High‐Energy/Power and Low‐Temperature Cathode for Sodium‐Ion Batteries: In Situ XRD Study and Superior Full‐Cell Performance

Sodium‐ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short‐term cycle life, and poor low‐temperature performance, which severely hinder their practical applications. Here, a high‐voltage cathode composed of Na3V2(PO4)2O2F nano‐tetr...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 33
Main Authors Guo, Jin‐Zhi, Wang, Peng‐Fei, Wu, Xing‐Long, Zhang, Xiao‐Hua, Yan, Qingyu, Chen, Hong, Zhang, Jing‐Ping, Guo, Yu‐Guo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2017
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201701968

Cover

Abstract Sodium‐ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short‐term cycle life, and poor low‐temperature performance, which severely hinder their practical applications. Here, a high‐voltage cathode composed of Na3V2(PO4)2O2F nano‐tetraprisms (NVPF‐NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF‐NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na+/Na with a specific capacity of 127.8 mA h g−1. The energy density of NVPF‐NTP reaches up to 486 W h kg−1, which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain (≈2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X‐ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF‐NTP shows long‐term cycle life, superior low‐temperature performance, and outstanding high‐rate capabilities. The comparison of Ragone plots further discloses that NVPF‐NTP presents the best power performance among the state‐of‐the‐art cathode materials for SIBs. More importantly, when coupled with an Sb‐based anode, the fabricated sodium‐ion full‐cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application. A high‐voltage sodium‐super‐ion‐conductor‐type cathode significantly enhances the energy density of sodium‐ion batteries. Its low‐strain crystal lattice during the successive (de‐)sodiation and superior Na transport kinetics promise high‐rate capabilities, long‐term cycle life, superior low‐temperature performance, and excellent full‐cell performance, providing a preview of their practical applications.
AbstractList Sodium-ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short-term cycle life, and poor low-temperature performance, which severely hinder their practical applications. Here, a high-voltage cathode composed of Na V (PO ) O F nano-tetraprisms (NVPF-NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF-NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na /Na with a specific capacity of 127.8 mA h g . The energy density of NVPF-NTP reaches up to 486 W h kg , which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain (≈2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X-ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF-NTP shows long-term cycle life, superior low-temperature performance, and outstanding high-rate capabilities. The comparison of Ragone plots further discloses that NVPF-NTP presents the best power performance among the state-of-the-art cathode materials for SIBs. More importantly, when coupled with an Sb-based anode, the fabricated sodium-ion full-cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application.
Sodium‐ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short‐term cycle life, and poor low‐temperature performance, which severely hinder their practical applications. Here, a high‐voltage cathode composed of Na 3 V 2 (PO 4 ) 2 O 2 F nano‐tetraprisms (NVPF‐NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF‐NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na + /Na with a specific capacity of 127.8 mA h g −1 . The energy density of NVPF‐NTP reaches up to 486 W h kg −1 , which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain (≈2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X‐ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF‐NTP shows long‐term cycle life, superior low‐temperature performance, and outstanding high‐rate capabilities. The comparison of Ragone plots further discloses that NVPF‐NTP presents the best power performance among the state‐of‐the‐art cathode materials for SIBs. More importantly, when coupled with an Sb‐based anode, the fabricated sodium‐ion full‐cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application.
Sodium-ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short-term cycle life, and poor low-temperature performance, which severely hinder their practical applications. Here, a high-voltage cathode composed of Na3 V2 (PO4 )2 O2 F nano-tetraprisms (NVPF-NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF-NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na+ /Na with a specific capacity of 127.8 mA h g-1 . The energy density of NVPF-NTP reaches up to 486 W h kg-1 , which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain (≈2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X-ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF-NTP shows long-term cycle life, superior low-temperature performance, and outstanding high-rate capabilities. The comparison of Ragone plots further discloses that NVPF-NTP presents the best power performance among the state-of-the-art cathode materials for SIBs. More importantly, when coupled with an Sb-based anode, the fabricated sodium-ion full-cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application.Sodium-ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short-term cycle life, and poor low-temperature performance, which severely hinder their practical applications. Here, a high-voltage cathode composed of Na3 V2 (PO4 )2 O2 F nano-tetraprisms (NVPF-NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF-NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na+ /Na with a specific capacity of 127.8 mA h g-1 . The energy density of NVPF-NTP reaches up to 486 W h kg-1 , which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain (≈2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X-ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF-NTP shows long-term cycle life, superior low-temperature performance, and outstanding high-rate capabilities. The comparison of Ragone plots further discloses that NVPF-NTP presents the best power performance among the state-of-the-art cathode materials for SIBs. More importantly, when coupled with an Sb-based anode, the fabricated sodium-ion full-cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application.
Sodium‐ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short‐term cycle life, and poor low‐temperature performance, which severely hinder their practical applications. Here, a high‐voltage cathode composed of Na3V2(PO4)2O2F nano‐tetraprisms (NVPF‐NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF‐NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na+/Na with a specific capacity of 127.8 mA h g−1. The energy density of NVPF‐NTP reaches up to 486 W h kg−1, which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain (≈2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X‐ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF‐NTP shows long‐term cycle life, superior low‐temperature performance, and outstanding high‐rate capabilities. The comparison of Ragone plots further discloses that NVPF‐NTP presents the best power performance among the state‐of‐the‐art cathode materials for SIBs. More importantly, when coupled with an Sb‐based anode, the fabricated sodium‐ion full‐cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application. A high‐voltage sodium‐super‐ion‐conductor‐type cathode significantly enhances the energy density of sodium‐ion batteries. Its low‐strain crystal lattice during the successive (de‐)sodiation and superior Na transport kinetics promise high‐rate capabilities, long‐term cycle life, superior low‐temperature performance, and excellent full‐cell performance, providing a preview of their practical applications.
Sodium-ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short-term cycle life, and poor low-temperature performance, which severely hinder their practical applications. Here, a high-voltage cathode composed of Na3V2(PO4)2O2F nano-tetraprisms (NVPF-NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF-NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na+/Na with a specific capacity of 127.8 mA h g-1. The energy density of NVPF-NTP reaches up to 486 W h kg-1, which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain ([asymp]2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X-ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF-NTP shows long-term cycle life, superior low-temperature performance, and outstanding high-rate capabilities. The comparison of Ragone plots further discloses that NVPF-NTP presents the best power performance among the state-of-the-art cathode materials for SIBs. More importantly, when coupled with an Sb-based anode, the fabricated sodium-ion full-cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application.
Author Guo, Jin‐Zhi
Zhang, Xiao‐Hua
Chen, Hong
Zhang, Jing‐Ping
Yan, Qingyu
Guo, Yu‐Guo
Wang, Peng‐Fei
Wu, Xing‐Long
Author_xml – sequence: 1
  givenname: Jin‐Zhi
  surname: Guo
  fullname: Guo, Jin‐Zhi
  organization: Northeast Normal University
– sequence: 2
  givenname: Peng‐Fei
  surname: Wang
  fullname: Wang, Peng‐Fei
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Xing‐Long
  orcidid: 0000-0003-1069-9145
  surname: Wu
  fullname: Wu, Xing‐Long
  email: xinglong@nenu.edu.cn
  organization: Northeast Normal University
– sequence: 4
  givenname: Xiao‐Hua
  surname: Zhang
  fullname: Zhang, Xiao‐Hua
  organization: Northeast Normal University
– sequence: 5
  givenname: Qingyu
  surname: Yan
  fullname: Yan, Qingyu
  organization: Nanyang Technological University
– sequence: 6
  givenname: Hong
  surname: Chen
  fullname: Chen, Hong
  organization: University of California
– sequence: 7
  givenname: Jing‐Ping
  surname: Zhang
  fullname: Zhang, Jing‐Ping
  organization: Northeast Normal University
– sequence: 8
  givenname: Yu‐Guo
  orcidid: 0000-0003-0322-8476
  surname: Guo
  fullname: Guo, Yu‐Guo
  email: ygguo@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28639347$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1394083$$D View this record in Osti.gov
BookMark eNqFkc1uEzEURi1URNPCliWyYMMmqX9mJmN2IW1ppCAqUiR2lse-07iasVvboyg7FjwAz8iT4JAWpEqI1ZWuzvl0r74jdOC8A4ReUjKhhLATZXo1YYROCRVV_QSNaMnouCCiPEAjIng5FlVRH6KjGG8IIaIi1TN0yOqKC15MR-j7hb1e__z248xBuN6eXPoNBKycwUu_yesr6G8hqDQEwHOV1t4Abn3AK2_s0Gdg4R1-r1KCYCG-wwuHVzYN-OvnU7xKg9n-zloNOcRm7XzouizNoevwJYSc1Cun4Tl62qouwov7eYy-nJ9dzS_Gy08fFvPZcqxLUtZjBU2t60IzIlrgqqJGt3QqmqZuOa1BNKwAw4zmQJq2rTiAMazVCsqSlUpwfoxe73N9TFZGbRPotfbOgU6SclGQege93UO3wd8NEJPsbdT5YuXAD1FSQVlFOZuSjL55hN74Ibj8QqZ4wTmvGMvUq3tqaHow8jbYXoWtfCghA8Ue0MHHGKCV-TKVrHcpKNtJSuSua7nrWv7pOmuTR9pD8j8FsRc2toPtf2g5O_04--v-AofkwEI
CitedBy_id crossref_primary_10_1016_j_ensm_2022_05_005
crossref_primary_10_3390_batteries10070223
crossref_primary_10_1002_cssc_201801662
crossref_primary_10_1002_batt_202100361
crossref_primary_10_1002_batt_202100367
crossref_primary_10_1021_acsenergylett_5c00315
crossref_primary_10_1002_aenm_201702403
crossref_primary_10_1002_ange_202402371
crossref_primary_10_1002_eem2_12619
crossref_primary_10_1002_advs_202301490
crossref_primary_10_1002_smll_202004925
crossref_primary_10_1016_j_jallcom_2024_173680
crossref_primary_10_1039_C8TA10624J
crossref_primary_10_1021_acsami_8b06706
crossref_primary_10_1002_slct_201901427
crossref_primary_10_1007_s11581_019_03388_5
crossref_primary_10_1016_j_jallcom_2022_165142
crossref_primary_10_1002_anie_202014241
crossref_primary_10_1002_ange_202403585
crossref_primary_10_1021_acscentsci_3c00907
crossref_primary_10_1021_acsaem_1c03079
crossref_primary_10_1039_D4EE00791C
crossref_primary_10_1002_aenm_201701785
crossref_primary_10_1007_s11426_022_1556_x
crossref_primary_10_1016_j_jallcom_2019_152270
crossref_primary_10_1002_adfm_201801917
crossref_primary_10_1002_ente_202100298
crossref_primary_10_1002_adfm_202422491
crossref_primary_10_1021_acsaem_3c01195
crossref_primary_10_1007_s40843_019_1220_2
crossref_primary_10_1016_j_electacta_2019_05_106
crossref_primary_10_1016_j_ensm_2019_05_009
crossref_primary_10_1039_C8TA00568K
crossref_primary_10_1007_s11426_024_1964_7
crossref_primary_10_1016_j_cej_2025_161617
crossref_primary_10_1002_cssc_201901377
crossref_primary_10_1021_acsnano_4c08704
crossref_primary_10_1002_aenm_201702504
crossref_primary_10_1007_s12274_021_4044_1
crossref_primary_10_1016_j_cej_2024_152864
crossref_primary_10_1039_C9NR02542A
crossref_primary_10_1016_j_ssi_2018_12_018
crossref_primary_10_1016_j_cej_2020_127451
crossref_primary_10_1021_acsnano_9b06855
crossref_primary_10_1021_acsami_9b22746
crossref_primary_10_1149_2_0181805jes
crossref_primary_10_1016_j_jpowsour_2023_233080
crossref_primary_10_1021_acsami_0c11074
crossref_primary_10_1002_advs_201700768
crossref_primary_10_1021_acsami_8b12055
crossref_primary_10_1088_2752_5724_acc7bb
crossref_primary_10_1002_adfm_202304046
crossref_primary_10_1016_j_jcis_2023_01_092
crossref_primary_10_1039_C8TA03967D
crossref_primary_10_1002_adma_202100409
crossref_primary_10_1007_s12649_018_0426_3
crossref_primary_10_1002_ange_201801533
crossref_primary_10_1039_D1TA01148K
crossref_primary_10_1016_j_apsusc_2019_07_192
crossref_primary_10_1002_aenm_202403282
crossref_primary_10_1002_adfm_202001708
crossref_primary_10_1021_acsami_8b18746
crossref_primary_10_1021_jacs_1c06727
crossref_primary_10_1002_cssc_202200817
crossref_primary_10_1016_j_jssc_2019_121010
crossref_primary_10_3389_fenrg_2020_605129
crossref_primary_10_1002_anie_202403585
crossref_primary_10_1039_D2RA01292H
crossref_primary_10_1088_1361_6463_abb8aa
crossref_primary_10_1002_anie_201801533
crossref_primary_10_1016_j_matt_2023_03_032
crossref_primary_10_1002_adma_202008810
crossref_primary_10_1021_acsomega_9b01343
crossref_primary_10_1002_anie_202402371
crossref_primary_10_1039_C8TA09194C
crossref_primary_10_1002_adma_201803765
crossref_primary_10_1002_aenm_202003256
crossref_primary_10_1039_C8TA10051A
crossref_primary_10_1021_acs_nanolett_2c03916
crossref_primary_10_1039_C8TA08842J
crossref_primary_10_1002_smll_202102400
crossref_primary_10_1039_D1TA02894D
crossref_primary_10_1016_j_ensm_2018_03_003
crossref_primary_10_1016_j_cej_2017_10_007
crossref_primary_10_1007_s11814_025_00388_2
crossref_primary_10_1016_j_ensm_2019_05_041
crossref_primary_10_1002_aenm_201800058
crossref_primary_10_1021_acsami_2c12685
crossref_primary_10_1021_acs_chemmater_4c02872
crossref_primary_10_1039_C9TA02966D
crossref_primary_10_1002_adma_201906348
crossref_primary_10_1021_acsaem_8b01412
crossref_primary_10_1038_s41467_022_32606_4
crossref_primary_10_1039_D2CC03281C
crossref_primary_10_1002_smtd_201800253
crossref_primary_10_1007_s40843_021_1742_8
crossref_primary_10_1016_j_jelechem_2024_118179
crossref_primary_10_1021_acsaem_0c00283
crossref_primary_10_1016_j_jpowsour_2021_230363
crossref_primary_10_1016_j_chempr_2019_08_007
crossref_primary_10_1002_celc_201800016
crossref_primary_10_1016_j_jpowsour_2022_231639
crossref_primary_10_1021_acsami_9b20490
crossref_primary_10_1002_adma_202109658
crossref_primary_10_1021_jacs_3c11739
crossref_primary_10_1039_D0TA06614A
crossref_primary_10_1002_advs_202103493
crossref_primary_10_1016_j_jcis_2024_04_086
crossref_primary_10_1021_acs_iecr_4c04169
crossref_primary_10_3390_nano14191604
crossref_primary_10_1002_anie_201810575
crossref_primary_10_1007_s40843_024_3082_x
crossref_primary_10_1002_aenm_201703217
crossref_primary_10_1021_acssuschemeng_8b06696
crossref_primary_10_1016_j_cej_2024_156722
crossref_primary_10_1002_celc_202001514
crossref_primary_10_1039_D4TA06873D
crossref_primary_10_1021_acsami_0c14294
crossref_primary_10_1016_j_cej_2021_132359
crossref_primary_10_1002_adma_202305135
crossref_primary_10_1021_acsami_4c02565
crossref_primary_10_1021_acsami_7b08778
crossref_primary_10_1016_j_eng_2021_08_032
crossref_primary_10_1016_j_jcis_2024_03_048
crossref_primary_10_1021_acs_inorgchem_4c02138
crossref_primary_10_1016_j_nanoen_2018_02_053
crossref_primary_10_1021_acsami_8b21729
crossref_primary_10_1021_acssuschemeng_9b05474
crossref_primary_10_1038_s41467_022_28380_y
crossref_primary_10_1039_C8TA10980J
crossref_primary_10_1039_D2MA00170E
crossref_primary_10_1021_acsami_0c08846
crossref_primary_10_1002_aenm_202002244
crossref_primary_10_1002_aenm_202304504
crossref_primary_10_1016_j_ensm_2021_02_011
crossref_primary_10_1021_acs_jpcc_0c08654
crossref_primary_10_34133_2022_9828020
crossref_primary_10_1007_s10008_020_04851_4
crossref_primary_10_1021_acs_chemrev_3c00728
crossref_primary_10_1007_s12274_017_1863_1
crossref_primary_10_1016_j_ensm_2022_03_010
crossref_primary_10_1002_smll_202201719
crossref_primary_10_1002_er_5397
crossref_primary_10_1016_j_materresbull_2024_113173
crossref_primary_10_1007_s10854_021_06093_0
crossref_primary_10_1016_j_vacuum_2024_113647
crossref_primary_10_1002_advs_201800680
crossref_primary_10_1016_j_ensm_2022_04_025
crossref_primary_10_1039_D3DT00124E
crossref_primary_10_1002_cssc_202100880
crossref_primary_10_1016_j_cej_2022_134839
crossref_primary_10_1039_D3TA07954F
crossref_primary_10_1002_aenm_202303788
crossref_primary_10_1016_j_jpowsour_2021_230729
crossref_primary_10_1002_chem_201904077
crossref_primary_10_1002_cssc_202101856
crossref_primary_10_1021_acsami_9b07647
crossref_primary_10_1021_acs_jpclett_3c03191
crossref_primary_10_1016_j_jallcom_2024_173858
crossref_primary_10_1002_smll_201803746
crossref_primary_10_1021_acsami_4c05943
crossref_primary_10_1002_aenm_202001235
crossref_primary_10_1016_j_jpowsour_2024_234337
crossref_primary_10_1002_adfm_202201038
crossref_primary_10_1021_acsami_0c05784
crossref_primary_10_1021_acsaem_8b01275
crossref_primary_10_1021_acs_jafc_0c05668
crossref_primary_10_1002_smtd_202402099
crossref_primary_10_1002_adma_202110108
crossref_primary_10_1039_C9TA13068C
crossref_primary_10_1002_smll_202102010
crossref_primary_10_1002_adfm_202109694
crossref_primary_10_1039_D0NJ02210A
crossref_primary_10_1002_adma_202413013
crossref_primary_10_1002_adfm_202411007
crossref_primary_10_1002_adma_201903125
crossref_primary_10_1039_D2CC00615D
crossref_primary_10_1021_acsami_9b17123
crossref_primary_10_1016_j_cej_2020_126689
crossref_primary_10_1039_C7NR09674G
crossref_primary_10_1021_acsnano_4c01831
crossref_primary_10_1021_acs_jpcc_8b09151
crossref_primary_10_1002_aenm_201703638
crossref_primary_10_1007_s10008_020_04525_1
crossref_primary_10_1007_s11581_022_04511_9
crossref_primary_10_1021_acsami_8b04085
crossref_primary_10_1002_chem_201804221
crossref_primary_10_1002_adfm_202102827
crossref_primary_10_1039_C8TA09264H
crossref_primary_10_1007_s40195_020_01001_7
crossref_primary_10_1039_D1NJ03779J
crossref_primary_10_1016_j_apsusc_2020_148194
crossref_primary_10_1002_eom2_12043
crossref_primary_10_1002_slct_201902853
crossref_primary_10_1039_C9CS00846B
crossref_primary_10_3390_batteries9010056
crossref_primary_10_1002_adma_201706317
crossref_primary_10_1016_j_xcrp_2021_100665
crossref_primary_10_1073_pnas_2311075121
crossref_primary_10_1039_D1TA03280A
crossref_primary_10_1016_j_cej_2019_123087
crossref_primary_10_1016_j_ensm_2018_05_010
crossref_primary_10_1016_j_gee_2020_11_026
crossref_primary_10_34133_energymatadv_0073
crossref_primary_10_1016_j_scib_2020_01_018
crossref_primary_10_1021_acsaem_9b01458
crossref_primary_10_1016_j_carbon_2019_11_067
crossref_primary_10_1002_smll_201907645
crossref_primary_10_34133_energymatadv_0036
crossref_primary_10_1016_j_cej_2021_132750
crossref_primary_10_3390_batteries11020063
crossref_primary_10_1063_5_0197194
crossref_primary_10_1002_aenm_202302830
crossref_primary_10_1002_er_5576
crossref_primary_10_1016_j_ensm_2019_10_006
crossref_primary_10_1002_smll_201702864
crossref_primary_10_1016_j_apcatb_2024_124151
crossref_primary_10_1186_s11671_019_3056_1
crossref_primary_10_1007_s12598_024_02777_8
crossref_primary_10_1016_j_jpowsour_2022_231257
crossref_primary_10_1039_D4GC03958K
crossref_primary_10_1021_acsami_1c02216
crossref_primary_10_1016_j_partic_2023_05_006
crossref_primary_10_1039_C8TA01132J
crossref_primary_10_1007_s10854_021_05969_5
crossref_primary_10_1007_s40843_018_9342_0
crossref_primary_10_1002_admt_202301564
crossref_primary_10_1088_2515_7639_abb440
crossref_primary_10_1021_acsaem_1c00334
crossref_primary_10_1039_C9RA09020G
crossref_primary_10_1007_s10853_020_04962_3
crossref_primary_10_1016_j_colsurfa_2022_129340
crossref_primary_10_1002_batt_202300022
crossref_primary_10_1039_C8NR09601E
crossref_primary_10_1002_smll_201702961
crossref_primary_10_1039_C8QI01374H
crossref_primary_10_1016_j_nanoen_2020_104716
crossref_primary_10_1002_idm2_12040
crossref_primary_10_1039_C8CC06291A
crossref_primary_10_1002_advs_202205575
crossref_primary_10_1007_s12274_021_3577_7
crossref_primary_10_1038_s41467_021_23132_w
crossref_primary_10_1016_j_rser_2023_113861
crossref_primary_10_1002_idm2_12041
crossref_primary_10_1007_s11426_019_9647_8
crossref_primary_10_1002_ange_202112550
crossref_primary_10_1021_acsami_8b20225
crossref_primary_10_1039_D3CP00960B
crossref_primary_10_1002_smll_202303666
crossref_primary_10_1039_C8TA01392F
crossref_primary_10_1073_pnas_2114947119
crossref_primary_10_1039_D3RA08714J
crossref_primary_10_1007_s10904_021_01987_2
crossref_primary_10_1016_j_carbon_2020_05_049
crossref_primary_10_1016_j_jallcom_2019_03_257
crossref_primary_10_1016_j_jallcom_2020_155413
crossref_primary_10_1002_adfm_201904398
crossref_primary_10_1007_s12613_023_2666_x
crossref_primary_10_1007_s40820_019_0273_1
crossref_primary_10_1016_j_mattod_2023_03_020
crossref_primary_10_1039_D0TA00130A
crossref_primary_10_1002_adma_202103304
crossref_primary_10_1016_j_ensm_2021_08_022
crossref_primary_10_1002_aenm_201703252
crossref_primary_10_1002_anie_202112550
crossref_primary_10_1016_j_jechem_2022_09_016
crossref_primary_10_1088_1361_6528_aba059
crossref_primary_10_1002_advs_202004943
crossref_primary_10_1039_C9TA05926A
crossref_primary_10_1149_1945_7111_ad76e0
crossref_primary_10_1039_D3NJ05800J
crossref_primary_10_1039_D0TA08311A
crossref_primary_10_1002_smll_201805427
crossref_primary_10_1002_adfm_202406764
crossref_primary_10_1039_C8EE03727B
crossref_primary_10_1039_C8TA04791J
crossref_primary_10_1039_D1EE00271F
crossref_primary_10_1016_j_jallcom_2020_155314
crossref_primary_10_1021_acsnano_8b06206
crossref_primary_10_1002_slct_201802387
crossref_primary_10_1016_j_electacta_2019_04_183
crossref_primary_10_1021_acsami_9b14249
crossref_primary_10_1002_chem_201902993
crossref_primary_10_1002_smll_202302388
crossref_primary_10_1021_acsami_1c01571
crossref_primary_10_1002_aenm_202002930
crossref_primary_10_1002_aenm_201900022
crossref_primary_10_1016_j_ensm_2019_09_014
crossref_primary_10_1002_cnl2_62
crossref_primary_10_3390_ma17030587
crossref_primary_10_1016_j_electacta_2022_141671
crossref_primary_10_1016_j_inoche_2021_108653
crossref_primary_10_1016_j_pnsc_2023_12_021
crossref_primary_10_1039_D1TA05114H
crossref_primary_10_1002_cey2_464
crossref_primary_10_1021_acsami_7b15495
crossref_primary_10_1021_acsami_1c03642
crossref_primary_10_1021_acsami_7b16580
crossref_primary_10_1021_acsaem_3c00120
crossref_primary_10_1021_acsami_9b21365
crossref_primary_10_1016_j_apmt_2021_101032
crossref_primary_10_1002_smtd_202100888
crossref_primary_10_1002_adma_202310051
crossref_primary_10_1021_acsami_2c22547
crossref_primary_10_1021_acsami_8b14861
crossref_primary_10_1039_D1TA02250D
crossref_primary_10_1002_smll_201902466
crossref_primary_10_1039_C9RA02257K
crossref_primary_10_1039_D1QM00608H
crossref_primary_10_1002_smm2_1191
crossref_primary_10_1002_smtd_202301742
crossref_primary_10_1039_C9TA03089A
crossref_primary_10_1016_j_ceramint_2021_09_115
crossref_primary_10_1002_smll_202308628
crossref_primary_10_1002_smtd_201900119
crossref_primary_10_1002_adfm_201805444
crossref_primary_10_1016_j_cej_2022_135235
crossref_primary_10_1016_j_compositesb_2023_111030
crossref_primary_10_1021_acsaem_0c01077
crossref_primary_10_1016_j_orgel_2019_105386
crossref_primary_10_1002_chem_202000943
crossref_primary_10_1002_inf2_12184
crossref_primary_10_1016_j_mtener_2018_10_005
crossref_primary_10_1002_eem2_12485
crossref_primary_10_1016_j_ensm_2020_11_010
crossref_primary_10_1039_C9TA05039F
crossref_primary_10_20964_2019_02_10
crossref_primary_10_1039_D0QI01033B
crossref_primary_10_1002_cey2_531
crossref_primary_10_1002_adfm_202000473
crossref_primary_10_1021_acsami_8b02768
crossref_primary_10_1002_eem2_12474
crossref_primary_10_1039_D2NR05442F
crossref_primary_10_1002_adma_202407274
crossref_primary_10_1016_j_jpowsour_2020_228906
crossref_primary_10_1016_j_est_2024_114247
crossref_primary_10_1021_acsami_8b12204
crossref_primary_10_1039_C7NR08716K
crossref_primary_10_1002_adfm_202001334
crossref_primary_10_1039_D1QM00079A
crossref_primary_10_1002_cey2_546
crossref_primary_10_1002_eem2_12468
crossref_primary_10_1016_j_cis_2024_103249
crossref_primary_10_1002_admi_202100191
crossref_primary_10_1002_adma_202000140
crossref_primary_10_1002_celc_201800740
crossref_primary_10_1016_j_electacta_2020_135816
crossref_primary_10_1016_j_mattod_2020_11_019
crossref_primary_10_1002_adsu_201900134
crossref_primary_10_1002_ange_202014241
crossref_primary_10_1021_acs_chemmater_9b04898
crossref_primary_10_1016_j_electacta_2021_138370
crossref_primary_10_1021_acsnano_4c06510
crossref_primary_10_1021_acsami_8b10299
crossref_primary_10_1002_aenm_202101751
crossref_primary_10_1021_acs_jpcc_0c06967
crossref_primary_10_3390_nano12193529
crossref_primary_10_1002_aenm_201901099
crossref_primary_10_1002_advs_202410318
crossref_primary_10_1002_ange_201810575
crossref_primary_10_1016_j_electacta_2025_145871
crossref_primary_10_1002_smll_201900233
crossref_primary_10_1016_j_ensm_2022_06_008
crossref_primary_10_3389_fenrg_2020_00064
crossref_primary_10_1002_sstr_202000053
crossref_primary_10_1016_j_ijhydene_2020_06_151
crossref_primary_10_1007_s11426_020_9858_3
crossref_primary_10_1002_admi_201801342
crossref_primary_10_1002_chem_201704131
crossref_primary_10_1002_chem_201703044
crossref_primary_10_1002_adfm_202112072
crossref_primary_10_1016_j_cej_2022_136132
crossref_primary_10_1021_acsnano_8b08229
crossref_primary_10_1039_C9TA00869A
crossref_primary_10_1021_acs_energyfuels_4c03980
crossref_primary_10_1088_1361_6528_abd6d0
crossref_primary_10_1039_D0TA08746G
crossref_primary_10_1007_s10008_024_05836_3
crossref_primary_10_1016_j_est_2023_109923
crossref_primary_10_1016_j_mtphys_2022_100813
crossref_primary_10_1016_j_jechem_2020_07_008
crossref_primary_10_1016_j_cej_2021_130310
crossref_primary_10_1039_C9TA11782B
crossref_primary_10_1016_j_joule_2018_07_027
crossref_primary_10_1039_D3CS01043K
crossref_primary_10_1039_D1NR05708A
crossref_primary_10_1007_s11581_020_03538_0
crossref_primary_10_1016_j_nanoen_2024_109812
crossref_primary_10_1016_j_electacta_2018_09_173
crossref_primary_10_1016_j_nanoen_2022_107396
crossref_primary_10_1002_ejic_202001159
Cites_doi 10.1002/adma.201500956
10.1021/cr500192f
10.1039/C5TA00765H
10.1002/advs.201500213
10.1002/anie.201503188
10.1039/c3ee40847g
10.1016/j.electacta.2011.02.119
10.1038/nchem.2085
10.1021/acs.chemmater.5b03276
10.1002/anie.201410376
10.1002/adma.201401946
10.1002/adma.201501527
10.1002/anie.201411917
10.1021/ja406016j
10.1039/c3ta13438e
10.1002/chem.201502583
10.1039/C3EE44004D
10.1021/acsami.5b12242
10.1016/j.jpowsour.2016.05.096
10.1039/C5TA01809A
10.1016/j.nanoen.2016.04.021
10.1002/anie.201607469
10.1002/aenm.201600389
10.1039/c3ee40811f
10.1016/j.ensm.2016.07.007
10.1016/j.jpowsour.2016.01.101
10.1002/adma.201600846
10.1021/nl500548a
10.1039/C6RA06533C
10.1039/C5TA10520J
10.1016/j.solidstatesciences.2006.05.009
10.1002/anie.201602202
10.1002/adfm.201400561
10.1126/sciadv.1500330
10.1039/C5TA00980D
10.1039/C5TA03164H
10.1002/aenm.201501555
10.1039/C5EE01876E
10.1039/C5EE02274F
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
CorporateAuthor SLAC National Accelerator Lab., Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Lab., Menlo Park, CA (United States)
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OTOTI
DOI 10.1002/adma.201701968
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1394083
28639347
10_1002_adma_201701968
ADMA201701968
Genre article
Journal Article
GrantInformation_xml – fundername: Education Department of Jilin Province
  funderid: 111099108
– fundername: National Key R&D Program of China
  funderid: 2016YFA0202500
– fundername: Singapore MOE AcRF Tier 1
  funderid: RG2/13; RG113/15
– fundername: National Natural Science Foundation of China
  funderid: 51602048; 51225204
– fundername: Science Technology Program of Jilin Province
  funderid: 20150520027JH
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c5058-aeb8c84c209fe3a61dcf179bb8f318e9b24ed2dc3e0bff63eedd2fcae5525a933
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri May 19 00:38:23 EDT 2023
Fri Jul 11 10:56:33 EDT 2025
Sun Jul 13 05:31:18 EDT 2025
Mon Jul 21 05:42:02 EDT 2025
Wed Oct 01 01:14:11 EDT 2025
Thu Apr 24 22:54:01 EDT 2025
Wed Jan 22 17:04:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords low-temperature performance
sodium-ion full batteries
cathodes
sodium-super-ion conductor
high energy
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5058-aeb8c84c209fe3a61dcf179bb8f318e9b24ed2dc3e0bff63eedd2fcae5525a933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
AC02-76SF00515; 51602048; 51225204; 2016YFA0202500; 20150520027JH; 111099108; RG2/13; RG113/15
ORCID 0000-0003-1069-9145
0000-0003-0322-8476
0000000310699145
0000000303228476
PMID 28639347
PQID 1934333622
PQPubID 2045203
PageCount 8
ParticipantIDs osti_scitechconnect_1394083
proquest_miscellaneous_1912613270
proquest_journals_1934333622
pubmed_primary_28639347
crossref_citationtrail_10_1002_adma_201701968
crossref_primary_10_1002_adma_201701968
wiley_primary_10_1002_adma_201701968_ADMA201701968
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Sep
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sep
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2016 2015; 5 54
2015 2013 2016; 27 135 55
2016; 6
2014 2013; 114 6
2015 2015; 27 3
2013; 1
2015; 3
2006; 8
2015 2014 2016; 3 14 6
2014; 24
2011; 56
2015 2015 2013 2015; 7 54 6 1
2016 2016; 8 55
2016; 28
2016 2015 2015; 324 54 3
2016; 24
2015 2016 2016 2014 2015 2015 2016 2016 2014; 21 6 310 26 8 8 4 28 7
e_1_2_4_18_9
e_1_2_4_18_8
e_1_2_4_1_1
e_1_2_4_1_3
e_1_2_4_2_2
e_1_2_4_3_1
e_1_2_4_1_2
e_1_2_4_2_1
e_1_2_4_3_3
e_1_2_4_4_2
e_1_2_4_5_1
e_1_2_4_1_4
e_1_2_4_3_2
e_1_2_4_4_1
e_1_2_4_6_2
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_8_2
e_1_2_4_9_1
e_1_2_4_6_3
e_1_2_4_7_2
e_1_2_4_8_1
e_1_2_4_8_3
e_1_2_4_10_1
e_1_2_4_11_1
e_1_2_4_12_1
e_1_2_4_13_1
e_1_2_4_13_2
e_1_2_4_14_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_18_3
e_1_2_4_18_2
e_1_2_4_18_5
e_1_2_4_18_4
e_1_2_4_18_7
e_1_2_4_18_6
References_xml – volume: 3
  start-page: 6271
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 56
  start-page: 4869
  year: 2011
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 7732
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 27 135 55
  start-page: 5343 13870 7445
  year: 2015 2013 2016
  publication-title: Adv. Mater. J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 8 55
  start-page: 7790 12822
  year: 2016 2016
  publication-title: ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed.
– volume: 8
  start-page: 1215
  year: 2006
  publication-title: Solid State Sci.
– volume: 1
  start-page: 13727
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 21 6 310 26 8 8 4 28 7
  start-page: 17371 1501555 102 6301 3000 3325 3431 106 1643
  year: 2015 2016 2016 2014 2015 2015 2016 2016 2014
  publication-title: Chem. Eur. J. Adv. Energy Mater. J. Power Sources Adv. Mater. Energy Environ. Sci. Energy Environ. Sci. J. Mater. Chem. A Chem. Mater. Energy Environ. Sci.
– volume: 28
  start-page: 7243
  year: 2016
  publication-title: Adv. Mater.
– volume: 114 6
  start-page: 11636 2067
  year: 2014 2013
  publication-title: Chem. Rev. Energy Environ. Sci.
– volume: 324 54 3
  start-page: 421 6452 17563
  year: 2016 2015 2015
  publication-title: J. Power Sources Angew. Chem., Int. Ed. J. Mater. Chem. A
– volume: 27 3
  start-page: 3915 13906
  year: 2015 2015
  publication-title: Adv. Mater. J. Mater. Chem. A
– volume: 6
  start-page: 45605
  year: 2016
  publication-title: RSC Adv.
– volume: 3 14 6
  start-page: 1500213 2175 1600389
  year: 2015 2014 2016
  publication-title: Adv. Sci. Nano Lett. Adv. Energy Mater.
– volume: 24
  start-page: 130
  year: 2016
  publication-title: Nano Energy
– volume: 7 54 6 1
  start-page: 19 3431 2338 e1500330
  year: 2015 2015 2013 2015
  publication-title: Nat. Chem. Angew. Chem., Int. Ed. Energy Environ. Sci. Sci. Adv.
– volume: 5 54
  start-page: 198 9911
  year: 2016 2015
  publication-title: Energy Storage Mater. Angew. Chem., Int. Ed.
– volume: 24
  start-page: 4603
  year: 2014
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_4_13_1
  doi: 10.1002/adma.201500956
– ident: e_1_2_4_2_1
  doi: 10.1021/cr500192f
– ident: e_1_2_4_14_1
  doi: 10.1039/C5TA00765H
– ident: e_1_2_4_6_1
  doi: 10.1002/advs.201500213
– ident: e_1_2_4_7_2
  doi: 10.1002/anie.201503188
– ident: e_1_2_4_1_3
  doi: 10.1039/c3ee40847g
– ident: e_1_2_4_12_1
  doi: 10.1016/j.electacta.2011.02.119
– ident: e_1_2_4_1_1
  doi: 10.1038/nchem.2085
– ident: e_1_2_4_18_8
  doi: 10.1021/acs.chemmater.5b03276
– ident: e_1_2_4_1_2
  doi: 10.1002/anie.201410376
– ident: e_1_2_4_18_4
  doi: 10.1002/adma.201401946
– ident: e_1_2_4_3_1
  doi: 10.1002/adma.201501527
– ident: e_1_2_4_8_2
  doi: 10.1002/anie.201411917
– ident: e_1_2_4_3_2
  doi: 10.1021/ja406016j
– ident: e_1_2_4_17_1
  doi: 10.1039/c3ta13438e
– ident: e_1_2_4_18_1
  doi: 10.1002/chem.201502583
– ident: e_1_2_4_18_9
  doi: 10.1039/C3EE44004D
– ident: e_1_2_4_4_1
  doi: 10.1021/acsami.5b12242
– ident: e_1_2_4_8_1
  doi: 10.1016/j.jpowsour.2016.05.096
– ident: e_1_2_4_13_2
  doi: 10.1039/C5TA01809A
– ident: e_1_2_4_5_1
  doi: 10.1016/j.nanoen.2016.04.021
– ident: e_1_2_4_4_2
  doi: 10.1002/anie.201607469
– ident: e_1_2_4_6_3
  doi: 10.1002/aenm.201600389
– ident: e_1_2_4_2_2
  doi: 10.1039/c3ee40811f
– ident: e_1_2_4_7_1
  doi: 10.1016/j.ensm.2016.07.007
– ident: e_1_2_4_18_3
  doi: 10.1016/j.jpowsour.2016.01.101
– ident: e_1_2_4_16_1
  doi: 10.1002/adma.201600846
– ident: e_1_2_4_6_2
  doi: 10.1021/nl500548a
– ident: e_1_2_4_15_1
  doi: 10.1039/C6RA06533C
– ident: e_1_2_4_18_7
  doi: 10.1039/C5TA10520J
– ident: e_1_2_4_10_1
  doi: 10.1016/j.solidstatesciences.2006.05.009
– ident: e_1_2_4_3_3
  doi: 10.1002/anie.201602202
– ident: e_1_2_4_11_1
  doi: 10.1002/adfm.201400561
– ident: e_1_2_4_1_4
  doi: 10.1126/sciadv.1500330
– ident: e_1_2_4_9_1
  doi: 10.1039/C5TA00980D
– ident: e_1_2_4_8_3
  doi: 10.1039/C5TA03164H
– ident: e_1_2_4_18_2
  doi: 10.1002/aenm.201501555
– ident: e_1_2_4_18_6
  doi: 10.1039/C5EE01876E
– ident: e_1_2_4_18_5
  doi: 10.1039/C5EE02274F
SSID ssj0009606
Score 2.6656828
Snippet Sodium‐ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short‐term cycle life, and poor...
Sodium-ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short-term cycle life, and poor...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms cathodes
Flux density
high energy
Lithium
Low temperature
low‐temperature performance
Materials science
Reaction kinetics
Rechargeable batteries
Sodium-ion batteries
sodium‐ion full batteries
sodium‐super‐ion conductor
Titration
X-ray diffraction
Title High‐Energy/Power and Low‐Temperature Cathode for Sodium‐Ion Batteries: In Situ XRD Study and Superior Full‐Cell Performance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201701968
https://www.ncbi.nlm.nih.gov/pubmed/28639347
https://www.proquest.com/docview/1934333622
https://www.proquest.com/docview/1912613270
https://www.osti.gov/biblio/1394083
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: ADMLS
  dateStart: 20120605
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0935-9648
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQnuAAlGdoQUZC4pRuYjuJ09uqD7WIoqrbSnuz_IpUdUkQTYTg1EN_AL-RX8KMs5vtIhAS3PKYiRxnxv4mnvlMyBvOYVp20sUpdz4WWJcj08THTHpwL7Ca1GA18vGH_PBcvJtls1tV_D0_xPDDDT0jjNfo4NpcjVekodoF3qDAJ55jtW_Ks7BOe7rij0J4Hsj2eBaXuZBL1saEjdfV12alUQPe9TvEuQ5gwwx08IDoZdv7xJPL7a412_bbL7SO__NyD8n9BTylk96eNsgdXz8i926RFj4mN5ga8uP6-36oGhyf4DZrVNeOvm--wOUzD0C8J2qmWF7YOE8BGNNp4y66jyBw1NS0Z_WEIH2HHtV0etF2dHa6RzGp8Wt41rRDBmZQwxAZlHb9fE5PVkUOT8j5wf7Z7mG82MshtoCxZKy9kVYKy5Ky8lznqbMVjAXGyApGFV8aJrxjznKfmKrKOUzdjlVW-yxjmS45f0pGdVP754T6vLAFOABPjRQQ7chSlFUhEi0A_LhcRCRefktlF0TnuN_GXPUUzUxh76qhdyPydpD_1FN8_FFyE01DAThBhl2LqUi2VSnuLi95RLaWFqMWA8GVAnwsOAcXYBF5PdwGF8Z1GV37pkOZFOJYzookIs96SxsawiRASC6KiLBgL39poZrsHU-Gsxf_orRJ7uJxn0e3RUbt586_BODVmlfBuX4C6UAnaw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLWgLIAF70eYAYyExCrTxHYSh101nVEL7Wg07Uizs-JHpBGdZASJEKxY8AF8I1_CvUmTUgRCgmUSO3Kce-xz7XuPCXnJOUzLVlo_5Nb5AvNyZBg4n0kH8AKrCTVmI8-P4smpeHMWddGEmAvT6kP0C26IjGa8RoDjgvRwoxqa2UY4qBEUj-VVcg036RCb45ONghQS9EZuj0d-GgvZ6TYGbLhdf2teGpSAr99xzm0K28xBh7eJ7lrfhp6826srvWc-_yLs-F-fd4fcWjNUOmpN6i654op75OZPuoX3yVeMDvn-5dtBkzg4PMaT1mhWWDorP8LtpQMu3mo1U8wwLK2jwI3porTn9QUUmJYFbYU9wU9_TacFXZxXNT07GVOMa_zUvGtRowgzVEMvGSrtu9WKHm_yHB6Q08OD5f7EXx_n4BugWdLPnJZGCsOCNHc8i0NrchgOtJY5DCwu1Uw4y6zhLtB5HnOYvS3LTeaiiEVZyvlDMijKwj0m1MWJSQADPNRSgMMjU5HmiQgyAfzHxsIjfvczlVlrneORGyvVqjQzhb2r-t71yKu-_GWr8vHHkjtoGwr4CYrsGoxGMpUK8YB5yT2y25mMWo8FHxRQZME5oIB55EX_GFCMWzNZ4coay4TgynKWBB551Jpa3xAmgUVykXiENQbzlxaq0Xg-6q-e_Eul5-T6ZDmfqdn06O0OuYH327C6XTKo3tfuKfCwSj9rkPYDRwQrhw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BkBAc-IeaFlgkJE5u7N2NveYWNY0aaKuoaaXcVvbuWqpI7QpsIThx4AF4Rp6EGTtxGgRCgqPtGWu9ntn9xp75BuCVELgtW2X9UFjnS6rLUWHgfK4cuhdaTZhRNfLRcXRwJt_OB_MrVfwtP0T3wY08o1mvycEvbd5fk4amtuENavjEI3UdbsgIQyyCRSdrAinC5w3bnhj4SSTVirYx4P1N_Y1tqVeie_0Ocm4i2GYLGt-FdDX4NvPk_W5dZbvmyy-8jv_zdPfgzhKfsmFrUPfhmisewO0rrIUP4Rvlhvz4-n2_KRvsT6nPGksLyw7LT3j61CESb5maGdUXltYxRMZsVtrz-gIFJmXBWlpPjNLfsEnBZudVzeYnI0ZZjZ-be81qomBGNYqRUWnPLRZsuq5yeARn4_3TvQN_2czBNwiylJ-6TBklDQ-S3Ik0Cq3JcTHIMpXjsuKSjEtnuTXCBVmeRwL3bstzk7rBgA_SRIjH0CvKwm0Bc1FsYvQAEWZKYrijEpnksQxSiejHRtIDf_UutVkynVPDjYVuOZq5ptnV3ex68LqTv2w5Pv4ouU2moRGdEMWuoVwkU-mQ2ssr4cHOymL0ciX4qBEgSyHQB7gHL7vL6MP0YyYtXFmTTIiBrOBx4MGT1tK6gXCFGFLI2APe2MtfRqiHo6Nhd_T0X5RewM3paKwPJ8fvtuEWnW5z6nagV32o3TMEYVX2vPGzn6TAKjY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Energy%2FPower+and+Low-Temperature+Cathode+for+Sodium-Ion+Batteries%3A+In+Situ+XRD+Study+and+Superior+Full-Cell+Performance&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Guo%2C+Jin-Zhi&rft.au=Wang%2C+Peng-Fei&rft.au=Wu%2C+Xing-Long&rft.au=Zhang%2C+Xiao-Hua&rft.date=2017-09-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=29&rft.issue=33&rft_id=info:doi/10.1002%2Fadma.201701968&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon