Multicolor redox sensor proteins can visualize redox changes in various compartments of the living cell
Change in the intracellular redox state is a consequence of various metabolic reactions, which simultaneously regulates various physiological phenomena in cells. Monitoring the redox state in living cells is thus very important for understanding cellular physiology. Various genetically encoded fluor...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1863; no. 6; pp. 1098 - 1107 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2019.01.016 |
Cover
Abstract | Change in the intracellular redox state is a consequence of various metabolic reactions, which simultaneously regulates various physiological phenomena in cells. Monitoring the redox state in living cells is thus very important for understanding cellular physiology. Various genetically encoded fluorescent redox sensors have therefore been developed. Recently, we developed oxidation-sensitive fluorescent proteins named Oba-Q (Sugiura, K., et al. (2015) Biochem. Biophys. Res. Commun. 457, 242–248), which exhibit dramatic quenching under oxidizing conditions. To extend the range of uses of redox sensor proteins, we refined these proteins based on the molecular architecture applied to Oba-Q, and successfully produced several redox sensor proteins based on CFP and YFP. Interestingly, some of these sensor proteins showed the reverse changes in emission compared with Oba-Q, implying remarkable fluorescence quenching under reducing conditions. We named this type of sensor protein Re-Q, reduction-sensed quenching protein. The cause of the redox-dependent fluorescence quenching could be clearly explained based on the crystal structure of Re-Q in the reduced and oxidized forms. In addition, by introducing suitable mutations into the sensors, we produced Oba-Q and Re-Q mutants exhibiting various midpoint redox potentials. This series of proteins can cover a wide range of redox potentials in the cell, so they should be applicable to various cells and even intracellular organelles. As an example, we successfully measured the redox responses in different cell compartments of cultured mammalian cells simultaneously against the anticancer reagents Kp372-1. |
---|---|
AbstractList | Change in the intracellular redox state is a consequence of various metabolic reactions, which simultaneously regulates various physiological phenomena in cells. Monitoring the redox state in living cells is thus very important for understanding cellular physiology. Various genetically encoded fluorescent redox sensors have therefore been developed. Recently, we developed oxidation-sensitive fluorescent proteins named Oba-Q (Sugiura, K., et al. (2015) Biochem. Biophys. Res. Commun. 457, 242-248), which exhibit dramatic quenching under oxidizing conditions. To extend the range of uses of redox sensor proteins, we refined these proteins based on the molecular architecture applied to Oba-Q, and successfully produced several redox sensor proteins based on CFP and YFP. Interestingly, some of these sensor proteins showed the reverse changes in emission compared with Oba-Q, implying remarkable fluorescence quenching under reducing conditions. We named this type of sensor protein Re-Q, reduction-sensed quenching protein. The cause of the redox-dependent fluorescence quenching could be clearly explained based on the crystal structure of Re-Q in the reduced and oxidized forms. In addition, by introducing suitable mutations into the sensors, we produced Oba-Q and Re-Q mutants exhibiting various midpoint redox potentials. This series of proteins can cover a wide range of redox potentials in the cell, so they should be applicable to various cells and even intracellular organelles. As an example, we successfully measured the redox responses in different cell compartments of cultured mammalian cells simultaneously against the anticancer reagents Kp372-1.Change in the intracellular redox state is a consequence of various metabolic reactions, which simultaneously regulates various physiological phenomena in cells. Monitoring the redox state in living cells is thus very important for understanding cellular physiology. Various genetically encoded fluorescent redox sensors have therefore been developed. Recently, we developed oxidation-sensitive fluorescent proteins named Oba-Q (Sugiura, K., et al. (2015) Biochem. Biophys. Res. Commun. 457, 242-248), which exhibit dramatic quenching under oxidizing conditions. To extend the range of uses of redox sensor proteins, we refined these proteins based on the molecular architecture applied to Oba-Q, and successfully produced several redox sensor proteins based on CFP and YFP. Interestingly, some of these sensor proteins showed the reverse changes in emission compared with Oba-Q, implying remarkable fluorescence quenching under reducing conditions. We named this type of sensor protein Re-Q, reduction-sensed quenching protein. The cause of the redox-dependent fluorescence quenching could be clearly explained based on the crystal structure of Re-Q in the reduced and oxidized forms. In addition, by introducing suitable mutations into the sensors, we produced Oba-Q and Re-Q mutants exhibiting various midpoint redox potentials. This series of proteins can cover a wide range of redox potentials in the cell, so they should be applicable to various cells and even intracellular organelles. As an example, we successfully measured the redox responses in different cell compartments of cultured mammalian cells simultaneously against the anticancer reagents Kp372-1. Change in the intracellular redox state is a consequence of various metabolic reactions, which simultaneously regulates various physiological phenomena in cells. Monitoring the redox state in living cells is thus very important for understanding cellular physiology. Various genetically encoded fluorescent redox sensors have therefore been developed. Recently, we developed oxidation-sensitive fluorescent proteins named Oba-Q (Sugiura, K., et al. (2015) Biochem. Biophys. Res. Commun. 457, 242-248), which exhibit dramatic quenching under oxidizing conditions. To extend the range of uses of redox sensor proteins, we refined these proteins based on the molecular architecture applied to Oba-Q, and successfully produced several redox sensor proteins based on CFP and YFP. Interestingly, some of these sensor proteins showed the reverse changes in emission compared with Oba-Q, implying remarkable fluorescence quenching under reducing conditions. We named this type of sensor protein Re-Q, reduction-sensed quenching protein. The cause of the redox-dependent fluorescence quenching could be clearly explained based on the crystal structure of Re-Q in the reduced and oxidized forms. In addition, by introducing suitable mutations into the sensors, we produced Oba-Q and Re-Q mutants exhibiting various midpoint redox potentials. This series of proteins can cover a wide range of redox potentials in the cell, so they should be applicable to various cells and even intracellular organelles. As an example, we successfully measured the redox responses in different cell compartments of cultured mammalian cells simultaneously against the anticancer reagents Kp372-1. |
Author | Wakabayashi, Ken-ichi Sugiura, Kazunori Hisabori, Toru Tanaka, Hideaki Kurisu, Genji |
Author_xml | – sequence: 1 givenname: Kazunori surname: Sugiura fullname: Sugiura, Kazunori organization: Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan – sequence: 2 givenname: Hideaki surname: Tanaka fullname: Tanaka, Hideaki organization: Laboratory of Protein Crystallography, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan – sequence: 3 givenname: Genji surname: Kurisu fullname: Kurisu, Genji organization: Laboratory of Protein Crystallography, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan – sequence: 4 givenname: Ken-ichi surname: Wakabayashi fullname: Wakabayashi, Ken-ichi organization: Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan – sequence: 5 givenname: Toru surname: Hisabori fullname: Hisabori, Toru email: thisabor@res.titech.ac.jp organization: Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30953671$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUGLFDEQhYOsuLOr_0Ckj156rOp0OmkPgizuKqx40XNIZ6pnM3QnY5Ie1F9vhpm9eFBDQQj53uNR74pd-OCJsZcIawTs3uzWw2C25NcNYL8GLNM9YStUsqkVQHfBVsChrVvsxCW7SmkH5YhePGOXHHrBO4krtv28TNnZMIVYRdqEH1Uin8pjH0Mm51Nlja8OLi1mcr_ozNgH47eUKle-THRhKViY9ybmmXxOVRir_EDV5A7ObytL0_ScPR3NlOjF-b5m324_fL35WN9_uft08_6-tgJErhtJBtGq0ZreKhQwiFEN0speDVwp0VkDiJKglZzLERBaPhQFJ-II1vJr9vrkW_J_XyhlPbt0DGA8lZi6aQTHXsoG_wOFtuuhVV1BX53RZZhpo_fRzSb-1I97LMDbE2BjSCnSqK3LJrvgczRu0gj6WJre6VNp-liaBixzdG__ED_6_0P27iSjss-Do6iTdeQtbVwkm_UmuL8b_Abdi7Lf |
CitedBy_id | crossref_primary_10_1016_j_freeradbiomed_2024_03_010 crossref_primary_10_1016_j_jbc_2021_101186 crossref_primary_10_1016_j_abb_2024_110067 crossref_primary_10_1073_pnas_1918919117 crossref_primary_10_1093_jxb_erae041 crossref_primary_10_3390_ijms24098082 crossref_primary_10_1074_jbc_RA119_007616 crossref_primary_10_1021_acs_chemrestox_1c00149 |
Cites_doi | 10.1016/j.bbrc.2014.12.095 10.1016/S0076-6879(97)76066-X 10.1093/jxb/eri181 10.1021/ac5041988 10.1093/protein/8.2.127 10.1093/pcp/pcf145 10.1074/jbc.M312847200 10.1105/tpc.105.033589 10.1104/pp.106.077073 10.1111/j.1749-6632.2009.04723.x 10.1083/jcb.201211155 10.1021/bi00892a002 10.1016/S0891-5849(01)00480-4 10.1107/S0907444904019158 10.1073/pnas.94.22.11857 10.1046/j.1365-313X.1997.12010179.x 10.1371/journal.pone.0115318 10.1074/jbc.273.11.6303 10.1074/jbc.M312846200 10.1016/j.bbrc.2018.07.163 10.1126/science.1523409 10.1128/MCB.00121-10 10.1038/nmeth.1317 10.1016/j.cmet.2015.04.009 10.1093/emboj/20.21.5853 10.1021/bi800498g 10.1107/S0907444994003112 10.1038/sj.bjc.6602595 10.1073/pnas.1403101111 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2019.01.016 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 1107 |
ExternalDocumentID | 30953671 10_1016_j_bbagen_2019_01_016 S0304416519300224 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c505t-27ea11c8fca9c8150b5f8b7c798b38856ca0117e047337f01043ba113ee310cc3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Sat Sep 27 19:46:55 EDT 2025 Sun Sep 28 01:28:10 EDT 2025 Wed Feb 19 02:31:06 EST 2025 Thu Apr 24 22:57:11 EDT 2025 Tue Jul 01 00:22:12 EDT 2025 Fri Feb 23 02:34:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | YFP Fluorescence CFP roGFP Re-Q protein Oba-Q Biosensor Protein design Prx ROS FRET Fluorescence lifetime Trx RFP |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-27ea11c8fca9c8150b5f8b7c798b38856ca0117e047337f01043ba113ee310cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30953671 |
PQID | 2204690486 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2253197721 proquest_miscellaneous_2204690486 pubmed_primary_30953671 crossref_citationtrail_10_1016_j_bbagen_2019_01_016 crossref_primary_10_1016_j_bbagen_2019_01_016 elsevier_sciencedirect_doi_10_1016_j_bbagen_2019_01_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lohman, Remington (bb0065) 2008; 47 Owa, Furuta, Usukura, Arisaka, King, Witman, Kamiya, Wakabayashi (bb0155) 2014; 111 Ostergaard, Henriksen, Hansen, Winther (bb0050) 2001; 20 Fu, Donovan, Shikapwashya-Hasser, Ye, Cole (bb0115) 2014; 9 Emsley, Cowtan (bb0100) 2004; 60 Cerella, D'Alessio, Cristofanon, De Nicola, Radogna, Dicato, Diederich, Ghibelli (bb0140) 2009; 1171 Kobayashi, Kishigami, Sone, Inokuchi, Mogi, Ito (bb0120) 1997; 94 Collaborative Computational Project (bb0095) 1994; 50 Otwinowski, Minor (bb0090) 1997; 276 Scheibe, Backhausen, Emmerlich, Holtgrefe (bb0035) 2005; 56 Schrodinger (bb0105) 2010 Avezov, Cross, Kaminski Schierle, Winters, Harding, Melo, Kaminski, Ron (bb0145) 2013; 201 Mandal, Kim, Younes, Jasser, El-Naggar, Mills, Myers (bb0130) 2005; 92 Fan, Chen, Ai (bb0060) 2015; 87 Foyer, Noctor (bb0040) 2005; 17 Dooley, Dore, Hanson, Jackson, Remington, Tsien (bb0080) 2004; 279 Wallace, Laskowski, Thornton (bb0110) 1995; 8 Baier, Dietz (bb0030) 1997; 12 Hideg, Barta, Kalai, Vass, Hideg, Asada (bb0015) 2002; 43 Zhao, Hu, Cheng, Su, Wang, Zou, Hu, Chen, Zhou, Huang, Yang, Zhu, Wang, Yi, Zhu, Qian, Chen, Tang, Loscalzo, Yang (bb0135) 2015; 21 Buchanan (bb0020) 1980; vol. 31 Tomosugi, Matsuda, Tani, Nemoto, Kotera, Saito, Horikawa, Nagai (bb0070) 2009; 6 Schafer, Buettner (bb0010) 2001; 30 Kang, Baines, Rhee (bb0025) 1998; 273 Cleland (bb0085) 1964; 3 Hanson, Aggeler, Oglesbee, Cannon, Capaldi, Tsien, Remington (bb0045) 2004; 279 Yano, Oku, Akeyama, Itoyama, Yurimoto, Kuge, Fujiki, Sakai (bb0055) 2010; 30 Sugiura, Nishimaki, Owa, Hisabori, Wakabayashi (bb0150) 2018; 503 Sugiura, Nagai, Nakano, Ichinose, Nakabayashi, Ohta, Hisabori (bb0075) 2015; 457 Halliwell (bb0005) 2006; 141 Hwang, Sinskey, Lodish (bb0125) 1992; 257 Wallace (10.1016/j.bbagen.2019.01.016_bb0110) 1995; 8 Dooley (10.1016/j.bbagen.2019.01.016_bb0080) 2004; 279 Kobayashi (10.1016/j.bbagen.2019.01.016_bb0120) 1997; 94 Avezov (10.1016/j.bbagen.2019.01.016_bb0145) 2013; 201 Yano (10.1016/j.bbagen.2019.01.016_bb0055) 2010; 30 Fan (10.1016/j.bbagen.2019.01.016_bb0060) 2015; 87 Owa (10.1016/j.bbagen.2019.01.016_bb0155) 2014; 111 Hanson (10.1016/j.bbagen.2019.01.016_bb0045) 2004; 279 Baier (10.1016/j.bbagen.2019.01.016_bb0030) 1997; 12 Collaborative Computational Project (10.1016/j.bbagen.2019.01.016_bb0095) 1994; 50 Cerella (10.1016/j.bbagen.2019.01.016_bb0140) 2009; 1171 Buchanan (10.1016/j.bbagen.2019.01.016_bb0020) 1980; vol. 31 Mandal (10.1016/j.bbagen.2019.01.016_bb0130) 2005; 92 Fu (10.1016/j.bbagen.2019.01.016_bb0115) 2014; 9 Kang (10.1016/j.bbagen.2019.01.016_bb0025) 1998; 273 Scheibe (10.1016/j.bbagen.2019.01.016_bb0035) 2005; 56 Otwinowski (10.1016/j.bbagen.2019.01.016_bb0090) 1997; 276 Zhao (10.1016/j.bbagen.2019.01.016_bb0135) 2015; 21 Sugiura (10.1016/j.bbagen.2019.01.016_bb0150) 2018; 503 Hideg (10.1016/j.bbagen.2019.01.016_bb0015) 2002; 43 Sugiura (10.1016/j.bbagen.2019.01.016_bb0075) 2015; 457 Ostergaard (10.1016/j.bbagen.2019.01.016_bb0050) 2001; 20 Cleland (10.1016/j.bbagen.2019.01.016_bb0085) 1964; 3 Emsley (10.1016/j.bbagen.2019.01.016_bb0100) 2004; 60 Schafer (10.1016/j.bbagen.2019.01.016_bb0010) 2001; 30 Halliwell (10.1016/j.bbagen.2019.01.016_bb0005) 2006; 141 Foyer (10.1016/j.bbagen.2019.01.016_bb0040) 2005; 17 Lohman (10.1016/j.bbagen.2019.01.016_bb0065) 2008; 47 Hwang (10.1016/j.bbagen.2019.01.016_bb0125) 1992; 257 Tomosugi (10.1016/j.bbagen.2019.01.016_bb0070) 2009; 6 Schrodinger (10.1016/j.bbagen.2019.01.016_bb0105) 2010 |
References_xml | – volume: 17 start-page: 1866 year: 2005 end-page: 1875 ident: bb0040 article-title: Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses publication-title: Plant Cell – volume: 6 start-page: 351 year: 2009 end-page: 353 ident: bb0070 article-title: An ultramarine fluorescent protein with increased photostability and pH insensitivity publication-title: Nat. Methods – volume: 47 start-page: 8678 year: 2008 end-page: 8688 ident: bb0065 article-title: Development of a family of redox-sensitive green fluorescent protein indicators for use in relatively oxidizing subcellular environments publication-title: Biochemistry. – volume: 201 start-page: 337 year: 2013 end-page: 349 ident: bb0145 article-title: Lifetime imaging of a fluorescent protein sensor reveals surprising stability of ER thiol redox publication-title: J. Cell Biol. – year: 2010 ident: bb0105 article-title: The PyMOL Molecular Graphics System – volume: 30 start-page: 3758 year: 2010 end-page: 3766 ident: bb0055 article-title: A novel fluorescent sensor protein for visualization of redox states in the cytoplasm and in peroxisomes publication-title: Mol. Cell. Biol. – volume: 111 start-page: 9461 year: 2014 end-page: 9466 ident: bb0155 article-title: Cooperative binding of the outer arm-docking complex underlies the regular arrangement of outer arm dynein in the axoneme publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 279 start-page: 22284 year: 2004 end-page: 22293 ident: bb0080 article-title: Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators publication-title: J. Biol. Chem. – volume: 56 start-page: 1481 year: 2005 end-page: 1489 ident: bb0035 article-title: Strategies to maintain redox homeostasis during photosynthesis under changing conditions publication-title: J. Exp. Bot. – volume: 503 start-page: 2083 year: 2018 end-page: 2088 ident: bb0150 article-title: Assessment of the flagellar redox potential in Chlamydomonas reinhardtii using a redox-sensitive fluorescent protein, Oba-qc publication-title: Biochem. Biophys. Res. Commun. – volume: 50 start-page: 760 year: 1994 end-page: 763 ident: bb0095 article-title: The CCP4 suite: programs for protein crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 1171 start-page: 583 year: 2009 end-page: 590 ident: bb0140 article-title: Subapoptogenic oxidative stress strongly increases the activity of the glycolytic key enzyme glyceraldehyde 3-phosphate dehydrogenase publication-title: Ann. N. Y. Acad. Sci. – volume: 87 start-page: 2802 year: 2015 end-page: 2810 ident: bb0060 article-title: Monitoring redox dynamics in living cells with a redox-sensitive red fluorescent protein publication-title: Anal. Chem. – volume: 12 start-page: 179 year: 1997 end-page: 190 ident: bb0030 article-title: The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants publication-title: Plant J. – volume: 276 start-page: 307 year: 1997 end-page: 326 ident: bb0090 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol. – volume: 141 start-page: 312 year: 2006 end-page: 322 ident: bb0005 article-title: Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life publication-title: Plant Physiol. – volume: 8 start-page: 127 year: 1995 end-page: 134 ident: bb0110 article-title: LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions publication-title: Protein Eng. – volume: 279 start-page: 13044 year: 2004 end-page: 13053 ident: bb0045 article-title: Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators publication-title: J. Biol. Chem. – volume: 94 start-page: 11857 year: 1997 end-page: 11862 ident: bb0120 article-title: Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 257 start-page: 1496 year: 1992 end-page: 1502 ident: bb0125 article-title: Oxidized redox state of glutathione in the endoplasmic reticulum publication-title: Science. – volume: vol. 31 start-page: 341 year: 1980 end-page: 374 ident: bb0020 article-title: Role of light in the regulation of chloroplast enzymes publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 20 start-page: 5853 year: 2001 end-page: 5862 ident: bb0050 article-title: Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein publication-title: EMBO J. – volume: 273 start-page: 6303 year: 1998 end-page: 6311 ident: bb0025 article-title: Characterization of a mammalian peroxiredoxin that contains one conserved cysteine publication-title: J. Biol. Chem. – volume: 43 start-page: 1154 year: 2002 end-page: 1164 ident: bb0015 article-title: Detection of singlet oxygen and superoxide with fluorescent sensors in leaves under stress by photoinhibition or UV radiation publication-title: Plant Cell Physiol. – volume: 9 year: 2014 ident: bb0115 article-title: Hot fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase publication-title: PLoS One – volume: 30 start-page: 1191 year: 2001 end-page: 1212 ident: bb0010 article-title: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple publication-title: Free Radic. Biol. Med. – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: bb0100 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 21 start-page: 777 year: 2015 end-page: 789 ident: bb0135 article-title: SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents publication-title: Cell Metab. – volume: 92 start-page: 1899 year: 2005 end-page: 1905 ident: bb0130 article-title: The Akt inhibitor KP372-1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells publication-title: Br. J. Cancer – volume: 457 start-page: 242 year: 2015 end-page: 248 ident: bb0075 article-title: Redox sensor proteins for highly sensitive direct imaging of intracellular redox state publication-title: Biochem. Biophys. Res. Commun. – volume: 3 start-page: 480 year: 1964 end-page: 482 ident: bb0085 article-title: Dithiothreitol, a new protective reagent for Sh groups publication-title: Biochemistry – volume: 457 start-page: 242 year: 2015 ident: 10.1016/j.bbagen.2019.01.016_bb0075 article-title: Redox sensor proteins for highly sensitive direct imaging of intracellular redox state publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.12.095 – volume: 276 start-page: 307 year: 1997 ident: 10.1016/j.bbagen.2019.01.016_bb0090 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(97)76066-X – volume: 56 start-page: 1481 year: 2005 ident: 10.1016/j.bbagen.2019.01.016_bb0035 article-title: Strategies to maintain redox homeostasis during photosynthesis under changing conditions publication-title: J. Exp. Bot. doi: 10.1093/jxb/eri181 – volume: 87 start-page: 2802 year: 2015 ident: 10.1016/j.bbagen.2019.01.016_bb0060 article-title: Monitoring redox dynamics in living cells with a redox-sensitive red fluorescent protein publication-title: Anal. Chem. doi: 10.1021/ac5041988 – volume: 8 start-page: 127 year: 1995 ident: 10.1016/j.bbagen.2019.01.016_bb0110 article-title: LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions publication-title: Protein Eng. doi: 10.1093/protein/8.2.127 – volume: 43 start-page: 1154 year: 2002 ident: 10.1016/j.bbagen.2019.01.016_bb0015 article-title: Detection of singlet oxygen and superoxide with fluorescent sensors in leaves under stress by photoinhibition or UV radiation publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcf145 – volume: 279 start-page: 22284 year: 2004 ident: 10.1016/j.bbagen.2019.01.016_bb0080 article-title: Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators publication-title: J. Biol. Chem. doi: 10.1074/jbc.M312847200 – volume: 17 start-page: 1866 year: 2005 ident: 10.1016/j.bbagen.2019.01.016_bb0040 article-title: Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses publication-title: Plant Cell doi: 10.1105/tpc.105.033589 – volume: 141 start-page: 312 year: 2006 ident: 10.1016/j.bbagen.2019.01.016_bb0005 article-title: Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life publication-title: Plant Physiol. doi: 10.1104/pp.106.077073 – volume: 1171 start-page: 583 year: 2009 ident: 10.1016/j.bbagen.2019.01.016_bb0140 article-title: Subapoptogenic oxidative stress strongly increases the activity of the glycolytic key enzyme glyceraldehyde 3-phosphate dehydrogenase publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2009.04723.x – volume: 201 start-page: 337 year: 2013 ident: 10.1016/j.bbagen.2019.01.016_bb0145 article-title: Lifetime imaging of a fluorescent protein sensor reveals surprising stability of ER thiol redox publication-title: J. Cell Biol. doi: 10.1083/jcb.201211155 – volume: 3 start-page: 480 year: 1964 ident: 10.1016/j.bbagen.2019.01.016_bb0085 article-title: Dithiothreitol, a new protective reagent for Sh groups publication-title: Biochemistry doi: 10.1021/bi00892a002 – volume: 30 start-page: 1191 year: 2001 ident: 10.1016/j.bbagen.2019.01.016_bb0010 article-title: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(01)00480-4 – volume: 60 start-page: 2126 year: 2004 ident: 10.1016/j.bbagen.2019.01.016_bb0100 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904019158 – volume: 94 start-page: 11857 year: 1997 ident: 10.1016/j.bbagen.2019.01.016_bb0120 article-title: Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.94.22.11857 – volume: 12 start-page: 179 year: 1997 ident: 10.1016/j.bbagen.2019.01.016_bb0030 article-title: The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants publication-title: Plant J. doi: 10.1046/j.1365-313X.1997.12010179.x – volume: 9 year: 2014 ident: 10.1016/j.bbagen.2019.01.016_bb0115 article-title: Hot fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase publication-title: PLoS One doi: 10.1371/journal.pone.0115318 – volume: 273 start-page: 6303 year: 1998 ident: 10.1016/j.bbagen.2019.01.016_bb0025 article-title: Characterization of a mammalian peroxiredoxin that contains one conserved cysteine publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.11.6303 – volume: 279 start-page: 13044 year: 2004 ident: 10.1016/j.bbagen.2019.01.016_bb0045 article-title: Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators publication-title: J. Biol. Chem. doi: 10.1074/jbc.M312846200 – volume: 503 start-page: 2083 year: 2018 ident: 10.1016/j.bbagen.2019.01.016_bb0150 article-title: Assessment of the flagellar redox potential in Chlamydomonas reinhardtii using a redox-sensitive fluorescent protein, Oba-qc publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.07.163 – volume: 257 start-page: 1496 year: 1992 ident: 10.1016/j.bbagen.2019.01.016_bb0125 article-title: Oxidized redox state of glutathione in the endoplasmic reticulum publication-title: Science. doi: 10.1126/science.1523409 – volume: 30 start-page: 3758 year: 2010 ident: 10.1016/j.bbagen.2019.01.016_bb0055 article-title: A novel fluorescent sensor protein for visualization of redox states in the cytoplasm and in peroxisomes publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00121-10 – volume: 6 start-page: 351 year: 2009 ident: 10.1016/j.bbagen.2019.01.016_bb0070 article-title: An ultramarine fluorescent protein with increased photostability and pH insensitivity publication-title: Nat. Methods doi: 10.1038/nmeth.1317 – volume: 21 start-page: 777 year: 2015 ident: 10.1016/j.bbagen.2019.01.016_bb0135 article-title: SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.04.009 – volume: 20 start-page: 5853 year: 2001 ident: 10.1016/j.bbagen.2019.01.016_bb0050 article-title: Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein publication-title: EMBO J. doi: 10.1093/emboj/20.21.5853 – volume: 47 start-page: 8678 year: 2008 ident: 10.1016/j.bbagen.2019.01.016_bb0065 article-title: Development of a family of redox-sensitive green fluorescent protein indicators for use in relatively oxidizing subcellular environments publication-title: Biochemistry. doi: 10.1021/bi800498g – volume: 50 start-page: 760 year: 1994 ident: 10.1016/j.bbagen.2019.01.016_bb0095 article-title: The CCP4 suite: programs for protein crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444994003112 – volume: 92 start-page: 1899 year: 2005 ident: 10.1016/j.bbagen.2019.01.016_bb0130 article-title: The Akt inhibitor KP372-1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6602595 – volume: vol. 31 start-page: 341 year: 1980 ident: 10.1016/j.bbagen.2019.01.016_bb0020 article-title: Role of light in the regulation of chloroplast enzymes – volume: 111 start-page: 9461 year: 2014 ident: 10.1016/j.bbagen.2019.01.016_bb0155 article-title: Cooperative binding of the outer arm-docking complex underlies the regular arrangement of outer arm dynein in the axoneme publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1403101111 – year: 2010 ident: 10.1016/j.bbagen.2019.01.016_bb0105 |
SSID | ssj0000595 |
Score | 2.3427804 |
Snippet | Change in the intracellular redox state is a consequence of various metabolic reactions, which simultaneously regulates various physiological phenomena in... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1098 |
SubjectTerms | Biosensor crystal structure Fluorescence Fluorescence lifetime fluorescent proteins HeLa Cells Humans Luminescent Proteins - genetics Luminescent Proteins - metabolism mammals Molecular Imaging monitoring mutants mutation organelles oxidation Oxidation-Reduction physiology Protein design redox potential |
Title | Multicolor redox sensor proteins can visualize redox changes in various compartments of the living cell |
URI | https://dx.doi.org/10.1016/j.bbagen.2019.01.016 https://www.ncbi.nlm.nih.gov/pubmed/30953671 https://www.proquest.com/docview/2204690486 https://www.proquest.com/docview/2253197721 |
Volume | 1863 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EEb2Ib9cXEbzW3W7aJj3KoqyKXlTwFpqYSEW6YldRD_52Z5JWEXyAsJfuTiDMZGe-SWe-AdgtMqERtyZR6qglpyfzSObCRByTDZdRhDDU4Hx6lg0vk-Or9GoCBm0vDJVVNr4_-HTvrZtvuo02u_dl2T2nl3oIJwiC-EhEHeyJoLO-9_ZZ5oHwIQ1vEpKIpNv2OV_jpTX-aYkFNc49eSdNPf8-PP0EP30YOpyHuQY_sv2wxQWYsNUiTIeJki-LMDNoB7gtwY1vriVW6gdGtKDPrMacFR88N0NZ1QzVyp7KmvoqX20jEzqBa1biT5hHjx5RzNep-3L0mo0cQ8zI7kq6iWB0778Ml4cHF4Nh1MxViAzinXHUF7aIYyOdKXIjERHq1EktjMil5lKmmSmIKc72UJtcOMrYuMYV3FoEg8bwFZisRpVdA-bi60Kjv-Q97ZLCOAQ7EiFjxq-5NXlhOsBbdSrTkI7T7Is71VaX3apgBEVGUL0YP1kHoo9V94F04w950VpKfTk8CuPCHyt3WsMqtA4pragsqlb1-_7mIJG_ypAHw_wk7sBqOBUf--VE5JeJeP3fe9uAWXoKdWmbMDl-eLRbiIDGetsf8W2Y2j86GZ69Aw0-BLE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED66lpG9jLbb2mz9ocFevcSRbcmPIyykbZKXpdA3YSnScClOqdPR9qF_--4ku2PQNTDIS-ITiDvl7jv57juAL0UmNOLWJEodteT0ZR7JXJiIY7LhMooQhhqcp7NsfJ6cXqQXGzBse2GorLLx_cGne2_d_NJrtNm7LsveD3qph3CCIIiPRK9gK6ExB3iovz7-qfNA_JCGVwlJROJt_5wv8tIa_7VEgxrnnr2Txp4_H5_-hT99HBptw9sGQLJvYY87sGGrXXgdRkre70Jn2E5wewc_fXct0VLfMOIFvWM1Jq34xZMzlFXNUK_sV1lTY-WDbWRCK3DNSnyEifTyFsV8obqvR6_Z0jEEjeyqpKsIRhf_7-F89H0-HEfNYIXIIOBZRQNhizg20pkiNxIhoU6d1MKIXGouZZqZgqjibD8RnAtHKRvXuIJbi2jQGP4BNqtlZfeBuXhRaHSYvK9dUhiHaEciZsz4gluTF6YLvFWnMg3rOA2_uFJtedmlCkZQZATVj_GTdSF6WnUdWDfWyIvWUuqv06MwMKxZ-bk1rELrkNKKyqJq1WDgrw4S-aIMuTBMUOIu7IVT8bRfTkx-mYg__vfejqEznk8nanIyO_sEb-hJKFI7gM3Vza09RDi00kf-uP8G3YQGOg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multicolor+redox+sensor+proteins+can+visualize+redox+changes+in+various+compartments+of+the+living+cell&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Sugiura%2C+Kazunori&rft.au=Tanaka%2C+Hideaki&rft.au=Kurisu%2C+Genji&rft.au=Wakabayashi%2C+Ken-Ichi&rft.date=2019-06-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1863&rft.issue=6&rft.spage=1098&rft_id=info:doi/10.1016%2Fj.bbagen.2019.01.016&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |