MicroRNA Profiling as a Predictive Indicator for Time to First Treatment in Chronic Lymphocytic Leukemia: Insights from the O-CLL1 Prospective Study

A “watch and wait” strategy, delaying treatment until active disease manifests, is adopted for most CLL cases; however, prognostic models incorporating biomarkers have shown to be useful to predict treatment requirement. In our prospective O-CLL1 study including 224 patients, we investigated the pre...

Full description

Saved in:
Bibliographic Details
Published inNon-coding RNA Vol. 10; no. 5; p. 46
Main Authors Nano, Ennio, Reggiani, Francesco, Amaro, Adriana Agnese, Monti, Paola, Colombo, Monica, Bertola, Nadia, Ferrero, Fabiana, Fais, Franco, Bruzzese, Antonella, Martino, Enrica Antonia, Vigna, Ernesto, Puccio, Noemi, Pistoni, Mariaelena, Torricelli, Federica, D’Arrigo, Graziella, Greco, Gianluigi, Tripepi, Giovanni, Adornetto, Carlo, Gentile, Massimo, Ferrarini, Manlio, Negrini, Massimo, Morabito, Fortunato, Neri, Antonino, Cutrona, Giovanna
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.10.2024
MDPI
Subjects
Online AccessGet full text
ISSN2311-553X
2311-553X
DOI10.3390/ncrna10050046

Cover

Abstract A “watch and wait” strategy, delaying treatment until active disease manifests, is adopted for most CLL cases; however, prognostic models incorporating biomarkers have shown to be useful to predict treatment requirement. In our prospective O-CLL1 study including 224 patients, we investigated the predictive role of 513 microRNAs (miRNAs) on time to first treatment (TTFT). In the context of this study, six well-established variables (i.e., Rai stage, beta-2-microglobulin levels, IGVH mutational status, del11q, del17p, and NOTCH1 mutations) maintained significant associations with TTFT in a basic multivariable model, collectively yielding a Harrell’s C-index of 75% and explaining 45.4% of the variance in the prediction of TTFT. Concerning miRNAs, 73 out of 513 were significantly associated with TTFT in a univariable model; of these, 16 retained an independent relationship with the outcome in a multivariable analysis. For 8 of these (i.e., miR-582-3p, miR-33a-3p, miR-516a-5p, miR-99a-5p, and miR-296-3p, miR-502-5p, miR-625-5p, and miR-29c-3p), a lower expression correlated with a shorter TTFT, whereas in the remaining eight (i.e., miR-150-5p, miR-148a-3p, miR-28-5p, miR-144-5p, miR-671-5p, miR-1-3p, miR-193a-3p, and miR-124-3p), the higher expression was associated with shorter TTFT. Integrating these miRNAs into the basic model significantly enhanced predictive accuracy, raising the Harrell’s C-index to 81.1% and the explained variation in TTFT to 63.3%. Moreover, the inclusion of the miRNA scores enhanced the integrated discrimination improvement (IDI) and the net reclassification index (NRI), underscoring the potential of miRNAs to refine CLL prognostic models and providing insights for clinical decision-making. In silico analyses on the differently expressed miRNAs revealed their potential regulatory functions of several pathways, including those involved in the therapeutic responses. To add a biological context to the clinical evidence, an miRNA–mRNA correlation analysis revealed at least one significant negative correlation between 15 of the identified miRNAs and a set of 50 artificial intelligence (AI)-selected genes, previously identified by us as relevant for TTFT prediction in the same cohort of CLL patients. In conclusion, the identification of specific miRNAs as predictors of TTFT holds promise for enhancing risk stratification in CLL to predict therapeutic needs. However, further validation studies and in-depth functional analyses are required to confirm the robustness of these observations and to facilitate their translation into meaningful clinical utility.
AbstractList A “watch and wait” strategy, delaying treatment until active disease manifests, is adopted for most CLL cases; however, prognostic models incorporating biomarkers have shown to be useful to predict treatment requirement. In our prospective O-CLL1 study including 224 patients, we investigated the predictive role of 513 microRNAs (miRNAs) on time to first treatment (TTFT). In the context of this study, six well-established variables (i.e., Rai stage, beta-2-microglobulin levels, IGVH mutational status, del11q, del17p, and NOTCH1 mutations) maintained significant associations with TTFT in a basic multivariable model, collectively yielding a Harrell’s C-index of 75% and explaining 45.4% of the variance in the prediction of TTFT. Concerning miRNAs, 73 out of 513 were significantly associated with TTFT in a univariable model; of these, 16 retained an independent relationship with the outcome in a multivariable analysis. For 8 of these (i.e., miR-582-3p, miR-33a-3p, miR-516a-5p, miR-99a-5p, and miR-296-3p, miR-502-5p, miR-625-5p, and miR-29c-3p), a lower expression correlated with a shorter TTFT, whereas in the remaining eight (i.e., miR-150-5p, miR-148a-3p, miR-28-5p, miR-144-5p, miR-671-5p, miR-1-3p, miR-193a-3p, and miR-124-3p), the higher expression was associated with shorter TTFT. Integrating these miRNAs into the basic model significantly enhanced predictive accuracy, raising the Harrell’s C-index to 81.1% and the explained variation in TTFT to 63.3%. Moreover, the inclusion of the miRNA scores enhanced the integrated discrimination improvement (IDI) and the net reclassification index (NRI), underscoring the potential of miRNAs to refine CLL prognostic models and providing insights for clinical decision-making. In silico analyses on the differently expressed miRNAs revealed their potential regulatory functions of several pathways, including those involved in the therapeutic responses. To add a biological context to the clinical evidence, an miRNA–mRNA correlation analysis revealed at least one significant negative correlation between 15 of the identified miRNAs and a set of 50 artificial intelligence (AI)-selected genes, previously identified by us as relevant for TTFT prediction in the same cohort of CLL patients. In conclusion, the identification of specific miRNAs as predictors of TTFT holds promise for enhancing risk stratification in CLL to predict therapeutic needs. However, further validation studies and in-depth functional analyses are required to confirm the robustness of these observations and to facilitate their translation into meaningful clinical utility.
A “watch and wait” strategy, delaying treatment until active disease manifests, is adopted for most CLL cases; however, prognostic models incorporating biomarkers have shown to be useful to predict treatment requirement. In our prospective O-CLL1 study including 224 patients, we investigated the predictive role of 513 microRNAs (miRNAs) on time to first treatment (TTFT). In the context of this study, six well-established variables (i.e., Rai stage, beta-2-microglobulin levels, IGVH mutational status, del11q, del17p, and NOTCH1 mutations) maintained significant associations with TTFT in a basic multivariable model, collectively yielding a Harrell’s C-index of 75% and explaining 45.4% of the variance in the prediction of TTFT. Concerning miRNAs, 73 out of 513 were significantly associated with TTFT in a univariable model; of these, 16 retained an independent relationship with the outcome in a multivariable analysis. For 8 of these (i.e., miR-582-3p, miR-33a-3p, miR-516a-5p, miR-99a-5p, and miR-296-3p, miR-502-5p, miR-625-5p, and miR-29c-3p), a lower expression correlated with a shorter TTFT, whereas in the remaining eight (i.e., miR-150-5p, miR-148a-3p, miR-28-5p, miR-144-5p, miR-671-5p, miR-1-3p, miR-193a-3p, and miR-124-3p), the higher expression was associated with shorter TTFT. Integrating these miRNAs into the basic model significantly enhanced predictive accuracy, raising the Harrell’s C-index to 81.1% and the explained variation in TTFT to 63.3%. Moreover, the inclusion of the miRNA scores enhanced the integrated discrimination improvement (IDI) and the net reclassification index (NRI), underscoring the potential of miRNAs to refine CLL prognostic models and providing insights for clinical decision-making. In silico analyses on the differently expressed miRNAs revealed their potential regulatory functions of several pathways, including those involved in the therapeutic responses. To add a biological context to the clinical evidence, an miRNA–mRNA correlation analysis revealed at least one significant negative correlation between 15 of the identified miRNAs and a set of 50 artificial intelligence (AI)-selected genes, previously identified by us as relevant for TTFT prediction in the same cohort of CLL patients. In conclusion, the identification of specific miRNAs as predictors of TTFT holds promise for enhancing risk stratification in CLL to predict therapeutic needs. However, further validation studies and in-depth functional analyses are required to confirm the robustness of these observations and to facilitate their translation into meaningful clinical utility.
A "watch and wait" strategy, delaying treatment until active disease manifests, is adopted for most CLL cases; however, prognostic models incorporating biomarkers have shown to be useful to predict treatment requirement. In our prospective O-CLL1 study including 224 patients, we investigated the predictive role of 513 microRNAs (miRNAs) on time to first treatment (TTFT). In the context of this study, six well-established variables (i.e., Rai stage, beta-2-microglobulin levels, mutational status, del11q, del17p, and mutations) maintained significant associations with TTFT in a basic multivariable model, collectively yielding a Harrell's C-index of 75% and explaining 45.4% of the variance in the prediction of TTFT. Concerning miRNAs, 73 out of 513 were significantly associated with TTFT in a univariable model; of these, 16 retained an independent relationship with the outcome in a multivariable analysis. For 8 of these (i.e., miR-582-3p, miR-33a-3p, miR-516a-5p, miR-99a-5p, and miR-296-3p, miR-502-5p, miR-625-5p, and miR-29c-3p), a lower expression correlated with a shorter TTFT, whereas in the remaining eight (i.e., miR-150-5p, miR-148a-3p, miR-28-5p, miR-144-5p, miR-671-5p, miR-1-3p, miR-193a-3p, and miR-124-3p), the higher expression was associated with shorter TTFT. Integrating these miRNAs into the basic model significantly enhanced predictive accuracy, raising the Harrell's C-index to 81.1% and the explained variation in TTFT to 63.3%. Moreover, the inclusion of the miRNA scores enhanced the integrated discrimination improvement (IDI) and the net reclassification index (NRI), underscoring the potential of miRNAs to refine CLL prognostic models and providing insights for clinical decision-making. In silico analyses on the differently expressed miRNAs revealed their potential regulatory functions of several pathways, including those involved in the therapeutic responses. To add a biological context to the clinical evidence, an miRNA-mRNA correlation analysis revealed at least one significant negative correlation between 15 of the identified miRNAs and a set of 50 artificial intelligence (AI)-selected genes, previously identified by us as relevant for TTFT prediction in the same cohort of CLL patients. In conclusion, the identification of specific miRNAs as predictors of TTFT holds promise for enhancing risk stratification in CLL to predict therapeutic needs. However, further validation studies and in-depth functional analyses are required to confirm the robustness of these observations and to facilitate their translation into meaningful clinical utility.
A "watch and wait" strategy, delaying treatment until active disease manifests, is adopted for most CLL cases; however, prognostic models incorporating biomarkers have shown to be useful to predict treatment requirement. In our prospective O-CLL1 study including 224 patients, we investigated the predictive role of 513 microRNAs (miRNAs) on time to first treatment (TTFT). In the context of this study, six well-established variables (i.e., Rai stage, beta-2-microglobulin levels, IGVH mutational status, del11q, del17p, and NOTCH1 mutations) maintained significant associations with TTFT in a basic multivariable model, collectively yielding a Harrell's C-index of 75% and explaining 45.4% of the variance in the prediction of TTFT. Concerning miRNAs, 73 out of 513 were significantly associated with TTFT in a univariable model; of these, 16 retained an independent relationship with the outcome in a multivariable analysis. For 8 of these (i.e., miR-582-3p, miR-33a-3p, miR-516a-5p, miR-99a-5p, and miR-296-3p, miR-502-5p, miR-625-5p, and miR-29c-3p), a lower expression correlated with a shorter TTFT, whereas in the remaining eight (i.e., miR-150-5p, miR-148a-3p, miR-28-5p, miR-144-5p, miR-671-5p, miR-1-3p, miR-193a-3p, and miR-124-3p), the higher expression was associated with shorter TTFT. Integrating these miRNAs into the basic model significantly enhanced predictive accuracy, raising the Harrell's C-index to 81.1% and the explained variation in TTFT to 63.3%. Moreover, the inclusion of the miRNA scores enhanced the integrated discrimination improvement (IDI) and the net reclassification index (NRI), underscoring the potential of miRNAs to refine CLL prognostic models and providing insights for clinical decision-making. In silico analyses on the differently expressed miRNAs revealed their potential regulatory functions of several pathways, including those involved in the therapeutic responses. To add a biological context to the clinical evidence, an miRNA-mRNA correlation analysis revealed at least one significant negative correlation between 15 of the identified miRNAs and a set of 50 artificial intelligence (AI)-selected genes, previously identified by us as relevant for TTFT prediction in the same cohort of CLL patients. In conclusion, the identification of specific miRNAs as predictors of TTFT holds promise for enhancing risk stratification in CLL to predict therapeutic needs. However, further validation studies and in-depth functional analyses are required to confirm the robustness of these observations and to facilitate their translation into meaningful clinical utility.A "watch and wait" strategy, delaying treatment until active disease manifests, is adopted for most CLL cases; however, prognostic models incorporating biomarkers have shown to be useful to predict treatment requirement. In our prospective O-CLL1 study including 224 patients, we investigated the predictive role of 513 microRNAs (miRNAs) on time to first treatment (TTFT). In the context of this study, six well-established variables (i.e., Rai stage, beta-2-microglobulin levels, IGVH mutational status, del11q, del17p, and NOTCH1 mutations) maintained significant associations with TTFT in a basic multivariable model, collectively yielding a Harrell's C-index of 75% and explaining 45.4% of the variance in the prediction of TTFT. Concerning miRNAs, 73 out of 513 were significantly associated with TTFT in a univariable model; of these, 16 retained an independent relationship with the outcome in a multivariable analysis. For 8 of these (i.e., miR-582-3p, miR-33a-3p, miR-516a-5p, miR-99a-5p, and miR-296-3p, miR-502-5p, miR-625-5p, and miR-29c-3p), a lower expression correlated with a shorter TTFT, whereas in the remaining eight (i.e., miR-150-5p, miR-148a-3p, miR-28-5p, miR-144-5p, miR-671-5p, miR-1-3p, miR-193a-3p, and miR-124-3p), the higher expression was associated with shorter TTFT. Integrating these miRNAs into the basic model significantly enhanced predictive accuracy, raising the Harrell's C-index to 81.1% and the explained variation in TTFT to 63.3%. Moreover, the inclusion of the miRNA scores enhanced the integrated discrimination improvement (IDI) and the net reclassification index (NRI), underscoring the potential of miRNAs to refine CLL prognostic models and providing insights for clinical decision-making. In silico analyses on the differently expressed miRNAs revealed their potential regulatory functions of several pathways, including those involved in the therapeutic responses. To add a biological context to the clinical evidence, an miRNA-mRNA correlation analysis revealed at least one significant negative correlation between 15 of the identified miRNAs and a set of 50 artificial intelligence (AI)-selected genes, previously identified by us as relevant for TTFT prediction in the same cohort of CLL patients. In conclusion, the identification of specific miRNAs as predictors of TTFT holds promise for enhancing risk stratification in CLL to predict therapeutic needs. However, further validation studies and in-depth functional analyses are required to confirm the robustness of these observations and to facilitate their translation into meaningful clinical utility.
Audience Academic
Author Vigna, Ernesto
Reggiani, Francesco
Colombo, Monica
Fais, Franco
Morabito, Fortunato
Amaro, Adriana Agnese
Torricelli, Federica
Tripepi, Giovanni
D’Arrigo, Graziella
Cutrona, Giovanna
Greco, Gianluigi
Negrini, Massimo
Ferrarini, Manlio
Neri, Antonino
Ferrero, Fabiana
Pistoni, Mariaelena
Monti, Paola
Adornetto, Carlo
Nano, Ennio
Bruzzese, Antonella
Puccio, Noemi
Bertola, Nadia
Martino, Enrica Antonia
Gentile, Massimo
AuthorAffiliation 8 Institute of Clinical Physiology (IFC-CNR), Section of Reggio Calabria, 89124 Reggio Calabria, Italy; graziella.darrigo@cnr.it (G.D.); giovanniluigi.tripepi@cnr.it (G.T.)
12 Gruppo Amici Dell’Ematologia Foundation-GrADE, 42122 Reggio Emilia, Italy
3 Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; paola.monti@hsanmartino.it
6 Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; noemi.puccio@ausl.re.it (N.P.); mariaelena.pistoni@ausl.re.it (M.P.); federica.torricelli@ausl.re.it (F.T.)
10 Department of Pharmacy, Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
11 Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; massimo.negrini@unife.it
13 Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
4 Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy; ferrarini.manlio@gmail.com
9 Depar
AuthorAffiliation_xml – name: 11 Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; massimo.negrini@unife.it
– name: 6 Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; noemi.puccio@ausl.re.it (N.P.); mariaelena.pistoni@ausl.re.it (M.P.); federica.torricelli@ausl.re.it (F.T.)
– name: 7 Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
– name: 13 Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
– name: 1 Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; ennio.nano@hsanmartino.it (E.N.); monica.colombo@hsanmartino.it (M.C.); nadia.bertola@hsanmartino.it (N.B.); fabiana.ferrero@edu.unige.it (F.F.); franco.fais@unige.it (F.F.); giovanna.cutrona@hsanmartino.it (G.C.)
– name: 9 Department of Mathematics and Computer Science, University of Calabria, 87100 Cosenza, Italy; gianluigi.greco@unical.it (G.G.); carlo.adornetto@unical.it (C.A.)
– name: 12 Gruppo Amici Dell’Ematologia Foundation-GrADE, 42122 Reggio Emilia, Italy
– name: 2 SSD Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
– name: 8 Institute of Clinical Physiology (IFC-CNR), Section of Reggio Calabria, 89124 Reggio Calabria, Italy; graziella.darrigo@cnr.it (G.D.); giovanniluigi.tripepi@cnr.it (G.T.)
– name: 4 Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy; ferrarini.manlio@gmail.com
– name: 5 Hematology Unit, Department of Onco-Hematology, Azienda Ospedaliera Annunziata, 87100 Cosenza, Italy; antonella.bruzzese@gmail.com (A.B.); enricaantoniamartino@gmail.com (E.A.M.); ernesto.vigna@aocs.it (E.V.); massim.gentile@tiscali.it (M.G.)
– name: 3 Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; paola.monti@hsanmartino.it
– name: 10 Department of Pharmacy, Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
Author_xml – sequence: 1
  givenname: Ennio
  orcidid: 0009-0003-1479-8121
  surname: Nano
  fullname: Nano, Ennio
– sequence: 2
  givenname: Francesco
  orcidid: 0000-0003-4144-4292
  surname: Reggiani
  fullname: Reggiani, Francesco
– sequence: 3
  givenname: Adriana Agnese
  orcidid: 0000-0002-1573-7756
  surname: Amaro
  fullname: Amaro, Adriana Agnese
– sequence: 4
  givenname: Paola
  orcidid: 0000-0002-1978-4998
  surname: Monti
  fullname: Monti, Paola
– sequence: 5
  givenname: Monica
  orcidid: 0000-0001-5512-8106
  surname: Colombo
  fullname: Colombo, Monica
– sequence: 6
  givenname: Nadia
  orcidid: 0000-0003-4591-3260
  surname: Bertola
  fullname: Bertola, Nadia
– sequence: 7
  givenname: Fabiana
  orcidid: 0009-0000-5097-6640
  surname: Ferrero
  fullname: Ferrero, Fabiana
– sequence: 8
  givenname: Franco
  orcidid: 0000-0002-6643-7083
  surname: Fais
  fullname: Fais, Franco
– sequence: 9
  givenname: Antonella
  surname: Bruzzese
  fullname: Bruzzese, Antonella
– sequence: 10
  givenname: Enrica Antonia
  surname: Martino
  fullname: Martino, Enrica Antonia
– sequence: 11
  givenname: Ernesto
  surname: Vigna
  fullname: Vigna, Ernesto
– sequence: 12
  givenname: Noemi
  surname: Puccio
  fullname: Puccio, Noemi
– sequence: 13
  givenname: Mariaelena
  orcidid: 0000-0002-1219-0038
  surname: Pistoni
  fullname: Pistoni, Mariaelena
– sequence: 14
  givenname: Federica
  orcidid: 0000-0003-1954-5695
  surname: Torricelli
  fullname: Torricelli, Federica
– sequence: 15
  givenname: Graziella
  surname: D’Arrigo
  fullname: D’Arrigo, Graziella
– sequence: 16
  givenname: Gianluigi
  surname: Greco
  fullname: Greco, Gianluigi
– sequence: 17
  givenname: Giovanni
  surname: Tripepi
  fullname: Tripepi, Giovanni
– sequence: 18
  givenname: Carlo
  orcidid: 0000-0002-9734-1017
  surname: Adornetto
  fullname: Adornetto, Carlo
– sequence: 19
  givenname: Massimo
  orcidid: 0000-0002-5256-0726
  surname: Gentile
  fullname: Gentile, Massimo
– sequence: 20
  givenname: Manlio
  surname: Ferrarini
  fullname: Ferrarini, Manlio
– sequence: 21
  givenname: Massimo
  surname: Negrini
  fullname: Negrini, Massimo
– sequence: 22
  givenname: Fortunato
  orcidid: 0000-0002-2585-7073
  surname: Morabito
  fullname: Morabito, Fortunato
– sequence: 23
  givenname: Antonino
  surname: Neri
  fullname: Neri, Antonino
– sequence: 24
  givenname: Giovanna
  orcidid: 0000-0002-3335-1101
  surname: Cutrona
  fullname: Cutrona, Giovanna
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39311383$$D View this record in MEDLINE/PubMed
BookMark eNptklFv0zAUhSM0xEbZI6_IEi-8ZNixnTi8oKpiUCkwBEXizfKcm9YlsTvbmdT_wQ_GoWOsCFmRb-Lj7-bY52l2Yp2FLHtO8AWlNX5ttbeKYMwxZuWj7KyghOSc0-8nD-rT7DyELcaYsKosS_wkO6V1WqSCnmU_Pxrt3ZdPc_TZu870xq6RCkilV2iNjuYW0NKmSkXnUZeelRkARYcujQ8RrTyoOICNyFi02HhnjUbNfthtnN7HqYbxBwxGvUmYYNabGFDn3YDiBtBVvmgaMnUOOzj0-hrHdv8se9ypPsD53TzLvl2-Wy0-5M3V--Vi3uSaYx7zqm07panglWBKdwxY3elSMQEUK8G50KrQBSs6fq0IYXWNBRYKcMm7ihWE01m2PHBbp7Zy582g_F46ZeTvD86vpfLJRA-SFJgIXXAoFDBMlACtBa5qrAlv67JOrLcH1m68HqDV6Ui86o-gxyvWbOTa3cr0Z6QSfCK8uiN4dzNCiHIwQUPfKwtuDJISLGhd1EWZpC__kW7dmKLQT6oCV8ki5X9Va5UcGNu51FhPUDkXhNGKs0ScZRf_UaXRpmvTKW8pFXC84cVDp_cW_4QqCfKDICUrBA_dvYRgOeVWHuWW_gLNPd6P
Cites_doi 10.1038/s41576-023-00662-1
10.1182/blood-2009-06-229211
10.1073/pnas.0800121105
10.3389/fonc.2021.684621
10.1038/leu.2015.333
10.1182/blood-2013-09-527234
10.1002/hon.932
10.1038/s41417-021-00313-9
10.1038/leu.2014.344
10.1038/s41576-023-00611-y
10.1038/nature14666
10.1182/blood.2019003453
10.1182/blood-2012-03-415737
10.1371/journal.pone.0151127
10.1038/nrdp.2016.96
10.1111/ejh.13614
10.1182/blood-2008-11-189407
10.1111/bjh.17074
10.1053/j.seminoncol.2016.02.015
10.1111/ejh.13149
10.1056/NEJM200012283432602
10.1038/leu.2008.377
10.1016/j.jbior.2019.100669
10.1182/blood-2010-01-263889
10.1182/blood-2011-11-394874
10.1182/asheducation-2017.1.329
10.1038/s41598-020-75364-3
10.1182/blood-2018-04-845115
10.1182/blood-2015-02-585042
10.1182/blood-2006-12-062398
10.1038/leu.2014.158
10.1038/s41375-018-0230-x
10.1056/NEJMoa050995
10.1073/pnas.0506654102
10.3390/cancers13081782
10.1016/S1470-2045(16)30029-8
10.1007/s11912-020-01001-x
10.3324/haematol.2018.203828
10.1002/ajh.24960
10.1002/hon.2722
10.1038/s41375-022-01802-y
10.1182/blood-2014-03-559690
10.2119/molmed.2013.00005
10.1158/1078-0432.CCR-13-2497
10.1001/jama.2010.1919
10.1182/blood-2017-09-806398
10.1038/leu.2016.394
10.1038/s41375-020-0747-7
10.1126/scitranslmed.aal1571
10.1016/j.ccr.2009.11.019
10.1038/nature10113
10.1111/joim.12455
10.1182/bloodadvances.2021005726
10.1016/S0140-6736(18)30422-7
10.3389/fonc.2023.1198992
10.1002/cam4.996
10.1073/pnas.242606799
10.3390/ijms241512471
10.1053/j.seminhematol.2024.03.001
10.1182/blood.2020005627
10.1038/nature15395
10.1016/j.annonc.2020.09.019
10.1016/j.celrep.2021.109390
10.1182/blood-2016-07-728261
10.1093/nar/gkab1079
10.1016/j.gene.2018.12.076
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/ncrna10050046
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2311-553X
ExternalDocumentID oai_doaj_org_article_12018c25e2ae401a8ecc80790c15d969
PMC11417859
A814375408
39311383
10_3390_ncrna10050046
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Ministero della Salute
  grantid: 5 × 1000 funds 2016
– fundername: Italian Association for Cancer Research
  grantid: 5 × mille ID.9980
– fundername: Ministero della Salute
  grantid: 5 × 1000 funds 2014
– fundername: Associazione Italiana Contro le Leucemie Linfomi e Mieloma
  grantid: AIL, Cosenza, to F.F.
– fundername: Ministero della Salute
  grantid: Ricerca Corrente 2022-2024
– fundername: Ministero della Salute
  grantid: 5 × 1000 funds 2021
– fundername: AIRC and Fondazione CaRiCal
  grantid: co-financed Multi-Unit Regional Grant 2014 n.16695
– fundername: Ministero della Salute
  grantid: 5 × 1000 funds 2020
– fundername: Gilead Sciences (Italy)
  grantid: fellowship program 2016
– fundername: Gilead Sciences (Italy)
  grantid: fellowship program 2017
– fundername: Italian Ministry of Health
  grantid: RF-2021-12374376
– fundername: Gilead fellowship program
– fundername: Associazione Italiana contro le Leucemie-Linfomi e Mieloma
– fundername: Italian Ministry of Health
  grantid: Ricerca Corrente 2022–2024
– fundername: Italian Association for Cancer Research (AIRC)
  grantid: 5 × mille ID.9980; ID.1426; ID.24365; ID.15426
– fundername: Italian Ministry of Health 5 × 1000 funds
– fundername: AIRC and Fondazione CaRiCal
  grantid: 2014 n.16695
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PMFND
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c505t-7ddfac385784acf4e49fc6a48e30a8558ca2c242f5ba114990808ae065f742153
IEDL.DBID BENPR
ISSN 2311-553X
IngestDate Wed Aug 27 01:19:24 EDT 2025
Thu Aug 21 18:31:27 EDT 2025
Fri Sep 05 10:21:16 EDT 2025
Fri Jul 25 12:05:06 EDT 2025
Tue Jun 17 22:03:09 EDT 2025
Tue Jun 10 21:10:55 EDT 2025
Thu Apr 03 07:07:13 EDT 2025
Tue Jul 01 01:10:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords CLL
time to first treatment (TTFT)
NOTCH1
del11q
Beta-2-microglobulin (B2M)
IGVH mutations
Rai stage
microRNA
del17p
prognosis
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-7ddfac385784acf4e49fc6a48e30a8558ca2c242f5ba114990808ae065f742153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors have contributed equally to this work as first name.
These authors have contributed equally to this work as last name.
ORCID 0000-0002-1978-4998
0000-0003-4144-4292
0009-0000-5097-6640
0000-0003-1954-5695
0000-0002-6643-7083
0000-0002-1573-7756
0000-0002-3335-1101
0000-0003-4591-3260
0000-0002-9734-1017
0000-0002-2585-7073
0000-0002-5256-0726
0000-0002-1219-0038
0000-0001-5512-8106
0009-0003-1479-8121
OpenAccessLink https://www.proquest.com/docview/3120706535?pq-origsite=%requestingapplication%&accountid=15518
PMID 39311383
PQID 3120706535
PQPubID 2059547
ParticipantIDs doaj_primary_oai_doaj_org_article_12018c25e2ae401a8ecc80790c15d969
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11417859
proquest_miscellaneous_3108392926
proquest_journals_3120706535
gale_infotracmisc_A814375408
gale_infotracacademiconefile_A814375408
pubmed_primary_39311383
crossref_primary_10_3390_ncrna10050046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Non-coding RNA
PublicationTitleAlternate Noncoding RNA
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Gaidano (ref_4) 2017; 2017
Morabito (ref_17) 2021; 106
Herling (ref_55) 2020; 34
Landau (ref_7) 2015; 526
Guieze (ref_5) 2015; 126
Muchtar (ref_56) 2021; 19
Cutrona (ref_65) 2018; 10
ref_12
Condoluci (ref_15) 2020; 135
ref_54
Hallek (ref_1) 2018; 131
Tili (ref_37) 2012; 120
ref_53
ref_52
Lionetti (ref_51) 2020; 38
Wu (ref_68) 2021; 2
Bayraktar (ref_19) 2024; 61
Shang (ref_22) 2023; 24
Nemeth (ref_23) 2024; 25
Bayraktar (ref_44) 2019; 104
Puente (ref_9) 2011; 475
Huang (ref_67) 2022; 50
Kumari (ref_63) 2021; 36
Mraz (ref_28) 2009; 23
Cerna (ref_38) 2019; 33
Baliakas (ref_10) 2016; 279
Calin (ref_48) 2008; 105
Guinn (ref_39) 2015; 29
ref_66
ref_21
ref_20
Smolej (ref_16) 2021; 193
Fabbri (ref_60) 2011; 305
Kipps (ref_3) 2017; 3
Li (ref_64) 2019; 694
Fulci (ref_27) 2007; 109
Negrini (ref_30) 2014; 20
Stamatopoulos (ref_25) 2009; 113
Puente (ref_8) 2015; 526
Calin (ref_42) 2016; 43
Wu (ref_62) 2022; 29
Dohner (ref_6) 2000; 343
Mansouri (ref_18) 2023; 37
Calin (ref_24) 2005; 353
International (ref_14) 2016; 17
Gentile (ref_57) 2018; 93
Scandurra (ref_46) 2010; 28
Calin (ref_31) 2002; 99
Klein (ref_32) 2010; 17
Cimmino (ref_33) 2005; 102
Rossi (ref_26) 2010; 116
Cui (ref_34) 2014; 124
Sharma (ref_61) 2021; 137
Condoluci (ref_47) 2021; 23
Gentile (ref_58) 2016; 128
Gentile (ref_13) 2018; 101
Gentile (ref_59) 2016; 30
Visone (ref_41) 2009; 114
Hallek (ref_2) 2018; 391
Cutrona (ref_49) 2017; 31
Guinn (ref_40) 2017; 6
Mraz (ref_29) 2012; 119
Balatti (ref_45) 2018; 132
Mraz (ref_35) 2014; 124
Eichhorst (ref_11) 2021; 32
Palacios (ref_36) 2015; 29
Papakonstantinou (ref_43) 2013; 19
Matis (ref_50) 2022; 6
References_xml – volume: 25
  start-page: 211
  year: 2024
  ident: ref_23
  article-title: Non-coding RNAs in disease: From mechanisms to therapeutics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-023-00662-1
– volume: 114
  start-page: 3872
  year: 2009
  ident: ref_41
  article-title: Karyotype-specific microRNA signature in chronic lymphocytic leukemia
  publication-title: Blood
  doi: 10.1182/blood-2009-06-229211
– volume: 105
  start-page: 5166
  year: 2008
  ident: ref_48
  article-title: MiR-15a and miR-16-1 cluster functions in human leukemia
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0800121105
– ident: ref_53
  doi: 10.3389/fonc.2021.684621
– volume: 30
  start-page: 1440
  year: 2016
  ident: ref_59
  article-title: A progression-risk score to predict treatment-free survival for early stage chronic lymphocytic leukemia patients
  publication-title: Leukemia
  doi: 10.1038/leu.2015.333
– volume: 124
  start-page: 84
  year: 2014
  ident: ref_35
  article-title: miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1
  publication-title: Blood
  doi: 10.1182/blood-2013-09-527234
– volume: 28
  start-page: 62
  year: 2010
  ident: ref_46
  article-title: Genomic profiling of Richter’s syndrome: Recurrent lesions and differences with de novo diffuse large B-cell lymphomas
  publication-title: Hematol. Oncol.
  doi: 10.1002/hon.932
– volume: 29
  start-page: 341
  year: 2022
  ident: ref_62
  article-title: Long noncoding RNA LINC01291 promotes the aggressive properties of melanoma by functioning as a competing endogenous RNA for microRNA-625-5p and subsequently increasing IGF-1R expression
  publication-title: Cancer Gene Ther.
  doi: 10.1038/s41417-021-00313-9
– volume: 29
  start-page: 1210
  year: 2015
  ident: ref_39
  article-title: miR-155 expression is associated with chemoimmunotherapy outcome and is modulated by Bruton’s tyrosine kinase inhibition with Ibrutinib
  publication-title: Leukemia
  doi: 10.1038/leu.2014.344
– volume: 24
  start-page: 816
  year: 2023
  ident: ref_22
  article-title: microRNAs in action: Biogenesis, function and regulation
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-023-00611-y
– volume: 526
  start-page: 519
  year: 2015
  ident: ref_8
  article-title: Non-coding recurrent mutations in chronic lymphocytic leukaemia
  publication-title: Nature
  doi: 10.1038/nature14666
– volume: 135
  start-page: 1859
  year: 2020
  ident: ref_15
  article-title: International prognostic score for asymptomatic early-stage chronic lymphocytic leukemia
  publication-title: Blood
  doi: 10.1182/blood.2019003453
– volume: 120
  start-page: 2631
  year: 2012
  ident: ref_37
  article-title: The down-regulation of miR-125b in chronic lymphocytic leukemias leads to metabolic adaptation of cells to a transformed state
  publication-title: Blood
  doi: 10.1182/blood-2012-03-415737
– ident: ref_66
  doi: 10.1371/journal.pone.0151127
– volume: 3
  start-page: 16096
  year: 2017
  ident: ref_3
  article-title: Chronic lymphocytic leukaemia
  publication-title: Nat. Rev. Dis. Primers
  doi: 10.1038/nrdp.2016.96
– volume: 106
  start-page: 831
  year: 2021
  ident: ref_17
  article-title: Validation of the Alternative International Prognostic Score-E (AIPS-E): Analysis of Binet stage A chronic lymphocytic leukemia patients enrolled into the O-CLL1-GISL protocol
  publication-title: Eur. J. Haematol.
  doi: 10.1111/ejh.13614
– volume: 113
  start-page: 5237
  year: 2009
  ident: ref_25
  article-title: microRNA-29c and microRNA-223 down-regulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification
  publication-title: Blood
  doi: 10.1182/blood-2008-11-189407
– volume: 193
  start-page: 133
  year: 2021
  ident: ref_16
  article-title: External validation of International Prognostic Score for asymptomatic early stage chronic lymphocytic leukaemia and proposal of an alternative score
  publication-title: Br. J. Haematol.
  doi: 10.1111/bjh.17074
– volume: 43
  start-page: 209
  year: 2016
  ident: ref_42
  article-title: MicroRNAs in chronic lymphocytic leukemia: miRacle or miRage for prognosis and targeted therapies?
  publication-title: Semin. Oncol.
  doi: 10.1053/j.seminoncol.2016.02.015
– volume: 101
  start-page: 703
  year: 2018
  ident: ref_13
  article-title: Predictive value of the CLL-IPI in CLL patients receiving chemo-immunotherapy as first-line treatment
  publication-title: Eur. J. Haematol.
  doi: 10.1111/ejh.13149
– volume: 343
  start-page: 1910
  year: 2000
  ident: ref_6
  article-title: Genomic aberrations and survival in chronic lymphocytic leukemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM200012283432602
– volume: 23
  start-page: 1159
  year: 2009
  ident: ref_28
  article-title: miR-34a, miR-29c and miR-17-5p are downregulated in CLL patients with TP53 abnormalities
  publication-title: Leukemia
  doi: 10.1038/leu.2008.377
– ident: ref_20
  doi: 10.1016/j.jbior.2019.100669
– volume: 116
  start-page: 945
  year: 2010
  ident: ref_26
  article-title: microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival
  publication-title: Blood
  doi: 10.1182/blood-2010-01-263889
– volume: 19
  start-page: 92
  year: 2021
  ident: ref_56
  article-title: Early intervention in asymptomatic chronic lymphocytic leukemia
  publication-title: Clin. Adv. Hematol. Oncol.
– volume: 119
  start-page: 2110
  year: 2012
  ident: ref_29
  article-title: MicroRNA-650 expression is influenced by immunoglobulin gene rearrangement and affects the biology of chronic lymphocytic leukemia
  publication-title: Blood
  doi: 10.1182/blood-2011-11-394874
– volume: 2017
  start-page: 329
  year: 2017
  ident: ref_4
  article-title: The mutational landscape of chronic lymphocytic leukemia and its impact on prognosis and treatment
  publication-title: Hematol. Am. Soc. Hematol. Educ. Program.
  doi: 10.1182/asheducation-2017.1.329
– ident: ref_52
  doi: 10.1038/s41598-020-75364-3
– volume: 132
  start-page: 2179
  year: 2018
  ident: ref_45
  article-title: miR-125a and miR-34a expression predicts Richter syndrome in chronic lymphocytic leukemia patients
  publication-title: Blood
  doi: 10.1182/blood-2018-04-845115
– volume: 126
  start-page: 445
  year: 2015
  ident: ref_5
  article-title: Genomic and epigenomic heterogeneity in chronic lymphocytic leukemia
  publication-title: Blood
  doi: 10.1182/blood-2015-02-585042
– volume: 109
  start-page: 4944
  year: 2007
  ident: ref_27
  article-title: Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia
  publication-title: Blood
  doi: 10.1182/blood-2006-12-062398
– volume: 29
  start-page: 115
  year: 2015
  ident: ref_36
  article-title: Activation of the PI3K/AKT pathway by microRNA-22 results in CLL B-cell proliferation
  publication-title: Leukemia
  doi: 10.1038/leu.2014.158
– volume: 33
  start-page: 403
  year: 2019
  ident: ref_38
  article-title: MicroRNA miR-34a downregulates FOXP1 during DNA damage response to limit BCR signalling in chronic lymphocytic leukaemia B cells
  publication-title: Leukemia
  doi: 10.1038/s41375-018-0230-x
– volume: 353
  start-page: 1793
  year: 2005
  ident: ref_24
  article-title: A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa050995
– volume: 102
  start-page: 13944
  year: 2005
  ident: ref_33
  article-title: miR-15 and miR-16 induce apoptosis by targeting BCL2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0506654102
– ident: ref_12
  doi: 10.3390/cancers13081782
– volume: 17
  start-page: 779
  year: 2016
  ident: ref_14
  article-title: An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): A meta-analysis of individual patient data
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(16)30029-8
– volume: 23
  start-page: 26
  year: 2021
  ident: ref_47
  article-title: Richter Syndrome
  publication-title: Curr. Oncol. Rep.
  doi: 10.1007/s11912-020-01001-x
– volume: 104
  start-page: 1004
  year: 2019
  ident: ref_44
  article-title: The involvement of microRNA in the pathogenesis of Richter syndrome
  publication-title: Haematologica
  doi: 10.3324/haematol.2018.203828
– volume: 93
  start-page: E35
  year: 2018
  ident: ref_57
  article-title: Comparison between the CLL-IPI and the Barcelona-Brno prognostic model: Analysis of 1299 newly diagnosed cases
  publication-title: Am. J. Hematol.
  doi: 10.1002/ajh.24960
– volume: 38
  start-page: 406
  year: 2020
  ident: ref_51
  article-title: Frequency and clinical relevance of coding and noncoding NOTCH1 mutations in early stage Binet A chronic lymphocytic leukemia patients
  publication-title: Hematol. Oncol.
  doi: 10.1002/hon.2722
– volume: 37
  start-page: 339
  year: 2023
  ident: ref_18
  article-title: Different prognostic impact of recurrent gene mutations in chronic lymphocytic leukemia depending on IGHV gene somatic hypermutation status: A study by ERIC in HARMONY
  publication-title: Leukemia
  doi: 10.1038/s41375-022-01802-y
– volume: 124
  start-page: 546
  year: 2014
  ident: ref_34
  article-title: MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia
  publication-title: Blood
  doi: 10.1182/blood-2014-03-559690
– volume: 2
  start-page: 100141
  year: 2021
  ident: ref_68
  article-title: clusterProfiler 4.0: A universal enrichment tool for interpreting omics data
  publication-title: Innovation
– volume: 19
  start-page: 115
  year: 2013
  ident: ref_43
  article-title: Differential microRNA profiles and their functional implications in different immunogenetic subsets of chronic lymphocytic leukemia
  publication-title: Mol. Med.
  doi: 10.2119/molmed.2013.00005
– volume: 20
  start-page: 4141
  year: 2014
  ident: ref_30
  article-title: microRNAome expression in chronic lymphocytic leukemia: Comparison with normal B-cell subsets and correlations with prognostic and clinical parameters
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-13-2497
– volume: 305
  start-page: 59
  year: 2011
  ident: ref_60
  article-title: Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia
  publication-title: JAMA
  doi: 10.1001/jama.2010.1919
– volume: 131
  start-page: 2745
  year: 2018
  ident: ref_1
  article-title: iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL
  publication-title: Blood
  doi: 10.1182/blood-2017-09-806398
– volume: 31
  start-page: 1894
  year: 2017
  ident: ref_49
  article-title: Effects of miRNA-15 and miRNA-16 expression replacement in chronic lymphocytic leukemia: Implication for therapy
  publication-title: Leukemia
  doi: 10.1038/leu.2016.394
– volume: 34
  start-page: 2038
  year: 2020
  ident: ref_55
  article-title: Early treatment with FCR versus watch and wait in patients with stage Binet A high-risk chronic lymphocytic leukemia (CLL): A randomized phase 3 trial
  publication-title: Leukemia
  doi: 10.1038/s41375-020-0747-7
– volume: 10
  start-page: eaal1571
  year: 2018
  ident: ref_65
  article-title: Microenvironmental regulation of the IL-23R/IL-23 axis overrides chronic lymphocytic leukemia indolence
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aal1571
– volume: 17
  start-page: 28
  year: 2010
  ident: ref_32
  article-title: The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.11.019
– volume: 475
  start-page: 101
  year: 2011
  ident: ref_9
  article-title: Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia
  publication-title: Nature
  doi: 10.1038/nature10113
– volume: 279
  start-page: 347
  year: 2016
  ident: ref_10
  article-title: Prognostic indices in chronic lymphocytic leukaemia: Where do we stand how do we proceed?
  publication-title: J. Intern. Med.
  doi: 10.1111/joim.12455
– volume: 6
  start-page: 5593
  year: 2022
  ident: ref_50
  article-title: MiR-146b-5p regulates IL-23 receptor complex expression in chronic lymphocytic leukemia cells
  publication-title: Blood Adv.
  doi: 10.1182/bloodadvances.2021005726
– volume: 391
  start-page: 1524
  year: 2018
  ident: ref_2
  article-title: Chronic lymphocytic leukaemia
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)30422-7
– ident: ref_54
  doi: 10.3389/fonc.2023.1198992
– volume: 6
  start-page: 778
  year: 2017
  ident: ref_40
  article-title: The regulation of tumor-suppressive microRNA, miR-126, in chronic lymphocytic leukemia
  publication-title: Cancer Med.
  doi: 10.1002/cam4.996
– volume: 99
  start-page: 15524
  year: 2002
  ident: ref_31
  article-title: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.242606799
– ident: ref_21
  doi: 10.3390/ijms241512471
– volume: 61
  start-page: 181
  year: 2024
  ident: ref_19
  article-title: miRNA Biology in Chronic Lymphocytic Leukemia
  publication-title: Semin. Hematol.
  doi: 10.1053/j.seminhematol.2024.03.001
– volume: 137
  start-page: 2481
  year: 2021
  ident: ref_61
  article-title: miR-29 modulates CD40 signaling in chronic lymphocytic leukemia by targeting TRAF4: An axis affected by BCR inhibitors
  publication-title: Blood
  doi: 10.1182/blood.2020005627
– volume: 526
  start-page: 525
  year: 2015
  ident: ref_7
  article-title: Mutations driving CLL and their evolution in progression and relapse
  publication-title: Nature
  doi: 10.1038/nature15395
– volume: 32
  start-page: 23
  year: 2021
  ident: ref_11
  article-title: Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up
  publication-title: Ann. Oncol.
  doi: 10.1016/j.annonc.2020.09.019
– volume: 36
  start-page: 109390
  year: 2021
  ident: ref_63
  article-title: MicroRNA miR-29c regulates RAG1 expression and modulates V(D)J recombination during B cell development
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109390
– volume: 128
  start-page: 2093
  year: 2016
  ident: ref_58
  article-title: Validation of the CLL-IPI and comparison with the MDACC prognostic index in newly diagnosed patients
  publication-title: Blood
  doi: 10.1182/blood-2016-07-728261
– volume: 50
  start-page: D222
  year: 2022
  ident: ref_67
  article-title: miRTarBase update 2022: An informative resource for experimentally validated miRNA-target interactions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab1079
– volume: 694
  start-page: 76
  year: 2019
  ident: ref_64
  article-title: Investigation of the potential theranostic role of KDM5B/miR-29c signaling axis in paclitaxel resistant endometrial carcinoma
  publication-title: Gene
  doi: 10.1016/j.gene.2018.12.076
SSID ssj0001476660
Score 2.2733214
Snippet A “watch and wait” strategy, delaying treatment until active disease manifests, is adopted for most CLL cases; however, prognostic models incorporating...
A "watch and wait" strategy, delaying treatment until active disease manifests, is adopted for most CLL cases; however, prognostic models incorporating...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 46
SubjectTerms Analysis
Annotations
Apoptosis
Artificial intelligence
B cells
Biomarkers
Cancer
Care and treatment
Chronic lymphocytic leukemia
CLL
Correlation analysis
Decision making
del11q
Genes
IGVH mutations
Instrument industry
Leukemia
Medical prognosis
MicroRNA
MicroRNAs
miRNA
mRNA
Mutation
Oncology, Experimental
Patients
prognosis
time to first treatment (TTFT)
β2 Microglobulin
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQnrggYPkILGiQ0HKK1knsxuFWVlQLKgtCu9LeIsdxRLXaFNH00P_BD-aNk1aJOHDh1tRuHefNeN7EM2Mh3jZg3U2tZOxrrWOl0iauYGjjoqprZVTNtJejLS5nF9fq842-GR31xTFhfXng_sGdJbBQxqXap9bDF7AGYxqZF9Ilui5mIXVPFnLkTIW3KyoHL5d9Uc0Mfv1Z64BMwuVOJJPdkREKtfr_XpFHJmkaLjmyP4uH4sFAHGne3_Ajcc-3j8XxvIXTfLejUwqhnOEd-bH4_YXD7L5fzulbOJIb5onshiwueV-GVzj61PIODTxuAm0lzgShbk2LFdggXe2jz2nV0lA-l5Y7AL92u44_--2tv1vZ9_ibDbv3G-I8FQKbpK_x-XKZ8Mj7LE7iYMXdE3G9-Hh1fhEPxy_EDmh1cV7XjXWZgU4r6xrlgaqbWWV8Jq3R2jibOlj4RlcWXhXMmpHGenCaBv42VtKn4qhdt_65IF1UXPYnt85kyibK1gDTq6bRMz-zuYrE6R6P8mdfZaOEd8LAlRPgIvGB0Tp04uLY4QuITDmITPkvkYnEO8a6ZBUGoM4OmQi4Vy6GVc4NSGQOKmsicTLpCdVz0-a9tJSD6m_KDMPz3nGmI_Hm0My_5HC21q-33EcGYppiQs964TpMKSuyJMlMFgkzEbvJnKct7epHKAwOFJLc6OLF_3hKL8X9FASuD1w8EUfdr61_BQLWVa-Drv0B6_QuKw
  priority: 102
  providerName: Directory of Open Access Journals
Title MicroRNA Profiling as a Predictive Indicator for Time to First Treatment in Chronic Lymphocytic Leukemia: Insights from the O-CLL1 Prospective Study
URI https://www.ncbi.nlm.nih.gov/pubmed/39311383
https://www.proquest.com/docview/3120706535
https://www.proquest.com/docview/3108392926
https://pubmed.ncbi.nlm.nih.gov/PMC11417859
https://doaj.org/article/12018c25e2ae401a8ecc80790c15d969
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N9oUXNBgfgVEZCY2naE5iNw4SQulYNVAp07RJe4tc24EKLdnW9KH_B38wd_noGiHxlsZuEut3vvudfXcGeJ8j686t4L6zUvpChLm_QEPrJwtrhRKWaC9FW8zHZ1fi27W83oN5lwtDYZWdTqwVtS0NrZEfR0HIaUsukp9v73w6NYp2V7sjNHR7tIL9VJcYewRDVMmSD2A4OZ2fXzysuogY-Tpvim1G6O8fFwYRC6gMCicSvGOc6hr-_2rqHVPVD6PcsUvTfXjSEkqWNhLwFPZc8QwO0gKd6ZsNO2J1iGe9dn4Af75T-N3FPGXn9VHdaLaYXjGNP2m_hjQf-1rQzg164gzpLKMMEVaVbLpElsguu6h0tixYW1aXzTYoEKXZVHTt1r_dzVJ_xMesyO1fMcpfYcgy2Q__ZDYL6M1ddiejIMbNc7ianl6enPntsQy-QRQrP7Y21yZSONeFNrlwiLYZa6FcxLWSUhkdGrT8uVxo9LbQ3CmutEPscvTDUcO-gEFRFu4VMJksqBxQrI2KhA6Ettrh8_Jcjt1Yx8KDow6P7LapvpGh10LAZT3gPJgQWttOVDS7vlHe_8zaOZihBAXKhNKF-BYeaIXiq3iccBNIm4wTDz4Q1hlNbQTU6DZDAb-VimRlqUJyGSPFVR4c9nrilDT95k5aslYlrLIHAfbg3baZ_klhboUr19SH14Q1xAG9bIRrO6QoiYIgUpEHqid2vTH3W4rlr7pgOKIQxEomr___XW_gcYiUrQlVPIRBdb92b5FyVYsRDNPJl8l01M6nUb108RdazS9F
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELem7gFeEDD-hA0wEoynaHZsNw7ShLqxqmVdmaZO2lvm2g5U05KxtkL9HnwePht3adI1QuJtb23tJrbufPe78_0h5H0GqDtzkoXeKRVKGWXhGBRtmIydk1o6hL0YbTFs987l1wt1sUH-1LkwGFZZy8RSULvCoo98T_CI4ZWcUJ9vfobYNQpvV-sWGqZqreD2yxJjVWLHsV_8AhNuut__AvT-EEXdo9FhL6y6DIQWFjULY-cyY4UG1pXGZtLD4m3bSO0FM1opbU1kQZFlamzAeADprZk2HpaSgVnJsWsEqIBNiQ6UFtk8OBqent15eWQM9gFbFvcUImF7uQUO4Vh2hSHoXlOGZc-AfzXDmmpshm2u6cHuY_KoArC0s-S4J2TD50_JVicH4_16QXdpGVJa-uq3yO8TDPc7G3boadkaHNQkNVNq4CveD6Gkpf0cb4rA8qcAnylmpNBZQbsTQKV0VEfB00lOqzK-dLAABizsYoaf_fzKX0_MJ3jMFN0MU4r5MhRQLf0WHg4GHN9cZ5NSDJpcPCPn90Kg56SVF7l_SahKxlh-KDZWC2m4NM54eF6WqbZvm1gGZLemR3qzrPaRgpWEhEsbhAvIAVJrNQmLdJc_FLff0-rMp8CxXNtI-QjewrjRcFw0ixNmuXJJOwnIR6R1iqIECGpNlREBa8WiXGlHA5iNga10QHYaM0EE2OZwzS1pJYKm6d2BCci71TD-E8Pqcl_McQ4rAXIEG3qxZK7VlkQiOBdaBEQ32K6x5-ZIPvlRFigHKvBYq-TV_9f1ljzojU4G6aA_PN4mDyOAi8swyR3Smt3O_WuAe7Pxm-pMUXJ538f4L95maTc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTUK8IGBcAgOMBOMpmh3bjYM0oe5SrayUatqkvWWu7UCFlow2Fer_4FfxqzgnTbpGSLztra3dxNa5fcc-F0LeZYC6MydZ6J1SoZRRFo7B0IbJ2DmppUPYi9EWw87Jhfx8qS43yJ8mFwbDKhudWClqV1g8I98TPGJ4JSfUXlaHRYyOep9ufobYQQpvWpt2GqZus-D2q3JjdZLHqV_8Andutt8_Atq_j6Le8fnhSVh3HAgtLLAMY-cyY4UGNpbGZtLDRmzHSO0FM1opbU1kwahlamzAkQBNrpk2HpaVgYvJsYMEmIOtGKw-OIJbB8fD0dntiY-MwVdgy0KfQiRsL7fALRxLsDAE4GuGseof8K-VWDOT7RDONZvYe0ge1GCWdpfc94hs-Pwx2e7m4MhfL-gurcJLq3P7bfL7C4b-nQ27dFS1CQeTSc2MGviKd0WodWk_x1ujsphSgNIUs1NoWdDeBBAqPW8i4ukkp3VJXzpYADMWdlHiZz__4a8n5iM8ZoZHDjOKuTMUEC79Gh4OBhzf3GSWUgygXDwhF3dCoKdkMy9y_5xQlYyxFFFsrBbScGmc8fC8LFMd3zGxDMhuQ4_0Zln5IwWPCQmXtggXkAOk1moSFuyufiim39Ja_lPgXq5tpHwEb2HcaBAdzeKEWa5c0kkC8gFpnaJaAYJaU2dHwFqxQFfa1QBsY4DXOiA7rZmgDmx7uOGWtFZHs_RWeALydjWM_8QQu9wXc5zDKrAcwYaeLZlrtSWRCM6FFgHRLbZr7bk9kk--V8XKgQo81ip58f91vSH3QJzTQX94-pLcjwA5LiMmd8hmOZ37V4D8yvHrWqQoubprKf4L4wFtew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNA+Profiling+as+a+Predictive+Indicator+for+Time+to+First+Treatment+in+Chronic+Lymphocytic+Leukemia%3A+Insights+from+the+O-CLL1+Prospective+Study&rft.jtitle=Non-coding+RNA&rft.au=Nano%2C+Ennio&rft.au=Reggiani%2C+Francesco&rft.au=Amaro%2C+Adriana+Agnese&rft.au=Monti%2C+Paola&rft.date=2024-10-01&rft.eissn=2311-553X&rft.volume=10&rft.issue=5&rft_id=info:doi/10.3390%2Fncrna10050046&rft_id=info%3Apmid%2F39311383&rft.externalDocID=39311383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-553X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-553X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-553X&client=summon