Progressive recruitment of contralesional cortico‐reticulospinal pathways drives motor impairment post stroke

Key points Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to re...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 596; no. 7; pp. 1211 - 1225
Main Authors McPherson, Jacob G., Chen, Albert, Ellis, Michael D., Yao, Jun, Heckman, C. J., Dewald, Julius P. A.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.04.2018
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0022-3751
1469-7793
1469-7793
DOI10.1113/JP274968

Cover

Abstract Key points Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task‐dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control. A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter‐related mechanisms are necessary for flexion synergy expression: increased task‐dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post‐stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico‐reticulospinal pathways as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control. Key points Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task‐dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control.
AbstractList Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task‐dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control.
Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task-dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low-level motor control at the cost of fine motor control.KEY POINTSActivation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task-dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low-level motor control at the cost of fine motor control.A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter-related mechanisms are necessary for flexion synergy expression: increased task-dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post-stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico-reticulospinal pathways as an adaptive strategy that preserves low-level motor control at the cost of fine motor control.ABSTRACTA hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter-related mechanisms are necessary for flexion synergy expression: increased task-dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post-stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico-reticulospinal pathways as an adaptive strategy that preserves low-level motor control at the cost of fine motor control.
A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter‐related mechanisms are necessary for flexion synergy expression: increased task‐dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post‐stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico‐reticulospinal pathways as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control.
Key points Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task‐dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control. A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter‐related mechanisms are necessary for flexion synergy expression: increased task‐dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post‐stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico‐reticulospinal pathways as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control. Key points Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task‐dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control.
Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task-dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low-level motor control at the cost of fine motor control. A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter-related mechanisms are necessary for flexion synergy expression: increased task-dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post-stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico-reticulospinal pathways as an adaptive strategy that preserves low-level motor control at the cost of fine motor control.
Author Dewald, Julius P. A.
Yao, Jun
Heckman, C. J.
McPherson, Jacob G.
Chen, Albert
Ellis, Michael D.
AuthorAffiliation 3 Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation Northwestern University 345 East Superior Street Chicago IL 60611 USA
2 Department of Biomedical Engineering Florida International University 10555 West Flagler Street, EC 2600 Miami FL 33174 USA
4 Feinberg School of Medicine, Department of Physiology Northwestern University 303 East Chicago Ave, M211 Chicago IL 60611 USA
5 McCormick School of Engineering, Department of Biomedical Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
1 Feinberg School of Medicine Department of Physical Therapy and Human Movement Sciences Northwestern University 645 N Michigan Ave, Suite 1100 Chicago IL 60611 USA
AuthorAffiliation_xml – name: 4 Feinberg School of Medicine, Department of Physiology Northwestern University 303 East Chicago Ave, M211 Chicago IL 60611 USA
– name: 1 Feinberg School of Medicine Department of Physical Therapy and Human Movement Sciences Northwestern University 645 N Michigan Ave, Suite 1100 Chicago IL 60611 USA
– name: 5 McCormick School of Engineering, Department of Biomedical Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
– name: 3 Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation Northwestern University 345 East Superior Street Chicago IL 60611 USA
– name: 2 Department of Biomedical Engineering Florida International University 10555 West Flagler Street, EC 2600 Miami FL 33174 USA
Author_xml – sequence: 1
  givenname: Jacob G.
  orcidid: 0000-0002-4554-7531
  surname: McPherson
  fullname: McPherson, Jacob G.
  organization: Florida International University
– sequence: 2
  givenname: Albert
  surname: Chen
  fullname: Chen, Albert
  organization: Northwestern University
– sequence: 3
  givenname: Michael D.
  surname: Ellis
  fullname: Ellis, Michael D.
  organization: Northwestern University
– sequence: 4
  givenname: Jun
  surname: Yao
  fullname: Yao, Jun
  organization: Northwestern University
– sequence: 5
  givenname: C. J.
  surname: Heckman
  fullname: Heckman, C. J.
  organization: Northwestern University
– sequence: 6
  givenname: Julius P. A.
  surname: Dewald
  fullname: Dewald, Julius P. A.
  email: j-dewald@northwestern.edu
  organization: Northwestern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29457651$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1O3DAURi1EBQOt1CdAkbrpJtTXjuN4g1Qh-oOQOgu6tjzODZgmcbAd0Oz6CH3GPkkzwwzQiq5s6x4fffZ3QHZ73yMhb4EeAwD_cD5nslBltUNmUJQql1LxXTKjlLGcSwH75CDGG0qBU6X2yD5ThZClgBnx8-CvAsbo7jALaMPoUod9ynyTWd-nYFqMzvemnY4hOet___wVcNqMrY-DWw0Gk67vzTJmdZgsMet88iFz3WBcWLsGH1MWU_A_8DV51Zg24pvNeki-fzq7PP2SX3z7_PX040VuBRUsb6AxQpQCa255yReG2lIaa3gta0UttwC0rhcgmKIKLEUlYcGNVEihrirGD8nJg3cYFx3WFtdP0UNwnQlL7Y3Tf096d62v_J0WlawYrATvN4Lgb0eMSXcuWmxb06Mfo2aUFgWv5Bp99w9648cw_cyKAqUkkxwm6uh5osco2y4m4PgBsMHHGLDR1iWT3LoF12qgelW23pb9FPHxwtb5Arpx37sWl__l9OX5HFjFGP8D9i27Bw
CitedBy_id crossref_primary_10_1007_s13760_023_02212_2
crossref_primary_10_1113_JP281232
crossref_primary_10_1113_JP278464
crossref_primary_10_3233_RNN_231367
crossref_primary_10_1007_s00221_021_06118_4
crossref_primary_10_1111_cns_14889
crossref_primary_10_1186_s12984_019_0504_1
crossref_primary_10_1016_j_clinph_2019_01_010
crossref_primary_10_1097_PHM_0000000000001147
crossref_primary_10_1177_15459683241281299
crossref_primary_10_3389_fneur_2022_934670
crossref_primary_10_1177_1545968320932135
crossref_primary_10_1523_JNEUROSCI_1107_20_2020
crossref_primary_10_1016_j_arrct_2024_100385
crossref_primary_10_1088_1741_2552_ac20bc
crossref_primary_10_3390_s20133754
crossref_primary_10_3390_jcm11226835
crossref_primary_10_1177_15459683211011214
crossref_primary_10_1523_JNEUROSCI_1106_19_2019
crossref_primary_10_1016_j_nicl_2021_102710
crossref_primary_10_1136_bmjopen_2018_026435
crossref_primary_10_1113_JP285563
crossref_primary_10_3389_fspor_2023_1177004
crossref_primary_10_1113_JP285562
crossref_primary_10_3389_fneur_2019_00468
crossref_primary_10_1016_j_neuroimage_2020_117298
crossref_primary_10_3389_fnhum_2021_644335
crossref_primary_10_1109_TNSRE_2021_3102493
crossref_primary_10_1007_s00221_021_06070_3
crossref_primary_10_1007_s00221_022_06368_w
crossref_primary_10_1097_MD_0000000000033604
crossref_primary_10_1016_j_eclinm_2021_101258
crossref_primary_10_3389_fnhum_2020_590198
crossref_primary_10_3390_medicina60060937
crossref_primary_10_1088_1741_2552_ac5757
crossref_primary_10_1142_S0129065722500095
crossref_primary_10_3389_fneur_2024_1284780
crossref_primary_10_1371_journal_pone_0217969
crossref_primary_10_1038_s41467_019_11244_3
crossref_primary_10_1177_1545968319868718
crossref_primary_10_3389_fneur_2022_764650
crossref_primary_10_1152_jn_00301_2024
crossref_primary_10_1097_WNR_0000000000001283
crossref_primary_10_1186_s12984_022_01045_z
crossref_primary_10_1016_j_yebeh_2021_108518
crossref_primary_10_1088_1741_2552_ab5eda
crossref_primary_10_3390_biology10100976
crossref_primary_10_1093_braincomms_fcac301
crossref_primary_10_3389_fneur_2018_00564
crossref_primary_10_1177_1545968319834903
crossref_primary_10_3389_fresc_2023_1250579
crossref_primary_10_3389_fncir_2018_00079
crossref_primary_10_1016_j_jns_2021_120091
crossref_primary_10_1038_s41598_020_64179_x
crossref_primary_10_1177_1545968319836233
crossref_primary_10_1097_PHM_0000000000002522
crossref_primary_10_1152_jn_00367_2021
crossref_primary_10_1016_j_bspc_2024_106719
crossref_primary_10_3389_fnhum_2023_1286238
crossref_primary_10_1016_j_arrct_2021_100136
crossref_primary_10_1016_j_neuroscience_2020_12_001
crossref_primary_10_1007_s00221_020_06005_4
crossref_primary_10_3389_fneur_2021_687624
crossref_primary_10_3389_fneur_2024_1335795
crossref_primary_10_1021_acsomega_4c02537
crossref_primary_10_1016_j_mehy_2024_111487
crossref_primary_10_1177_1545968320943582
crossref_primary_10_1016_j_clinph_2019_02_018
crossref_primary_10_3389_fneur_2018_00071
crossref_primary_10_1038_s41598_021_01805_2
crossref_primary_10_3389_fneur_2020_577855
crossref_primary_10_3389_fneur_2018_00470
crossref_primary_10_1177_15459683211028243
crossref_primary_10_1186_s12984_024_01513_8
crossref_primary_10_1177_15394492231151887
crossref_primary_10_3389_fneur_2021_598554
crossref_primary_10_1177_1545968320926162
crossref_primary_10_3389_fnhum_2024_1340374
crossref_primary_10_2147_NDT_S351667
crossref_primary_10_1152_jn_00158_2019
crossref_primary_10_1113_JP281681
crossref_primary_10_1113_JP285403
crossref_primary_10_1016_j_clinph_2023_09_014
crossref_primary_10_1055_a_1900_4137
crossref_primary_10_3389_fnhum_2022_1023246
crossref_primary_10_14814_phy2_15659
crossref_primary_10_1016_j_neuron_2022_06_024
crossref_primary_10_1162_imag_a_00057
crossref_primary_10_3390_jcm11216449
crossref_primary_10_1007_s00221_019_05687_9
crossref_primary_10_1073_pnas_2008597118
crossref_primary_10_3390_electronics9040660
crossref_primary_10_1080_10749357_2022_2127669
crossref_primary_10_51507_j_jams_2021_14_6_238
crossref_primary_10_1177_11795735211072731
crossref_primary_10_1113_JP279377
crossref_primary_10_1109_TNSRE_2019_2955029
crossref_primary_10_3389_fnsys_2019_00086
crossref_primary_10_1109_TNSRE_2020_2986304
crossref_primary_10_15407_fz69_04_029
crossref_primary_10_3389_fneur_2019_00258
crossref_primary_10_3389_fnhum_2018_00131
crossref_primary_10_1038_s41598_021_91605_5
crossref_primary_10_1016_j_pmr_2023_07_006
crossref_primary_10_1113_JP278335
crossref_primary_10_1523_JNEUROSCI_1379_20_2020
crossref_primary_10_3389_fnins_2021_666697
crossref_primary_10_1038_s41467_022_29992_0
crossref_primary_10_3389_fneur_2022_968385
crossref_primary_10_3389_fnhum_2021_662006
crossref_primary_10_3389_fneur_2024_1282685
crossref_primary_10_1044_2023_AJSLP_22_00296
crossref_primary_10_4103_1673_5374_360167
crossref_primary_10_1186_s12984_021_00924_1
crossref_primary_10_1152_jn_00447_2021
Cites_doi 10.1016/0006-8993(79)90337-8
10.1016/S0006-8993(98)00505-8
10.1371/journal.pone.0152094
10.1016/j.neuroimage.2006.12.026
10.1093/brain/aws115
10.1161/STROKEAHA.111.000382
10.1177/1545968307313509
10.1002/(SICI)1096-9861(19990802)410:3<413::AID-CNE5>3.0.CO;2-Q
10.1007/s00221-006-0374-1
10.1007/BF00412364
10.1093/brain/91.1.15
10.1007/s002210050651
10.1007/s00221-004-1956-4
10.1161/01.STR.28.12.2518
10.1177/1545968309332927
10.1016/j.brs.2017.03.008
10.1016/j.neuroimage.2005.08.053
10.1523/JNEUROSCI.23-05-01867.2003
10.1152/jn.90563.2008
10.1152/jn.1998.80.1.389
10.1016/S0079-6123(03)43024-0
10.1016/S0079-6123(08)64048-0
10.1007/BF01191074
10.3389/fnhum.2015.00082
10.1002/hbm.20770
10.1016/0924-980X(96)95560-5
10.1109/TRO.2009.2017111
10.1523/JNEUROSCI.3720-08.2009
10.1002/cne.903320107
10.1177/1545968317697033
10.1007/s00221-007-1169-8
10.1109/10.554770
10.1007/BF02474537
10.1016/0306-4522(87)90160-6
10.1007/BF00248864
10.1212/WNL.0b013e31826356e8
10.1002/(SICI)1096-9861(19971229)389:4<617::AID-CNE6>3.0.CO;2-3
10.1093/brain/awl333
10.1093/brain/113.2.303
10.1007/BF00234256
10.1016/j.clinph.2006.04.025
10.3171/jns.2003.98.1.0064
10.1007/BF00235823
10.1002/mds.21323
10.1093/brain/120.9.1579
10.1177/1073858405283392
10.1152/jn.01030.2011
10.1113/jphysiol.2011.215160
10.1152/jn.1982.48.1.62
10.3389/fneur.2017.00257
10.1152/jn.1987.57.6.1716
10.1093/brain/74.4.443
10.1002/cne.903390309
10.1016/j.neulet.2011.11.030
10.1016/0006-8993(86)91632-X
10.1093/cercor/bhr344
10.1186/s12984-016-0203-0
10.1016/j.neuroimage.2004.11.036
10.1093/brain/118.2.495
10.1016/0304-3940(87)90515-5
10.1016/j.nicl.2013.12.003
10.1016/j.clinph.2012.01.009
10.1212/01.wnl.0000343961.35429.09
10.1007/s00221-010-2231-5
10.1016/j.jneumeth.2010.11.021
10.1016/0167-8760(84)90014-X
10.1007/s00221-007-1029-6
ContentType Journal Article
Copyright 2018 Northwestern University. The Journal of Physiology © 2018 The Physiological Society
2018 Northwestern University. The Journal of Physiology © 2018 The Physiological Society.
Journal compilation © 2018 The Physiological Society
Copyright_xml – notice: 2018 Northwestern University. The Journal of Physiology © 2018 The Physiological Society
– notice: 2018 Northwestern University. The Journal of Physiology © 2018 The Physiological Society.
– notice: Journal compilation © 2018 The Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/JP274968
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Technology Research Database


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate J. G. McPherson and others
EISSN 1469-7793
EndPage 1225
ExternalDocumentID PMC5878212
29457651
10_1113_JP274968
TJP12822
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: R01HD039343; R01NS054269; R01HD047569
– fundername: NICHD NIH HHS
  grantid: R01 HD047569
– fundername: NINDS NIH HHS
  grantid: R01 NS054269
– fundername: NICHD NIH HHS
  grantid: R01 HD039343
– fundername: National Institutes of Health
  grantid: R01HD039343; R01NS054269; R01HD047569
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
123
18M
1OC
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
.55
.GJ
.Y3
0YM
31~
3EH
3O-
AAHHS
AAYJJ
AAYXX
ACCFJ
ADXHL
AEEZP
AEQDE
AFFNX
AIWBW
AJBDE
C1A
CAG
CHEAL
CITATION
COF
FA8
H13
HF~
H~9
MVM
NEJ
OHT
RIG
UKR
WHG
X7M
XOL
YXB
YYP
ZGI
ZXP
1OB
24P
AEUQT
AFPWT
CGR
CUY
CVF
ECM
EIF
NPM
WRC
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5052-f1fa5565ed3c363ba0c67aca3d7d90c3c110ddb1529091c0e971b3a79e01d8823
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Thu Aug 21 18:27:07 EDT 2025
Fri Jul 11 06:58:46 EDT 2025
Fri Jul 25 12:13:44 EDT 2025
Wed Feb 19 02:30:00 EST 2025
Tue Jul 01 04:29:22 EDT 2025
Thu Apr 24 22:59:32 EDT 2025
Wed Aug 20 07:24:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords neural plasticity
motor control
stroke
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 Northwestern University. The Journal of Physiology © 2018 The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5052-f1fa5565ed3c363ba0c67aca3d7d90c3c110ddb1529091c0e971b3a79e01d8823
Notes Edited by: Janet Taylor & Richard Carson
J. G. McPherson and A. Chen contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4554-7531
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5878212
PMID 29457651
PQID 2019972731
PQPubID 1086388
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5878212
proquest_miscellaneous_2004438712
proquest_journals_2019972731
pubmed_primary_29457651
crossref_citationtrail_10_1113_JP274968
crossref_primary_10_1113_JP274968
wiley_primary_10_1113_JP274968_TJP12822
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 April 2018
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 1 April 2018
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1987; 77
2017; 8
2012; 123
1997; 44
2007; 183
1950; 219
2006; 173
1998; 80
1999; 125
1970
2008; 100
2011; 195
1994; 339
1996; 101
2007; 35
1936
2008; 185
2003; 98
1993; 6
2005; 25
1989; 74
1997; 389
2017; 31
2014; 4
2012; 135
1984; 54
2007; 130
2006; 29
1998; 803
1999; 410
2008; 22
1968; 91
1982
2009a; 23
2007; 22
2012; 22
1951; 74
1993; 332
1987; 57
2004; 143
1966; 39
2009b; 25
2006; 12
2013; 44
2010; 203
1965; 284
1995; 118
2012; 508
1997; 28
1983; 30
1979; 171
2015; 9
2012; 79
2006; 117
2012; 108
2016; 13
2009; 29
2016; 11
2011; 589
1982; 48
1987; 23
2009; 30
2004; 159
1974; 21
2009; 72
1986; 365
1997; 120
2017; 10
2002; 24
1967; 5
1964; 11
1994; 18
1990; 113
2003; 23
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_44_1
e_1_2_5_65_1
e_1_2_5_67_1
Pascual‐Marqui RD (e_1_2_5_52_1) 2002; 24
e_1_2_5_69_1
e_1_2_5_61_1
e_1_2_5_42_1
Brunnstrom S (e_1_2_5_9_1) 1970
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_70_1
e_1_2_5_72_1
e_1_2_5_74_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
Jankowska E (e_1_2_5_29_1) 2003; 23
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_66_1
e_1_2_5_68_1
e_1_2_5_60_1
e_1_2_5_62_1
e_1_2_5_20_1
e_1_2_5_41_1
Foerster O (e_1_2_5_21_1) 1936
Srivastava UC (e_1_2_5_64_1) 1983; 30
e_1_2_5_14_1
Nyberg‐Hansen R (e_1_2_5_50_1) 1966; 39
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
Sjölund BH (e_1_2_5_63_1) 1982
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_71_1
e_1_2_5_73_1
e_1_2_5_75_1
e_1_2_5_31_1
McCough CG (e_1_2_5_39_1) 1950; 219
31414487 - J Physiol. 2019 Aug;597(16):4411-4412
31414488 - J Physiol. 2019 Aug;597(16):4413-4414
References_xml – volume: 11
  start-page: 178
  year: 1964
  end-page: 202
  article-title: The descending pathways to the spinal cord, their anatomy and function
  publication-title: Prog Brain Res
– volume: 803
  start-page: 1
  year: 1998
  end-page: 8
  article-title: Follow‐up of interhemispheric differences of motor evoked potentials from the ‘affected’ and ‘unaffected’ hemispheres in human stroke
  publication-title: Brain Res
– volume: 173
  start-page: 25
  year: 2006
  end-page: 39
  article-title: Bilateral actions of the reticulospinal tract on arm and shoulder muscles in the monkey: stimulus triggered averaging
  publication-title: Exp Brain Res
– volume: 18
  start-page: 49
  year: 1994
  end-page: 65
  article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain
  publication-title: Int J Psychophysiol
– volume: 98
  start-page: 64
  year: 2003
  end-page: 73
  article-title: Cortical reorganization in patients with subcortical hemiparesis: neural mechanisms of functional recovery and prognostic implication
  publication-title: J Neurosurg
– volume: 123
  start-page: 1216
  year: 2012
  end-page: 1225
  article-title: Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke
  publication-title: Clin Neurophysiol
– volume: 365
  start-page: 211
  year: 1986
  end-page: 227
  article-title: Collaterals of corticospinal and pyramidal fibres to the pontine grey demonstrated by a new application of the fluorescent fibre labelling technique
  publication-title: Brain Res
– volume: 339
  start-page: 421
  year: 1994
  end-page: 437
  article-title: Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey
  publication-title: J Comp Neurol
– volume: 171
  start-page: 329
  year: 1979
  end-page: 333
  article-title: Anatomical evidence for direct brain stem projections to the somatic motoneuronal cell groups and autonomic preganglionic cell groups in cat spinal cord
  publication-title: Brain Res
– volume: 48
  start-page: 62
  year: 1982
  end-page: 74
  article-title: Muscle spindle complexes in muscles around upper cervical vertebrae in the cat
  publication-title: J Neurophysiol
– volume: 410
  start-page: 413
  year: 1999
  end-page: 430
  article-title: Morphology of single pontine reticulospinal axons in the lumbar enlargement of the cat: a study using the anterograde tracer PHA‐L
  publication-title: J Comp Neurol
– volume: 39
  start-page: 3
  year: 1966
  end-page: 48
  article-title: Functional organization of descending supraspinal fibre systems to the spinalcord. Anatomical observations and physiological correlations
  publication-title: Ergeb Anat Entwicklungsgesch
– volume: 44
  start-page: 220
  year: 1997
  end-page: 223
  article-title: The electrical conductivity of human cerebrospinal fluid at body temperature
  publication-title: IEEE Trans Biomed Eng
– volume: 113
  start-page: 303
  year: 1990
  end-page: 324
  article-title: The corticospinal tracts in man. Course and location of fibres at different segmental levels
  publication-title: Brain
– start-page: 1
  year: 1936
  end-page: 357
– volume: 332
  start-page: 89
  year: 1993
  end-page: 104
  article-title: Corticofugal projections to the vestibular nuclei in squirrel monkeys: further evidence of multiple cortical vestibular fields
  publication-title: J Comp Neurol
– volume: 29
  start-page: 734
  year: 2006
  end-page: 753
  article-title: Evaluation of EEG localization methods using realistic simulations of interictal spikes
  publication-title: Neuroimage
– volume: 22
  start-page: 601
  year: 2007
  end-page: 610
  article-title: Bereitschaftspotential and movement‐related potentials: origin, significance, and application in disorders of human movement
  publication-title: Mov Disord
– volume: 91
  start-page: 15
  year: 1968
  end-page: 36
  article-title: The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain‐stem pathways
  publication-title: Brain
– volume: 9
  start-page: 82
  year: 2015
  article-title: A neuroanatomical framework for upper limb synergies after stroke
  publication-title: Front Hum Neurosci
– volume: 57
  start-page: 1716
  year: 1987
  end-page: 1729
  article-title: Dynamics and directional sensitivity of neck muscle spindle responses to head rotation
  publication-title: J Neurophysiol
– volume: 79
  start-page: 515
  year: 2012
  end-page: 522
  article-title: Compensatory role of the cortico‐rubro‐spinal tract in motor recovery after stroke
  publication-title: Neurology
– volume: 30
  start-page: 3461
  year: 2009
  end-page: 3474
  article-title: Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients
  publication-title: Hum Brain Mapp
– year: 1982
– volume: 159
  start-page: 284
  year: 2004
  end-page: 300
  article-title: Movement‐related and preparatory activity in the reticulospinal system of the monkey
  publication-title: Exp Brain Res
– volume: 118
  start-page: 495
  year: 1995
  end-page: 510
  article-title: Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects
  publication-title: Brain
– volume: 4
  start-page: 201
  year: 2014
  end-page: 208
  article-title: Motor recovery and microstructural change in rubro‐spinal tract in subcortical stroke
  publication-title: Neuroimage Clin
– volume: 25
  start-page: 369
  year: 2005
  end-page: 382
  article-title: Evaluation of different cortical source localization methods using simulated and experimental EEG data
  publication-title: Neuroimage
– volume: 22
  start-page: 2662
  year: 2012
  end-page: 2671
  article-title: Contralesional hemisphere control of the proximal paretic upper limb following stroke
  publication-title: Cereb Cortex
– volume: 117
  start-page: 2341
  year: 2006
  end-page: 2356
  article-title: What is the Bereitschaftspotential
  publication-title: Clin Neurophysiol
– volume: 589
  start-page: 5603
  year: 2011
  end-page: 5612
  article-title: The primate reticulospinal tract, hand function and functional recovery
  publication-title: J Physiol
– volume: 23
  start-page: 862
  year: 2009a
  end-page: 869
  article-title: Progressive shoulder abduction loading is a crucial element of arm rehabilitation in chronic stroke
  publication-title: Neurorehabil Neural Repair
– volume: 143
  start-page: 239
  year: 2004
  end-page: 249
  article-title: Locomotor role of the corticoreticular‐reticulospinal‐spinal interneuronal system
  publication-title: Prog Brain Res
– volume: 31
  start-page: 521
  year: 2017
  end-page: 529
  article-title: The impact of shoulder abduction loading on volitional hand opening and grasping in chronic hemiparetic stroke
  publication-title: Neurorehabil Neural Repair
– volume: 185
  start-page: 509
  year: 2008
  end-page: 519
  article-title: Ipsilateral versus contralateral cortical motor projections to a shoulder adductor in chronic hemiparetic stroke: implications for the expression of arm synergies
  publication-title: Exp Brain Res
– volume: 13
  start-page: 95
  year: 2016
  article-title: Robotic quantification of upper extremity loss of independent joint control or flexion synergy in individuals with hemiparetic stroke: a review of paradigms addressing the effects of shoulder abduction loading
  publication-title: J Neuroeng Rehabil
– volume: 6
  start-page: 99
  year: 1993
  end-page: 109
  article-title: Thickness and resistivity variations over the upper surface of the human skull
  publication-title: Brain Topogr
– volume: 74
  start-page: 443
  year: 1951
  end-page: 480
  article-title: The restoration of motor function following hemiplegia in man
  publication-title: Brain
– volume: 10
  start-page: 721
  year: 2017
  end-page: 734
  article-title: TMS measures of motor cortex function after stroke: a meta‐analysis
  publication-title: Brain Stimul
– volume: 28
  start-page: 2518
  year: 1997
  end-page: 2527
  article-title: A functional MRI study of subjects recovered from hemiparetic stroke
  publication-title: Stroke
– volume: 30
  start-page: 302
  year: 1983
  end-page: 305
  article-title: Frequency response of medullary reticulospinal neurons to sinusoidal rotation of the neck
  publication-title: Adv Otorhinolaryngol
– volume: 21
  start-page: 19
  year: 1974
  end-page: 44
  article-title: Responses of ponto‐medullary reticular neurons to cortical, tectal and cutaneous stimuli
  publication-title: Exp Brain Res
– volume: 101
  start-page: 316
  year: 1996
  end-page: 328
  article-title: Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 389
  start-page: 617
  year: 1997
  end-page: 641
  article-title: Organization of the projections from the pericruciate cortex to the pontomedullary brainstem of the cat: a study using the anterograde tracer Phaseolus vulgaris‐leucoagglutinin
  publication-title: J Comp Neurol
– volume: 284
  start-page: 1
  year: 1965
  end-page: 17
  article-title: [Changes in the brain potential in voluntary movements and passive movements in man: readiness potential and reafferent potentials.]
  publication-title: Pflugers Arch Gesamte Physiol Menschen Tiere
– volume: 195
  start-page: 151
  year: 2011
  end-page: 160
  article-title: Using paired pulse TMS to facilitate contralateral and ipsilateral MEPs in upper extremity muscles of chronic hemiparetic stroke patients
  publication-title: J Neurosci Methods
– volume: 22
  start-page: 321
  year: 2008
  end-page: 329
  article-title: Augmenting clinical evaluation of hemiparetic arm movement with a laboratory‐based quantitative measurement of kinematics as a function of limb loading
  publication-title: Neurorehabil Neural Repair
– volume: 54
  start-page: 107
  year: 1984
  end-page: 120
  article-title: Distribution of corticospinal neurons with collaterals to lower brain stem reticular formation in cat
  publication-title: Exp Brain Res
– volume: 29
  start-page: 4993
  year: 2009
  end-page: 4999
  article-title: Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract
  publication-title: J Neurosci
– volume: 125
  start-page: 1
  year: 1999
  end-page: 13
  article-title: Cortical influences on the vestibular nuclei of the cat
  publication-title: Exp Brain Res
– volume: 72
  start-page: 850
  year: 2009
  end-page: 853
  article-title: The tripartite origins of the tonic neck reflex: Gesell, Gerstmann, and Magnus
  publication-title: Neurology
– volume: 8
  start-page: 257
  year: 2017
  article-title: Upper Extremity motor impairments and microstructural changes in bulbospinal pathways in chronic hemiparetic stroke
  publication-title: Front Neurol
– volume: 23
  start-page: 1867
  year: 2003
  end-page: 1878
  article-title: Neuronal basis of crossed actions from the reticular formation on feline hindlimb motoneurons
  publication-title: J Neurosci
– volume: 35
  start-page: 598
  year: 2007
  end-page: 608
  article-title: Evaluation of cortical current density imaging methods using intracranial electrocorticograms and functional MRI
  publication-title: Neuroimage
– volume: 24
  start-page: 91
  issue: Suppl. C
  year: 2002
  end-page: 95
  article-title: Functional imaging with low‐resolution brain electromagnetic tomography (LORETA): a review
  publication-title: Methods Find Exp Clin Pharmacol
– volume: 12
  start-page: 67
  year: 2006
  end-page: 79
  article-title: How can corticospinal tract neurons contribute to ipsilateral movements? A question with implications for recovery of motor functions
  publication-title: Neuroscientist
– volume: 508
  start-page: 9
  year: 2012
  end-page: 12
  article-title: Corticoreticular pathway in the human brain: diffusion tensor tractography study
  publication-title: Neurosci Lett
– volume: 130
  start-page: 170
  year: 2007
  end-page: 180
  article-title: Functional potential in chronic stroke patients depends on corticospinal tract integrity
  publication-title: Brain
– volume: 203
  start-page: 271
  year: 2010
  end-page: 283
  article-title: Measuring the motor output of the pontomedullary reticular formation in the monkey: do stimulus‐triggered averaging and stimulus trains produce comparable results in the upper limbs
  publication-title: Exp Brain Res
– volume: 120
  start-page: 1579
  year: 1997
  end-page: 1586
  article-title: Reorganization of motor output in the non‐affected hemisphere after stroke
  publication-title: Brain
– volume: 80
  start-page: 389
  year: 1998
  end-page: 405
  article-title: Corticoreticular pathways in the cat. I. Projection patterns and collaterization
  publication-title: J Neurophysiol
– volume: 219
  start-page: 347
  year: 1950
  article-title: Location of receptors for tonic neck reflexes
  publication-title: Am J Med Sci
– volume: 108
  start-page: 3096
  year: 2012
  end-page: 3104
  article-title: Neck rotation modulates flexion synergy torques, indicating an ipsilateral reticulospinal source for impairment in stroke
  publication-title: J Neurophysiol
– volume: 44
  start-page: 2016
  year: 2013
  end-page: 2018
  article-title: Decreased corticospinal tract fractional anisotropy predicts long‐term motor outcome after stroke
  publication-title: Stroke
– volume: 5
  start-page: 271
  year: 1967
  end-page: 293
  article-title: The specific resistance of biological material–a compendium of data for the biomedical engineer and physiologist
  publication-title: Med Biol Eng
– volume: 11
  start-page: e0152094
  year: 2016
  article-title: Corticospinal and reticulospinal contacts on cervical commissural and long descending propriospinal neurons in the adult rat spinal cord; evidence for powerful reticulospinal connections
  publication-title: PLoS One
– volume: 135
  start-page: 2277
  year: 2012
  end-page: 2289
  article-title: Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey
  publication-title: Brain
– year: 1970
– volume: 74
  start-page: 311
  year: 1989
  end-page: 318
  article-title: Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in monkey ( )
  publication-title: Exp Brain Res
– volume: 25
  start-page: 549
  year: 2009b
  end-page: 555
  article-title: Impairment‐based 3‐D robotic intervention improves upper extremity work area in chronic stroke: targeting abnormal joint torque coupling with progressive shoulder abduction loading
  publication-title: IEEE Trans Robot
– volume: 183
  start-page: 215
  year: 2007
  end-page: 223
  article-title: Shoulder abduction‐induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications
  publication-title: Exp Brain Res
– volume: 23
  start-page: 809
  year: 1987
  end-page: 821
  article-title: Brainstem projections to spinal motoneurons: an update
  publication-title: Neuroscience
– volume: 100
  start-page: 3236
  year: 2008
  end-page: 3243
  article-title: Evidence for increased activation of persistent inward currents in individuals with chronic hemiparetic stroke
  publication-title: J Neurophysiol
– volume: 77
  start-page: 293
  year: 1987
  end-page: 297
  article-title: Integration of cortical and peripheral information in the lateral vestibular nucleus in the cat
  publication-title: Neurosci Lett
– ident: e_1_2_5_26_1
  doi: 10.1016/0006-8993(79)90337-8
– volume-title: Brain Stem Control of Spinal Mechanisms: Proceedings of the 1st Eric K. Fernström Symposium, held in Lund (Sweden) on 10–13 November 1981
  year: 1982
  ident: e_1_2_5_63_1
– ident: e_1_2_5_68_1
  doi: 10.1016/S0006-8993(98)00505-8
– ident: e_1_2_5_47_1
  doi: 10.1371/journal.pone.0152094
– ident: e_1_2_5_4_1
  doi: 10.1016/j.neuroimage.2006.12.026
– ident: e_1_2_5_75_1
  doi: 10.1093/brain/aws115
– ident: e_1_2_5_55_1
  doi: 10.1161/STROKEAHA.111.000382
– ident: e_1_2_5_18_1
  doi: 10.1177/1545968307313509
– ident: e_1_2_5_44_1
  doi: 10.1002/(SICI)1096-9861(19990802)410:3<413::AID-CNE5>3.0.CO;2-Q
– ident: e_1_2_5_14_1
  doi: 10.1007/s00221-006-0374-1
– ident: e_1_2_5_33_1
  doi: 10.1007/BF00412364
– ident: e_1_2_5_37_1
  doi: 10.1093/brain/91.1.15
– ident: e_1_2_5_72_1
  doi: 10.1007/s002210050651
– ident: e_1_2_5_10_1
  doi: 10.1007/s00221-004-1956-4
– ident: e_1_2_5_13_1
  doi: 10.1161/01.STR.28.12.2518
– ident: e_1_2_5_19_1
  doi: 10.1177/1545968309332927
– ident: e_1_2_5_40_1
  doi: 10.1016/j.brs.2017.03.008
– ident: e_1_2_5_24_1
  doi: 10.1016/j.neuroimage.2005.08.053
– volume: 23
  start-page: 1867
  year: 2003
  ident: e_1_2_5_29_1
  article-title: Neuronal basis of crossed actions from the reticular formation on feline hindlimb motoneurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-05-01867.2003
– ident: e_1_2_5_42_1
  doi: 10.1152/jn.90563.2008
– ident: e_1_2_5_30_1
  doi: 10.1152/jn.1998.80.1.389
– ident: e_1_2_5_45_1
  doi: 10.1016/S0079-6123(03)43024-0
– ident: e_1_2_5_34_1
  doi: 10.1016/S0079-6123(08)64048-0
– ident: e_1_2_5_36_1
  doi: 10.1007/BF01191074
– ident: e_1_2_5_41_1
  doi: 10.3389/fnhum.2015.00082
– ident: e_1_2_5_58_1
  doi: 10.1002/hbm.20770
– ident: e_1_2_5_69_1
  doi: 10.1016/0924-980X(96)95560-5
– ident: e_1_2_5_20_1
  doi: 10.1109/TRO.2009.2017111
– start-page: 1
  volume-title: Handbuch der Neurologie
  year: 1936
  ident: e_1_2_5_21_1
– ident: e_1_2_5_56_1
  doi: 10.1523/JNEUROSCI.3720-08.2009
– ident: e_1_2_5_2_1
  doi: 10.1002/cne.903320107
– ident: e_1_2_5_35_1
  doi: 10.1177/1545968317697033
– ident: e_1_2_5_59_1
  doi: 10.1007/s00221-007-1169-8
– ident: e_1_2_5_7_1
  doi: 10.1109/10.554770
– ident: e_1_2_5_23_1
  doi: 10.1007/BF02474537
– ident: e_1_2_5_27_1
  doi: 10.1016/0306-4522(87)90160-6
– ident: e_1_2_5_32_1
  doi: 10.1007/BF00248864
– ident: e_1_2_5_57_1
  doi: 10.1212/WNL.0b013e31826356e8
– ident: e_1_2_5_43_1
  doi: 10.1002/(SICI)1096-9861(19971229)389:4<617::AID-CNE6>3.0.CO;2-3
– ident: e_1_2_5_65_1
  doi: 10.1093/brain/awl333
– ident: e_1_2_5_48_1
  doi: 10.1093/brain/113.2.303
– ident: e_1_2_5_54_1
  doi: 10.1007/BF00234256
– ident: e_1_2_5_62_1
  doi: 10.1016/j.clinph.2006.04.025
– ident: e_1_2_5_22_1
  doi: 10.3171/jns.2003.98.1.0064
– ident: e_1_2_5_31_1
  doi: 10.1007/BF00235823
– ident: e_1_2_5_12_1
  doi: 10.1002/mds.21323
– ident: e_1_2_5_49_1
  doi: 10.1093/brain/120.9.1579
– volume: 24
  start-page: 91
  year: 2002
  ident: e_1_2_5_52_1
  article-title: Functional imaging with low‐resolution brain electromagnetic tomography (LORETA): a review
  publication-title: Methods Find Exp Clin Pharmacol
– volume-title: Movement Therapy in Hemiplegia: A Neurophysiological Approach
  year: 1970
  ident: e_1_2_5_9_1
– volume: 219
  start-page: 347
  year: 1950
  ident: e_1_2_5_39_1
  article-title: Location of receptors for tonic neck reflexes
  publication-title: Am J Med Sci
– ident: e_1_2_5_28_1
  doi: 10.1177/1073858405283392
– ident: e_1_2_5_16_1
  doi: 10.1152/jn.01030.2011
– ident: e_1_2_5_5_1
  doi: 10.1113/jphysiol.2011.215160
– ident: e_1_2_5_6_1
  doi: 10.1152/jn.1982.48.1.62
– volume: 39
  start-page: 3
  year: 1966
  ident: e_1_2_5_50_1
  article-title: Functional organization of descending supraspinal fibre systems to the spinalcord. Anatomical observations and physiological correlations
  publication-title: Ergeb Anat Entwicklungsgesch
– ident: e_1_2_5_51_1
  doi: 10.3389/fneur.2017.00257
– volume: 30
  start-page: 302
  year: 1983
  ident: e_1_2_5_64_1
  article-title: Frequency response of medullary reticulospinal neurons to sinusoidal rotation of the neck
  publication-title: Adv Otorhinolaryngol
– ident: e_1_2_5_11_1
  doi: 10.1152/jn.1987.57.6.1716
– ident: e_1_2_5_70_1
  doi: 10.1093/brain/74.4.443
– ident: e_1_2_5_3_1
  doi: 10.1002/cne.903390309
– ident: e_1_2_5_74_1
  doi: 10.1016/j.neulet.2011.11.030
– ident: e_1_2_5_71_1
  doi: 10.1016/0006-8993(86)91632-X
– ident: e_1_2_5_8_1
  doi: 10.1093/cercor/bhr344
– ident: e_1_2_5_17_1
  doi: 10.1186/s12984-016-0203-0
– ident: e_1_2_5_73_1
  doi: 10.1016/j.neuroimage.2004.11.036
– ident: e_1_2_5_15_1
  doi: 10.1093/brain/118.2.495
– ident: e_1_2_5_38_1
  doi: 10.1016/0304-3940(87)90515-5
– ident: e_1_2_5_67_1
  doi: 10.1016/j.nicl.2013.12.003
– ident: e_1_2_5_46_1
  doi: 10.1016/j.clinph.2012.01.009
– ident: e_1_2_5_61_1
  doi: 10.1212/01.wnl.0000343961.35429.09
– ident: e_1_2_5_25_1
  doi: 10.1007/s00221-010-2231-5
– ident: e_1_2_5_60_1
  doi: 10.1016/j.jneumeth.2010.11.021
– ident: e_1_2_5_53_1
  doi: 10.1016/0167-8760(84)90014-X
– ident: e_1_2_5_66_1
  doi: 10.1007/s00221-007-1029-6
– reference: 31414487 - J Physiol. 2019 Aug;597(16):4411-4412
– reference: 31414488 - J Physiol. 2019 Aug;597(16):4413-4414
SSID ssj0013099
Score 2.5970807
Snippet Key points Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger...
Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in...
A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1211
SubjectTerms Adult
Aged
Aged, 80 and over
Arm
Brain stem
Elbow
Female
Humans
Male
Middle Aged
Molecular and Cellular
motor control
Motor Cortex - pathology
Motor task performance
Muscle Weakness
neural plasticity
Paresis
Paresis - etiology
Paresis - pathology
Pyramidal Tracts - pathology
Recruitment
Reflex
Research Paper
Reticular Formation - pathology
Shoulder
Spinal Cord - pathology
Stroke
Stroke - complications
Wrist
Title Progressive recruitment of contralesional cortico‐reticulospinal pathways drives motor impairment post stroke
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP274968
https://www.ncbi.nlm.nih.gov/pubmed/29457651
https://www.proquest.com/docview/2019972731
https://www.proquest.com/docview/2004438712
https://pubmed.ncbi.nlm.nih.gov/PMC5878212
Volume 596
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 0022-3751
  databaseCode: DIK
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 0022-3751
  databaseCode: GX1
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 0022-3751
  databaseCode: RPM
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0022-3751
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1469-7793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013099
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB6kT754ab2stjKC2KfUTCbJZB5LaS0LyiItLPgQ5opLa1KyiVKf_An-Rn-J50wuulZBfFkIc2Y2lzOZ72S-8x1CXiTKS1jXVZQVWMJMWB1pK9LISpd4p7zLg4Dpm7f56Xk6X2bLgVWJuTC9PsT0wQ1nRnhf4wRXeqhCwlBsYL6AgErmmOfLeBZ2aN8lPzcQYiknoXCRsUF3Frq-GjturkQ34OVNluSv6DUsPyd3yfvxxHvWycVB1-oD8-U3Tcf_u7J75M6ASulh70b3yS1XbZOdwwoi8o_X9CUNPNHwAX6H1AukdCF79pOj8L5sulVgqtPa00B8hyWnl_qAQxyw_v71W8iV7C6xSAk2YB3kz-p6TW2DsrcU_KVuKGZsrpow1lW9bum6beoL94CcnxyfHZ1GQ9mGyGBVvMgzrzLAic5yw3OuVWxyoYziVlgZG24AcVirAThIACsmdlIwzZWQLmYWAD9_SLaqunKPCS1SzRNvYgCpOuWJKLRWXhvmtDcAVOSM7I-PsDSDpjmW1rgs-9iGl-O9nJHnk-VVr-PxB5vd0QvKYSavSwBImFssOIMhpmaYg7ixoipXd2gTpymH0DOZkUe900x_ksgUQroMeosNd5oMUN97s6VafQg631kB8A3H3A_e8tfzLs_mC4Z04Cf_bPmU3IYLK3oK0i7ZapvO7QG6avWzMI_g9_WS_QCo-SWM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcClFMpjoYCRED2lJHESx-JUAdWytNUKbaUekCK_IlZtkyqbgMqpP6G_kV_SGecBS0FCHCOPnWR3Jv7G_vwNIS9DmQuY16UXp1jCjBvlKcMjzwgb5lbmNnECpvsHyfgwmhzFRyvkTX8WptWHGBbcMDLc9xoDHBekuyhHtYHJFDIqkaQ3yE3cnsOofPcp_LmF4AsxSIXzOOiUZ6Hv677n8lx0DWBe50n-il_dBLR7h3zuH73lnRxvN7Xa1t9_U3X8z3dbJ2sdMKU7rSfdJSu2uEc2dgpIyk_P6SvqqKJuDX6DlFNkdSGB9qul8Mmsmrkjq9Myp477DrNOq_YBlzhg-ePi0h2XbE6wTgk2YCnkb_J8QU2FyrcUXKasKB7anFdurLNyUdNFXZXH9j453H0_ezv2usoNnsbCeF4e5DIGqGgN0yxhSvo64VJLZrgRvmYaQIcxCrCDALyifSt4oJjkwvqBAczPHpDVoizsI0LTSLEw1z7gVBWxkKdKyVzpwKpcA1YRI7LV_4eZ7mTNsbrGSdamNyzrf8sReTFYnrVSHn-w2ezdIOuCeZEBRsLjxZwFMMTQDGGIeyuysGWDNn4UMcg-wxF52HrNcJNQRJDVxdCbL_nTYIAS38stxfyLk_qOU0BwOOaWc5e_Pnc2m0wDZAQ__mfL5-TWeLa_l-19OPj4hNyGl0xbRtImWa2rxj4FsFWrZy6orgDrfCi3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWgSIiXcimXhQJGQvQpJYmTOH6sgFVZoFqhVqrEQ-SrWLVNVtkEVJ74BL6RL2HGucBSkBCPkcfObSY-4xyfIeRpLJ2AeV0GaY4lzLhRgTI8CYywsbPS2cwLmL47yPaPktlxetyzKnEvTKcPMS64YWT47zUG-NK4PshRbGA2h4RKZPllciXJILlCQPQ-_vkHIRRiVArnadQLz0Lf50PP9anoAr68SJP8Fb76-Wd6nXwYrryjnZzsto3a1V9-E3X8v1u7QTZ7WEr3Oj-6SS7Z8hbZ2ishJT87p8-oJ4r6FfgtUs2R04X02U-Wwgezbheeqk4rRz3zHeacTusDDnHA6vvXb36zZHuKVUqwAQshf5bnK2pq1L2l4DBVTXHL5qL2Yy2rVUNXTV2d2NvkaPrq8MV-0NdtCDSWxQtc5GQKQNEaplnGlAx1xqWWzHAjQs00QA5jFCAHAWhFh1bwSDHJhQ0jA4if3SEbZVXae4TmiWKx0yGgVJWwmOdKSad0ZJXTgFTEhOwMr7DQvag51tY4LbrkhhXDs5yQJ6PlshPy-IPN9uAFRR_KqwIQEm4u5iyCIcZmCEL8syJLW7VoEyYJg9wznpC7ndOMJ4lFAjldCr35mjuNBijwvd5SLj56oe80B_yGY-54b_nrdReHs3mEfOD7_2z5mFydv5wWb18fvHlArsE95h0daZtsNHVrHwLSatQjH1I_AGHpJ2Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progressive+recruitment+of+contralesional+cortico%E2%80%90reticulospinal+pathways+drives+motor+impairment+post+stroke&rft.jtitle=The+Journal+of+physiology&rft.au=McPherson%2C+Jacob+G.&rft.au=Chen%2C+Albert&rft.au=Ellis%2C+Michael+D.&rft.au=Yao%2C+Jun&rft.date=2018-04-01&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=596&rft.issue=7&rft.spage=1211&rft.epage=1225&rft_id=info:doi/10.1113%2FJP274968&rft.externalDBID=10.1113%252FJP274968&rft.externalDocID=TJP12822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon