AI in arcing-HIF detection: a brief review

In the past few decades, the arcing-high-impedance fault (arcing-HIF) detection problems have become an important issue in the effectively grounded distribution network. Many solutions have been proposed to address this problem. The most attractive way is artificial intelligence (AI) method. The pap...

Full description

Saved in:
Bibliographic Details
Published inIET Smart Grid Vol. 3; no. 4; pp. 435 - 444
Main Author Hao, Bai
Format Journal Article
LanguageEnglish
Published Durham The Institution of Engineering and Technology 01.08.2020
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN2515-2947
2515-2947
DOI10.1049/iet-stg.2019.0091

Cover

Abstract In the past few decades, the arcing-high-impedance fault (arcing-HIF) detection problems have become an important issue in the effectively grounded distribution network. Many solutions have been proposed to address this problem. The most attractive way is artificial intelligence (AI) method. The paper gives a comprehensive review of arcing-HIF detection in distribution network-based AI. First, characteristics and models of arcing-HIF are analysed, the arcing-HIF database construction method is also explained; this part is a foundation work for arcing-HIF detection. Next, arcing-HIF detection methods based AI are summarised in details including data acquisition, feature extraction and classifier selection. Then, a set of criteria are proposed to evaluate the reliability of arcing-HIF detection algorithm. Finally, the future trends and challenges to arcing-HIF detection are also fully accounted. This review can be a valuable guide for researchers who are interested in arcing-HIF detection-based AI.
AbstractList In the past few decades, the arcing‐high‐impedance fault (arcing‐HIF) detection problems have become an important issue in the effectively grounded distribution network. Many solutions have been proposed to address this problem. The most attractive way is artificial intelligence (AI) method. The paper gives a comprehensive review of arcing‐HIF detection in distribution network‐based AI. First, characteristics and models of arcing‐HIF are analysed, the arcing‐HIF database construction method is also explained; this part is a foundation work for arcing‐HIF detection. Next, arcing‐HIF detection methods based AI are summarised in details including data acquisition, feature extraction and classifier selection. Then, a set of criteria are proposed to evaluate the reliability of arcing‐HIF detection algorithm. Finally, the future trends and challenges to arcing‐HIF detection are also fully accounted. This review can be a valuable guide for researchers who are interested in arcing‐HIF detection‐based AI.
Author Hao, Bai
Author_xml – sequence: 1
  givenname: Bai
  surname: Hao
  fullname: Hao, Bai
  email: baihao@csg.cn
  organization: Power Distribution Technology Department, Electric Power Research Institute of China Southern Power Grid, Guangzhou, People's Republic of China
BookMark eNqNkE1v1DAQhi1UJErpD-AWiRNI2Y6_Yru3UnXbSJU4sJwtx56sXIVkcbKs9t_jEFRVCAonj6z3eTXzvCYn_dAjIW8prCgIcxFxKsdpu2JAzQrA0BfklEkqS2aEOnkyvyLn4xgb4IyqSil2Sj5c1UXsC5d87LflXb0uAk7opzj0l4UrmhSxLRJ-j3h4Q162rhvx_Nd7Rr6sbzbXd-X9p9v6-uq-9BKkLhmXwvAKgXuGTNFKI214ZQRrHUBojWYKKq9cpY2H4IKugm4U5Ch6hYGfkXrpDYN7sLsUv7p0tIOL9ufHkLbWpSn6Di3IppXCGy0FE9wL44NWqJ0UWCnT6tzFlq59v3PHg-u6x0IKdpZnszyb5dlZnp3lZejdAu3S8G2P42Qfhn3q882Wg2Gc8XxiTqkl5dMwjglb6-PkZnFTcrF7tp_-Rv7PTpcLc4gdHv8N2M-bW_ZxDUD5bOH9As-xx1vqm82cesLsQpuz5R-yf1_sB6avv5o
CitedBy_id crossref_primary_10_1016_j_egyr_2022_05_199
crossref_primary_10_1109_TIA_2023_3337063
crossref_primary_10_1016_j_epsr_2022_108892
crossref_primary_10_3390_en16052280
crossref_primary_10_1109_ACCESS_2023_3329439
crossref_primary_10_1016_j_egyr_2023_09_168
crossref_primary_10_3390_en13236447
crossref_primary_10_1016_j_engappai_2023_106651
crossref_primary_10_1002_ese3_2056
crossref_primary_10_1109_TIM_2023_3322486
crossref_primary_10_1109_ACCESS_2020_3027869
Cites_doi 10.4316/aece.2010.03019
10.1109/TSG.2016.2555141
10.1109/IranianCEE.2013.6599760
10.1108/03321641111101014
10.1016/j.jesit.2017.01.004
10.1109/ICEPES.2016.7915922
10.1109/TPWRD.2005.852367
10.1109/CCECE.2008.4564660
10.1016/j.ijepes.2017.06.036
10.1016/j.ijepes.2016.04.013
10.1109/TPWRS.2012.2215630
10.1002/etep.2035
10.1016/j.ijepes.2012.12.005
10.1109/TPWRD.2007.911146
10.1016/j.ijepes.2009.01.001
10.1109/JSEN.2017.2776238
10.1007/s40866-016-0011-4
10.1109/TPWRD.2012.2222056
10.1109/ICPES.2011.6156670
10.1109/TPWRD.2010.2060214
10.1109/TPWRS.2005.861981
10.1109/TDC.2012.6281686
10.1109/PCITC.2015.7438225
10.1109/PECI.2015.7064882
10.1109/APPEEC.2010.5448673
10.1109/TPWRD.2014.2361207
10.1016/j.ijepes.2014.03.046
10.4236/epe.2013.54B160
10.1016/j.ijepes.2018.12.019
10.1007/s10015-009-0719-5
10.1109/TPWRD.2005.852273
10.1049/iet-gtd.2015.0407
10.1109/TSG.2014.2330624
10.1016/j.epsr.2017.08.039
10.1080/15325008.2012.689418
10.1049/iet-gtd.2010.0702
10.1049/iet-gtd:20070319
10.1109/DEMPED.2011.6063687
10.1049/iet-smt.2017.0231
10.1016/j.ijepes.2018.12.021
10.1109/TPWRD.2007.905273
10.1109/TPWRD.2003.820418
10.1109/TIE.2017.2726961
10.1109/SCES.2015.7506463
10.1080/15325000390248774
10.1016/j.ijepes.2018.03.008
10.1109/61.853009
10.1109/TPWRD.2013.2272936
10.1109/ICHQP.2014.6842852
10.1016/j.ijepes.2019.04.050
10.1002/etep.321
10.1016/j.ijepes.2012.06.006
10.1016/j.epsr.2016.10.021
10.1016/j.epsr.2011.01.022
10.1109/AFRCON.2017.8095447
10.1016/j.jesit.2015.03.015
10.1049/ip-gtd:20045224
10.1016/j.epsr.2019.105931
10.1109/TSG.2012.2208987
10.1109/TPWRS.2006.888990
10.1109/TPWRD.2018.2791986
ContentType Journal Article
Copyright 2020 IET Smart Grid published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 IET Smart Grid published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
– notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IDLOA
24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1049/iet-stg.2019.0091
DatabaseName IET Digital Library Open Access
Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: IDLOA
  name: IET Digital Library Open Access
  url: https://digital-library.theiet.org/content/collections
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2515-2947
EndPage 444
ExternalDocumentID oai_doaj_org_article_05bf54c9854243c49cd87e8a54e679f8
10.1049/iet-stg.2019.0091
10_1049_iet_stg_2019_0091
STG2BF00138
Genre reviewArticle
GrantInformation_xml – fundername: Science and Technology Project of CSG
  grantid: ZBKJXM20190061
– fundername: National Key R&D Program of China
  grantid: 2017YFB0902900
– fundername: Science and Technology Project of CSG
  funderid: ZBKJXM20190061
– fundername: National Key R&D Program of China
  funderid: 2017YFB0902900
GroupedDBID 24P
AAJGR
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BFFAM
EBS
EJD
GROUPED_DOAJ
IDLOA
OCL
OK1
RIE
RUI
0R~
1OC
AAHHS
AAHJG
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
HCIFZ
IAO
IGS
ITC
K7-
M7S
M~E
PIMPY
PTHSS
ROL
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
ICD
PHGZM
PHGZT
PQGLB
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c5058-2354936e03c2e27168e1b36942fa00df982706c7a689c0dad86d8b70271ec7ed3
IEDL.DBID BENPR
ISSN 2515-2947
IngestDate Fri Oct 03 12:42:57 EDT 2025
Tue Aug 19 18:09:03 EDT 2025
Fri Jul 25 11:46:08 EDT 2025
Thu Apr 24 22:55:02 EDT 2025
Wed Oct 29 21:13:41 EDT 2025
Wed Jan 22 16:31:36 EST 2025
Tue Jan 05 21:44:04 EST 2021
Sun Aug 23 04:20:23 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords fault diagnosis
arcing-HIF detection-based AI algorithm
reliability
power distribution faults
arcs (electric)
grounded distribution network
power engineering computing
artificial intelligence
artificial intelligence method
classifier selection
arcing-HIF database construction method
power distribution reliability
feature extraction
distribution network-based AI algorithm
arcing-high-impedance fault detection problems
data acquisition
Language English
License Attribution-NonCommercial-NoDerivs
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5058-2354936e03c2e27168e1b36942fa00df982706c7a689c0dad86d8b70271ec7ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3092323354?pq-origsite=%requestingapplication%&accountid=15518
PQID 3092323354
PQPubID 6853481
PageCount 10
ParticipantIDs crossref_citationtrail_10_1049_iet_stg_2019_0091
unpaywall_primary_10_1049_iet_stg_2019_0091
wiley_primary_10_1049_iet_stg_2019_0091_STG2BF00138
proquest_journals_3092323354
crossref_primary_10_1049_iet_stg_2019_0091
doaj_primary_oai_doaj_org_article_05bf54c9854243c49cd87e8a54e679f8
iet_journals_10_1049_iet_stg_2019_0091
ProviderPackageCode IDLOA
RUI
PublicationCentury 2000
PublicationDate August 2020
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace Durham
PublicationPlace_xml – name: Durham
PublicationTitle IET Smart Grid
PublicationYear 2020
Publisher The Institution of Engineering and Technology
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: The Institution of Engineering and Technology
– name: John Wiley & Sons, Inc
– name: Wiley
References Das, B. (C17) 2006; 21
Moravej, Z.; Mortazavi, S.H.; Shahrtash, S.M. (C51) 2015; 25
Milioudis, A.N.; Andreou, G.T.; Labridis, D.P.. (C1) 2015; 6
Samantaray, S.R.; Dash, P.K.; Upadhyay, S.K. (C33) 2009; 31
Zhang, J.; He, Z.Y.; Lin, S. (C65) 2013; 49
Ghaderi, A.; Ginn, H.L.; Mohammadpour, H.A. (C7) 2017; 143
Sarlak, M.; Shahrtash, S.M. (C25) 2011; 5
Guo, M.; Zeng, X.; Chen, D. (C42) 2018; 18
Shang yuwei, M.Z.P.C. (C71) 2017; 37
Geng, J.; Wang, B. (C9) 2013; 37
Jiang, H.; Zhang, J.J.; Gao, W. (C20) 2014; 5
Abdelgayed, T.S.; Morsi, W.G.; Sidhu, T.S. (C41) 2018; 9
Aziz, M.A.; Hassan, M.M.; Zahab, E.A. (C61) 2012; 40
Sedighizadeh, M. (C8) 2010; 10
Torres, V.; Guardado, J.L.; Ruiz, H.F. (C10) 2014; 61
Gautam, S.; Brahma, S.M. (C18) 2013; 28
Samantaray, S.R. (C60) 2012; 43
Mortazavi, S.H.; Moravej, Z.; Shahrtash, S.M. (C43) 2018; 94
Sulaiman, M.; Tawfan, A.; Ibrahim, Z. (C35) 2013; 7
Chen, W.; Liu, C.; Tsai, M. (C62) 2000; 15
Sarwagya, K.; De, S.; Nayak, P.K. (C3) 2018; 12
Jamil, M.; Singh, R.; Sharma, S.K. (C23) 2015; 2
Wang, X.; Song, G.; Gao, J. (C39) 2019; 107
Sarwar, M.; Mehmood, F.; Abid, M. (C57) 2019
Perera, N.; Rajapakse, A.D. (C58) 2011; 26
Li, K.; Xiangjun, Z.; Xianggen, Y. (C16) 2003; 31
Asgharigovar, S.; Pourghasem, P.; Seyedi, H. (C53) 2019; 107
Guo Moufa, Y.L.H.C. (C26) 2017; 43
Zhang, C.; Wang, F. (C70) 2009; 14
Carvalho, D.; Macedo, J.R.; Resende, J.W. (C2) 2015; 9
Gomes, D.P.S.; Ozansoy, C.; Ulhaq, A. (C38) 2018; 33
Xu, L.; Chow, M.; Taylor, L.S. (C63) 2007; 22
Nabamita, R.; Bhattacharya, K. (C19) 2014; 2
Samantaray, S.R.; Panigrahi, B.K.; Dash, P.K. (C46) 2008; 2
Prasad, A.; Belwin Edward, J.; Ravi, K. (C6) 2018; 5
Bahador, N.; Namdari, F.; Matinfar, H.R. (C28) 2018; 100
Livani, H.; Evrenosoglu, C.Y. (C56) 2013; 28
Michalik, M.; Lukowicz, M.A.; Rebizant, W. (C31) 2008; 23
Abdelgayed, T.S.; Morsi, W.G.; Sidhu, T.S. (C69) 2018; 65
Aziz, M.S.A; Hassan, M.A.M.; El-Zahab, E.A. (C5) 2012; 1
Sedighi, A.R.; Haghifam, M.R.; Malik, O.P. (C67) 2005; 20
Sheng, Y.; Rovnyak, S.M. (C59) 2004; 19
Sarlak, M.; Shahrtash, S.M. (C54) 2011; 30
Haghifam, M.R. (C64) 2015; 153
Baqui, I.; Zamora, I.; Mazón, J. (C44) 2011; 81
Xu, L.; Chow, M.Y. (C68) 2006; 21
Ghaderi, A.; Mohammadpour, H.A.; Ginn, H.L. (C45) 2015; 30
Gadanayak, D.A.; Mallick, R.K. (C40) 2019; 112
Sarlak, M.; Shahrtash, S.M. (C27) 2013; 28
Mishra, M.; Routray, P.; Rout, P.K. (C15) 2016; 1
Lima, É.M.; Brito, N.S.D.; Souza, B.A.D. (C48) 2019; 175
Samantaray, S.R.; Dash, P.K. (C37) 2010; 20
Yuan, L.; Sun, L.; Wu, H. (C13) 2013; 5
Milioudis, A.N.; Andreou, G.T.; Labridis, D.P. (C29) 2012; 3
Liu, Y.; Wu, C.; Wang, Y. (C52) 2016; 83
Silva, S.; Costa, P.; Gouvea, M. (C12) 2018; 154
Zamora, I.; Mazon, A.J.; Sagastabeitia, K.J. (C30) 2007; 22
2010; 10
2013; 28
2017; 43
2015; 30
2005; 20
2013; 7
2008; 2
2014; 61
2013; 5
2018; 9
2009; 14
2010; 20
2014; 5
2018; 5
2014; 2
2017; 37
2000; 15
2006; 21
2008; 23
2016; 83
2011; 26
2018; 33
2007; 22
2019; 112
2015; 2
2018; 100
2015; 6
2013; 49
2012
2011
2010
2011; 81
2011; 30
2008
2019; 107
2015; 9
2018; 65
2011; 5
2003; 31
2018; 18
2018; 154
2015; 25
2013; 37
2016; 1
2012; 3
2012; 1
2009; 31
2004; 19
2015; 153
2019
2017
2016
2015
2014
2018; 94
2017; 143
2013
2018; 12
2012; 43
2019; 175
2012; 40
Geng J. (e_1_2_10_10_2) 2013; 37
e_1_2_10_23_2
e_1_2_10_44_2
e_1_2_10_69_2
e_1_2_10_21_2
e_1_2_10_42_2
e_1_2_10_40_2
e_1_2_10_70_2
e_1_2_10_18_2
e_1_2_10_39_2
e_1_2_10_53_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_37_2
e_1_2_10_55_2
e_1_2_10_14_2
e_1_2_10_35_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_32_2
e_1_2_10_30_2
e_1_2_10_51_2
Milioudis A.N. (e_1_2_10_2_2) 2015; 6
Nabamita R. (e_1_2_10_20_2) 2014; 2
Shang yuwei M.Z.P.C. (e_1_2_10_72_2) 2017; 37
Guo Moufa Y.L.H.C. (e_1_2_10_27_2) 2017; 43
e_1_2_10_61_2
e_1_2_10_29_2
e_1_2_10_63_2
e_1_2_10_48_2
e_1_2_10_65_2
e_1_2_10_25_2
e_1_2_10_46_2
e_1_2_10_67_2
e_1_2_10_22_2
e_1_2_10_45_2
e_1_2_10_68_2
Sulaiman M. (e_1_2_10_36_2) 2013; 7
e_1_2_10_43_2
e_1_2_10_41_2
Sarwar M. (e_1_2_10_58_2) 2019
Aziz M.S.A (e_1_2_10_6_2) 2012; 1
e_1_2_10_19_2
e_1_2_10_71_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_52_2
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_54_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_56_2
e_1_2_10_9_2
e_1_2_10_57_2
e_1_2_10_12_2
e_1_2_10_33_2
e_1_2_10_59_2
e_1_2_10_31_2
e_1_2_10_50_2
Nilsson N. (e_1_2_10_5_2) 2014
e_1_2_10_60_2
e_1_2_10_28_2
e_1_2_10_62_2
e_1_2_10_26_2
e_1_2_10_49_2
e_1_2_10_64_2
e_1_2_10_24_2
e_1_2_10_47_2
e_1_2_10_66_2
References_xml – volume: 25
  start-page: 3288
  issue: 12
  year: 2015
  end-page: 3303
  ident: C51
  article-title: DT-CWT-based event feature extraction for high-impedance faults detection in distribution system
  publication-title: Int. Trans. Electr. Energy
– volume: 100
  start-page: 531
  year: 2018
  end-page: 539
  ident: C28
  article-title: Tree-related high-impedance fault location using phase shift measurement of high-frequency magnetic field
  publication-title: Int. J. Electr. Power
– volume: 94
  start-page: 141
  year: 2018
  end-page: 150
  ident: C43
  article-title: A hybrid method for arcing faults detection in large distribution networks
  publication-title: Int. J. Electr. Power
– volume: 20
  start-page: 2414
  issue: 4
  year: 2005
  end-page: 2421
  ident: C67
  article-title: High-impedance fault detection based on wavelet transform and statistical pattern recognition
  publication-title: IEEE Trans. Power Deliv.
– volume: 12
  start-page: 1
  issue: 1
  year: 2018
  end-page: 8
  ident: C3
  article-title: High-impedance fault detection in electrical power distribution systems using moving sum approach
  publication-title: IET Sci. Meas. Technol.
– volume: 2
  start-page: 261
  issue: 2
  year: 2008
  end-page: 270
  ident: C46
  article-title: High-impedance fault detection in power distribution networks using time–frequency transform and probabilistic neural network
  publication-title: IET Gener. Transm. Distrib.
– volume: 31
  start-page: 167
  issue: 4
  year: 2009
  end-page: 172
  ident: C33
  article-title: Adaptive Kalman filter and neural network-based high-impedance fault detection in power distribution networks
  publication-title: Int. J. Electr. Power
– volume: 2
  start-page: 237
  issue: 10
  year: 2014
  end-page: 243
  ident: C19
  article-title: Signal-energy-based fault classification of unbalanced network using S-transform and neural network
  publication-title: Int. J. Recent Trends Eng. Technol.
– volume: 5
  start-page: 833
  issue: 4
  year: 2013
  end-page: 845
  ident: C13
  article-title: Simulation of fault arc using conventional arc models
  publication-title: Energy Power Eng.
– volume: 43
  start-page: 1239
  issue: 4
  year: 2017
  end-page: 1247
  ident: C26
  article-title: Identification method of distribution network faults based on singular value of LCD-Hilbert spectrums and multilevel SVM
  publication-title: High Voltage Eng.
– volume: 43
  start-page: 1048
  issue: 1
  year: 2012
  end-page: 1055
  ident: C60
  article-title: Ensemble decision trees for high-impedance fault detection in power distribution network
  publication-title: Int. J. Electr. Power
– volume: 61
  start-page: 163
  year: 2014
  end-page: 172
  ident: C10
  article-title: Modeling and detection of high-impedance faults
  publication-title: Int. J. Electr. Power
– volume: 2
  start-page: 257
  issue: 2
  year: 2015
  end-page: 267
  ident: C23
  article-title: Fault identification in electrical power distribution system using combined discrete wavelet transform and fuzzy logic
  publication-title: J. Electr. Syst. Inf. Technol.
– volume: 20
  start-page: 382
  issue: 3
  year: 2010
  end-page: 393
  ident: C37
  article-title: High-impedance fault detection in distribution feeders using extended Kalman filter and support vector machine
  publication-title: Eur. Trans. Electr. Power
– volume: 21
  start-page: 278
  issue: 1
  year: 2006
  end-page: 285
  ident: C17
  article-title: Fuzzy logic-based fault-type identification in unbalanced radial power distribution system
  publication-title: IEEE Trans. Power Deliv.
– volume: 30
  start-page: 1260
  issue: 3
  year: 2015
  end-page: 1268
  ident: C45
  article-title: High-impedance fault detection in the distribution network using the time–frequency-based algorithm
  publication-title: IEEE Trans. Power Deliv.
– volume: 18
  start-page: 1291
  issue: 3
  year: 2018
  end-page: 1300
  ident: C42
  article-title: Deep-learning-based Earth fault detection using continuous wavelet transform and convolutional neural network in resonant grounding distribution systems
  publication-title: IEEE Sens. J.
– volume: 26
  start-page: 410
  issue: 1
  year: 2011
  end-page: 419
  ident: C58
  article-title: Recognition of fault transients using a probabilistic neural-network classifier
  publication-title: IEEE Trans. Power Deliv.
– volume: 7
  start-page: 81
  issue: 8
  year: 2013
  end-page: 91
  ident: C35
  article-title: Detecting high-impedance fault in power distribution feeder with fuzzy subtractive clustering model
  publication-title: Aust. J. Basic Appl. Sci.
– volume: 37
  start-page: 85
  issue: 16
  year: 2013
  end-page: 91
  ident: C9
  article-title: Analysis and detection of high-impedance grounding fault in neutral point effectively grounding distribution network
  publication-title: Autom. Electr. Power Syst.
– volume: 9
  start-page: 2593
  issue: 16
  year: 2015
  end-page: 2601
  ident: C2
  article-title: Proposition of an inter-harmonic-based methodology for high-impedance fault detection in distribution systems
  publication-title: IET Gener. Transm. Distrib.
– volume: 33
  start-page: 1398
  issue: 3
  year: 2018
  end-page: 1407
  ident: C38
  article-title: High-sensitivity vegetation high-impedance fault detection based on signal's high-frequency contents
  publication-title: IEEE Trans. Power Deliv.
– volume: 22
  start-page: 164
  issue: 1
  year: 2007
  end-page: 171
  ident: C63
  article-title: Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification $e$-algorithm
  publication-title: IEEE Trans. Power Syst.
– volume: 9
  start-page: 521
  issue: 2
  year: 2018
  end-page: 529
  ident: C41
  article-title: A new harmony search approach for optimal wavelets applied to fault classification
  publication-title: IEEE Trans. Smart Grid
– volume: 175
  start-page: 105931
  year: 2019
  ident: C48
  article-title: High-impedance fault detection based on Stockwell transform and third harmonic current phase angle
  publication-title: Electr. Power Syst. Res.
– volume: 81
  start-page: 1325
  issue: 7
  year: 2011
  end-page: 1333
  ident: C44
  article-title: High-impedance fault detection methodology using wavelet transform and artificial neural networks
  publication-title: Electr. Power Syst. Res.
– volume: 1
  start-page: 44
  issue: 2
  year: 2012
  end-page: 59
  ident: C5
  article-title: An artificial intelligence-based approach for high-impedance faults analysis in distribution networks
  publication-title: Int. J. Syst. Dyn. Appl.
– volume: 3
  start-page: 1621
  issue: 4
  year: 2012
  end-page: 1630
  ident: C29
  article-title: Enhanced protection scheme for smart grids using power line communications techniques – part i: detection of high-impedance fault occurrence
  publication-title: IEEE Trans. Smart Grid
– volume: 49
  start-page: 243
  year: 2013
  end-page: 252
  ident: C65
  article-title: An ANFIS-based fault classification approach in power distribution system
  publication-title: Int. J. Electr. Power
– volume: 107
  start-page: 538
  year: 2019
  end-page: 556
  ident: C39
  article-title: High-impedance fault detection method based on improved complete ensemble empirical mode decomposition for DC distribution network
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 22
  start-page: 2072
  issue: 4
  year: 2007
  end-page: 2079
  ident: C30
  article-title: New method for detecting low current faults in electrical distribution systems
  publication-title: IEEE Trans. Power Deliv.
– volume: 153
  start-page: 359
  issue: 3
  year: 2015
  end-page: 367
  ident: C64
  article-title: Development of a fuzzy inference system based on genetic algorithm for high-impedance fault detection
  publication-title: IEE Proc., Gener. Transm. Distrib.
– volume: 28
  start-page: 2282
  issue: 4
  year: 2013
  end-page: 2290
  ident: C56
  article-title: A fault classification and localization method for three-terminal circuits using machine learning
  publication-title: IEEE Trans. Power Deliv.
– volume: 28
  start-page: 1226
  issue: 2
  year: 2013
  end-page: 1234
  ident: C18
  article-title: Detection of high-impedance fault in power distribution systems using mathematical morphology
  publication-title: IEEE Trans. Power Syst.
– volume: 1
  start-page: 1
  issue: 1
  year: 2016
  end-page: 14
  ident: C15
  article-title: A universal high-impedance fault detection technique for distribution system using S-transform and pattern recognition
  publication-title: Technol. Econ. Smart Grids Sustain. Energy
– year: 2019
  ident: C57
  article-title: High-impedance fault detection and isolation in power distribution networks using support vector machines
  publication-title: J. King Saud Univ., Eng. Sci.
– volume: 23
  start-page: 58
  issue: 1
  year: 2008
  end-page: 66
  ident: C31
  article-title: New ANN-based algorithms for detecting HIFs in multigrounded MV networks
  publication-title: IEEE Trans. Power Deliv.
– volume: 6
  start-page: 894
  issue: 2
  year: 2015
  end-page: 902
  ident: C1
  article-title: Detection and location of high-impedance faults in multi-conductor overhead distribution lines using power line communication devices
  publication-title: IEEE Trans. Power Syst.
– volume: 5
  start-page: 588
  issue: 5
  year: 2011
  end-page: 593
  ident: C25
  article-title: High-impedance fault detection using combination of multi-layer perceptron neural networks based on multi-resolution morphological gradient features of current waveform
  publication-title: IET Gener. Transm. Distrib.
– volume: 154
  start-page: 474
  year: 2018
  end-page: 483
  ident: C12
  article-title: High-impedance fault detection in power distribution systems using wavelet transform and evolving neural network
  publication-title: Electr. Power Syst. Res.
– volume: 10
  start-page: 114
  issue: 3
  year: 2010
  end-page: 128
  ident: C8
  article-title: Approaches in high-impedance fault detection – a chronological review
  publication-title: Adv. Electr. Comput. Eng.
– volume: 143
  start-page: 376
  year: 2017
  end-page: 388
  ident: C7
  article-title: High-impedance fault detection: a review
  publication-title: Electr. Power Syst. Res.
– volume: 37
  start-page: 5560
  issue: 19
  year: 2017
  end-page: 5565
  ident: C71
  article-title: Study of a novel machine learning method embedding expertise part i: proposals and fundamentals of guiding learning
  publication-title: Proc. CSEE
– volume: 30
  start-page: 431
  issue: 2
  year: 2011
  end-page: 450
  ident: C54
  article-title: SVM-based method for high-impedance faults detection in distribution networks
  publication-title: Int. J. Comput. Math. Electr. Electron. Eng.
– volume: 40
  start-page: 1300
  issue: 11
  year: 2012
  end-page: 1318
  ident: C61
  article-title: High-impedance faults analysis in distribution networks using an adaptive neuro fuzzy inference system
  publication-title: Electr. Power Compon. Syst.
– volume: 65
  start-page: 1595
  issue: 2
  year: 2018
  end-page: 1605
  ident: C69
  article-title: Fault detection and classification based on co-training of semi-supervised machine learning
  publication-title: IEEE Trans. Ind. Electron.
– volume: 5
  start-page: 2947
  issue: 6
  year: 2014
  end-page: 2956
  ident: C20
  article-title: Fault detection, identification, and location in smart grid based on data-driven computational methods
  publication-title: IEEE Trans. Smart Grid
– volume: 21
  start-page: 53
  issue: 1
  year: 2006
  end-page: 60
  ident: C68
  article-title: A classification approach for power distribution systems fault cause identification
  publication-title: IEEE Trans. Power Syst.
– volume: 107
  start-page: 412
  year: 2019
  end-page: 421
  ident: C53
  article-title: High-impedance fault protection scheme for smart grids based on WPT and ELM considering evolving and cross-country faults
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 15
  start-page: 710
  issue: 2
  year: 2000
  end-page: 717
  ident: C62
  article-title: Online fault diagnosis of distribution substations using hybrid cause-effect network and fuzzy rule-based method
  publication-title: IEEE Trans. Power Deliv.
– volume: 83
  start-page: 149
  year: 2016
  end-page: 157
  ident: C52
  article-title: Detection of serial arc fault on low-voltage indoor power lines by using radial basis function neural network
  publication-title: Int. J. Electr. Power
– volume: 31
  start-page: 1133
  issue: 12
  year: 2003
  end-page: 1150
  ident: C16
  article-title: Novel methods for high-impedance ground-fault protection in low-voltage supply systems
  publication-title: Electr. Power Compon. Syst.
– volume: 28
  start-page: 67
  issue: 1
  year: 2013
  end-page: 74
  ident: C27
  article-title: High-impedance faulted branch identification using magnetic-field signature analysis
  publication-title: IEEE Trans. Power Deliv.
– volume: 5
  start-page: 48
  issue: 1
  year: 2018
  end-page: 60
  ident: C6
  article-title: A review on fault classification methodologies in power transmission systems: part-I
  publication-title: J. Electr. Syst. Inf. Technol.
– volume: 19
  start-page: 533
  issue: 2
  year: 2004
  end-page: 536
  ident: C59
  article-title: Decision tree-based methodology for high-impedance fault detection
  publication-title: IEEE Trans. Power Deliv.
– volume: 14
  start-page: 445
  issue: 4
  year: 2009
  end-page: 448
  ident: C70
  article-title: Graph-based semi-supervised learning
  publication-title: Artif. Life Robot.
– volume: 112
  start-page: 282
  year: 2019
  end-page: 293
  ident: C40
  article-title: Inter-harmonics based high-impedance fault detection in distribution systems using maximum overlap wavelet packet transform and a modified empirical mode decomposition
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 153
  start-page: 359
  issue: 3
  year: 2015
  end-page: 367
  article-title: Development of a fuzzy inference system based on genetic algorithm for high‐impedance fault detection
  publication-title: IEE Proc., Gener. Transm. Distrib.
– volume: 20
  start-page: 2414
  issue: 4
  year: 2005
  end-page: 2421
  article-title: High‐impedance fault detection based on wavelet transform and statistical pattern recognition
  publication-title: IEEE Trans. Power Deliv.
– volume: 5
  start-page: 833
  issue: 4
  year: 2013
  end-page: 845
  article-title: Simulation of fault arc using conventional arc models
  publication-title: Energy Power Eng.
– volume: 9
  start-page: 521
  issue: 2
  year: 2018
  end-page: 529
  article-title: A new harmony search approach for optimal wavelets applied to fault classification
  publication-title: IEEE Trans. Smart Grid
– volume: 31
  start-page: 167
  issue: 4
  year: 2009
  end-page: 172
  article-title: Adaptive Kalman filter and neural network‐based high‐impedance fault detection in power distribution networks
  publication-title: Int. J. Electr. Power
– volume: 2
  start-page: 257
  issue: 2
  year: 2015
  end-page: 267
  article-title: Fault identification in electrical power distribution system using combined discrete wavelet transform and fuzzy logic
  publication-title: J. Electr. Syst. Inf. Technol.
– volume: 28
  start-page: 67
  issue: 1
  year: 2013
  end-page: 74
  article-title: High‐impedance faulted branch identification using magnetic‐field signature analysis
  publication-title: IEEE Trans. Power Deliv.
– volume: 1
  start-page: 1
  issue: 1
  year: 2016
  end-page: 14
  article-title: A universal high‐impedance fault detection technique for distribution system using S‐transform and pattern recognition
  publication-title: Technol. Econ. Smart Grids Sustain. Energy
– volume: 7
  start-page: 81
  issue: 8
  year: 2013
  end-page: 91
  article-title: Detecting high‐impedance fault in power distribution feeder with fuzzy subtractive clustering model
  publication-title: Aust. J. Basic Appl. Sci.
– volume: 100
  start-page: 531
  year: 2018
  end-page: 539
  article-title: Tree‐related high‐impedance fault location using phase shift measurement of high‐frequency magnetic field
  publication-title: Int. J. Electr. Power
– volume: 107
  start-page: 412
  year: 2019
  end-page: 421
  article-title: High‐impedance fault protection scheme for smart grids based on WPT and ELM considering evolving and cross‐country faults
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 37
  start-page: 85
  issue: 16
  year: 2013
  end-page: 91
  article-title: Analysis and detection of high‐impedance grounding fault in neutral point effectively grounding distribution network
  publication-title: Autom. Electr. Power Syst.
– volume: 18
  start-page: 1291
  issue: 3
  year: 2018
  end-page: 1300
  article-title: Deep‐learning‐based Earth fault detection using continuous wavelet transform and convolutional neural network in resonant grounding distribution systems
  publication-title: IEEE Sens. J.
– volume: 143
  start-page: 376
  year: 2017
  end-page: 388
  article-title: High‐impedance fault detection: a review
  publication-title: Electr. Power Syst. Res.
– year: 2014
– volume: 43
  start-page: 1048
  issue: 1
  year: 2012
  end-page: 1055
  article-title: Ensemble decision trees for high‐impedance fault detection in power distribution network
  publication-title: Int. J. Electr. Power
– volume: 31
  start-page: 1133
  issue: 12
  year: 2003
  end-page: 1150
  article-title: Novel methods for high‐impedance ground‐fault protection in low‐voltage supply systems
  publication-title: Electr. Power Compon. Syst.
– year: 2019
  article-title: High‐impedance fault detection and isolation in power distribution networks using support vector machines
  publication-title: J. King Saud Univ., Eng. Sci.
– volume: 5
  start-page: 48
  issue: 1
  year: 2018
  end-page: 60
  article-title: A review on fault classification methodologies in power transmission systems: part‐I
  publication-title: J. Electr. Syst. Inf. Technol.
– volume: 1
  start-page: 44
  issue: 2
  year: 2012
  end-page: 59
  article-title: An artificial intelligence‐based approach for high‐impedance faults analysis in distribution networks
  publication-title: Int. J. Syst. Dyn. Appl.
– start-page: 612
  year: 2011
  end-page: 619
  article-title: Applications of ANFIS in high‐impedance faults detection and classification in distribution networks
– volume: 21
  start-page: 53
  issue: 1
  year: 2006
  end-page: 60
  article-title: A classification approach for power distribution systems fault cause identification
  publication-title: IEEE Trans. Power Syst.
– volume: 49
  start-page: 243
  year: 2013
  end-page: 252
  article-title: An ANFIS‐based fault classification approach in power distribution system
  publication-title: Int. J. Electr. Power
– start-page: 1
  year: 2010
  end-page: 4
  article-title: Comparison of two fault classification schemes in non‐effectively grounded distribution system and their combination
– volume: 107
  start-page: 538
  year: 2019
  end-page: 556
  article-title: High‐impedance fault detection method based on improved complete ensemble empirical mode decomposition for DC distribution network
  publication-title: Int. J. Electr. Power Energy Syst.
– start-page: 31
  year: 2011
  end-page: 37
  article-title: An artificial intelligence‐based approach for high‐impedance faults analysis in distribution networks under different loading conditions
– volume: 33
  start-page: 1398
  issue: 3
  year: 2018
  end-page: 1407
  article-title: High‐sensitivity vegetation high‐impedance fault detection based on signal's high‐frequency contents
  publication-title: IEEE Trans. Power Deliv.
– volume: 21
  start-page: 278
  issue: 1
  year: 2006
  end-page: 285
  article-title: Fuzzy logic‐based fault‐type identification in unbalanced radial power distribution system
  publication-title: IEEE Trans. Power Deliv.
– volume: 3
  start-page: 1621
  issue: 4
  year: 2012
  end-page: 1630
  article-title: Enhanced protection scheme for smart grids using power line communications techniques – part i: detection of high‐impedance fault occurrence
  publication-title: IEEE Trans. Smart Grid
– volume: 30
  start-page: 431
  issue: 2
  year: 2011
  end-page: 450
  article-title: SVM‐based method for high‐impedance faults detection in distribution networks
  publication-title: Int. J. Comput. Math. Electr. Electron. Eng.
– volume: 2
  start-page: 261
  issue: 2
  year: 2008
  end-page: 270
  article-title: High‐impedance fault detection in power distribution networks using time–frequency transform and probabilistic neural network
  publication-title: IET Gener. Transm. Distrib.
– volume: 40
  start-page: 1300
  issue: 11
  year: 2012
  end-page: 1318
  article-title: High‐impedance faults analysis in distribution networks using an adaptive neuro fuzzy inference system
  publication-title: Electr. Power Compon. Syst.
– volume: 22
  start-page: 2072
  issue: 4
  year: 2007
  end-page: 2079
  article-title: New method for detecting low current faults in electrical distribution systems
  publication-title: IEEE Trans. Power Deliv.
– volume: 81
  start-page: 1325
  issue: 7
  year: 2011
  end-page: 1333
  article-title: High‐impedance fault detection methodology using wavelet transform and artificial neural networks
  publication-title: Electr. Power Syst. Res.
– volume: 83
  start-page: 149
  year: 2016
  end-page: 157
  article-title: Detection of serial arc fault on low‐voltage indoor power lines by using radial basis function neural network
  publication-title: Int. J. Electr. Power
– volume: 94
  start-page: 141
  year: 2018
  end-page: 150
  article-title: A hybrid method for arcing faults detection in large distribution networks
  publication-title: Int. J. Electr. Power
– start-page: 1
  year: 2015
  end-page: 6
  article-title: Continuous wavelet transform and artificial neural network‐based fault diagnosis in 52 bus hybrid distributed generation system
– start-page: 1
  year: 2013
  end-page: 6
  article-title: Detection and classification of high‐impedance faults in power distribution networks using art neural networks
– start-page: 1
  year: 2011
  end-page: 5
  article-title: Empirical mode decomposition‐based probabilistic neural network for faults classification
– volume: 5
  start-page: 588
  issue: 5
  year: 2011
  end-page: 593
  article-title: High‐impedance fault detection using combination of multi‐layer perceptron neural networks based on multi‐resolution morphological gradient features of current waveform
  publication-title: IET Gener. Transm. Distrib.
– volume: 43
  start-page: 1239
  issue: 4
  year: 2017
  end-page: 1247
  article-title: Identification method of distribution network faults based on singular value of LCD‐Hilbert spectrums and multilevel SVM
  publication-title: High Voltage Eng.
– volume: 26
  start-page: 410
  issue: 1
  year: 2011
  end-page: 419
  article-title: Recognition of fault transients using a probabilistic neural‐network classifier
  publication-title: IEEE Trans. Power Deliv.
– start-page: 77
  year: 2014
  end-page: 81
  article-title: The evolution of high‐impedance fault modeling
– volume: 175
  year: 2019
  article-title: High‐impedance fault detection based on Stockwell transform and third harmonic current phase angle
  publication-title: Electr. Power Syst. Res.
– volume: 65
  start-page: 1595
  issue: 2
  year: 2018
  end-page: 1605
  article-title: Fault detection and classification based on co‐training of semi‐supervised machine learning
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 1
  year: 2012
  end-page: 5
  article-title: A fault classification method in power systems using DWT and SVM classifier
– volume: 9
  start-page: 2593
  issue: 16
  year: 2015
  end-page: 2601
  article-title: Proposition of an inter‐harmonic‐based methodology for high‐impedance fault detection in distribution systems
  publication-title: IET Gener. Transm. Distrib.
– volume: 15
  start-page: 710
  issue: 2
  year: 2000
  end-page: 717
  article-title: Online fault diagnosis of distribution substations using hybrid cause‐effect network and fuzzy rule‐based method
  publication-title: IEEE Trans. Power Deliv.
– volume: 37
  start-page: 5560
  issue: 19
  year: 2017
  end-page: 5565
  article-title: Study of a novel machine learning method embedding expertise part i: proposals and fundamentals of guiding learning
  publication-title: Proc. CSEE
– start-page: 1
  year: 2015
  end-page: 5
  article-title: High‐impedance fault detection method efficiency: simulation versus real‐world data acquisition
– volume: 12
  start-page: 1
  issue: 1
  year: 2018
  end-page: 8
  article-title: High‐impedance fault detection in electrical power distribution systems using moving sum approach
  publication-title: IET Sci. Meas. Technol.
– start-page: 545
  year: 2015
  end-page: 551
  article-title: High‐impedance fault detection in radial distribution system using S‐transform and neural network
– volume: 14
  start-page: 445
  issue: 4
  year: 2009
  end-page: 448
  article-title: Graph‐based semi‐supervised learning
  publication-title: Artif. Life Robot.
– volume: 154
  start-page: 474
  year: 2018
  end-page: 483
  article-title: High‐impedance fault detection in power distribution systems using wavelet transform and evolving neural network
  publication-title: Electr. Power Syst. Res.
– volume: 20
  start-page: 382
  issue: 3
  year: 2010
  end-page: 393
  article-title: High‐impedance fault detection in distribution feeders using extended Kalman filter and support vector machine
  publication-title: Eur. Trans. Electr. Power
– volume: 6
  start-page: 894
  issue: 2
  year: 2015
  end-page: 902
  article-title: Detection and location of high‐impedance faults in multi‐conductor overhead distribution lines using power line communication devices
  publication-title: IEEE Trans. Power Syst.
– volume: 28
  start-page: 1226
  issue: 2
  year: 2013
  end-page: 1234
  article-title: Detection of high‐impedance fault in power distribution systems using mathematical morphology
  publication-title: IEEE Trans. Power Syst.
– volume: 30
  start-page: 1260
  issue: 3
  year: 2015
  end-page: 1268
  article-title: High‐impedance fault detection in the distribution network using the time–frequency‐based algorithm
  publication-title: IEEE Trans. Power Deliv.
– volume: 61
  start-page: 163
  year: 2014
  end-page: 172
  article-title: Modeling and detection of high‐impedance faults
  publication-title: Int. J. Electr. Power
– volume: 5
  start-page: 2947
  issue: 6
  year: 2014
  end-page: 2956
  article-title: Fault detection, identification, and location in smart grid based on data‐driven computational methods
  publication-title: IEEE Trans. Smart Grid
– volume: 28
  start-page: 2282
  issue: 4
  year: 2013
  end-page: 2290
  article-title: A fault classification and localization method for three‐terminal circuits using machine learning
  publication-title: IEEE Trans. Power Deliv.
– volume: 10
  start-page: 114
  issue: 3
  year: 2010
  end-page: 128
  article-title: Approaches in high‐impedance fault detection – a chronological review
  publication-title: Adv. Electr. Comput. Eng.
– start-page: 151
  year: 2016
  end-page: 156
  article-title: HIF detection using wavelet transform, travelling wave and support vector machine
– volume: 25
  start-page: 3288
  issue: 12
  year: 2015
  end-page: 3303
  article-title: DT‐CWT‐based event feature extraction for high‐impedance faults detection in distribution system
  publication-title: Int. Trans. Electr. Energy
– volume: 2
  start-page: 237
  issue: 10
  year: 2014
  end-page: 243
  article-title: Signal‐energy‐based fault classification of unbalanced network using S‐transform and neural network
  publication-title: Int. J. Recent Trends Eng. Technol.
– volume: 22
  start-page: 164
  issue: 1
  year: 2007
  end-page: 171
  article-title: Power distribution fault cause identification with imbalanced data using the data mining‐based fuzzy classification $e$‐algorithm
  publication-title: IEEE Trans. Power Syst.
– start-page: 10
  year: 2017
  end-page: 14
  article-title: High‐impedance fault detection technique based on discrete wavelet transform and support vector machine in power distribution networks
– start-page: 871
  year: 2008
  end-page: 876
  article-title: A fuzzy art map‐based high‐impedance arc fault detection scheme
– volume: 23
  start-page: 58
  issue: 1
  year: 2008
  end-page: 66
  article-title: New ANN‐based algorithms for detecting HIFs in multigrounded MV networks
  publication-title: IEEE Trans. Power Deliv.
– volume: 112
  start-page: 282
  year: 2019
  end-page: 293
  article-title: Inter‐harmonics based high‐impedance fault detection in distribution systems using maximum overlap wavelet packet transform and a modified empirical mode decomposition
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 19
  start-page: 533
  issue: 2
  year: 2004
  end-page: 536
  article-title: Decision tree‐based methodology for high‐impedance fault detection
  publication-title: IEEE Trans. Power Deliv.
– ident: e_1_2_10_9_2
  doi: 10.4316/aece.2010.03019
– ident: e_1_2_10_42_2
  doi: 10.1109/TSG.2016.2555141
– ident: e_1_2_10_50_2
  doi: 10.1109/IranianCEE.2013.6599760
– ident: e_1_2_10_55_2
  doi: 10.1108/03321641111101014
– ident: e_1_2_10_7_2
  doi: 10.1016/j.jesit.2017.01.004
– year: 2019
  ident: e_1_2_10_58_2
  article-title: High‐impedance fault detection and isolation in power distribution networks using support vector machines
  publication-title: J. King Saud Univ., Eng. Sci.
– ident: e_1_2_10_25_2
  doi: 10.1109/ICEPES.2016.7915922
– ident: e_1_2_10_68_2
  doi: 10.1109/TPWRD.2005.852367
– ident: e_1_2_10_67_2
  doi: 10.1109/CCECE.2008.4564660
– volume: 37
  start-page: 5560
  issue: 19
  year: 2017
  ident: e_1_2_10_72_2
  article-title: Study of a novel machine learning method embedding expertise part i: proposals and fundamentals of guiding learning
  publication-title: Proc. CSEE
– ident: e_1_2_10_44_2
  doi: 10.1016/j.ijepes.2017.06.036
– ident: e_1_2_10_53_2
  doi: 10.1016/j.ijepes.2016.04.013
– volume: 1
  start-page: 44
  issue: 2
  year: 2012
  ident: e_1_2_10_6_2
  article-title: An artificial intelligence‐based approach for high‐impedance faults analysis in distribution networks
  publication-title: Int. J. Syst. Dyn. Appl.
– volume: 7
  start-page: 81
  issue: 8
  year: 2013
  ident: e_1_2_10_36_2
  article-title: Detecting high‐impedance fault in power distribution feeder with fuzzy subtractive clustering model
  publication-title: Aust. J. Basic Appl. Sci.
– ident: e_1_2_10_19_2
  doi: 10.1109/TPWRS.2012.2215630
– ident: e_1_2_10_52_2
  doi: 10.1002/etep.2035
– ident: e_1_2_10_66_2
  doi: 10.1016/j.ijepes.2012.12.005
– ident: e_1_2_10_32_2
  doi: 10.1109/TPWRD.2007.911146
– ident: e_1_2_10_34_2
  doi: 10.1016/j.ijepes.2009.01.001
– ident: e_1_2_10_43_2
  doi: 10.1109/JSEN.2017.2776238
– ident: e_1_2_10_16_2
  doi: 10.1007/s40866-016-0011-4
– ident: e_1_2_10_28_2
  doi: 10.1109/TPWRD.2012.2222056
– ident: e_1_2_10_22_2
  doi: 10.1109/ICPES.2011.6156670
– ident: e_1_2_10_59_2
  doi: 10.1109/TPWRD.2010.2060214
– ident: e_1_2_10_69_2
  doi: 10.1109/TPWRS.2005.861981
– ident: e_1_2_10_23_2
  doi: 10.1109/TDC.2012.6281686
– ident: e_1_2_10_48_2
  doi: 10.1109/PCITC.2015.7438225
– ident: e_1_2_10_15_2
  doi: 10.1109/PECI.2015.7064882
– ident: e_1_2_10_33_2
  doi: 10.1109/APPEEC.2010.5448673
– ident: e_1_2_10_46_2
  doi: 10.1109/TPWRD.2014.2361207
– ident: e_1_2_10_11_2
  doi: 10.1016/j.ijepes.2014.03.046
– ident: e_1_2_10_14_2
  doi: 10.4236/epe.2013.54B160
– ident: e_1_2_10_54_2
  doi: 10.1016/j.ijepes.2018.12.019
– ident: e_1_2_10_71_2
  doi: 10.1007/s10015-009-0719-5
– ident: e_1_2_10_18_2
  doi: 10.1109/TPWRD.2005.852273
– ident: e_1_2_10_3_2
  doi: 10.1049/iet-gtd.2015.0407
– volume: 37
  start-page: 85
  issue: 16
  year: 2013
  ident: e_1_2_10_10_2
  article-title: Analysis and detection of high‐impedance grounding fault in neutral point effectively grounding distribution network
  publication-title: Autom. Electr. Power Syst.
– ident: e_1_2_10_37_2
– ident: e_1_2_10_21_2
  doi: 10.1109/TSG.2014.2330624
– ident: e_1_2_10_13_2
  doi: 10.1016/j.epsr.2017.08.039
– ident: e_1_2_10_62_2
  doi: 10.1080/15325008.2012.689418
– ident: e_1_2_10_26_2
  doi: 10.1049/iet-gtd.2010.0702
– ident: e_1_2_10_47_2
  doi: 10.1049/iet-gtd:20070319
– ident: e_1_2_10_35_2
  doi: 10.1109/DEMPED.2011.6063687
– ident: e_1_2_10_4_2
  doi: 10.1049/iet-smt.2017.0231
– ident: e_1_2_10_40_2
  doi: 10.1016/j.ijepes.2018.12.021
– ident: e_1_2_10_31_2
  doi: 10.1109/TPWRD.2007.905273
– ident: e_1_2_10_60_2
  doi: 10.1109/TPWRD.2003.820418
– ident: e_1_2_10_70_2
  doi: 10.1109/TIE.2017.2726961
– ident: e_1_2_10_51_2
  doi: 10.1109/SCES.2015.7506463
– volume: 6
  start-page: 894
  issue: 2
  year: 2015
  ident: e_1_2_10_2_2
  article-title: Detection and location of high‐impedance faults in multi‐conductor overhead distribution lines using power line communication devices
  publication-title: IEEE Trans. Power Syst.
– ident: e_1_2_10_17_2
  doi: 10.1080/15325000390248774
– ident: e_1_2_10_29_2
  doi: 10.1016/j.ijepes.2018.03.008
– ident: e_1_2_10_63_2
  doi: 10.1109/61.853009
– ident: e_1_2_10_57_2
  doi: 10.1109/TPWRD.2013.2272936
– ident: e_1_2_10_12_2
  doi: 10.1109/ICHQP.2014.6842852
– ident: e_1_2_10_41_2
  doi: 10.1016/j.ijepes.2019.04.050
– ident: e_1_2_10_38_2
  doi: 10.1002/etep.321
– ident: e_1_2_10_61_2
  doi: 10.1016/j.ijepes.2012.06.006
– ident: e_1_2_10_8_2
  doi: 10.1016/j.epsr.2016.10.021
– ident: e_1_2_10_45_2
  doi: 10.1016/j.epsr.2011.01.022
– ident: e_1_2_10_56_2
  doi: 10.1109/AFRCON.2017.8095447
– volume-title: Principles of artificial intelligence
  year: 2014
  ident: e_1_2_10_5_2
– volume: 43
  start-page: 1239
  issue: 4
  year: 2017
  ident: e_1_2_10_27_2
  article-title: Identification method of distribution network faults based on singular value of LCD‐Hilbert spectrums and multilevel SVM
  publication-title: High Voltage Eng.
– ident: e_1_2_10_24_2
  doi: 10.1016/j.jesit.2015.03.015
– volume: 2
  start-page: 237
  issue: 10
  year: 2014
  ident: e_1_2_10_20_2
  article-title: Signal‐energy‐based fault classification of unbalanced network using S‐transform and neural network
  publication-title: Int. J. Recent Trends Eng. Technol.
– ident: e_1_2_10_65_2
  doi: 10.1049/ip-gtd:20045224
– ident: e_1_2_10_49_2
  doi: 10.1016/j.epsr.2019.105931
– ident: e_1_2_10_30_2
  doi: 10.1109/TSG.2012.2208987
– ident: e_1_2_10_64_2
  doi: 10.1109/TPWRS.2006.888990
– ident: e_1_2_10_39_2
  doi: 10.1109/TPWRD.2018.2791986
SSID ssib032176772
ssj0002810737
Score 2.2319143
SecondaryResourceType review_article
Snippet In the past few decades, the arcing-high-impedance fault (arcing-HIF) detection problems have become an important issue in the effectively grounded...
In the past few decades, the arcing‐high‐impedance fault (arcing‐HIF) detection problems have become an important issue in the effectively grounded...
SourceID doaj
unpaywall
proquest
crossref
wiley
iet
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 435
SubjectTerms Algorithms
arcing-hif database construction method
arcing-hif detection-based ai algorithm
arcing-high-impedance fault detection problems
arcs (electric)
Artificial intelligence
artificial intelligence method
Asymmetry
B0170N Reliability
B8120J Distribution networks
C6170 Expert systems and other AI software and techniques
C7410B Power engineering computing
classifier selection
Cognition & reasoning
Data acquisition
distribution network-based ai algorithm
Electricity distribution
Energy
fault diagnosis
feature extraction
grounded distribution network
Morphology
power distribution faults
power distribution reliability
power engineering computing
reliability
Simulation
Software
Special Issue: Machine Learning in Power Systems
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLm0PFS2tmkJRhFAPVBGOv2L3BohlF4leukjcLH8i0CpdQRDi3zN2wrJ7gR56i6KXxHljyzP2-A1Cu9zXJJDoKypiWq2yuJIBrhy3zkcpg8oCpme_xficnV7wi6VSXyknrJcH7onbx9xGzpySnBFGHVPOyyZIw1kQjYr5mC-WaimYus5LRhDW0Gaxjan2r0JX3XaXKZkrKVSqemUiynr9ML0AasXVfHvXzs3DvZnNVp3XPPuM1tGHwW0sD_rmfkRvQvsJvV8SE9xAeweT8qotU22g9rIaT0alD11OtGp_laa0EBPHsj-p8hmdj46nR-NqqIQAnGEOXZlCGEdFwNQBsxDiyFBbKhQj0WDso5KkwcI1RkjlsDdeCi9tAyFnHVwTPP2C1tq_bfiKyto0hsooBA6WGYJtYMLz2gJhJrhYFwg_0aLdIBOeqlXMdN6uZkoDRxqY1IlJnZgs0N7ikXmvkfES-DBxvQAmeet8A4yuB6Pr14xeoB_pxcNwu33pazsrwMnxVP-ZnjwD9NzHAm09WfwZSTG4voQC8QX6uegF__J_NPeT15GpIeRwlPeKv_0PVjbRO5JWA3J64hZa627uwndwmTq7nUfHI_VfDLU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IET Digital Library Open Access
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxRBEG5kc9CLGFQcjWEQ8RAZ0tOv6cktiVl3Rb24gdyaflQvgWWy6IaQf291z-wuCxJzG4ZvHv1VzXRVdz0I-ShDzYDFUHEV02qVo5UGPPLS-RC1hjYXMP3xU00uxbcrebVNjw7X89Qro1qvuKXVcugzD1LoNv6HjweO-4YkaN8eI6D6s5qnMK1UezKlsu8x9M7ZiOxNv3wfXCzUL47mt0JrcrO5-Y9rd6anXMUfJx1E7RigT2-7pb2_s4vFrkmb56TxC_J8MCbL0176--QJdC_J0em0vO7K1COom1eT6bgMsMoBV91JaUuHvnEs-4yVV-RyfDE7n1RDRwTkjkpUaY7uHFdAuUeG0dXRUDuuWsGipTTEVrOGKt9YpVtPgw1aBe0adD1r8A0E_pqMupsO3pCyto3lOipFwQnLqAOhgqydrqkFH-uC0DURxg_lwlPXioXJ29aiNciKQe5M4s4k7gpytLlk2dfKeAh8ltjdAFOZ63wCZW2Gr8ZQ6aIUvtVSMMG9aH3QDWgrBaimjbogn9KN1yrx0NM-7ACnFzPza_Z1CzDLEAtysJbxFskpmsCMI_EF-byR-2PGx7Nm_B-ZXoSdjfOe8dvHDugdecaS559DEQ_IaPX7Ft6jebRyh4PW_wV0ywgD
  priority: 102
  providerName: Institution of Engineering and Technology
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA4y-6A-rHfsukoR8UHtkObWxLdZ2XFGcBGcgfUp5DqKQ3fY7SD65E_wN_pLTNJO1xFZFXwr5aRpziU5JznnCwCPqC2RQ94WmPm4W6VhwV14MlQb6zl3IgGYvj5ikzl5dUyPu8q6VAvjmg7l5v2wxYroN9-ilaS5Oxr7yvp2zm8jUCJiy-KsWcRsrQhBGSvadxgNDvoA7MyP3ozexWvmwupdIEGq_nzzN-22VqgE5B_WnUC15YNeXtcr9fmTWi63vdq0LI2vgWYzoDYb5eNw3eih-fIL1uN_HvF1sNu5sfmo1bsb4JKrb4KrP4Eb3gLPRtP8Q53Hu4rqxfev3ybTcW5dk1K_6ue5ynWI0n3e1s7cBvPx4ezFpOjuZghShDQYFw6BJWYOYhNkHYIu7kqNmSDIKwitFxxVkJlKMS4MtMpyZrmuQhBcOlM5i--AQX1Su7sgL1WlMPeMQaeJQlA7wiwtNS-hcsaXGYAbeUjTAZfH-zOWMh2gEyEDI2RghIyMkJERGXjSN1m1qB0XER9EIfeEEXA7vTg5XcjOfiWk2lNiBKcEEWyIMJZXjitKHKuE5xl4HD_cTQBnF_X2cItwejiTb2cvzwlkEHQG9jeqdk6JYXDGEQ6Mz8DTXv3-Znw4adKfKeOPoINxOr3e-6c-7oErKG5EpMzIfTBoTtfufvDWGv2gs74fIxw7Pg
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOiKdIW1CEEAcgwvErNre26rKLBEJiK_Vm-bmqtEpXbSrUGz-B38gvYexkU1ZIBXGLorGTfJ6JZ8b2Nwi95L4mgURfURFTtsriSga4ctw6H6UMKhOYfvospsfs4wk_2UKH67MwPT_EmHBLlpH_18nAje2rkIBTC4N4Grrqoluk3VmJcjKdYL9Vgz-T1JywL2OihUiIcDJ3JkzlvCKKNePqpnr3Ry8b81Om8YdZB6Q2PNDbl-3KXH0zy-WmT5snpcl9dG_wJsv9fvgfoK3QPkR3f-MYfITe7s_K07ZMJYPaxc_vP6azSelDl3dgte9LU1oIlmPZH2F5jI4nR_PDaTWUSAAwMQcdpxDfUREwdQA5xD4y1JYKxUg0GPuoJGmwcI0RUjnsjZfCS9tALFoH1wRPn6Dt9qwNT1FZm8ZQGYXAwTJDsA1MeF5bgM8EF-sC4TUw2g384amMxVLndWymNKCkAUudsNQJywK9HpusevKMm4QPEtqjYOK9zjfOzhd6MCONuY2cOSU5I4w6ppyXTZCGsyAaFWWBXqWOBzu8uOlpLzYEZ0dz_XX-4VpAr3ws0N56zK8lKQafmFAAvkBvRj34l--jWVP-LplehBxM8iLyzn-12kV3SMoL5I2Ke2i7O78Mz8B56uzzbBy_ANclDhk
  priority: 102
  providerName: Wiley-Blackwell
Title AI in arcing-HIF detection: a brief review
URI http://digital-library.theiet.org/content/journals/10.1049/iet-stg.2019.0091
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-stg.2019.0091
https://www.proquest.com/docview/3092323354
https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-stg.2019.0091
https://doaj.org/article/05bf54c9854243c49cd87e8a54e679f8
UnpaywallVersion publishedVersion
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: IDLOA
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: BENPR
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: AVUZU
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: 24P
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZ2uwfggHiKwFJFCHEAonVsx7GREGqh2RZBVUEr7Z4sx49qpSotu10hbvwEfiO_BNtNUnopXPLSJHG-jO3xjP0NAM8znSKDrE4wtd5bVcKEGXekslJpy5jhgcD085gOZ-TjWXZ2AMbNWhg_rbJpE0NDrZfK-8hPMHSmCMI4I-9W3xKfNcpHV5sUGrJOraDfBoqxQ3CEPDNWBxz1B-PJl9brgpgb7uC8DW_ykwuzTq7Wcz_JyzNX8nSngwo8_q7bcVI7JuiN62olf3yXi8WuURt6peIOuF2bk3Fv8__vggNT3QO3_iIZvA9e90bxRRX7nEHV_PfPX8NREWuzDlOwqjexjEs3WrbxZg3LAzArBtP3w6TOkeDQhJlTcgcIx9RArBzmbvDDTFpiygmyEkJtOUM5pCqXlHEFtdSMalbmbjCaGpUbjR-CTrWszCMQpzKXmFlKoSmJRLA0hOosLR1k0iibRgA2wAhVE4j7PBYLEQLZhAuHknBYCo-l8FhG4GV7y2rDnrFPuO_RbgU98XW4sLyci7oeCZiVNiOKs4wgghXhSrPcMJkRQ3NuWQRe-AfXFfFq39ue7QiOBlPxdXq6FRArbSNw3PzzreRWEyPwqtWD__k-HDTl35K-IKhfhCjy4_1FeAJuIu8BCFMSj0FnfXltnjozaV12wSEiE7dlxWm3rgfd4HJwZ6MPn8J-Np70zv8Aob4Sww
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbGdjG4QPyKwIAIARdANcd2HBtpQiu0NGyrEHTS7ozjn2pSlZY107Q7HoEn4mF4Emw3SelN4WZ3UXTiOJ_Pic-fzwHgeaoTZJDVHUyt91YVsMOMu1JpobRlzPBQwPRoSAfH5NNJerIBfjVnYXxaZfNPDD9qPVXeR76LoVNFEMYpeTf73vFdo3x0tWmhIevWCnovlBirD3YcmMsLZ8LN9_IPbr1fINTvjd4POnWXATcfmDo2cUNyTA3Eys3amQ_MJAWmnCArIdSWM5RBqjJJGVdQS82oZkXmzLnEqMxo7Ma9BrYIJtwZf1vd3vDzl9bLg5gzr3DWhlP57qmpOvNq7JPKfKVMnqxsiKFvgNvmHNWKyrt9Xs7k5YWcTFaV6LAL9m-Bm7X6Gu8v-O022DDlHXDjr6KGd8Gb_Tw-LWPfo6gc__7xc5D3Y22qkPJVvo1lXDjr3MaLMzP3wPGVoHUfbJbT0jwAcSIziZmlFJqCSAQLQ6hOk8JBJo2ySQRgA4xQdcFy3zdjIkLgnHDhUBIOS-GxFB7LCLxqH5ktqnWsI-56tFtCX2g73JiejUUttwKmhU2J4iwliGBFuNIsM0ymxNCMWxaBl37gWvDn6972bIUw743E19HHJYGYaRuBnWbNl5RLzo_A65YP_uf7cOCUf1P6iaBuP0StH66fwlOwPRgdHYrDfHjwCFxH3vsQ0iF3wGZ1dm4eOxWtKp7UchCDb1cten8ACs9ICQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7LLHh5EK9YXbWI-KAW09ya-Dbrbp3xsgjOyOJLyHVYGLrDbhfxzZ_gb_SXmKSdroOwim-lnKTN13N6Lkm-APCE2hI55G2BmY_VKg0L7sKVodpYz7kTicD0wwGbzMnbQ3q4BfbWe2E6foih4BYtI_2vo4G7lfVdwkkiSeaRa4vTdhGXZ0XOybiFfTv4c0hGYHv8ef5lPtRaEA9JTqLPDN6cFkiQapjgFC__6GfDRSUm_-B4gtRGEHr5rFmpb1_VcrkZ1ia_VF8H1_qAMh93GnADbLnmJrj6G83gLfBiPM2PmjyeGtQsfn7_MZnWuXVtWoTVvMpVrkO-7PNuF8ttMK_3Z68nRX9KQsAT0qDmOKR4mDmITUA9pD_clRozQZBXEFovOKogM5ViXBholeXMcl2FdLR0pnIW3wGj5rhxd0Feqkph7hmDThOFoHaEWVrqAJ9yxpcZgGtgpOkpxONJFkuZprKJkAElGbCUEUsZsczAs6HJquPPuEh4N6I9CEbq63Tj-GQhe0uSkGpPiRGcEkSwIcJYXjmuKHGsEp5n4GnsuDfF04ue9nhDcLo_k59mb84FZNC3DOysv_m5JIYhLEY4AJ-B54Me_Mv4cNKUv0vGF0G7dZpHvvdfrR6BSx_3avl-evDuPriCYpUgLVvcAaP25Mw9CKFUqx_2lvILQW0S2Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA4y-6A-rHfsukoR8UHtkObWxLdZ2XFGcBGcgfUp5DqKQ3fY7SD65E_wN_pLTNJO1xFZFXwr5aRpziU5JznnCwCPqC2RQ94WmPm4W6VhwV14MlQb6zl3IgGYvj5ikzl5dUyPu8q6VAvjmg7l5v2wxYroN9-ilaS5Oxr7yvp2zm8jUCJiy-KsWcRsrQhBGSvadxgNDvoA7MyP3ozexWvmwupdIEGq_nzzN-22VqgE5B_WnUC15YNeXtcr9fmTWi63vdq0LI2vgWYzoDYb5eNw3eih-fIL1uN_HvF1sNu5sfmo1bsb4JKrb4KrP4Eb3gLPRtP8Q53Hu4rqxfev3ybTcW5dk1K_6ue5ynWI0n3e1s7cBvPx4ezFpOjuZghShDQYFw6BJWYOYhNkHYIu7kqNmSDIKwitFxxVkJlKMS4MtMpyZrmuQhBcOlM5i--AQX1Su7sgL1WlMPeMQaeJQlA7wiwtNS-hcsaXGYAbeUjTAZfH-zOWMh2gEyEDI2RghIyMkJERGXjSN1m1qB0XER9EIfeEEXA7vTg5XcjOfiWk2lNiBKcEEWyIMJZXjitKHKuE5xl4HD_cTQBnF_X2cItwejiTb2cvzwlkEHQG9jeqdk6JYXDGEQ6Mz8DTXv3-Znw4adKfKeOPoINxOr3e-6c-7oErKG5EpMzIfTBoTtfufvDWGv2gs74fIxw7Pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI+in+arcing%E2%80%90HIF+detection%3A+a+brief+review&rft.jtitle=IET+smart+grid&rft.au=Hao%2C+Bai&rft.date=2020-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2515-2947&rft.volume=3&rft.issue=4&rft.spage=435&rft.epage=444&rft_id=info:doi/10.1049%2Fiet-stg.2019.0091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2515-2947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2515-2947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2515-2947&client=summon