AI in arcing-HIF detection: a brief review
In the past few decades, the arcing-high-impedance fault (arcing-HIF) detection problems have become an important issue in the effectively grounded distribution network. Many solutions have been proposed to address this problem. The most attractive way is artificial intelligence (AI) method. The pap...
Saved in:
| Published in | IET Smart Grid Vol. 3; no. 4; pp. 435 - 444 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Durham
The Institution of Engineering and Technology
01.08.2020
John Wiley & Sons, Inc Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2515-2947 2515-2947 |
| DOI | 10.1049/iet-stg.2019.0091 |
Cover
| Abstract | In the past few decades, the arcing-high-impedance fault (arcing-HIF) detection problems have become an important issue in the effectively grounded distribution network. Many solutions have been proposed to address this problem. The most attractive way is artificial intelligence (AI) method. The paper gives a comprehensive review of arcing-HIF detection in distribution network-based AI. First, characteristics and models of arcing-HIF are analysed, the arcing-HIF database construction method is also explained; this part is a foundation work for arcing-HIF detection. Next, arcing-HIF detection methods based AI are summarised in details including data acquisition, feature extraction and classifier selection. Then, a set of criteria are proposed to evaluate the reliability of arcing-HIF detection algorithm. Finally, the future trends and challenges to arcing-HIF detection are also fully accounted. This review can be a valuable guide for researchers who are interested in arcing-HIF detection-based AI. |
|---|---|
| AbstractList | In the past few decades, the arcing‐high‐impedance fault (arcing‐HIF) detection problems have become an important issue in the effectively grounded distribution network. Many solutions have been proposed to address this problem. The most attractive way is artificial intelligence (AI) method. The paper gives a comprehensive review of arcing‐HIF detection in distribution network‐based AI. First, characteristics and models of arcing‐HIF are analysed, the arcing‐HIF database construction method is also explained; this part is a foundation work for arcing‐HIF detection. Next, arcing‐HIF detection methods based AI are summarised in details including data acquisition, feature extraction and classifier selection. Then, a set of criteria are proposed to evaluate the reliability of arcing‐HIF detection algorithm. Finally, the future trends and challenges to arcing‐HIF detection are also fully accounted. This review can be a valuable guide for researchers who are interested in arcing‐HIF detection‐based AI. |
| Author | Hao, Bai |
| Author_xml | – sequence: 1 givenname: Bai surname: Hao fullname: Hao, Bai email: baihao@csg.cn organization: Power Distribution Technology Department, Electric Power Research Institute of China Southern Power Grid, Guangzhou, People's Republic of China |
| BookMark | eNqNkE1v1DAQhi1UJErpD-AWiRNI2Y6_Yru3UnXbSJU4sJwtx56sXIVkcbKs9t_jEFRVCAonj6z3eTXzvCYn_dAjIW8prCgIcxFxKsdpu2JAzQrA0BfklEkqS2aEOnkyvyLn4xgb4IyqSil2Sj5c1UXsC5d87LflXb0uAk7opzj0l4UrmhSxLRJ-j3h4Q162rhvx_Nd7Rr6sbzbXd-X9p9v6-uq-9BKkLhmXwvAKgXuGTNFKI214ZQRrHUBojWYKKq9cpY2H4IKugm4U5Ch6hYGfkXrpDYN7sLsUv7p0tIOL9ufHkLbWpSn6Di3IppXCGy0FE9wL44NWqJ0UWCnT6tzFlq59v3PHg-u6x0IKdpZnszyb5dlZnp3lZejdAu3S8G2P42Qfhn3q882Wg2Gc8XxiTqkl5dMwjglb6-PkZnFTcrF7tp_-Rv7PTpcLc4gdHv8N2M-bW_ZxDUD5bOH9As-xx1vqm82cesLsQpuz5R-yf1_sB6avv5o |
| CitedBy_id | crossref_primary_10_1016_j_egyr_2022_05_199 crossref_primary_10_1109_TIA_2023_3337063 crossref_primary_10_1016_j_epsr_2022_108892 crossref_primary_10_3390_en16052280 crossref_primary_10_1109_ACCESS_2023_3329439 crossref_primary_10_1016_j_egyr_2023_09_168 crossref_primary_10_3390_en13236447 crossref_primary_10_1016_j_engappai_2023_106651 crossref_primary_10_1002_ese3_2056 crossref_primary_10_1109_TIM_2023_3322486 crossref_primary_10_1109_ACCESS_2020_3027869 |
| Cites_doi | 10.4316/aece.2010.03019 10.1109/TSG.2016.2555141 10.1109/IranianCEE.2013.6599760 10.1108/03321641111101014 10.1016/j.jesit.2017.01.004 10.1109/ICEPES.2016.7915922 10.1109/TPWRD.2005.852367 10.1109/CCECE.2008.4564660 10.1016/j.ijepes.2017.06.036 10.1016/j.ijepes.2016.04.013 10.1109/TPWRS.2012.2215630 10.1002/etep.2035 10.1016/j.ijepes.2012.12.005 10.1109/TPWRD.2007.911146 10.1016/j.ijepes.2009.01.001 10.1109/JSEN.2017.2776238 10.1007/s40866-016-0011-4 10.1109/TPWRD.2012.2222056 10.1109/ICPES.2011.6156670 10.1109/TPWRD.2010.2060214 10.1109/TPWRS.2005.861981 10.1109/TDC.2012.6281686 10.1109/PCITC.2015.7438225 10.1109/PECI.2015.7064882 10.1109/APPEEC.2010.5448673 10.1109/TPWRD.2014.2361207 10.1016/j.ijepes.2014.03.046 10.4236/epe.2013.54B160 10.1016/j.ijepes.2018.12.019 10.1007/s10015-009-0719-5 10.1109/TPWRD.2005.852273 10.1049/iet-gtd.2015.0407 10.1109/TSG.2014.2330624 10.1016/j.epsr.2017.08.039 10.1080/15325008.2012.689418 10.1049/iet-gtd.2010.0702 10.1049/iet-gtd:20070319 10.1109/DEMPED.2011.6063687 10.1049/iet-smt.2017.0231 10.1016/j.ijepes.2018.12.021 10.1109/TPWRD.2007.905273 10.1109/TPWRD.2003.820418 10.1109/TIE.2017.2726961 10.1109/SCES.2015.7506463 10.1080/15325000390248774 10.1016/j.ijepes.2018.03.008 10.1109/61.853009 10.1109/TPWRD.2013.2272936 10.1109/ICHQP.2014.6842852 10.1016/j.ijepes.2019.04.050 10.1002/etep.321 10.1016/j.ijepes.2012.06.006 10.1016/j.epsr.2016.10.021 10.1016/j.epsr.2011.01.022 10.1109/AFRCON.2017.8095447 10.1016/j.jesit.2015.03.015 10.1049/ip-gtd:20045224 10.1016/j.epsr.2019.105931 10.1109/TSG.2012.2208987 10.1109/TPWRS.2006.888990 10.1109/TPWRD.2018.2791986 |
| ContentType | Journal Article |
| Copyright | 2020 IET Smart Grid published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 IET Smart Grid published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | IDLOA 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA |
| DOI | 10.1049/iet-stg.2019.0091 |
| DatabaseName | IET Digital Library Open Access Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: IDLOA name: IET Digital Library Open Access url: https://digital-library.theiet.org/content/collections sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2515-2947 |
| EndPage | 444 |
| ExternalDocumentID | oai_doaj_org_article_05bf54c9854243c49cd87e8a54e679f8 10.1049/iet-stg.2019.0091 10_1049_iet_stg_2019_0091 STG2BF00138 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: Science and Technology Project of CSG grantid: ZBKJXM20190061 – fundername: National Key R&D Program of China grantid: 2017YFB0902900 – fundername: Science and Technology Project of CSG funderid: ZBKJXM20190061 – fundername: National Key R&D Program of China funderid: 2017YFB0902900 |
| GroupedDBID | 24P AAJGR ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BFFAM EBS EJD GROUPED_DOAJ IDLOA OCL OK1 RIE RUI 0R~ 1OC AAHHS AAHJG ABJCF ABMDY ABQXS ACCFJ ACCMX ACESK ACXQS ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU HCIFZ IAO IGS ITC K7- M7S M~E PIMPY PTHSS ROL AAMMB AAYXX ADMLS AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION ICD PHGZM PHGZT PQGLB WIN 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5058-2354936e03c2e27168e1b36942fa00df982706c7a689c0dad86d8b70271ec7ed3 |
| IEDL.DBID | BENPR |
| ISSN | 2515-2947 |
| IngestDate | Fri Oct 03 12:42:57 EDT 2025 Tue Aug 19 18:09:03 EDT 2025 Fri Jul 25 11:46:08 EDT 2025 Thu Apr 24 22:55:02 EDT 2025 Wed Oct 29 21:13:41 EDT 2025 Wed Jan 22 16:31:36 EST 2025 Tue Jan 05 21:44:04 EST 2021 Sun Aug 23 04:20:23 EDT 2020 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | fault diagnosis arcing-HIF detection-based AI algorithm reliability power distribution faults arcs (electric) grounded distribution network power engineering computing artificial intelligence artificial intelligence method classifier selection arcing-HIF database construction method power distribution reliability feature extraction distribution network-based AI algorithm arcing-high-impedance fault detection problems data acquisition |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5058-2354936e03c2e27168e1b36942fa00df982706c7a689c0dad86d8b70271ec7ed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3092323354?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3092323354 |
| PQPubID | 6853481 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1049_iet_stg_2019_0091 unpaywall_primary_10_1049_iet_stg_2019_0091 wiley_primary_10_1049_iet_stg_2019_0091_STG2BF00138 proquest_journals_3092323354 crossref_primary_10_1049_iet_stg_2019_0091 doaj_primary_oai_doaj_org_article_05bf54c9854243c49cd87e8a54e679f8 iet_journals_10_1049_iet_stg_2019_0091 |
| ProviderPackageCode | IDLOA RUI |
| PublicationCentury | 2000 |
| PublicationDate | August 2020 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Durham |
| PublicationPlace_xml | – name: Durham |
| PublicationTitle | IET Smart Grid |
| PublicationYear | 2020 |
| Publisher | The Institution of Engineering and Technology John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: The Institution of Engineering and Technology – name: John Wiley & Sons, Inc – name: Wiley |
| References | Das, B. (C17) 2006; 21 Moravej, Z.; Mortazavi, S.H.; Shahrtash, S.M. (C51) 2015; 25 Milioudis, A.N.; Andreou, G.T.; Labridis, D.P.. (C1) 2015; 6 Samantaray, S.R.; Dash, P.K.; Upadhyay, S.K. (C33) 2009; 31 Zhang, J.; He, Z.Y.; Lin, S. (C65) 2013; 49 Ghaderi, A.; Ginn, H.L.; Mohammadpour, H.A. (C7) 2017; 143 Sarlak, M.; Shahrtash, S.M. (C25) 2011; 5 Guo, M.; Zeng, X.; Chen, D. (C42) 2018; 18 Shang yuwei, M.Z.P.C. (C71) 2017; 37 Geng, J.; Wang, B. (C9) 2013; 37 Jiang, H.; Zhang, J.J.; Gao, W. (C20) 2014; 5 Abdelgayed, T.S.; Morsi, W.G.; Sidhu, T.S. (C41) 2018; 9 Aziz, M.A.; Hassan, M.M.; Zahab, E.A. (C61) 2012; 40 Sedighizadeh, M. (C8) 2010; 10 Torres, V.; Guardado, J.L.; Ruiz, H.F. (C10) 2014; 61 Gautam, S.; Brahma, S.M. (C18) 2013; 28 Samantaray, S.R. (C60) 2012; 43 Mortazavi, S.H.; Moravej, Z.; Shahrtash, S.M. (C43) 2018; 94 Sulaiman, M.; Tawfan, A.; Ibrahim, Z. (C35) 2013; 7 Chen, W.; Liu, C.; Tsai, M. (C62) 2000; 15 Sarwagya, K.; De, S.; Nayak, P.K. (C3) 2018; 12 Jamil, M.; Singh, R.; Sharma, S.K. (C23) 2015; 2 Wang, X.; Song, G.; Gao, J. (C39) 2019; 107 Sarwar, M.; Mehmood, F.; Abid, M. (C57) 2019 Perera, N.; Rajapakse, A.D. (C58) 2011; 26 Li, K.; Xiangjun, Z.; Xianggen, Y. (C16) 2003; 31 Asgharigovar, S.; Pourghasem, P.; Seyedi, H. (C53) 2019; 107 Guo Moufa, Y.L.H.C. (C26) 2017; 43 Zhang, C.; Wang, F. (C70) 2009; 14 Carvalho, D.; Macedo, J.R.; Resende, J.W. (C2) 2015; 9 Gomes, D.P.S.; Ozansoy, C.; Ulhaq, A. (C38) 2018; 33 Xu, L.; Chow, M.; Taylor, L.S. (C63) 2007; 22 Nabamita, R.; Bhattacharya, K. (C19) 2014; 2 Samantaray, S.R.; Panigrahi, B.K.; Dash, P.K. (C46) 2008; 2 Prasad, A.; Belwin Edward, J.; Ravi, K. (C6) 2018; 5 Bahador, N.; Namdari, F.; Matinfar, H.R. (C28) 2018; 100 Livani, H.; Evrenosoglu, C.Y. (C56) 2013; 28 Michalik, M.; Lukowicz, M.A.; Rebizant, W. (C31) 2008; 23 Abdelgayed, T.S.; Morsi, W.G.; Sidhu, T.S. (C69) 2018; 65 Aziz, M.S.A; Hassan, M.A.M.; El-Zahab, E.A. (C5) 2012; 1 Sedighi, A.R.; Haghifam, M.R.; Malik, O.P. (C67) 2005; 20 Sheng, Y.; Rovnyak, S.M. (C59) 2004; 19 Sarlak, M.; Shahrtash, S.M. (C54) 2011; 30 Haghifam, M.R. (C64) 2015; 153 Baqui, I.; Zamora, I.; Mazón, J. (C44) 2011; 81 Xu, L.; Chow, M.Y. (C68) 2006; 21 Ghaderi, A.; Mohammadpour, H.A.; Ginn, H.L. (C45) 2015; 30 Gadanayak, D.A.; Mallick, R.K. (C40) 2019; 112 Sarlak, M.; Shahrtash, S.M. (C27) 2013; 28 Mishra, M.; Routray, P.; Rout, P.K. (C15) 2016; 1 Lima, É.M.; Brito, N.S.D.; Souza, B.A.D. (C48) 2019; 175 Samantaray, S.R.; Dash, P.K. (C37) 2010; 20 Yuan, L.; Sun, L.; Wu, H. (C13) 2013; 5 Milioudis, A.N.; Andreou, G.T.; Labridis, D.P. (C29) 2012; 3 Liu, Y.; Wu, C.; Wang, Y. (C52) 2016; 83 Silva, S.; Costa, P.; Gouvea, M. (C12) 2018; 154 Zamora, I.; Mazon, A.J.; Sagastabeitia, K.J. (C30) 2007; 22 2010; 10 2013; 28 2017; 43 2015; 30 2005; 20 2013; 7 2008; 2 2014; 61 2013; 5 2018; 9 2009; 14 2010; 20 2014; 5 2018; 5 2014; 2 2017; 37 2000; 15 2006; 21 2008; 23 2016; 83 2011; 26 2018; 33 2007; 22 2019; 112 2015; 2 2018; 100 2015; 6 2013; 49 2012 2011 2010 2011; 81 2011; 30 2008 2019; 107 2015; 9 2018; 65 2011; 5 2003; 31 2018; 18 2018; 154 2015; 25 2013; 37 2016; 1 2012; 3 2012; 1 2009; 31 2004; 19 2015; 153 2019 2017 2016 2015 2014 2018; 94 2017; 143 2013 2018; 12 2012; 43 2019; 175 2012; 40 Geng J. (e_1_2_10_10_2) 2013; 37 e_1_2_10_23_2 e_1_2_10_44_2 e_1_2_10_69_2 e_1_2_10_21_2 e_1_2_10_42_2 e_1_2_10_40_2 e_1_2_10_70_2 e_1_2_10_18_2 e_1_2_10_39_2 e_1_2_10_53_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_37_2 e_1_2_10_55_2 e_1_2_10_14_2 e_1_2_10_35_2 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_8_2 e_1_2_10_32_2 e_1_2_10_30_2 e_1_2_10_51_2 Milioudis A.N. (e_1_2_10_2_2) 2015; 6 Nabamita R. (e_1_2_10_20_2) 2014; 2 Shang yuwei M.Z.P.C. (e_1_2_10_72_2) 2017; 37 Guo Moufa Y.L.H.C. (e_1_2_10_27_2) 2017; 43 e_1_2_10_61_2 e_1_2_10_29_2 e_1_2_10_63_2 e_1_2_10_48_2 e_1_2_10_65_2 e_1_2_10_25_2 e_1_2_10_46_2 e_1_2_10_67_2 e_1_2_10_22_2 e_1_2_10_45_2 e_1_2_10_68_2 Sulaiman M. (e_1_2_10_36_2) 2013; 7 e_1_2_10_43_2 e_1_2_10_41_2 Sarwar M. (e_1_2_10_58_2) 2019 Aziz M.S.A (e_1_2_10_6_2) 2012; 1 e_1_2_10_19_2 e_1_2_10_71_2 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_52_2 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_54_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_56_2 e_1_2_10_9_2 e_1_2_10_57_2 e_1_2_10_12_2 e_1_2_10_33_2 e_1_2_10_59_2 e_1_2_10_31_2 e_1_2_10_50_2 Nilsson N. (e_1_2_10_5_2) 2014 e_1_2_10_60_2 e_1_2_10_28_2 e_1_2_10_62_2 e_1_2_10_26_2 e_1_2_10_49_2 e_1_2_10_64_2 e_1_2_10_24_2 e_1_2_10_47_2 e_1_2_10_66_2 |
| References_xml | – volume: 25 start-page: 3288 issue: 12 year: 2015 end-page: 3303 ident: C51 article-title: DT-CWT-based event feature extraction for high-impedance faults detection in distribution system publication-title: Int. Trans. Electr. Energy – volume: 100 start-page: 531 year: 2018 end-page: 539 ident: C28 article-title: Tree-related high-impedance fault location using phase shift measurement of high-frequency magnetic field publication-title: Int. J. Electr. Power – volume: 94 start-page: 141 year: 2018 end-page: 150 ident: C43 article-title: A hybrid method for arcing faults detection in large distribution networks publication-title: Int. J. Electr. Power – volume: 20 start-page: 2414 issue: 4 year: 2005 end-page: 2421 ident: C67 article-title: High-impedance fault detection based on wavelet transform and statistical pattern recognition publication-title: IEEE Trans. Power Deliv. – volume: 12 start-page: 1 issue: 1 year: 2018 end-page: 8 ident: C3 article-title: High-impedance fault detection in electrical power distribution systems using moving sum approach publication-title: IET Sci. Meas. Technol. – volume: 2 start-page: 261 issue: 2 year: 2008 end-page: 270 ident: C46 article-title: High-impedance fault detection in power distribution networks using time–frequency transform and probabilistic neural network publication-title: IET Gener. Transm. Distrib. – volume: 31 start-page: 167 issue: 4 year: 2009 end-page: 172 ident: C33 article-title: Adaptive Kalman filter and neural network-based high-impedance fault detection in power distribution networks publication-title: Int. J. Electr. Power – volume: 2 start-page: 237 issue: 10 year: 2014 end-page: 243 ident: C19 article-title: Signal-energy-based fault classification of unbalanced network using S-transform and neural network publication-title: Int. J. Recent Trends Eng. Technol. – volume: 5 start-page: 833 issue: 4 year: 2013 end-page: 845 ident: C13 article-title: Simulation of fault arc using conventional arc models publication-title: Energy Power Eng. – volume: 43 start-page: 1239 issue: 4 year: 2017 end-page: 1247 ident: C26 article-title: Identification method of distribution network faults based on singular value of LCD-Hilbert spectrums and multilevel SVM publication-title: High Voltage Eng. – volume: 43 start-page: 1048 issue: 1 year: 2012 end-page: 1055 ident: C60 article-title: Ensemble decision trees for high-impedance fault detection in power distribution network publication-title: Int. J. Electr. Power – volume: 61 start-page: 163 year: 2014 end-page: 172 ident: C10 article-title: Modeling and detection of high-impedance faults publication-title: Int. J. Electr. Power – volume: 2 start-page: 257 issue: 2 year: 2015 end-page: 267 ident: C23 article-title: Fault identification in electrical power distribution system using combined discrete wavelet transform and fuzzy logic publication-title: J. Electr. Syst. Inf. Technol. – volume: 20 start-page: 382 issue: 3 year: 2010 end-page: 393 ident: C37 article-title: High-impedance fault detection in distribution feeders using extended Kalman filter and support vector machine publication-title: Eur. Trans. Electr. Power – volume: 21 start-page: 278 issue: 1 year: 2006 end-page: 285 ident: C17 article-title: Fuzzy logic-based fault-type identification in unbalanced radial power distribution system publication-title: IEEE Trans. Power Deliv. – volume: 30 start-page: 1260 issue: 3 year: 2015 end-page: 1268 ident: C45 article-title: High-impedance fault detection in the distribution network using the time–frequency-based algorithm publication-title: IEEE Trans. Power Deliv. – volume: 18 start-page: 1291 issue: 3 year: 2018 end-page: 1300 ident: C42 article-title: Deep-learning-based Earth fault detection using continuous wavelet transform and convolutional neural network in resonant grounding distribution systems publication-title: IEEE Sens. J. – volume: 26 start-page: 410 issue: 1 year: 2011 end-page: 419 ident: C58 article-title: Recognition of fault transients using a probabilistic neural-network classifier publication-title: IEEE Trans. Power Deliv. – volume: 7 start-page: 81 issue: 8 year: 2013 end-page: 91 ident: C35 article-title: Detecting high-impedance fault in power distribution feeder with fuzzy subtractive clustering model publication-title: Aust. J. Basic Appl. Sci. – volume: 37 start-page: 85 issue: 16 year: 2013 end-page: 91 ident: C9 article-title: Analysis and detection of high-impedance grounding fault in neutral point effectively grounding distribution network publication-title: Autom. Electr. Power Syst. – volume: 9 start-page: 2593 issue: 16 year: 2015 end-page: 2601 ident: C2 article-title: Proposition of an inter-harmonic-based methodology for high-impedance fault detection in distribution systems publication-title: IET Gener. Transm. Distrib. – volume: 33 start-page: 1398 issue: 3 year: 2018 end-page: 1407 ident: C38 article-title: High-sensitivity vegetation high-impedance fault detection based on signal's high-frequency contents publication-title: IEEE Trans. Power Deliv. – volume: 22 start-page: 164 issue: 1 year: 2007 end-page: 171 ident: C63 article-title: Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification $e$-algorithm publication-title: IEEE Trans. Power Syst. – volume: 9 start-page: 521 issue: 2 year: 2018 end-page: 529 ident: C41 article-title: A new harmony search approach for optimal wavelets applied to fault classification publication-title: IEEE Trans. Smart Grid – volume: 175 start-page: 105931 year: 2019 ident: C48 article-title: High-impedance fault detection based on Stockwell transform and third harmonic current phase angle publication-title: Electr. Power Syst. Res. – volume: 81 start-page: 1325 issue: 7 year: 2011 end-page: 1333 ident: C44 article-title: High-impedance fault detection methodology using wavelet transform and artificial neural networks publication-title: Electr. Power Syst. Res. – volume: 1 start-page: 44 issue: 2 year: 2012 end-page: 59 ident: C5 article-title: An artificial intelligence-based approach for high-impedance faults analysis in distribution networks publication-title: Int. J. Syst. Dyn. Appl. – volume: 3 start-page: 1621 issue: 4 year: 2012 end-page: 1630 ident: C29 article-title: Enhanced protection scheme for smart grids using power line communications techniques – part i: detection of high-impedance fault occurrence publication-title: IEEE Trans. Smart Grid – volume: 49 start-page: 243 year: 2013 end-page: 252 ident: C65 article-title: An ANFIS-based fault classification approach in power distribution system publication-title: Int. J. Electr. Power – volume: 107 start-page: 538 year: 2019 end-page: 556 ident: C39 article-title: High-impedance fault detection method based on improved complete ensemble empirical mode decomposition for DC distribution network publication-title: Int. J. Electr. Power Energy Syst. – volume: 22 start-page: 2072 issue: 4 year: 2007 end-page: 2079 ident: C30 article-title: New method for detecting low current faults in electrical distribution systems publication-title: IEEE Trans. Power Deliv. – volume: 153 start-page: 359 issue: 3 year: 2015 end-page: 367 ident: C64 article-title: Development of a fuzzy inference system based on genetic algorithm for high-impedance fault detection publication-title: IEE Proc., Gener. Transm. Distrib. – volume: 28 start-page: 2282 issue: 4 year: 2013 end-page: 2290 ident: C56 article-title: A fault classification and localization method for three-terminal circuits using machine learning publication-title: IEEE Trans. Power Deliv. – volume: 28 start-page: 1226 issue: 2 year: 2013 end-page: 1234 ident: C18 article-title: Detection of high-impedance fault in power distribution systems using mathematical morphology publication-title: IEEE Trans. Power Syst. – volume: 1 start-page: 1 issue: 1 year: 2016 end-page: 14 ident: C15 article-title: A universal high-impedance fault detection technique for distribution system using S-transform and pattern recognition publication-title: Technol. Econ. Smart Grids Sustain. Energy – year: 2019 ident: C57 article-title: High-impedance fault detection and isolation in power distribution networks using support vector machines publication-title: J. King Saud Univ., Eng. Sci. – volume: 23 start-page: 58 issue: 1 year: 2008 end-page: 66 ident: C31 article-title: New ANN-based algorithms for detecting HIFs in multigrounded MV networks publication-title: IEEE Trans. Power Deliv. – volume: 6 start-page: 894 issue: 2 year: 2015 end-page: 902 ident: C1 article-title: Detection and location of high-impedance faults in multi-conductor overhead distribution lines using power line communication devices publication-title: IEEE Trans. Power Syst. – volume: 5 start-page: 588 issue: 5 year: 2011 end-page: 593 ident: C25 article-title: High-impedance fault detection using combination of multi-layer perceptron neural networks based on multi-resolution morphological gradient features of current waveform publication-title: IET Gener. Transm. Distrib. – volume: 154 start-page: 474 year: 2018 end-page: 483 ident: C12 article-title: High-impedance fault detection in power distribution systems using wavelet transform and evolving neural network publication-title: Electr. Power Syst. Res. – volume: 10 start-page: 114 issue: 3 year: 2010 end-page: 128 ident: C8 article-title: Approaches in high-impedance fault detection – a chronological review publication-title: Adv. Electr. Comput. Eng. – volume: 143 start-page: 376 year: 2017 end-page: 388 ident: C7 article-title: High-impedance fault detection: a review publication-title: Electr. Power Syst. Res. – volume: 37 start-page: 5560 issue: 19 year: 2017 end-page: 5565 ident: C71 article-title: Study of a novel machine learning method embedding expertise part i: proposals and fundamentals of guiding learning publication-title: Proc. CSEE – volume: 30 start-page: 431 issue: 2 year: 2011 end-page: 450 ident: C54 article-title: SVM-based method for high-impedance faults detection in distribution networks publication-title: Int. J. Comput. Math. Electr. Electron. Eng. – volume: 40 start-page: 1300 issue: 11 year: 2012 end-page: 1318 ident: C61 article-title: High-impedance faults analysis in distribution networks using an adaptive neuro fuzzy inference system publication-title: Electr. Power Compon. Syst. – volume: 65 start-page: 1595 issue: 2 year: 2018 end-page: 1605 ident: C69 article-title: Fault detection and classification based on co-training of semi-supervised machine learning publication-title: IEEE Trans. Ind. Electron. – volume: 5 start-page: 2947 issue: 6 year: 2014 end-page: 2956 ident: C20 article-title: Fault detection, identification, and location in smart grid based on data-driven computational methods publication-title: IEEE Trans. Smart Grid – volume: 21 start-page: 53 issue: 1 year: 2006 end-page: 60 ident: C68 article-title: A classification approach for power distribution systems fault cause identification publication-title: IEEE Trans. Power Syst. – volume: 107 start-page: 412 year: 2019 end-page: 421 ident: C53 article-title: High-impedance fault protection scheme for smart grids based on WPT and ELM considering evolving and cross-country faults publication-title: Int. J. Electr. Power Energy Syst. – volume: 15 start-page: 710 issue: 2 year: 2000 end-page: 717 ident: C62 article-title: Online fault diagnosis of distribution substations using hybrid cause-effect network and fuzzy rule-based method publication-title: IEEE Trans. Power Deliv. – volume: 83 start-page: 149 year: 2016 end-page: 157 ident: C52 article-title: Detection of serial arc fault on low-voltage indoor power lines by using radial basis function neural network publication-title: Int. J. Electr. Power – volume: 31 start-page: 1133 issue: 12 year: 2003 end-page: 1150 ident: C16 article-title: Novel methods for high-impedance ground-fault protection in low-voltage supply systems publication-title: Electr. Power Compon. Syst. – volume: 28 start-page: 67 issue: 1 year: 2013 end-page: 74 ident: C27 article-title: High-impedance faulted branch identification using magnetic-field signature analysis publication-title: IEEE Trans. Power Deliv. – volume: 5 start-page: 48 issue: 1 year: 2018 end-page: 60 ident: C6 article-title: A review on fault classification methodologies in power transmission systems: part-I publication-title: J. Electr. Syst. Inf. Technol. – volume: 19 start-page: 533 issue: 2 year: 2004 end-page: 536 ident: C59 article-title: Decision tree-based methodology for high-impedance fault detection publication-title: IEEE Trans. Power Deliv. – volume: 14 start-page: 445 issue: 4 year: 2009 end-page: 448 ident: C70 article-title: Graph-based semi-supervised learning publication-title: Artif. Life Robot. – volume: 112 start-page: 282 year: 2019 end-page: 293 ident: C40 article-title: Inter-harmonics based high-impedance fault detection in distribution systems using maximum overlap wavelet packet transform and a modified empirical mode decomposition publication-title: Int. J. Electr. Power Energy Syst. – volume: 153 start-page: 359 issue: 3 year: 2015 end-page: 367 article-title: Development of a fuzzy inference system based on genetic algorithm for high‐impedance fault detection publication-title: IEE Proc., Gener. Transm. Distrib. – volume: 20 start-page: 2414 issue: 4 year: 2005 end-page: 2421 article-title: High‐impedance fault detection based on wavelet transform and statistical pattern recognition publication-title: IEEE Trans. Power Deliv. – volume: 5 start-page: 833 issue: 4 year: 2013 end-page: 845 article-title: Simulation of fault arc using conventional arc models publication-title: Energy Power Eng. – volume: 9 start-page: 521 issue: 2 year: 2018 end-page: 529 article-title: A new harmony search approach for optimal wavelets applied to fault classification publication-title: IEEE Trans. Smart Grid – volume: 31 start-page: 167 issue: 4 year: 2009 end-page: 172 article-title: Adaptive Kalman filter and neural network‐based high‐impedance fault detection in power distribution networks publication-title: Int. J. Electr. Power – volume: 2 start-page: 257 issue: 2 year: 2015 end-page: 267 article-title: Fault identification in electrical power distribution system using combined discrete wavelet transform and fuzzy logic publication-title: J. Electr. Syst. Inf. Technol. – volume: 28 start-page: 67 issue: 1 year: 2013 end-page: 74 article-title: High‐impedance faulted branch identification using magnetic‐field signature analysis publication-title: IEEE Trans. Power Deliv. – volume: 1 start-page: 1 issue: 1 year: 2016 end-page: 14 article-title: A universal high‐impedance fault detection technique for distribution system using S‐transform and pattern recognition publication-title: Technol. Econ. Smart Grids Sustain. Energy – volume: 7 start-page: 81 issue: 8 year: 2013 end-page: 91 article-title: Detecting high‐impedance fault in power distribution feeder with fuzzy subtractive clustering model publication-title: Aust. J. Basic Appl. Sci. – volume: 100 start-page: 531 year: 2018 end-page: 539 article-title: Tree‐related high‐impedance fault location using phase shift measurement of high‐frequency magnetic field publication-title: Int. J. Electr. Power – volume: 107 start-page: 412 year: 2019 end-page: 421 article-title: High‐impedance fault protection scheme for smart grids based on WPT and ELM considering evolving and cross‐country faults publication-title: Int. J. Electr. Power Energy Syst. – volume: 37 start-page: 85 issue: 16 year: 2013 end-page: 91 article-title: Analysis and detection of high‐impedance grounding fault in neutral point effectively grounding distribution network publication-title: Autom. Electr. Power Syst. – volume: 18 start-page: 1291 issue: 3 year: 2018 end-page: 1300 article-title: Deep‐learning‐based Earth fault detection using continuous wavelet transform and convolutional neural network in resonant grounding distribution systems publication-title: IEEE Sens. J. – volume: 143 start-page: 376 year: 2017 end-page: 388 article-title: High‐impedance fault detection: a review publication-title: Electr. Power Syst. Res. – year: 2014 – volume: 43 start-page: 1048 issue: 1 year: 2012 end-page: 1055 article-title: Ensemble decision trees for high‐impedance fault detection in power distribution network publication-title: Int. J. Electr. Power – volume: 31 start-page: 1133 issue: 12 year: 2003 end-page: 1150 article-title: Novel methods for high‐impedance ground‐fault protection in low‐voltage supply systems publication-title: Electr. Power Compon. Syst. – year: 2019 article-title: High‐impedance fault detection and isolation in power distribution networks using support vector machines publication-title: J. King Saud Univ., Eng. Sci. – volume: 5 start-page: 48 issue: 1 year: 2018 end-page: 60 article-title: A review on fault classification methodologies in power transmission systems: part‐I publication-title: J. Electr. Syst. Inf. Technol. – volume: 1 start-page: 44 issue: 2 year: 2012 end-page: 59 article-title: An artificial intelligence‐based approach for high‐impedance faults analysis in distribution networks publication-title: Int. J. Syst. Dyn. Appl. – start-page: 612 year: 2011 end-page: 619 article-title: Applications of ANFIS in high‐impedance faults detection and classification in distribution networks – volume: 21 start-page: 53 issue: 1 year: 2006 end-page: 60 article-title: A classification approach for power distribution systems fault cause identification publication-title: IEEE Trans. Power Syst. – volume: 49 start-page: 243 year: 2013 end-page: 252 article-title: An ANFIS‐based fault classification approach in power distribution system publication-title: Int. J. Electr. Power – start-page: 1 year: 2010 end-page: 4 article-title: Comparison of two fault classification schemes in non‐effectively grounded distribution system and their combination – volume: 107 start-page: 538 year: 2019 end-page: 556 article-title: High‐impedance fault detection method based on improved complete ensemble empirical mode decomposition for DC distribution network publication-title: Int. J. Electr. Power Energy Syst. – start-page: 31 year: 2011 end-page: 37 article-title: An artificial intelligence‐based approach for high‐impedance faults analysis in distribution networks under different loading conditions – volume: 33 start-page: 1398 issue: 3 year: 2018 end-page: 1407 article-title: High‐sensitivity vegetation high‐impedance fault detection based on signal's high‐frequency contents publication-title: IEEE Trans. Power Deliv. – volume: 21 start-page: 278 issue: 1 year: 2006 end-page: 285 article-title: Fuzzy logic‐based fault‐type identification in unbalanced radial power distribution system publication-title: IEEE Trans. Power Deliv. – volume: 3 start-page: 1621 issue: 4 year: 2012 end-page: 1630 article-title: Enhanced protection scheme for smart grids using power line communications techniques – part i: detection of high‐impedance fault occurrence publication-title: IEEE Trans. Smart Grid – volume: 30 start-page: 431 issue: 2 year: 2011 end-page: 450 article-title: SVM‐based method for high‐impedance faults detection in distribution networks publication-title: Int. J. Comput. Math. Electr. Electron. Eng. – volume: 2 start-page: 261 issue: 2 year: 2008 end-page: 270 article-title: High‐impedance fault detection in power distribution networks using time–frequency transform and probabilistic neural network publication-title: IET Gener. Transm. Distrib. – volume: 40 start-page: 1300 issue: 11 year: 2012 end-page: 1318 article-title: High‐impedance faults analysis in distribution networks using an adaptive neuro fuzzy inference system publication-title: Electr. Power Compon. Syst. – volume: 22 start-page: 2072 issue: 4 year: 2007 end-page: 2079 article-title: New method for detecting low current faults in electrical distribution systems publication-title: IEEE Trans. Power Deliv. – volume: 81 start-page: 1325 issue: 7 year: 2011 end-page: 1333 article-title: High‐impedance fault detection methodology using wavelet transform and artificial neural networks publication-title: Electr. Power Syst. Res. – volume: 83 start-page: 149 year: 2016 end-page: 157 article-title: Detection of serial arc fault on low‐voltage indoor power lines by using radial basis function neural network publication-title: Int. J. Electr. Power – volume: 94 start-page: 141 year: 2018 end-page: 150 article-title: A hybrid method for arcing faults detection in large distribution networks publication-title: Int. J. Electr. Power – start-page: 1 year: 2015 end-page: 6 article-title: Continuous wavelet transform and artificial neural network‐based fault diagnosis in 52 bus hybrid distributed generation system – start-page: 1 year: 2013 end-page: 6 article-title: Detection and classification of high‐impedance faults in power distribution networks using art neural networks – start-page: 1 year: 2011 end-page: 5 article-title: Empirical mode decomposition‐based probabilistic neural network for faults classification – volume: 5 start-page: 588 issue: 5 year: 2011 end-page: 593 article-title: High‐impedance fault detection using combination of multi‐layer perceptron neural networks based on multi‐resolution morphological gradient features of current waveform publication-title: IET Gener. Transm. Distrib. – volume: 43 start-page: 1239 issue: 4 year: 2017 end-page: 1247 article-title: Identification method of distribution network faults based on singular value of LCD‐Hilbert spectrums and multilevel SVM publication-title: High Voltage Eng. – volume: 26 start-page: 410 issue: 1 year: 2011 end-page: 419 article-title: Recognition of fault transients using a probabilistic neural‐network classifier publication-title: IEEE Trans. Power Deliv. – start-page: 77 year: 2014 end-page: 81 article-title: The evolution of high‐impedance fault modeling – volume: 175 year: 2019 article-title: High‐impedance fault detection based on Stockwell transform and third harmonic current phase angle publication-title: Electr. Power Syst. Res. – volume: 65 start-page: 1595 issue: 2 year: 2018 end-page: 1605 article-title: Fault detection and classification based on co‐training of semi‐supervised machine learning publication-title: IEEE Trans. Ind. Electron. – start-page: 1 year: 2012 end-page: 5 article-title: A fault classification method in power systems using DWT and SVM classifier – volume: 9 start-page: 2593 issue: 16 year: 2015 end-page: 2601 article-title: Proposition of an inter‐harmonic‐based methodology for high‐impedance fault detection in distribution systems publication-title: IET Gener. Transm. Distrib. – volume: 15 start-page: 710 issue: 2 year: 2000 end-page: 717 article-title: Online fault diagnosis of distribution substations using hybrid cause‐effect network and fuzzy rule‐based method publication-title: IEEE Trans. Power Deliv. – volume: 37 start-page: 5560 issue: 19 year: 2017 end-page: 5565 article-title: Study of a novel machine learning method embedding expertise part i: proposals and fundamentals of guiding learning publication-title: Proc. CSEE – start-page: 1 year: 2015 end-page: 5 article-title: High‐impedance fault detection method efficiency: simulation versus real‐world data acquisition – volume: 12 start-page: 1 issue: 1 year: 2018 end-page: 8 article-title: High‐impedance fault detection in electrical power distribution systems using moving sum approach publication-title: IET Sci. Meas. Technol. – start-page: 545 year: 2015 end-page: 551 article-title: High‐impedance fault detection in radial distribution system using S‐transform and neural network – volume: 14 start-page: 445 issue: 4 year: 2009 end-page: 448 article-title: Graph‐based semi‐supervised learning publication-title: Artif. Life Robot. – volume: 154 start-page: 474 year: 2018 end-page: 483 article-title: High‐impedance fault detection in power distribution systems using wavelet transform and evolving neural network publication-title: Electr. Power Syst. Res. – volume: 20 start-page: 382 issue: 3 year: 2010 end-page: 393 article-title: High‐impedance fault detection in distribution feeders using extended Kalman filter and support vector machine publication-title: Eur. Trans. Electr. Power – volume: 6 start-page: 894 issue: 2 year: 2015 end-page: 902 article-title: Detection and location of high‐impedance faults in multi‐conductor overhead distribution lines using power line communication devices publication-title: IEEE Trans. Power Syst. – volume: 28 start-page: 1226 issue: 2 year: 2013 end-page: 1234 article-title: Detection of high‐impedance fault in power distribution systems using mathematical morphology publication-title: IEEE Trans. Power Syst. – volume: 30 start-page: 1260 issue: 3 year: 2015 end-page: 1268 article-title: High‐impedance fault detection in the distribution network using the time–frequency‐based algorithm publication-title: IEEE Trans. Power Deliv. – volume: 61 start-page: 163 year: 2014 end-page: 172 article-title: Modeling and detection of high‐impedance faults publication-title: Int. J. Electr. Power – volume: 5 start-page: 2947 issue: 6 year: 2014 end-page: 2956 article-title: Fault detection, identification, and location in smart grid based on data‐driven computational methods publication-title: IEEE Trans. Smart Grid – volume: 28 start-page: 2282 issue: 4 year: 2013 end-page: 2290 article-title: A fault classification and localization method for three‐terminal circuits using machine learning publication-title: IEEE Trans. Power Deliv. – volume: 10 start-page: 114 issue: 3 year: 2010 end-page: 128 article-title: Approaches in high‐impedance fault detection – a chronological review publication-title: Adv. Electr. Comput. Eng. – start-page: 151 year: 2016 end-page: 156 article-title: HIF detection using wavelet transform, travelling wave and support vector machine – volume: 25 start-page: 3288 issue: 12 year: 2015 end-page: 3303 article-title: DT‐CWT‐based event feature extraction for high‐impedance faults detection in distribution system publication-title: Int. Trans. Electr. Energy – volume: 2 start-page: 237 issue: 10 year: 2014 end-page: 243 article-title: Signal‐energy‐based fault classification of unbalanced network using S‐transform and neural network publication-title: Int. J. Recent Trends Eng. Technol. – volume: 22 start-page: 164 issue: 1 year: 2007 end-page: 171 article-title: Power distribution fault cause identification with imbalanced data using the data mining‐based fuzzy classification $e$‐algorithm publication-title: IEEE Trans. Power Syst. – start-page: 10 year: 2017 end-page: 14 article-title: High‐impedance fault detection technique based on discrete wavelet transform and support vector machine in power distribution networks – start-page: 871 year: 2008 end-page: 876 article-title: A fuzzy art map‐based high‐impedance arc fault detection scheme – volume: 23 start-page: 58 issue: 1 year: 2008 end-page: 66 article-title: New ANN‐based algorithms for detecting HIFs in multigrounded MV networks publication-title: IEEE Trans. Power Deliv. – volume: 112 start-page: 282 year: 2019 end-page: 293 article-title: Inter‐harmonics based high‐impedance fault detection in distribution systems using maximum overlap wavelet packet transform and a modified empirical mode decomposition publication-title: Int. J. Electr. Power Energy Syst. – volume: 19 start-page: 533 issue: 2 year: 2004 end-page: 536 article-title: Decision tree‐based methodology for high‐impedance fault detection publication-title: IEEE Trans. Power Deliv. – ident: e_1_2_10_9_2 doi: 10.4316/aece.2010.03019 – ident: e_1_2_10_42_2 doi: 10.1109/TSG.2016.2555141 – ident: e_1_2_10_50_2 doi: 10.1109/IranianCEE.2013.6599760 – ident: e_1_2_10_55_2 doi: 10.1108/03321641111101014 – ident: e_1_2_10_7_2 doi: 10.1016/j.jesit.2017.01.004 – year: 2019 ident: e_1_2_10_58_2 article-title: High‐impedance fault detection and isolation in power distribution networks using support vector machines publication-title: J. King Saud Univ., Eng. Sci. – ident: e_1_2_10_25_2 doi: 10.1109/ICEPES.2016.7915922 – ident: e_1_2_10_68_2 doi: 10.1109/TPWRD.2005.852367 – ident: e_1_2_10_67_2 doi: 10.1109/CCECE.2008.4564660 – volume: 37 start-page: 5560 issue: 19 year: 2017 ident: e_1_2_10_72_2 article-title: Study of a novel machine learning method embedding expertise part i: proposals and fundamentals of guiding learning publication-title: Proc. CSEE – ident: e_1_2_10_44_2 doi: 10.1016/j.ijepes.2017.06.036 – ident: e_1_2_10_53_2 doi: 10.1016/j.ijepes.2016.04.013 – volume: 1 start-page: 44 issue: 2 year: 2012 ident: e_1_2_10_6_2 article-title: An artificial intelligence‐based approach for high‐impedance faults analysis in distribution networks publication-title: Int. J. Syst. Dyn. Appl. – volume: 7 start-page: 81 issue: 8 year: 2013 ident: e_1_2_10_36_2 article-title: Detecting high‐impedance fault in power distribution feeder with fuzzy subtractive clustering model publication-title: Aust. J. Basic Appl. Sci. – ident: e_1_2_10_19_2 doi: 10.1109/TPWRS.2012.2215630 – ident: e_1_2_10_52_2 doi: 10.1002/etep.2035 – ident: e_1_2_10_66_2 doi: 10.1016/j.ijepes.2012.12.005 – ident: e_1_2_10_32_2 doi: 10.1109/TPWRD.2007.911146 – ident: e_1_2_10_34_2 doi: 10.1016/j.ijepes.2009.01.001 – ident: e_1_2_10_43_2 doi: 10.1109/JSEN.2017.2776238 – ident: e_1_2_10_16_2 doi: 10.1007/s40866-016-0011-4 – ident: e_1_2_10_28_2 doi: 10.1109/TPWRD.2012.2222056 – ident: e_1_2_10_22_2 doi: 10.1109/ICPES.2011.6156670 – ident: e_1_2_10_59_2 doi: 10.1109/TPWRD.2010.2060214 – ident: e_1_2_10_69_2 doi: 10.1109/TPWRS.2005.861981 – ident: e_1_2_10_23_2 doi: 10.1109/TDC.2012.6281686 – ident: e_1_2_10_48_2 doi: 10.1109/PCITC.2015.7438225 – ident: e_1_2_10_15_2 doi: 10.1109/PECI.2015.7064882 – ident: e_1_2_10_33_2 doi: 10.1109/APPEEC.2010.5448673 – ident: e_1_2_10_46_2 doi: 10.1109/TPWRD.2014.2361207 – ident: e_1_2_10_11_2 doi: 10.1016/j.ijepes.2014.03.046 – ident: e_1_2_10_14_2 doi: 10.4236/epe.2013.54B160 – ident: e_1_2_10_54_2 doi: 10.1016/j.ijepes.2018.12.019 – ident: e_1_2_10_71_2 doi: 10.1007/s10015-009-0719-5 – ident: e_1_2_10_18_2 doi: 10.1109/TPWRD.2005.852273 – ident: e_1_2_10_3_2 doi: 10.1049/iet-gtd.2015.0407 – volume: 37 start-page: 85 issue: 16 year: 2013 ident: e_1_2_10_10_2 article-title: Analysis and detection of high‐impedance grounding fault in neutral point effectively grounding distribution network publication-title: Autom. Electr. Power Syst. – ident: e_1_2_10_37_2 – ident: e_1_2_10_21_2 doi: 10.1109/TSG.2014.2330624 – ident: e_1_2_10_13_2 doi: 10.1016/j.epsr.2017.08.039 – ident: e_1_2_10_62_2 doi: 10.1080/15325008.2012.689418 – ident: e_1_2_10_26_2 doi: 10.1049/iet-gtd.2010.0702 – ident: e_1_2_10_47_2 doi: 10.1049/iet-gtd:20070319 – ident: e_1_2_10_35_2 doi: 10.1109/DEMPED.2011.6063687 – ident: e_1_2_10_4_2 doi: 10.1049/iet-smt.2017.0231 – ident: e_1_2_10_40_2 doi: 10.1016/j.ijepes.2018.12.021 – ident: e_1_2_10_31_2 doi: 10.1109/TPWRD.2007.905273 – ident: e_1_2_10_60_2 doi: 10.1109/TPWRD.2003.820418 – ident: e_1_2_10_70_2 doi: 10.1109/TIE.2017.2726961 – ident: e_1_2_10_51_2 doi: 10.1109/SCES.2015.7506463 – volume: 6 start-page: 894 issue: 2 year: 2015 ident: e_1_2_10_2_2 article-title: Detection and location of high‐impedance faults in multi‐conductor overhead distribution lines using power line communication devices publication-title: IEEE Trans. Power Syst. – ident: e_1_2_10_17_2 doi: 10.1080/15325000390248774 – ident: e_1_2_10_29_2 doi: 10.1016/j.ijepes.2018.03.008 – ident: e_1_2_10_63_2 doi: 10.1109/61.853009 – ident: e_1_2_10_57_2 doi: 10.1109/TPWRD.2013.2272936 – ident: e_1_2_10_12_2 doi: 10.1109/ICHQP.2014.6842852 – ident: e_1_2_10_41_2 doi: 10.1016/j.ijepes.2019.04.050 – ident: e_1_2_10_38_2 doi: 10.1002/etep.321 – ident: e_1_2_10_61_2 doi: 10.1016/j.ijepes.2012.06.006 – ident: e_1_2_10_8_2 doi: 10.1016/j.epsr.2016.10.021 – ident: e_1_2_10_45_2 doi: 10.1016/j.epsr.2011.01.022 – ident: e_1_2_10_56_2 doi: 10.1109/AFRCON.2017.8095447 – volume-title: Principles of artificial intelligence year: 2014 ident: e_1_2_10_5_2 – volume: 43 start-page: 1239 issue: 4 year: 2017 ident: e_1_2_10_27_2 article-title: Identification method of distribution network faults based on singular value of LCD‐Hilbert spectrums and multilevel SVM publication-title: High Voltage Eng. – ident: e_1_2_10_24_2 doi: 10.1016/j.jesit.2015.03.015 – volume: 2 start-page: 237 issue: 10 year: 2014 ident: e_1_2_10_20_2 article-title: Signal‐energy‐based fault classification of unbalanced network using S‐transform and neural network publication-title: Int. J. Recent Trends Eng. Technol. – ident: e_1_2_10_65_2 doi: 10.1049/ip-gtd:20045224 – ident: e_1_2_10_49_2 doi: 10.1016/j.epsr.2019.105931 – ident: e_1_2_10_30_2 doi: 10.1109/TSG.2012.2208987 – ident: e_1_2_10_64_2 doi: 10.1109/TPWRS.2006.888990 – ident: e_1_2_10_39_2 doi: 10.1109/TPWRD.2018.2791986 |
| SSID | ssib032176772 ssj0002810737 |
| Score | 2.2319143 |
| SecondaryResourceType | review_article |
| Snippet | In the past few decades, the arcing-high-impedance fault (arcing-HIF) detection problems have become an important issue in the effectively grounded... In the past few decades, the arcing‐high‐impedance fault (arcing‐HIF) detection problems have become an important issue in the effectively grounded... |
| SourceID | doaj unpaywall proquest crossref wiley iet |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 435 |
| SubjectTerms | Algorithms arcing-hif database construction method arcing-hif detection-based ai algorithm arcing-high-impedance fault detection problems arcs (electric) Artificial intelligence artificial intelligence method Asymmetry B0170N Reliability B8120J Distribution networks C6170 Expert systems and other AI software and techniques C7410B Power engineering computing classifier selection Cognition & reasoning Data acquisition distribution network-based ai algorithm Electricity distribution Energy fault diagnosis feature extraction grounded distribution network Morphology power distribution faults power distribution reliability power engineering computing reliability Simulation Software Special Issue: Machine Learning in Power Systems |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLm0PFS2tmkJRhFAPVBGOv2L3BohlF4leukjcLH8i0CpdQRDi3zN2wrJ7gR56i6KXxHljyzP2-A1Cu9zXJJDoKypiWq2yuJIBrhy3zkcpg8oCpme_xficnV7wi6VSXyknrJcH7onbx9xGzpySnBFGHVPOyyZIw1kQjYr5mC-WaimYus5LRhDW0Gaxjan2r0JX3XaXKZkrKVSqemUiynr9ML0AasXVfHvXzs3DvZnNVp3XPPuM1tGHwW0sD_rmfkRvQvsJvV8SE9xAeweT8qotU22g9rIaT0alD11OtGp_laa0EBPHsj-p8hmdj46nR-NqqIQAnGEOXZlCGEdFwNQBsxDiyFBbKhQj0WDso5KkwcI1RkjlsDdeCi9tAyFnHVwTPP2C1tq_bfiKyto0hsooBA6WGYJtYMLz2gJhJrhYFwg_0aLdIBOeqlXMdN6uZkoDRxqY1IlJnZgs0N7ikXmvkfES-DBxvQAmeet8A4yuB6Pr14xeoB_pxcNwu33pazsrwMnxVP-ZnjwD9NzHAm09WfwZSTG4voQC8QX6uegF__J_NPeT15GpIeRwlPeKv_0PVjbRO5JWA3J64hZa627uwndwmTq7nUfHI_VfDLU priority: 102 providerName: Directory of Open Access Journals – databaseName: IET Digital Library Open Access dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxRBEG5kc9CLGFQcjWEQ8RAZ0tOv6cktiVl3Rb24gdyaflQvgWWy6IaQf291z-wuCxJzG4ZvHv1VzXRVdz0I-ShDzYDFUHEV02qVo5UGPPLS-RC1hjYXMP3xU00uxbcrebVNjw7X89Qro1qvuKXVcugzD1LoNv6HjweO-4YkaN8eI6D6s5qnMK1UezKlsu8x9M7ZiOxNv3wfXCzUL47mt0JrcrO5-Y9rd6anXMUfJx1E7RigT2-7pb2_s4vFrkmb56TxC_J8MCbL0176--QJdC_J0em0vO7K1COom1eT6bgMsMoBV91JaUuHvnEs-4yVV-RyfDE7n1RDRwTkjkpUaY7uHFdAuUeG0dXRUDuuWsGipTTEVrOGKt9YpVtPgw1aBe0adD1r8A0E_pqMupsO3pCyto3lOipFwQnLqAOhgqydrqkFH-uC0DURxg_lwlPXioXJ29aiNciKQe5M4s4k7gpytLlk2dfKeAh8ltjdAFOZ63wCZW2Gr8ZQ6aIUvtVSMMG9aH3QDWgrBaimjbogn9KN1yrx0NM-7ACnFzPza_Z1CzDLEAtysJbxFskpmsCMI_EF-byR-2PGx7Nm_B-ZXoSdjfOe8dvHDugdecaS559DEQ_IaPX7Ft6jebRyh4PW_wV0ywgD priority: 102 providerName: Institution of Engineering and Technology – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA4y-6A-rHfsukoR8UHtkObWxLdZ2XFGcBGcgfUp5DqKQ3fY7SD65E_wN_pLTNJO1xFZFXwr5aRpziU5JznnCwCPqC2RQ94WmPm4W6VhwV14MlQb6zl3IgGYvj5ikzl5dUyPu8q6VAvjmg7l5v2wxYroN9-ilaS5Oxr7yvp2zm8jUCJiy-KsWcRsrQhBGSvadxgNDvoA7MyP3ozexWvmwupdIEGq_nzzN-22VqgE5B_WnUC15YNeXtcr9fmTWi63vdq0LI2vgWYzoDYb5eNw3eih-fIL1uN_HvF1sNu5sfmo1bsb4JKrb4KrP4Eb3gLPRtP8Q53Hu4rqxfev3ybTcW5dk1K_6ue5ynWI0n3e1s7cBvPx4ezFpOjuZghShDQYFw6BJWYOYhNkHYIu7kqNmSDIKwitFxxVkJlKMS4MtMpyZrmuQhBcOlM5i--AQX1Su7sgL1WlMPeMQaeJQlA7wiwtNS-hcsaXGYAbeUjTAZfH-zOWMh2gEyEDI2RghIyMkJERGXjSN1m1qB0XER9EIfeEEXA7vTg5XcjOfiWk2lNiBKcEEWyIMJZXjitKHKuE5xl4HD_cTQBnF_X2cItwejiTb2cvzwlkEHQG9jeqdk6JYXDGEQ6Mz8DTXv3-Znw4adKfKeOPoINxOr3e-6c-7oErKG5EpMzIfTBoTtfufvDWGv2gs74fIxw7Pg priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOiKdIW1CEEAcgwvErNre26rKLBEJiK_Vm-bmqtEpXbSrUGz-B38gvYexkU1ZIBXGLorGTfJ6JZ8b2Nwi95L4mgURfURFTtsriSga4ctw6H6UMKhOYfvospsfs4wk_2UKH67MwPT_EmHBLlpH_18nAje2rkIBTC4N4Grrqoluk3VmJcjKdYL9Vgz-T1JywL2OihUiIcDJ3JkzlvCKKNePqpnr3Ry8b81Om8YdZB6Q2PNDbl-3KXH0zy-WmT5snpcl9dG_wJsv9fvgfoK3QPkR3f-MYfITe7s_K07ZMJYPaxc_vP6azSelDl3dgte9LU1oIlmPZH2F5jI4nR_PDaTWUSAAwMQcdpxDfUREwdQA5xD4y1JYKxUg0GPuoJGmwcI0RUjnsjZfCS9tALFoH1wRPn6Dt9qwNT1FZm8ZQGYXAwTJDsA1MeF5bgM8EF-sC4TUw2g384amMxVLndWymNKCkAUudsNQJywK9HpusevKMm4QPEtqjYOK9zjfOzhd6MCONuY2cOSU5I4w6ppyXTZCGsyAaFWWBXqWOBzu8uOlpLzYEZ0dz_XX-4VpAr3ws0N56zK8lKQafmFAAvkBvRj34l--jWVP-LplehBxM8iLyzn-12kV3SMoL5I2Ke2i7O78Mz8B56uzzbBy_ANclDhk priority: 102 providerName: Wiley-Blackwell |
| Title | AI in arcing-HIF detection: a brief review |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-stg.2019.0091 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-stg.2019.0091 https://www.proquest.com/docview/3092323354 https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-stg.2019.0091 https://doaj.org/article/05bf54c9854243c49cd87e8a54e679f8 |
| UnpaywallVersion | publishedVersion |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2515-2947 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0002810737 issn: 2515-2947 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 2515-2947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810737 issn: 2515-2947 databaseCode: IDLOA dateStart: 20180401 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2515-2947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810737 issn: 2515-2947 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2515-2947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810737 issn: 2515-2947 databaseCode: BENPR dateStart: 20180401 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2515-2947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810737 issn: 2515-2947 databaseCode: AVUZU dateStart: 20180401 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2515-2947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810737 issn: 2515-2947 databaseCode: 24P dateStart: 20180101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZ2uwfggHiKwFJFCHEAonVsx7GREGqh2RZBVUEr7Z4sx49qpSotu10hbvwEfiO_BNtNUnopXPLSJHG-jO3xjP0NAM8znSKDrE4wtd5bVcKEGXekslJpy5jhgcD085gOZ-TjWXZ2AMbNWhg_rbJpE0NDrZfK-8hPMHSmCMI4I-9W3xKfNcpHV5sUGrJOraDfBoqxQ3CEPDNWBxz1B-PJl9brgpgb7uC8DW_ykwuzTq7Wcz_JyzNX8nSngwo8_q7bcVI7JuiN62olf3yXi8WuURt6peIOuF2bk3Fv8__vggNT3QO3_iIZvA9e90bxRRX7nEHV_PfPX8NREWuzDlOwqjexjEs3WrbxZg3LAzArBtP3w6TOkeDQhJlTcgcIx9RArBzmbvDDTFpiygmyEkJtOUM5pCqXlHEFtdSMalbmbjCaGpUbjR-CTrWszCMQpzKXmFlKoSmJRLA0hOosLR1k0iibRgA2wAhVE4j7PBYLEQLZhAuHknBYCo-l8FhG4GV7y2rDnrFPuO_RbgU98XW4sLyci7oeCZiVNiOKs4wgghXhSrPcMJkRQ3NuWQRe-AfXFfFq39ue7QiOBlPxdXq6FRArbSNw3PzzreRWEyPwqtWD__k-HDTl35K-IKhfhCjy4_1FeAJuIu8BCFMSj0FnfXltnjozaV12wSEiE7dlxWm3rgfd4HJwZ6MPn8J-Np70zv8Aob4Sww |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbGdjG4QPyKwIAIARdANcd2HBtpQiu0NGyrEHTS7ozjn2pSlZY107Q7HoEn4mF4Emw3SelN4WZ3UXTiOJ_Pic-fzwHgeaoTZJDVHUyt91YVsMOMu1JpobRlzPBQwPRoSAfH5NNJerIBfjVnYXxaZfNPDD9qPVXeR76LoVNFEMYpeTf73vFdo3x0tWmhIevWCnovlBirD3YcmMsLZ8LN9_IPbr1fINTvjd4POnWXATcfmDo2cUNyTA3Eys3amQ_MJAWmnCArIdSWM5RBqjJJGVdQS82oZkXmzLnEqMxo7Ma9BrYIJtwZf1vd3vDzl9bLg5gzr3DWhlP57qmpOvNq7JPKfKVMnqxsiKFvgNvmHNWKyrt9Xs7k5YWcTFaV6LAL9m-Bm7X6Gu8v-O022DDlHXDjr6KGd8Gb_Tw-LWPfo6gc__7xc5D3Y22qkPJVvo1lXDjr3MaLMzP3wPGVoHUfbJbT0jwAcSIziZmlFJqCSAQLQ6hOk8JBJo2ySQRgA4xQdcFy3zdjIkLgnHDhUBIOS-GxFB7LCLxqH5ktqnWsI-56tFtCX2g73JiejUUttwKmhU2J4iwliGBFuNIsM0ymxNCMWxaBl37gWvDn6972bIUw743E19HHJYGYaRuBnWbNl5RLzo_A65YP_uf7cOCUf1P6iaBuP0StH66fwlOwPRgdHYrDfHjwCFxH3vsQ0iF3wGZ1dm4eOxWtKp7UchCDb1cten8ACs9ICQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7LLHh5EK9YXbWI-KAW09ya-Dbrbp3xsgjOyOJLyHVYGLrDbhfxzZ_gb_SXmKSdroOwim-lnKTN13N6Lkm-APCE2hI55G2BmY_VKg0L7sKVodpYz7kTicD0wwGbzMnbQ3q4BfbWe2E6foih4BYtI_2vo4G7lfVdwkkiSeaRa4vTdhGXZ0XOybiFfTv4c0hGYHv8ef5lPtRaEA9JTqLPDN6cFkiQapjgFC__6GfDRSUm_-B4gtRGEHr5rFmpb1_VcrkZ1ia_VF8H1_qAMh93GnADbLnmJrj6G83gLfBiPM2PmjyeGtQsfn7_MZnWuXVtWoTVvMpVrkO-7PNuF8ttMK_3Z68nRX9KQsAT0qDmOKR4mDmITUA9pD_clRozQZBXEFovOKogM5ViXBholeXMcl2FdLR0pnIW3wGj5rhxd0Feqkph7hmDThOFoHaEWVrqAJ9yxpcZgGtgpOkpxONJFkuZprKJkAElGbCUEUsZsczAs6HJquPPuEh4N6I9CEbq63Tj-GQhe0uSkGpPiRGcEkSwIcJYXjmuKHGsEp5n4GnsuDfF04ue9nhDcLo_k59mb84FZNC3DOysv_m5JIYhLEY4AJ-B54Me_Mv4cNKUv0vGF0G7dZpHvvdfrR6BSx_3avl-evDuPriCYpUgLVvcAaP25Mw9CKFUqx_2lvILQW0S2Q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA4y-6A-rHfsukoR8UHtkObWxLdZ2XFGcBGcgfUp5DqKQ3fY7SD65E_wN_pLTNJO1xFZFXwr5aRpziU5JznnCwCPqC2RQ94WmPm4W6VhwV14MlQb6zl3IgGYvj5ikzl5dUyPu8q6VAvjmg7l5v2wxYroN9-ilaS5Oxr7yvp2zm8jUCJiy-KsWcRsrQhBGSvadxgNDvoA7MyP3ozexWvmwupdIEGq_nzzN-22VqgE5B_WnUC15YNeXtcr9fmTWi63vdq0LI2vgWYzoDYb5eNw3eih-fIL1uN_HvF1sNu5sfmo1bsb4JKrb4KrP4Eb3gLPRtP8Q53Hu4rqxfev3ybTcW5dk1K_6ue5ynWI0n3e1s7cBvPx4ezFpOjuZghShDQYFw6BJWYOYhNkHYIu7kqNmSDIKwitFxxVkJlKMS4MtMpyZrmuQhBcOlM5i--AQX1Su7sgL1WlMPeMQaeJQlA7wiwtNS-hcsaXGYAbeUjTAZfH-zOWMh2gEyEDI2RghIyMkJERGXjSN1m1qB0XER9EIfeEEXA7vTg5XcjOfiWk2lNiBKcEEWyIMJZXjitKHKuE5xl4HD_cTQBnF_X2cItwejiTb2cvzwlkEHQG9jeqdk6JYXDGEQ6Mz8DTXv3-Znw4adKfKeOPoINxOr3e-6c-7oErKG5EpMzIfTBoTtfufvDWGv2gs74fIxw7Pg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI+in+arcing%E2%80%90HIF+detection%3A+a+brief+review&rft.jtitle=IET+smart+grid&rft.au=Hao%2C+Bai&rft.date=2020-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2515-2947&rft.volume=3&rft.issue=4&rft.spage=435&rft.epage=444&rft_id=info:doi/10.1049%2Fiet-stg.2019.0091 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2515-2947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2515-2947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2515-2947&client=summon |