KQ8 M1P M~E NAPCQ O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION NPM 3V. 7QP 7TK 7TS 7XB 8FK AZQEC DWQXO K9. M48 PKEHL PQEST PQUKI PRINS 7X8 2VQ 4.4 ADTOC AHSBF C1A EJD H13 HYE IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c505t-8776552e2ec86f8d94be72dd42a52ab28dc20a23e264802d9d39f81a59c717c23 |
| IEDL.DBID | BENPR |
| ISSN | 1471-2474 |
| IngestDate | Mon Oct 13 19:20:30 EDT 2025 Sun Oct 26 04:05:15 EDT 2025 Mon Oct 06 16:42:40 EDT 2025 Sat Oct 25 03:17:55 EDT 2025 Mon Oct 20 22:40:51 EDT 2025 Tue Oct 14 03:50:59 EDT 2025 Mon Oct 06 01:43:37 EDT 2025 Thu Oct 09 00:38:58 EDT 2025 Thu Oct 02 04:43:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Legg-Calvé-Perthes disease X-ray image Early detection Radiomics |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c505t-8776552e2ec86f8d94be72dd42a52ab28dc20a23e264802d9d39f81a59c717c23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3257230870?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 41034891 |
| PQID | 3257230870 |
| PQPubID | 44767 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_98cb86582e254bfabb4fc4592cad1245 unpaywall_primary_10_1186_s12891_025_09189_4 proquest_miscellaneous_3256393628 proquest_journals_3257230870 gale_infotracmisc_A858079792 gale_infotracacademiconefile_A858079792 pubmed_primary_41034891 crossref_primary_10_1186_s12891_025_09189_4 springer_journals_10_1186_s12891_025_09189_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC musculoskeletal disorders |
| PublicationTitleAbbrev | BMC Musculoskelet Disord |
| PublicationTitleAlternate | BMC Musculoskelet Disord |
| PublicationYear | 2025 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | XZ Zhao (9189_CR11) 2019; 27 B Joseph (9189_CR19) 2011; 31 R Sinha (9189_CR21) 2024; 7 JZ Jiang (9189_CR44) 2021 ME Klontzas (9189_CR42) 2022 Y Shi (9189_CR31) 2022; 12 9189_CR46 9189_CR25 J Yang (9189_CR26) 2022; 60 RK Mahto (9189_CR28) 2022; 22 X Cheng (9189_CR33) 2023; 23 DC Perry (9189_CR1) 2012; 175 T Ng (9189_CR4) 2024; 23 YF Zhang (9189_CR24) 2024; 150 Y Du (9189_CR17) 2024; 34 JY Ye (9189_CR32) 2024; 34 Y Xiang (9189_CR40) 2022; 55 ME Klontzas (9189_CR43) 2024; 34 T Urakawa (9189_CR15) 2019; 48 A Fedorov (9189_CR22) 2012; 30 Y Sato (9189_CR12) 2021; 22 O Kalenderer (9189_CR5) 2022; 89 R Tibshirani (9189_CR30) 2011; 73 N Hong (9189_CR13) 2023; 38 R Lindsey (9189_CR16) 2018; 115 QH He (9189_CR37) 2022; 12 B Joseph (9189_CR38) 2003; 23 Y Zhang (9189_CR45) 2024 K Dev (9189_CR10) 2022; 81 T Johansson (9189_CR2) 2017; 88 AI Naimi (9189_CR34) 2018; 33 MKH Khan (9189_CR39) 2023; 248 M Ni (9189_CR41) 2022; 56 M Nelitz (9189_CR3) 2009; 106 RM Summers (9189_CR9) 2023 A Mortazi (9189_CR27) 2023; 3 D Zhang (9189_CR18) 2024; 181 R Hou (9189_CR8) 2022; 303 Y Yang (9189_CR20) 2023; 58 H Jiang (9189_CR36) 2024; 12 A Zwanenburg (9189_CR7) 2020; 295 J Ma (9189_CR14) 2021; 142 JJM Van Griethuysen (9189_CR23) 2017; 77 Z Li (9189_CR35) 2024; 15 C Ding (9189_CR29) 2005; 3 RJ Gillies (9189_CR6) 2016; 278 |
| References_xml | – ident: 9189_CR25 doi: 10.1111/ceo.14498 – volume: 30 start-page: 1323 issue: 9 year: 2012 ident: 9189_CR22 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2012.05.001 – volume: 22 issue: 1 year: 2022 ident: 9189_CR28 publication-title: BMC Oral Health doi: 10.1186/s12903-022-02170-w – volume: 81 start-page: 22379 issue: 16 year: 2022 ident: 9189_CR10 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12226-2 – volume: 38 start-page: 887 issue: 6 year: 2023 ident: 9189_CR13 publication-title: J Bone Miner Res doi: 10.1002/jbmr.4814 – year: 2022 ident: 9189_CR42 publication-title: Diagnostics doi: 10.3390/diagnostics12081870 – volume: 175 start-page: 159 issue: 3 year: 2012 ident: 9189_CR1 publication-title: Am J Epidemiol doi: 10.1093/aje/kwr293 – volume: 15 start-page: 1375112 year: 2024 ident: 9189_CR35 publication-title: Front Pharmacol doi: 10.3389/fphar.2024.1375112 – volume: 31 year: 2011 ident: 9189_CR19 publication-title: J Pediatr Orthop doi: 10.1097/BPO.0b013e318223b423 – volume: 60 start-page: 2665 issue: 9 year: 2022 ident: 9189_CR26 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-022-02595-z – volume: 3 year: 2023 ident: 9189_CR27 publication-title: Front Radiol doi: 10.3389/fradi.2023.1175473 – volume: 181 year: 2024 ident: 9189_CR18 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2024.111793 – volume: 3 start-page: 185 issue: 2 year: 2005 ident: 9189_CR29 publication-title: J Bioinform Comput Biol doi: 10.1142/S0219720005001004 – volume: 142 year: 2021 ident: 9189_CR14 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2021.109878 – volume: 77 start-page: e104 issue: 21 year: 2017 ident: 9189_CR23 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0339 – volume: 89 start-page: 134 issue: 2 year: 2022 ident: 9189_CR5 publication-title: Acta Chir Orthop Traumatol Cech doi: 10.55095/achot2022/020 – volume: 303 start-page: 54 issue: 1 year: 2022 ident: 9189_CR8 publication-title: Radiology doi: 10.1148/radiol.210407 – volume: 12 year: 2022 ident: 9189_CR37 publication-title: Front Oncol doi: 10.3389/fonc.2022.1028577 – year: 2024 ident: 9189_CR45 publication-title: PeerJ doi: 10.7717/peerj.17098 – volume: 58 start-page: 605 issue: 2 year: 2023 ident: 9189_CR20 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.28586 – year: 2021 ident: 9189_CR44 publication-title: Sci Rep doi: 10.1038/s41598-021-85223-4 – ident: 9189_CR46 doi: 10.1155/2020/3462363 – volume: 278 start-page: 563 issue: 2 year: 2016 ident: 9189_CR6 publication-title: Radiology doi: 10.1148/radiol.2015151169 – volume: 150 issue: 2 year: 2024 ident: 9189_CR24 publication-title: J Cancer Res Clin Oncol doi: 10.1007/s00432-023-05574-5 – volume: 27 start-page: 615 issue: 4 year: 2019 ident: 9189_CR11 publication-title: Journal of X-Ray Science and Technology: Clinical Applications of Diagnosis and Therapeutics – year: 2023 ident: 9189_CR9 publication-title: Radiology doi: 10.1148/radiol.230657 – volume: 73 start-page: 273 year: 2011 ident: 9189_CR30 publication-title: J Royal Stat Soc Ser B-Statistical Methodol doi: 10.1111/j.1467-9868.2011.00771.x – volume: 88 start-page: 96 issue: 1 year: 2017 ident: 9189_CR2 publication-title: Acta Orthop doi: 10.1080/17453674.2016.1227055 – volume: 48 start-page: 239 issue: 2 year: 2019 ident: 9189_CR15 publication-title: Skeletal Radiol doi: 10.1007/s00256-018-3016-3 – volume: 12 year: 2022 ident: 9189_CR31 publication-title: Front Oncol doi: 10.3389/fonc.2022.897596 – volume: 33 start-page: 459 issue: 5 year: 2018 ident: 9189_CR34 publication-title: Eur J Epidemiol doi: 10.1007/s10654-018-0390-z – volume: 22 start-page: 407 issue: 1 year: 2021 ident: 9189_CR12 publication-title: BMC Musculoskelet Disord doi: 10.1186/s12891-021-04260-2 – volume: 12 start-page: 4661 issue: 21 year: 2024 ident: 9189_CR36 publication-title: World J Clin Cases doi: 10.12998/wjcc.v12.i21.4661 – volume: 248 start-page: 1974 issue: 21 year: 2023 ident: 9189_CR39 publication-title: Exp Biol Med (Maywood) – volume: 295 start-page: 328 issue: 2 year: 2020 ident: 9189_CR7 publication-title: Radiology doi: 10.1148/radiol.2020191145 – volume: 34 start-page: 1994 issue: 3 year: 2024 ident: 9189_CR32 publication-title: Eur Radiol doi: 10.1007/s00330-023-10186-1 – volume: 106 start-page: 517 issue: 31–32 year: 2009 ident: 9189_CR3 publication-title: Dtsch Arztebl Int – volume: 34 start-page: 136 issue: 1 year: 2024 ident: 9189_CR17 publication-title: Eur Radiol doi: 10.1007/s00330-023-09995-1 – volume: 55 start-page: 1082 issue: 4 year: 2022 ident: 9189_CR40 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.27909 – volume: 34 start-page: 1179 issue: 2 year: 2024 ident: 9189_CR43 publication-title: Eur Radiol doi: 10.1007/s00330-023-10104-5 – volume: 23 issue: 1 year: 2023 ident: 9189_CR33 publication-title: BMC Med Imaging doi: 10.1186/s12880-023-01089-0 – volume: 115 start-page: 11591 issue: 45 year: 2018 ident: 9189_CR16 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1806905115 – volume: 56 start-page: 625 issue: 2 year: 2022 ident: 9189_CR41 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.28069 – volume: 7 year: 2024 ident: 9189_CR21 publication-title: J Pediatr Orthop Soc North Am doi: 10.1016/j.jposna.2024.100039 – volume: 23 start-page: 45 issue: 2 year: 2024 ident: 9189_CR4 publication-title: Curr Sports Med Rep doi: 10.1249/JSR.0000000000001139 – volume: 23 start-page: 590 issue: 5 year: 2003 ident: 9189_CR38 publication-title: J Pediatr Orthop doi: 10.1097/01241398-200309000-00005 |
| SSID | ssj0017839 |
| Score | 2.4302506 |
| Snippet | Background
X-rays are the most commonly used method for diagnosing Legg–Calvé–Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only... Background X-rays are the most commonly used method for diagnosing Legg-Calvé-Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only... X-rays are the most commonly used method for diagnosing Legg-Calvé-Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays only show subtle... Section BackgroundX-rays are the most commonly used method for diagnosing Legg–Calvé–Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays... Abstract Background X-rays are the most commonly used method for diagnosing Legg–Calvé–Perthes disease (LCPD) in children. However, in early-stage LCPD, X-rays... |
| SourceID | doaj unpaywall proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 910 |
| SubjectTerms | Algorithms Artificial intelligence Computer-aided medical diagnosis Data mining Deep learning Diagnosis Diagnosis, Radioscopic Disease Early detection Epidemiology Hip Internal Medicine Legg-Calve-Perthes disease Legg-Calvé-Perthes disease Machine learning Medical diagnosis Medicine Medicine & Public Health Methods Orthopedics Osteochondrosis Pediatrics Radiomics Rehabilitation Reproducibility Rheumatology Sports Medicine X-ray image X-rays |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQXoADApZH2AUZCcGBjTZ17MQ-lhWrFQKEECv1Zo0fqSp106ppYfuT-B38McbOg1ZIwIFrYkfJPPzNxONvCHkBDvIRN6MUXCDVzq1KTSlUOirBM1v6TMhwwPnDx-Likr-biMlOq69QE9bSA7eCO1XSGokwyTymMqYCY3hluVDMgkNsiuylmVR9MtXtH5SI-_0RGVmcNrgKhwofJlLER6lSvgdDka3_9zV5B5SGXdLb5OamXsL2G8znO0B0fpfc6SJIOm7f_B654ev75HBcY_Z8taUvaazpjD_LD8n1Z3CzcO64oVA76rxf0q5PxJTGJjg0wJiji5pO0hVs6ewqti2iGMtSjA0pxtbBEHBuW5M3a-iioj7QItP3fjpNz2D-9cf39JNf4fCGdhs-D8jl-dsvZxdp12shtRgDrXFRLAshUMjeyqKSTnHjS-YcZyAYGCadZRmw3IeKuIw55XJVyREIZTEhtCx_SA7qRe0fE6rA-tyCAS4FtwzBwBZ5aTKDyvelsgl53YteL1tKDR1TEVnoVlEaFaWjojRPyJugnWFkoMOOF9BIdGck-m9GkpBXQbc6OO16BRa6swf4woH-So-lkFmpSsUScrw3Ep3N7t_urUN3zt7oHJc9FpgVs4Q8H26HmaGArfaLTRyDsSBGCzIhj1qrGj6Jj7Kc42cn5KQ3s18P_5NkTgZT_AdBPvkfgjwit1jwoljNeEwO1quNf4pR2do8iw74E2AlMSI priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgSFweEGzAAgMZCcEDi0gdO7Efy8Q0IYYQolLfrONLqkpdWjXtoD-J38Ef49hNwioQgtf4Itvn9jnnYkJegIN8wM0gBReKaudWpaYUKh2U4JktfSZkSHA-_1icjfj7sRi3SWFNF-3euSSjpo5iLYs3DWrSEKXDRIo2TqqUXyc3RCjnhVw8YsPed1Cize_SY_44bscExUr9v-vjKwap95DeIbfW9QI2X2E2u2KETu-Ruy16pMMtue-Ta77eJwfDGm_OFxv6ksZ4zvijfJ_cPG_d5gfk22dw05B-3FCoHXXeL2j7XMSExrdwaLBmjs5rOk6XsKHTi_h6EUVISxEiUoTYgR9w7DY0b9rQeUV9qI5MP_jJJD2B2eWP7-knv8TuDW39Pg_I6PTdl5OztH1yIbUIhVaoG8tCCOaZt7KopFPc-JI5xxkIBoZJZ1kGLPchMC5jTrlcVXIAQlm8F1qWPyR79bz2h4QqsD63YIBLwS1Dm2CLvDSZQR7wpbIJed1RQS-2lTV0vJHIQm9pppFmOtJM84S8DYTqe4aq2PHDfDnRrZBpJa2RCKlw_YKbCozhleVCMQsOcYxIyKtAZh1kd7UEC20KAi44VMHSQylkVqpSsYQc7fREmbO7zR2j6FbmG52j9mOhwGKWkOd9cxgZ4thqP1_HPggJETTIhDzaMli_JT7Ico7bTshxx3G_Jv_byRz3XPkPB_n4_2Z_Qm6zIDoxfPGI7K2Wa_8UYdjKPItS9xMnLyhu priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gE48FoWAgsyEoIDm27q2Il9LCtWKwSrFaKinCy_UlXbJlXTwpZ_xO_gjzHOo7SAEBy4JuMonoxnPscz3yD0VFkV96juhcp6Uu3YiFCnTIS9VDliUhcx7guc354lpwP6esiGO-hDWwujp2a69CmYRXkBfndhKw7K7mYt-qQudfCtFNz8aGazeuXz5KgEZ-sTeQgLIQxyEdIraDdhANI7aHdwdt7_WNUapb2Q0JS2JTS_HbgVpio2_1999kbQWp-iXkdXl_lMrT6ryWQjUJ3cRJftFOv8lIvucqG75stP7I__QQe30I0G3OJ-bY230Y7L76C9fg4b--kKP8NVumn1H38PXb5TduxLokuscoutczPctLAY4ao_D_YR1uIix8NwrlZ4PK06KmGA2RhgKwbY720UxtbpguMSFxl2nrEZv3GjUXisJp--fQ3P3RzES9ycRd1Fg5NX749Pw6YNRGgAni3AX6cJY8QRZ3iScSuodimxlhLFiNKEW0MiRWLnk_UiYoWNRcZ7igkDe1VD4n3UyYvc3UdYKONio7SinFFDIE6ZJE51pMEuXSpMgF60X13OarYPWe2SeCJrxUpQrKwUK2mAXnrDWEt6pu7qQjEfyWbhS8GN5gDz4P0Z1ZnSmmaGMkGMsoCtWICee7OS3p_AhzWqKYuAF_bMXLLPGY9SkQoSoIMtSfADZvt2a5iy8UOljMEjE0_6GAXoyfq2H-lz63JXLCsZgKkAZHiA7tUGvZ4S7UUxhWkH6LC18B8P_5NmDter4C8U-eDfxB-ia8Tbd5VSeYA6i_nSPQJouNCPm2X-HUzdXh8 priority: 102 providerName: Unpaywall |
| Title | Radiomics and deep learning model based on X-ray imaging for the assisted diagnosis of early Legg-Calvé-Perthes disease |
| URI | https://link.springer.com/article/10.1186/s12891-025-09189-4 https://www.ncbi.nlm.nih.gov/pubmed/41034891 https://www.proquest.com/docview/3257230870 https://www.proquest.com/docview/3256393628 https://bmcmusculoskeletdisord.biomedcentral.com/counter/pdf/10.1186/s12891-025-09189-4 https://doaj.org/article/98cb86582e254bfabb4fc4592cad1245 |
| UnpaywallVersion | publishedVersion |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2474 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017839 issn: 1471-2474 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2474 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017839 issn: 1471-2474 databaseCode: KQ8 dateStart: 20001001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2474 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017839 issn: 1471-2474 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (WRLC) customDbUrl: eissn: 1471-2474 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017839 issn: 1471-2474 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2474 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017839 issn: 1471-2474 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1471-2474 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017839 issn: 1471-2474 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2474 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017839 issn: 1471-2474 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2474 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017839 issn: 1471-2474 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (WRLC) customDbUrl: eissn: 1471-2474 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017839 issn: 1471-2474 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2474 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017839 issn: 1471-2474 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2474 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017839 issn: 1471-2474 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2474 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017839 issn: 1471-2474 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2474 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017839 issn: 1471-2474 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2474 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017839 issn: 1471-2474 databaseCode: U2A dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtMwGLa29gK4QMBgBEZlJAQXLFrq2Il9gVBWbZoqqKZBpXIV-dSqUpeUHoA-Es_Bi_HbTbJVSBM3ubCdyPF_-mz_B4TeSCPjLlXdUBqXVDvWIlQpE2E3lZbo1EaMuwDnz4PkYkj7IzbaQ4M6Fsa5VdY60StqU2p3Rn4SA28Rl74u-jj_HrqqUe52tS6hIavSCuaDTzG2j9rEZcZqofbp2eDyqrlXSAEP1KEzPDlZgnZ2nj-EhWA3uQjpjnnyWfz_1dW3jFVze_oA3VsXc7n5KWezWwbq_BF6WCFLnG1Z4THas8UTdJAVsKu-3uC32Pt6-kP0A_TrSpqpi0deYlkYbKyd46p-xAT74jjYmTeDywKPwoXc4Om1L2eEAeNiwIwYMLdjEHh366s3XeJyjK1Ll4w_2ckk7MnZjz-_w0u7gOFLXF0EPUXD87OvvYuwqsEQasBGK1CWacIYscRqnoy5EVTZlBhDiWREKsKNJpEksXWechExwsRizLuSCQ0bRU3iZ6hVlIV9jrCQ2sZaKkk5o5qAkdBJnKpIAVPYVOgAva-XPp9vU23kfovCk3xLqBwIlXtC5TRAp446zUiXJts3lItJXkldLrhWHDAWzJ9RNZZK0bGmTBAtDQAbFqB3jra5E-bVQmpZxSTAhF1arDzjjEepSAUJ0NHOSBBCvdtdc0deKYFlfsOyAXrddLs3nWNbYcu1HwMYEVAED9DhlquaX6LdKKbw2wE6rtns5uN3rcxxw4r_sZAv7p76S3SfOPnw_otHqLVarO0rwGEr1UH76SjtoHaW9b_0O5WoQWsv6XX82QY8hwSe7eHgMvv2F1NlNXk |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtMwGLam7WJwgYBxCAwwEocLFi117MS-mFA3NnWsq6Zpk3ZnfGpVqUtK0zL6SLwEN7wYv9MkW4U0cbPbxIkc_4fvc_wfEHqnrIpbVLdCZX1R7diIUKdMhK1UOWJSFzHuE5yPe0nnnH69YBcr6HedC-PDKmufWDpqmxv_j3w7Bt0ivnxd9Hn8PfRdo_zpat1CQ1WtFexOWWKsSuw4cvMr2MIVO4dfQN7vCTnYP9vrhFWXgdAA-k_BHaQJY8QRZ3jS51ZQ7VJiLSWKEaUJt4ZEisTOx4JFxAobiz5vKSYMbIWML3wAELBGYypg87e2u987OW3OMVLgH3WqDk-2C0ADH2lEWAg4zUVIl-Cw7BrwLzbcAMfmtPY-Wp9lYzW_UqPRDUA8eIgeVEwWtxeq9wituOwx2mhnsIu_nOMPuIwtLX_ab6Cfp8oOff5zgVVmsXVujKt-FQNcNuPBHk4tzjN8EU7UHA8vy_ZJGDg1Bo6KgeN7hYRnF7GBwwLnfex8eWbcdYNBuKdGP_78Ck_cBIYXuDp4eoLO70QaT9FqlmfuOcJCGRcbpRXljBoCoGSSONWRBiV0qTAB-lQvvRwvSnvIckvEE7kQlARByVJQkgZo10unGenLcpcX8slAVlYuBTeaA6eD-TOq-0pr2jeUCWKUBSLFAvTRy1Z65zGdKKOqHAiYsC_DJduc8SgVqSAB2lwaCUZvlm_X2iErp1PIaxMJ0Nvmtn_SB9JlLp-VY4CTAmvhAXq20Krmk2griil8doC2ajW7fvltK7PVqOJ_LOSL26f-Bq13zo67snvYO3qJ7hFvK2Xs5CZanU5m7hVwwKl-XRkaRt_u2rb_AndyarE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgSAMeEGwMAgOMhOCBRUsdO7EfS6EasE0TYlLfLN9SVerSKk2B_iR-B3-MYycNrUAIXuOLbJ9zfD7n3BB6oaxKe1T3YmV9Uu3UiFjnTMS9XDlicpcw7gOcz86zk0v6YcRGG1H8wdt9bZJsYhp8lqayPp7bohFxnh0v4Fb1HjuExaDvuIjpdXSDgnbzNQwG2aCzI-Sg_9ehMn8ct6WOQtb-3-_mDeXUWUtvo5vLcq5WX9V0uqGQhnfRnRZJ4n5D-nvomiv30H6_hFf01Qq_xMG3M_w030O7Z60JfR99-6TsxIciL7AqLbbOzXFbOmKMQ10c7DWbxbMSj-JKrfDkKlQywgBvMcBFDHDb8waMbdz0Jgs8K7DzmZLxqRuP44GafvnxPb5wFXRf4NYGdB9dDt99HpzEbfmF2AAsquGezDPGiCPO8KzgVlDtcmItJYoRpQm3hiSKpM47ySXECpuKgvcUEwbeiIakB2innJXuIcJCGZcapRXljBoC-sFkaa4TDfzgcmEi9HpNBTlvsmzI8DrhmWxoJoFmMtBM0gi98YTqevoM2eHDrBrLVuCk4EZzgFewfkZ1obSmhaFMEKMsYBoWoVeezNLLcV0po9pwBFiwz4gl-5zxJBe5IBE63OoJ8me2m9eMIlv5X8gUbkLiky0mEXreNfuR3qetdLNl6APwEAAEj9CDhsG6LdFeklLYdoSO1hz3a_K_ncxRx5X_cJCP_m_2Z2j34u1Qnr4___gY3SJeioJX4yHaqaulewLorNZPgwD-BOMcL4A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gE48FoWAgsyEoIDm27q2Il9LCtWKwSrFaKinCy_UlXbJlXTwpZ_xO_gjzHOo7SAEBy4JuMonoxnPscz3yD0VFkV96juhcp6Uu3YiFCnTIS9VDliUhcx7guc354lpwP6esiGO-hDWwujp2a69CmYRXkBfndhKw7K7mYt-qQudfCtFNz8aGazeuXz5KgEZ-sTeQgLIQxyEdIraDdhANI7aHdwdt7_WNUapb2Q0JS2JTS_HbgVpio2_1999kbQWp-iXkdXl_lMrT6ryWQjUJ3cRJftFOv8lIvucqG75stP7I__QQe30I0G3OJ-bY230Y7L76C9fg4b--kKP8NVumn1H38PXb5TduxLokuscoutczPctLAY4ao_D_YR1uIix8NwrlZ4PK06KmGA2RhgKwbY720UxtbpguMSFxl2nrEZv3GjUXisJp--fQ3P3RzES9ycRd1Fg5NX749Pw6YNRGgAni3AX6cJY8QRZ3iScSuodimxlhLFiNKEW0MiRWLnk_UiYoWNRcZ7igkDe1VD4n3UyYvc3UdYKONio7SinFFDIE6ZJE51pMEuXSpMgF60X13OarYPWe2SeCJrxUpQrKwUK2mAXnrDWEt6pu7qQjEfyWbhS8GN5gDz4P0Z1ZnSmmaGMkGMsoCtWICee7OS3p_AhzWqKYuAF_bMXLLPGY9SkQoSoIMtSfADZvt2a5iy8UOljMEjE0_6GAXoyfq2H-lz63JXLCsZgKkAZHiA7tUGvZ4S7UUxhWkH6LC18B8P_5NmDter4C8U-eDfxB-ia8Tbd5VSeYA6i_nSPQJouNCPm2X-HUzdXh8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomics+and+deep+learning+model+based+on+X-ray+imaging+for+the+assisted+diagnosis+of+early+Legg-Calv%C3%A9-Perthes+disease&rft.jtitle=BMC+musculoskeletal+disorders&rft.au=Zhang%2C+Dian&rft.au=Li%2C+Ya-Nan&rft.au=Li%2C+Cheng-Long&rft.au=Guo%2C+Wan-Liang&rft.date=2025-10-01&rft.issn=1471-2474&rft.eissn=1471-2474&rft.volume=26&rft.issue=1&rft.spage=910&rft_id=info:doi/10.1186%2Fs12891-025-09189-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2474&client=summon |