High‐Energy/Power and Low‐Temperature Cathode for Sodium‐Ion Batteries: In Situ XRD Study and Superior Full‐Cell Performance
Sodium‐ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short‐term cycle life, and poor low‐temperature performance, which severely hinder their practical applications. Here, a high‐voltage cathode composed of Na3V2(PO4)2O2F nano‐tetr...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 33 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201701968 |
Cover
Abstract | Sodium‐ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short‐term cycle life, and poor low‐temperature performance, which severely hinder their practical applications. Here, a high‐voltage cathode composed of Na3V2(PO4)2O2F nano‐tetraprisms (NVPF‐NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF‐NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na+/Na with a specific capacity of 127.8 mA h g−1. The energy density of NVPF‐NTP reaches up to 486 W h kg−1, which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain (≈2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X‐ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF‐NTP shows long‐term cycle life, superior low‐temperature performance, and outstanding high‐rate capabilities. The comparison of Ragone plots further discloses that NVPF‐NTP presents the best power performance among the state‐of‐the‐art cathode materials for SIBs. More importantly, when coupled with an Sb‐based anode, the fabricated sodium‐ion full‐cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application.
A high‐voltage sodium‐super‐ion‐conductor‐type cathode significantly enhances the energy density of sodium‐ion batteries. Its low‐strain crystal lattice during the successive (de‐)sodiation and superior Na transport kinetics promise high‐rate capabilities, long‐term cycle life, superior low‐temperature performance, and excellent full‐cell performance, providing a preview of their practical applications. |
---|---|
AbstractList | Sodium-ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short-term cycle life, and poor low-temperature performance, which severely hinder their practical applications. Here, a high-voltage cathode composed of Na
V
(PO
)
O
F nano-tetraprisms (NVPF-NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF-NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na
/Na with a specific capacity of 127.8 mA h g
. The energy density of NVPF-NTP reaches up to 486 W h kg
, which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain (≈2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X-ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF-NTP shows long-term cycle life, superior low-temperature performance, and outstanding high-rate capabilities. The comparison of Ragone plots further discloses that NVPF-NTP presents the best power performance among the state-of-the-art cathode materials for SIBs. More importantly, when coupled with an Sb-based anode, the fabricated sodium-ion full-cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application. Sodium‐ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short‐term cycle life, and poor low‐temperature performance, which severely hinder their practical applications. Here, a high‐voltage cathode composed of Na 3 V 2 (PO 4 ) 2 O 2 F nano‐tetraprisms (NVPF‐NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF‐NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na + /Na with a specific capacity of 127.8 mA h g −1 . The energy density of NVPF‐NTP reaches up to 486 W h kg −1 , which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain (≈2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X‐ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF‐NTP shows long‐term cycle life, superior low‐temperature performance, and outstanding high‐rate capabilities. The comparison of Ragone plots further discloses that NVPF‐NTP presents the best power performance among the state‐of‐the‐art cathode materials for SIBs. More importantly, when coupled with an Sb‐based anode, the fabricated sodium‐ion full‐cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application. Sodium-ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short-term cycle life, and poor low-temperature performance, which severely hinder their practical applications. Here, a high-voltage cathode composed of Na3 V2 (PO4 )2 O2 F nano-tetraprisms (NVPF-NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF-NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na+ /Na with a specific capacity of 127.8 mA h g-1 . The energy density of NVPF-NTP reaches up to 486 W h kg-1 , which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain (≈2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X-ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF-NTP shows long-term cycle life, superior low-temperature performance, and outstanding high-rate capabilities. The comparison of Ragone plots further discloses that NVPF-NTP presents the best power performance among the state-of-the-art cathode materials for SIBs. More importantly, when coupled with an Sb-based anode, the fabricated sodium-ion full-cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application.Sodium-ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short-term cycle life, and poor low-temperature performance, which severely hinder their practical applications. Here, a high-voltage cathode composed of Na3 V2 (PO4 )2 O2 F nano-tetraprisms (NVPF-NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF-NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na+ /Na with a specific capacity of 127.8 mA h g-1 . The energy density of NVPF-NTP reaches up to 486 W h kg-1 , which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain (≈2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X-ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF-NTP shows long-term cycle life, superior low-temperature performance, and outstanding high-rate capabilities. The comparison of Ragone plots further discloses that NVPF-NTP presents the best power performance among the state-of-the-art cathode materials for SIBs. More importantly, when coupled with an Sb-based anode, the fabricated sodium-ion full-cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application. Sodium‐ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short‐term cycle life, and poor low‐temperature performance, which severely hinder their practical applications. Here, a high‐voltage cathode composed of Na3V2(PO4)2O2F nano‐tetraprisms (NVPF‐NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF‐NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na+/Na with a specific capacity of 127.8 mA h g−1. The energy density of NVPF‐NTP reaches up to 486 W h kg−1, which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain (≈2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X‐ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF‐NTP shows long‐term cycle life, superior low‐temperature performance, and outstanding high‐rate capabilities. The comparison of Ragone plots further discloses that NVPF‐NTP presents the best power performance among the state‐of‐the‐art cathode materials for SIBs. More importantly, when coupled with an Sb‐based anode, the fabricated sodium‐ion full‐cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application. A high‐voltage sodium‐super‐ion‐conductor‐type cathode significantly enhances the energy density of sodium‐ion batteries. Its low‐strain crystal lattice during the successive (de‐)sodiation and superior Na transport kinetics promise high‐rate capabilities, long‐term cycle life, superior low‐temperature performance, and excellent full‐cell performance, providing a preview of their practical applications. Sodium-ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short-term cycle life, and poor low-temperature performance, which severely hinder their practical applications. Here, a high-voltage cathode composed of Na3V2(PO4)2O2F nano-tetraprisms (NVPF-NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF-NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na+/Na with a specific capacity of 127.8 mA h g-1. The energy density of NVPF-NTP reaches up to 486 W h kg-1, which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain ([asymp]2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X-ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF-NTP shows long-term cycle life, superior low-temperature performance, and outstanding high-rate capabilities. The comparison of Ragone plots further discloses that NVPF-NTP presents the best power performance among the state-of-the-art cathode materials for SIBs. More importantly, when coupled with an Sb-based anode, the fabricated sodium-ion full-cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application. |
Author | Guo, Jin‐Zhi Zhang, Xiao‐Hua Chen, Hong Zhang, Jing‐Ping Yan, Qingyu Guo, Yu‐Guo Wang, Peng‐Fei Wu, Xing‐Long |
Author_xml | – sequence: 1 givenname: Jin‐Zhi surname: Guo fullname: Guo, Jin‐Zhi organization: Northeast Normal University – sequence: 2 givenname: Peng‐Fei surname: Wang fullname: Wang, Peng‐Fei organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Xing‐Long orcidid: 0000-0003-1069-9145 surname: Wu fullname: Wu, Xing‐Long email: xinglong@nenu.edu.cn organization: Northeast Normal University – sequence: 4 givenname: Xiao‐Hua surname: Zhang fullname: Zhang, Xiao‐Hua organization: Northeast Normal University – sequence: 5 givenname: Qingyu surname: Yan fullname: Yan, Qingyu organization: Nanyang Technological University – sequence: 6 givenname: Hong surname: Chen fullname: Chen, Hong organization: University of California – sequence: 7 givenname: Jing‐Ping surname: Zhang fullname: Zhang, Jing‐Ping organization: Northeast Normal University – sequence: 8 givenname: Yu‐Guo orcidid: 0000-0003-0322-8476 surname: Guo fullname: Guo, Yu‐Guo email: ygguo@iccas.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28639347$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1394083$$D View this record in Osti.gov |
BookMark | eNqFkc1uEzEURi1URNPCliWyYMMmqX9mJmN2IW1ppCAqUiR2lse-07iasVvboyg7FjwAz8iT4JAWpEqI1ZWuzvl0r74jdOC8A4ReUjKhhLATZXo1YYROCRVV_QSNaMnouCCiPEAjIng5FlVRH6KjGG8IIaIi1TN0yOqKC15MR-j7hb1e__z248xBuN6eXPoNBKycwUu_yesr6G8hqDQEwHOV1t4Abn3AK2_s0Gdg4R1-r1KCYCG-wwuHVzYN-OvnU7xKg9n-zloNOcRm7XzouizNoevwJYSc1Cun4Tl62qouwov7eYy-nJ9dzS_Gy08fFvPZcqxLUtZjBU2t60IzIlrgqqJGt3QqmqZuOa1BNKwAw4zmQJq2rTiAMazVCsqSlUpwfoxe73N9TFZGbRPotfbOgU6SclGQege93UO3wd8NEJPsbdT5YuXAD1FSQVlFOZuSjL55hN74Ibj8QqZ4wTmvGMvUq3tqaHow8jbYXoWtfCghA8Ue0MHHGKCV-TKVrHcpKNtJSuSua7nrWv7pOmuTR9pD8j8FsRc2toPtf2g5O_04--v-AofkwEI |
CitedBy_id | crossref_primary_10_1016_j_ensm_2022_05_005 crossref_primary_10_3390_batteries10070223 crossref_primary_10_1002_cssc_201801662 crossref_primary_10_1002_batt_202100361 crossref_primary_10_1002_batt_202100367 crossref_primary_10_1021_acsenergylett_5c00315 crossref_primary_10_1002_aenm_201702403 crossref_primary_10_1002_ange_202402371 crossref_primary_10_1002_eem2_12619 crossref_primary_10_1002_advs_202301490 crossref_primary_10_1002_smll_202004925 crossref_primary_10_1016_j_jallcom_2024_173680 crossref_primary_10_1039_C8TA10624J crossref_primary_10_1021_acsami_8b06706 crossref_primary_10_1002_slct_201901427 crossref_primary_10_1007_s11581_019_03388_5 crossref_primary_10_1016_j_jallcom_2022_165142 crossref_primary_10_1002_anie_202014241 crossref_primary_10_1002_ange_202403585 crossref_primary_10_1021_acscentsci_3c00907 crossref_primary_10_1021_acsaem_1c03079 crossref_primary_10_1039_D4EE00791C crossref_primary_10_1002_aenm_201701785 crossref_primary_10_1007_s11426_022_1556_x crossref_primary_10_1016_j_jallcom_2019_152270 crossref_primary_10_1002_adfm_201801917 crossref_primary_10_1002_ente_202100298 crossref_primary_10_1002_adfm_202422491 crossref_primary_10_1021_acsaem_3c01195 crossref_primary_10_1007_s40843_019_1220_2 crossref_primary_10_1016_j_electacta_2019_05_106 crossref_primary_10_1016_j_ensm_2019_05_009 crossref_primary_10_1039_C8TA00568K crossref_primary_10_1007_s11426_024_1964_7 crossref_primary_10_1016_j_cej_2025_161617 crossref_primary_10_1002_cssc_201901377 crossref_primary_10_1021_acsnano_4c08704 crossref_primary_10_1002_aenm_201702504 crossref_primary_10_1007_s12274_021_4044_1 crossref_primary_10_1016_j_cej_2024_152864 crossref_primary_10_1039_C9NR02542A crossref_primary_10_1016_j_ssi_2018_12_018 crossref_primary_10_1016_j_cej_2020_127451 crossref_primary_10_1021_acsnano_9b06855 crossref_primary_10_1021_acsami_9b22746 crossref_primary_10_1149_2_0181805jes crossref_primary_10_1016_j_jpowsour_2023_233080 crossref_primary_10_1021_acsami_0c11074 crossref_primary_10_1002_advs_201700768 crossref_primary_10_1021_acsami_8b12055 crossref_primary_10_1088_2752_5724_acc7bb crossref_primary_10_1002_adfm_202304046 crossref_primary_10_1016_j_jcis_2023_01_092 crossref_primary_10_1039_C8TA03967D crossref_primary_10_1002_adma_202100409 crossref_primary_10_1007_s12649_018_0426_3 crossref_primary_10_1002_ange_201801533 crossref_primary_10_1039_D1TA01148K crossref_primary_10_1016_j_apsusc_2019_07_192 crossref_primary_10_1002_aenm_202403282 crossref_primary_10_1002_adfm_202001708 crossref_primary_10_1021_acsami_8b18746 crossref_primary_10_1021_jacs_1c06727 crossref_primary_10_1002_cssc_202200817 crossref_primary_10_1016_j_jssc_2019_121010 crossref_primary_10_3389_fenrg_2020_605129 crossref_primary_10_1002_anie_202403585 crossref_primary_10_1039_D2RA01292H crossref_primary_10_1088_1361_6463_abb8aa crossref_primary_10_1002_anie_201801533 crossref_primary_10_1016_j_matt_2023_03_032 crossref_primary_10_1002_adma_202008810 crossref_primary_10_1021_acsomega_9b01343 crossref_primary_10_1002_anie_202402371 crossref_primary_10_1039_C8TA09194C crossref_primary_10_1002_adma_201803765 crossref_primary_10_1002_aenm_202003256 crossref_primary_10_1039_C8TA10051A crossref_primary_10_1021_acs_nanolett_2c03916 crossref_primary_10_1039_C8TA08842J crossref_primary_10_1002_smll_202102400 crossref_primary_10_1039_D1TA02894D crossref_primary_10_1016_j_ensm_2018_03_003 crossref_primary_10_1016_j_cej_2017_10_007 crossref_primary_10_1007_s11814_025_00388_2 crossref_primary_10_1016_j_ensm_2019_05_041 crossref_primary_10_1002_aenm_201800058 crossref_primary_10_1021_acsami_2c12685 crossref_primary_10_1021_acs_chemmater_4c02872 crossref_primary_10_1039_C9TA02966D crossref_primary_10_1002_adma_201906348 crossref_primary_10_1021_acsaem_8b01412 crossref_primary_10_1038_s41467_022_32606_4 crossref_primary_10_1039_D2CC03281C crossref_primary_10_1002_smtd_201800253 crossref_primary_10_1007_s40843_021_1742_8 crossref_primary_10_1016_j_jelechem_2024_118179 crossref_primary_10_1021_acsaem_0c00283 crossref_primary_10_1016_j_jpowsour_2021_230363 crossref_primary_10_1016_j_chempr_2019_08_007 crossref_primary_10_1002_celc_201800016 crossref_primary_10_1016_j_jpowsour_2022_231639 crossref_primary_10_1021_acsami_9b20490 crossref_primary_10_1002_adma_202109658 crossref_primary_10_1021_jacs_3c11739 crossref_primary_10_1039_D0TA06614A crossref_primary_10_1002_advs_202103493 crossref_primary_10_1016_j_jcis_2024_04_086 crossref_primary_10_1021_acs_iecr_4c04169 crossref_primary_10_3390_nano14191604 crossref_primary_10_1002_anie_201810575 crossref_primary_10_1007_s40843_024_3082_x crossref_primary_10_1002_aenm_201703217 crossref_primary_10_1021_acssuschemeng_8b06696 crossref_primary_10_1016_j_cej_2024_156722 crossref_primary_10_1002_celc_202001514 crossref_primary_10_1039_D4TA06873D crossref_primary_10_1021_acsami_0c14294 crossref_primary_10_1016_j_cej_2021_132359 crossref_primary_10_1002_adma_202305135 crossref_primary_10_1021_acsami_4c02565 crossref_primary_10_1021_acsami_7b08778 crossref_primary_10_1016_j_eng_2021_08_032 crossref_primary_10_1016_j_jcis_2024_03_048 crossref_primary_10_1021_acs_inorgchem_4c02138 crossref_primary_10_1016_j_nanoen_2018_02_053 crossref_primary_10_1021_acsami_8b21729 crossref_primary_10_1021_acssuschemeng_9b05474 crossref_primary_10_1038_s41467_022_28380_y crossref_primary_10_1039_C8TA10980J crossref_primary_10_1039_D2MA00170E crossref_primary_10_1021_acsami_0c08846 crossref_primary_10_1002_aenm_202002244 crossref_primary_10_1002_aenm_202304504 crossref_primary_10_1016_j_ensm_2021_02_011 crossref_primary_10_1021_acs_jpcc_0c08654 crossref_primary_10_34133_2022_9828020 crossref_primary_10_1007_s10008_020_04851_4 crossref_primary_10_1021_acs_chemrev_3c00728 crossref_primary_10_1007_s12274_017_1863_1 crossref_primary_10_1016_j_ensm_2022_03_010 crossref_primary_10_1002_smll_202201719 crossref_primary_10_1002_er_5397 crossref_primary_10_1016_j_materresbull_2024_113173 crossref_primary_10_1007_s10854_021_06093_0 crossref_primary_10_1016_j_vacuum_2024_113647 crossref_primary_10_1002_advs_201800680 crossref_primary_10_1016_j_ensm_2022_04_025 crossref_primary_10_1039_D3DT00124E crossref_primary_10_1002_cssc_202100880 crossref_primary_10_1016_j_cej_2022_134839 crossref_primary_10_1039_D3TA07954F crossref_primary_10_1002_aenm_202303788 crossref_primary_10_1016_j_jpowsour_2021_230729 crossref_primary_10_1002_chem_201904077 crossref_primary_10_1002_cssc_202101856 crossref_primary_10_1021_acsami_9b07647 crossref_primary_10_1021_acs_jpclett_3c03191 crossref_primary_10_1016_j_jallcom_2024_173858 crossref_primary_10_1002_smll_201803746 crossref_primary_10_1021_acsami_4c05943 crossref_primary_10_1002_aenm_202001235 crossref_primary_10_1016_j_jpowsour_2024_234337 crossref_primary_10_1002_adfm_202201038 crossref_primary_10_1021_acsami_0c05784 crossref_primary_10_1021_acsaem_8b01275 crossref_primary_10_1021_acs_jafc_0c05668 crossref_primary_10_1002_smtd_202402099 crossref_primary_10_1002_adma_202110108 crossref_primary_10_1039_C9TA13068C crossref_primary_10_1002_smll_202102010 crossref_primary_10_1002_adfm_202109694 crossref_primary_10_1039_D0NJ02210A crossref_primary_10_1002_adma_202413013 crossref_primary_10_1002_adfm_202411007 crossref_primary_10_1002_adma_201903125 crossref_primary_10_1039_D2CC00615D crossref_primary_10_1021_acsami_9b17123 crossref_primary_10_1016_j_cej_2020_126689 crossref_primary_10_1039_C7NR09674G crossref_primary_10_1021_acsnano_4c01831 crossref_primary_10_1021_acs_jpcc_8b09151 crossref_primary_10_1002_aenm_201703638 crossref_primary_10_1007_s10008_020_04525_1 crossref_primary_10_1007_s11581_022_04511_9 crossref_primary_10_1021_acsami_8b04085 crossref_primary_10_1002_chem_201804221 crossref_primary_10_1002_adfm_202102827 crossref_primary_10_1039_C8TA09264H crossref_primary_10_1007_s40195_020_01001_7 crossref_primary_10_1039_D1NJ03779J crossref_primary_10_1016_j_apsusc_2020_148194 crossref_primary_10_1002_eom2_12043 crossref_primary_10_1002_slct_201902853 crossref_primary_10_1039_C9CS00846B crossref_primary_10_3390_batteries9010056 crossref_primary_10_1002_adma_201706317 crossref_primary_10_1016_j_xcrp_2021_100665 crossref_primary_10_1073_pnas_2311075121 crossref_primary_10_1039_D1TA03280A crossref_primary_10_1016_j_cej_2019_123087 crossref_primary_10_1016_j_ensm_2018_05_010 crossref_primary_10_1016_j_gee_2020_11_026 crossref_primary_10_34133_energymatadv_0073 crossref_primary_10_1016_j_scib_2020_01_018 crossref_primary_10_1021_acsaem_9b01458 crossref_primary_10_1016_j_carbon_2019_11_067 crossref_primary_10_1002_smll_201907645 crossref_primary_10_34133_energymatadv_0036 crossref_primary_10_1016_j_cej_2021_132750 crossref_primary_10_3390_batteries11020063 crossref_primary_10_1063_5_0197194 crossref_primary_10_1002_aenm_202302830 crossref_primary_10_1002_er_5576 crossref_primary_10_1016_j_ensm_2019_10_006 crossref_primary_10_1002_smll_201702864 crossref_primary_10_1016_j_apcatb_2024_124151 crossref_primary_10_1186_s11671_019_3056_1 crossref_primary_10_1007_s12598_024_02777_8 crossref_primary_10_1016_j_jpowsour_2022_231257 crossref_primary_10_1039_D4GC03958K crossref_primary_10_1021_acsami_1c02216 crossref_primary_10_1016_j_partic_2023_05_006 crossref_primary_10_1039_C8TA01132J crossref_primary_10_1007_s10854_021_05969_5 crossref_primary_10_1007_s40843_018_9342_0 crossref_primary_10_1002_admt_202301564 crossref_primary_10_1088_2515_7639_abb440 crossref_primary_10_1021_acsaem_1c00334 crossref_primary_10_1039_C9RA09020G crossref_primary_10_1007_s10853_020_04962_3 crossref_primary_10_1016_j_colsurfa_2022_129340 crossref_primary_10_1002_batt_202300022 crossref_primary_10_1039_C8NR09601E crossref_primary_10_1002_smll_201702961 crossref_primary_10_1039_C8QI01374H crossref_primary_10_1016_j_nanoen_2020_104716 crossref_primary_10_1002_idm2_12040 crossref_primary_10_1039_C8CC06291A crossref_primary_10_1002_advs_202205575 crossref_primary_10_1007_s12274_021_3577_7 crossref_primary_10_1038_s41467_021_23132_w crossref_primary_10_1016_j_rser_2023_113861 crossref_primary_10_1002_idm2_12041 crossref_primary_10_1007_s11426_019_9647_8 crossref_primary_10_1002_ange_202112550 crossref_primary_10_1021_acsami_8b20225 crossref_primary_10_1039_D3CP00960B crossref_primary_10_1002_smll_202303666 crossref_primary_10_1039_C8TA01392F crossref_primary_10_1073_pnas_2114947119 crossref_primary_10_1039_D3RA08714J crossref_primary_10_1007_s10904_021_01987_2 crossref_primary_10_1016_j_carbon_2020_05_049 crossref_primary_10_1016_j_jallcom_2019_03_257 crossref_primary_10_1016_j_jallcom_2020_155413 crossref_primary_10_1002_adfm_201904398 crossref_primary_10_1007_s12613_023_2666_x crossref_primary_10_1007_s40820_019_0273_1 crossref_primary_10_1016_j_mattod_2023_03_020 crossref_primary_10_1039_D0TA00130A crossref_primary_10_1002_adma_202103304 crossref_primary_10_1016_j_ensm_2021_08_022 crossref_primary_10_1002_aenm_201703252 crossref_primary_10_1002_anie_202112550 crossref_primary_10_1016_j_jechem_2022_09_016 crossref_primary_10_1088_1361_6528_aba059 crossref_primary_10_1002_advs_202004943 crossref_primary_10_1039_C9TA05926A crossref_primary_10_1149_1945_7111_ad76e0 crossref_primary_10_1039_D3NJ05800J crossref_primary_10_1039_D0TA08311A crossref_primary_10_1002_smll_201805427 crossref_primary_10_1002_adfm_202406764 crossref_primary_10_1039_C8EE03727B crossref_primary_10_1039_C8TA04791J crossref_primary_10_1039_D1EE00271F crossref_primary_10_1016_j_jallcom_2020_155314 crossref_primary_10_1021_acsnano_8b06206 crossref_primary_10_1002_slct_201802387 crossref_primary_10_1016_j_electacta_2019_04_183 crossref_primary_10_1021_acsami_9b14249 crossref_primary_10_1002_chem_201902993 crossref_primary_10_1002_smll_202302388 crossref_primary_10_1021_acsami_1c01571 crossref_primary_10_1002_aenm_202002930 crossref_primary_10_1002_aenm_201900022 crossref_primary_10_1016_j_ensm_2019_09_014 crossref_primary_10_1002_cnl2_62 crossref_primary_10_3390_ma17030587 crossref_primary_10_1016_j_electacta_2022_141671 crossref_primary_10_1016_j_inoche_2021_108653 crossref_primary_10_1016_j_pnsc_2023_12_021 crossref_primary_10_1039_D1TA05114H crossref_primary_10_1002_cey2_464 crossref_primary_10_1021_acsami_7b15495 crossref_primary_10_1021_acsami_1c03642 crossref_primary_10_1021_acsami_7b16580 crossref_primary_10_1021_acsaem_3c00120 crossref_primary_10_1021_acsami_9b21365 crossref_primary_10_1016_j_apmt_2021_101032 crossref_primary_10_1002_smtd_202100888 crossref_primary_10_1002_adma_202310051 crossref_primary_10_1021_acsami_2c22547 crossref_primary_10_1021_acsami_8b14861 crossref_primary_10_1039_D1TA02250D crossref_primary_10_1002_smll_201902466 crossref_primary_10_1039_C9RA02257K crossref_primary_10_1039_D1QM00608H crossref_primary_10_1002_smm2_1191 crossref_primary_10_1002_smtd_202301742 crossref_primary_10_1039_C9TA03089A crossref_primary_10_1016_j_ceramint_2021_09_115 crossref_primary_10_1002_smll_202308628 crossref_primary_10_1002_smtd_201900119 crossref_primary_10_1002_adfm_201805444 crossref_primary_10_1016_j_cej_2022_135235 crossref_primary_10_1016_j_compositesb_2023_111030 crossref_primary_10_1021_acsaem_0c01077 crossref_primary_10_1016_j_orgel_2019_105386 crossref_primary_10_1002_chem_202000943 crossref_primary_10_1002_inf2_12184 crossref_primary_10_1016_j_mtener_2018_10_005 crossref_primary_10_1002_eem2_12485 crossref_primary_10_1016_j_ensm_2020_11_010 crossref_primary_10_1039_C9TA05039F crossref_primary_10_20964_2019_02_10 crossref_primary_10_1039_D0QI01033B crossref_primary_10_1002_cey2_531 crossref_primary_10_1002_adfm_202000473 crossref_primary_10_1021_acsami_8b02768 crossref_primary_10_1002_eem2_12474 crossref_primary_10_1039_D2NR05442F crossref_primary_10_1002_adma_202407274 crossref_primary_10_1016_j_jpowsour_2020_228906 crossref_primary_10_1016_j_est_2024_114247 crossref_primary_10_1021_acsami_8b12204 crossref_primary_10_1039_C7NR08716K crossref_primary_10_1002_adfm_202001334 crossref_primary_10_1039_D1QM00079A crossref_primary_10_1002_cey2_546 crossref_primary_10_1002_eem2_12468 crossref_primary_10_1016_j_cis_2024_103249 crossref_primary_10_1002_admi_202100191 crossref_primary_10_1002_adma_202000140 crossref_primary_10_1002_celc_201800740 crossref_primary_10_1016_j_electacta_2020_135816 crossref_primary_10_1016_j_mattod_2020_11_019 crossref_primary_10_1002_adsu_201900134 crossref_primary_10_1002_ange_202014241 crossref_primary_10_1021_acs_chemmater_9b04898 crossref_primary_10_1016_j_electacta_2021_138370 crossref_primary_10_1021_acsnano_4c06510 crossref_primary_10_1021_acsami_8b10299 crossref_primary_10_1002_aenm_202101751 crossref_primary_10_1021_acs_jpcc_0c06967 crossref_primary_10_3390_nano12193529 crossref_primary_10_1002_aenm_201901099 crossref_primary_10_1002_advs_202410318 crossref_primary_10_1002_ange_201810575 crossref_primary_10_1016_j_electacta_2025_145871 crossref_primary_10_1002_smll_201900233 crossref_primary_10_1016_j_ensm_2022_06_008 crossref_primary_10_3389_fenrg_2020_00064 crossref_primary_10_1002_sstr_202000053 crossref_primary_10_1016_j_ijhydene_2020_06_151 crossref_primary_10_1007_s11426_020_9858_3 crossref_primary_10_1002_admi_201801342 crossref_primary_10_1002_chem_201704131 crossref_primary_10_1002_chem_201703044 crossref_primary_10_1002_adfm_202112072 crossref_primary_10_1016_j_cej_2022_136132 crossref_primary_10_1021_acsnano_8b08229 crossref_primary_10_1039_C9TA00869A crossref_primary_10_1021_acs_energyfuels_4c03980 crossref_primary_10_1088_1361_6528_abd6d0 crossref_primary_10_1039_D0TA08746G crossref_primary_10_1007_s10008_024_05836_3 crossref_primary_10_1016_j_est_2023_109923 crossref_primary_10_1016_j_mtphys_2022_100813 crossref_primary_10_1016_j_jechem_2020_07_008 crossref_primary_10_1016_j_cej_2021_130310 crossref_primary_10_1039_C9TA11782B crossref_primary_10_1016_j_joule_2018_07_027 crossref_primary_10_1039_D3CS01043K crossref_primary_10_1039_D1NR05708A crossref_primary_10_1007_s11581_020_03538_0 crossref_primary_10_1016_j_nanoen_2024_109812 crossref_primary_10_1016_j_electacta_2018_09_173 crossref_primary_10_1016_j_nanoen_2022_107396 crossref_primary_10_1002_ejic_202001159 |
Cites_doi | 10.1002/adma.201500956 10.1021/cr500192f 10.1039/C5TA00765H 10.1002/advs.201500213 10.1002/anie.201503188 10.1039/c3ee40847g 10.1016/j.electacta.2011.02.119 10.1038/nchem.2085 10.1021/acs.chemmater.5b03276 10.1002/anie.201410376 10.1002/adma.201401946 10.1002/adma.201501527 10.1002/anie.201411917 10.1021/ja406016j 10.1039/c3ta13438e 10.1002/chem.201502583 10.1039/C3EE44004D 10.1021/acsami.5b12242 10.1016/j.jpowsour.2016.05.096 10.1039/C5TA01809A 10.1016/j.nanoen.2016.04.021 10.1002/anie.201607469 10.1002/aenm.201600389 10.1039/c3ee40811f 10.1016/j.ensm.2016.07.007 10.1016/j.jpowsour.2016.01.101 10.1002/adma.201600846 10.1021/nl500548a 10.1039/C6RA06533C 10.1039/C5TA10520J 10.1016/j.solidstatesciences.2006.05.009 10.1002/anie.201602202 10.1002/adfm.201400561 10.1126/sciadv.1500330 10.1039/C5TA00980D 10.1039/C5TA03164H 10.1002/aenm.201501555 10.1039/C5EE01876E 10.1039/C5EE02274F |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
CorporateAuthor | SLAC National Accelerator Lab., Menlo Park, CA (United States) |
CorporateAuthor_xml | – name: SLAC National Accelerator Lab., Menlo Park, CA (United States) |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OTOTI |
DOI | 10.1002/adma.201701968 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1394083 28639347 10_1002_adma_201701968 ADMA201701968 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Education Department of Jilin Province funderid: 111099108 – fundername: National Key R&D Program of China funderid: 2016YFA0202500 – fundername: Singapore MOE AcRF Tier 1 funderid: RG2/13; RG113/15 – fundername: National Natural Science Foundation of China funderid: 51602048; 51225204 – fundername: Science Technology Program of Jilin Province funderid: 20150520027JH |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c5058-aeb8c84c209fe3a61dcf179bb8f318e9b24ed2dc3e0bff63eedd2fcae5525a933 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri May 19 00:38:23 EDT 2023 Fri Jul 11 10:56:33 EDT 2025 Sun Jul 13 05:31:18 EDT 2025 Mon Jul 21 05:42:02 EDT 2025 Wed Oct 01 01:14:11 EDT 2025 Thu Apr 24 22:54:01 EDT 2025 Wed Jan 22 17:04:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | low-temperature performance sodium-ion full batteries cathodes sodium-super-ion conductor high energy |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5058-aeb8c84c209fe3a61dcf179bb8f318e9b24ed2dc3e0bff63eedd2fcae5525a933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE AC02-76SF00515; 51602048; 51225204; 2016YFA0202500; 20150520027JH; 111099108; RG2/13; RG113/15 |
ORCID | 0000-0003-1069-9145 0000-0003-0322-8476 0000000310699145 0000000303228476 |
PMID | 28639347 |
PQID | 1934333622 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1394083 proquest_miscellaneous_1912613270 proquest_journals_1934333622 pubmed_primary_28639347 crossref_citationtrail_10_1002_adma_201701968 crossref_primary_10_1002_adma_201701968 wiley_primary_10_1002_adma_201701968_ADMA201701968 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Sep |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-Sep |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2016 2015; 5 54 2015 2013 2016; 27 135 55 2016; 6 2014 2013; 114 6 2015 2015; 27 3 2013; 1 2015; 3 2006; 8 2015 2014 2016; 3 14 6 2014; 24 2011; 56 2015 2015 2013 2015; 7 54 6 1 2016 2016; 8 55 2016; 28 2016 2015 2015; 324 54 3 2016; 24 2015 2016 2016 2014 2015 2015 2016 2016 2014; 21 6 310 26 8 8 4 28 7 e_1_2_4_18_9 e_1_2_4_18_8 e_1_2_4_1_1 e_1_2_4_1_3 e_1_2_4_2_2 e_1_2_4_3_1 e_1_2_4_1_2 e_1_2_4_2_1 e_1_2_4_3_3 e_1_2_4_4_2 e_1_2_4_5_1 e_1_2_4_1_4 e_1_2_4_3_2 e_1_2_4_4_1 e_1_2_4_6_2 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_8_2 e_1_2_4_9_1 e_1_2_4_6_3 e_1_2_4_7_2 e_1_2_4_8_1 e_1_2_4_8_3 e_1_2_4_10_1 e_1_2_4_11_1 e_1_2_4_12_1 e_1_2_4_13_1 e_1_2_4_13_2 e_1_2_4_14_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_18_3 e_1_2_4_18_2 e_1_2_4_18_5 e_1_2_4_18_4 e_1_2_4_18_7 e_1_2_4_18_6 |
References_xml | – volume: 3 start-page: 6271 year: 2015 publication-title: J. Mater. Chem. A – volume: 56 start-page: 4869 year: 2011 publication-title: Electrochim. Acta – volume: 3 start-page: 7732 year: 2015 publication-title: J. Mater. Chem. A – volume: 27 135 55 start-page: 5343 13870 7445 year: 2015 2013 2016 publication-title: Adv. Mater. J. Am. Chem. Soc. Angew. Chem., Int. Ed. – volume: 8 55 start-page: 7790 12822 year: 2016 2016 publication-title: ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. – volume: 8 start-page: 1215 year: 2006 publication-title: Solid State Sci. – volume: 1 start-page: 13727 year: 2013 publication-title: J. Mater. Chem. A – volume: 21 6 310 26 8 8 4 28 7 start-page: 17371 1501555 102 6301 3000 3325 3431 106 1643 year: 2015 2016 2016 2014 2015 2015 2016 2016 2014 publication-title: Chem. Eur. J. Adv. Energy Mater. J. Power Sources Adv. Mater. Energy Environ. Sci. Energy Environ. Sci. J. Mater. Chem. A Chem. Mater. Energy Environ. Sci. – volume: 28 start-page: 7243 year: 2016 publication-title: Adv. Mater. – volume: 114 6 start-page: 11636 2067 year: 2014 2013 publication-title: Chem. Rev. Energy Environ. Sci. – volume: 324 54 3 start-page: 421 6452 17563 year: 2016 2015 2015 publication-title: J. Power Sources Angew. Chem., Int. Ed. J. Mater. Chem. A – volume: 27 3 start-page: 3915 13906 year: 2015 2015 publication-title: Adv. Mater. J. Mater. Chem. A – volume: 6 start-page: 45605 year: 2016 publication-title: RSC Adv. – volume: 3 14 6 start-page: 1500213 2175 1600389 year: 2015 2014 2016 publication-title: Adv. Sci. Nano Lett. Adv. Energy Mater. – volume: 24 start-page: 130 year: 2016 publication-title: Nano Energy – volume: 7 54 6 1 start-page: 19 3431 2338 e1500330 year: 2015 2015 2013 2015 publication-title: Nat. Chem. Angew. Chem., Int. Ed. Energy Environ. Sci. Sci. Adv. – volume: 5 54 start-page: 198 9911 year: 2016 2015 publication-title: Energy Storage Mater. Angew. Chem., Int. Ed. – volume: 24 start-page: 4603 year: 2014 publication-title: Adv. Funct. Mater. – ident: e_1_2_4_13_1 doi: 10.1002/adma.201500956 – ident: e_1_2_4_2_1 doi: 10.1021/cr500192f – ident: e_1_2_4_14_1 doi: 10.1039/C5TA00765H – ident: e_1_2_4_6_1 doi: 10.1002/advs.201500213 – ident: e_1_2_4_7_2 doi: 10.1002/anie.201503188 – ident: e_1_2_4_1_3 doi: 10.1039/c3ee40847g – ident: e_1_2_4_12_1 doi: 10.1016/j.electacta.2011.02.119 – ident: e_1_2_4_1_1 doi: 10.1038/nchem.2085 – ident: e_1_2_4_18_8 doi: 10.1021/acs.chemmater.5b03276 – ident: e_1_2_4_1_2 doi: 10.1002/anie.201410376 – ident: e_1_2_4_18_4 doi: 10.1002/adma.201401946 – ident: e_1_2_4_3_1 doi: 10.1002/adma.201501527 – ident: e_1_2_4_8_2 doi: 10.1002/anie.201411917 – ident: e_1_2_4_3_2 doi: 10.1021/ja406016j – ident: e_1_2_4_17_1 doi: 10.1039/c3ta13438e – ident: e_1_2_4_18_1 doi: 10.1002/chem.201502583 – ident: e_1_2_4_18_9 doi: 10.1039/C3EE44004D – ident: e_1_2_4_4_1 doi: 10.1021/acsami.5b12242 – ident: e_1_2_4_8_1 doi: 10.1016/j.jpowsour.2016.05.096 – ident: e_1_2_4_13_2 doi: 10.1039/C5TA01809A – ident: e_1_2_4_5_1 doi: 10.1016/j.nanoen.2016.04.021 – ident: e_1_2_4_4_2 doi: 10.1002/anie.201607469 – ident: e_1_2_4_6_3 doi: 10.1002/aenm.201600389 – ident: e_1_2_4_2_2 doi: 10.1039/c3ee40811f – ident: e_1_2_4_7_1 doi: 10.1016/j.ensm.2016.07.007 – ident: e_1_2_4_18_3 doi: 10.1016/j.jpowsour.2016.01.101 – ident: e_1_2_4_16_1 doi: 10.1002/adma.201600846 – ident: e_1_2_4_6_2 doi: 10.1021/nl500548a – ident: e_1_2_4_15_1 doi: 10.1039/C6RA06533C – ident: e_1_2_4_18_7 doi: 10.1039/C5TA10520J – ident: e_1_2_4_10_1 doi: 10.1016/j.solidstatesciences.2006.05.009 – ident: e_1_2_4_3_3 doi: 10.1002/anie.201602202 – ident: e_1_2_4_11_1 doi: 10.1002/adfm.201400561 – ident: e_1_2_4_1_4 doi: 10.1126/sciadv.1500330 – ident: e_1_2_4_9_1 doi: 10.1039/C5TA00980D – ident: e_1_2_4_8_3 doi: 10.1039/C5TA03164H – ident: e_1_2_4_18_2 doi: 10.1002/aenm.201501555 – ident: e_1_2_4_18_6 doi: 10.1039/C5EE01876E – ident: e_1_2_4_18_5 doi: 10.1039/C5EE02274F |
SSID | ssj0009606 |
Score | 2.6656828 |
Snippet | Sodium‐ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short‐term cycle life, and poor... Sodium-ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short-term cycle life, and poor... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | cathodes Flux density high energy Lithium Low temperature low‐temperature performance Materials science Reaction kinetics Rechargeable batteries Sodium-ion batteries sodium‐ion full batteries sodium‐super‐ion conductor Titration X-ray diffraction |
Title | High‐Energy/Power and Low‐Temperature Cathode for Sodium‐Ion Batteries: In Situ XRD Study and Superior Full‐Cell Performance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201701968 https://www.ncbi.nlm.nih.gov/pubmed/28639347 https://www.proquest.com/docview/1934333622 https://www.proquest.com/docview/1912613270 https://www.osti.gov/biblio/1394083 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1521-4095 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: ADMLS dateStart: 20120605 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0935-9648 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQnuAAlGdoQUZC4pRuYjuJ09uqD7WIoqrbSnuz_IpUdUkQTYTg1EN_AL-RX8KMs5vtIhAS3PKYiRxnxv4mnvlMyBvOYVp20sUpdz4WWJcj08THTHpwL7Ca1GA18vGH_PBcvJtls1tV_D0_xPDDDT0jjNfo4NpcjVekodoF3qDAJ55jtW_Ks7BOe7rij0J4Hsj2eBaXuZBL1saEjdfV12alUQPe9TvEuQ5gwwx08IDoZdv7xJPL7a412_bbL7SO__NyD8n9BTylk96eNsgdXz8i926RFj4mN5ga8uP6-36oGhyf4DZrVNeOvm--wOUzD0C8J2qmWF7YOE8BGNNp4y66jyBw1NS0Z_WEIH2HHtV0etF2dHa6RzGp8Wt41rRDBmZQwxAZlHb9fE5PVkUOT8j5wf7Z7mG82MshtoCxZKy9kVYKy5Ky8lznqbMVjAXGyApGFV8aJrxjznKfmKrKOUzdjlVW-yxjmS45f0pGdVP754T6vLAFOABPjRQQ7chSlFUhEi0A_LhcRCRefktlF0TnuN_GXPUUzUxh76qhdyPydpD_1FN8_FFyE01DAThBhl2LqUi2VSnuLi95RLaWFqMWA8GVAnwsOAcXYBF5PdwGF8Z1GV37pkOZFOJYzookIs96SxsawiRASC6KiLBgL39poZrsHU-Gsxf_orRJ7uJxn0e3RUbt586_BODVmlfBuX4C6UAnaw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLWgLIAF70eYAYyExCrTxHYSh101nVEL7Wg07Uizs-JHpBGdZASJEKxY8AF8I1_CvUmTUgRCgmUSO3Kce-xz7XuPCXnJOUzLVlo_5Nb5AvNyZBg4n0kH8AKrCTVmI8-P4smpeHMWddGEmAvT6kP0C26IjGa8RoDjgvRwoxqa2UY4qBEUj-VVcg036RCb45ONghQS9EZuj0d-GgvZ6TYGbLhdf2teGpSAr99xzm0K28xBh7eJ7lrfhp6826srvWc-_yLs-F-fd4fcWjNUOmpN6i654op75OZPuoX3yVeMDvn-5dtBkzg4PMaT1mhWWDorP8LtpQMu3mo1U8wwLK2jwI3porTn9QUUmJYFbYU9wU9_TacFXZxXNT07GVOMa_zUvGtRowgzVEMvGSrtu9WKHm_yHB6Q08OD5f7EXx_n4BugWdLPnJZGCsOCNHc8i0NrchgOtJY5DCwu1Uw4y6zhLtB5HnOYvS3LTeaiiEVZyvlDMijKwj0m1MWJSQADPNRSgMMjU5HmiQgyAfzHxsIjfvczlVlrneORGyvVqjQzhb2r-t71yKu-_GWr8vHHkjtoGwr4CYrsGoxGMpUK8YB5yT2y25mMWo8FHxRQZME5oIB55EX_GFCMWzNZ4coay4TgynKWBB551Jpa3xAmgUVykXiENQbzlxaq0Xg-6q-e_Eul5-T6ZDmfqdn06O0OuYH327C6XTKo3tfuKfCwSj9rkPYDRwQrhw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BkBAc-IeaFlgkJE5u7N2NveYWNY0aaKuoaaXcVvbuWqpI7QpsIThx4AF4Rp6EGTtxGgRCgqPtGWu9ntn9xp75BuCVELgtW2X9UFjnS6rLUWHgfK4cuhdaTZhRNfLRcXRwJt_OB_MrVfwtP0T3wY08o1mvycEvbd5fk4amtuENavjEI3UdbsgIQyyCRSdrAinC5w3bnhj4SSTVirYx4P1N_Y1tqVeie_0Ocm4i2GYLGt-FdDX4NvPk_W5dZbvmyy-8jv_zdPfgzhKfsmFrUPfhmisewO0rrIUP4Rvlhvz4-n2_KRvsT6nPGksLyw7LT3j61CESb5maGdUXltYxRMZsVtrz-gIFJmXBWlpPjNLfsEnBZudVzeYnI0ZZjZ-be81qomBGNYqRUWnPLRZsuq5yeARn4_3TvQN_2czBNwiylJ-6TBklDQ-S3Ik0Cq3JcTHIMpXjsuKSjEtnuTXCBVmeRwL3bstzk7rBgA_SRIjH0CvKwm0Bc1FsYvQAEWZKYrijEpnksQxSiejHRtIDf_UutVkynVPDjYVuOZq5ptnV3ex68LqTv2w5Pv4ouU2moRGdEMWuoVwkU-mQ2ssr4cHOymL0ciX4qBEgSyHQB7gHL7vL6MP0YyYtXFmTTIiBrOBx4MGT1tK6gXCFGFLI2APe2MtfRqiHo6Nhd_T0X5RewM3paKwPJ8fvtuEWnW5z6nagV32o3TMEYVX2vPGzn6TAKjY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Energy%2FPower+and+Low-Temperature+Cathode+for+Sodium-Ion+Batteries%3A+In+Situ+XRD+Study+and+Superior+Full-Cell+Performance&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Guo%2C+Jin-Zhi&rft.au=Wang%2C+Peng-Fei&rft.au=Wu%2C+Xing-Long&rft.au=Zhang%2C+Xiao-Hua&rft.date=2017-09-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=29&rft.issue=33&rft_id=info:doi/10.1002%2Fadma.201701968&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |