Progressive recruitment of contralesional cortico‐reticulospinal pathways drives motor impairment post stroke
Key points Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to re...
Saved in:
Published in | The Journal of physiology Vol. 596; no. 7; pp. 1211 - 1225 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.04.2018
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3751 1469-7793 1469-7793 |
DOI | 10.1113/JP274968 |
Cover
Abstract | Key points
Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy.
It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways.
In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task‐dependent recruitment of contralesional cortex.
We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression.
We interpret these findings as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control.
A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter‐related mechanisms are necessary for flexion synergy expression: increased task‐dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post‐stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico‐reticulospinal pathways as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control.
Key points
Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy.
It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways.
In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task‐dependent recruitment of contralesional cortex.
We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression.
We interpret these findings as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control. |
---|---|
AbstractList | Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy.
It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways.
In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task‐dependent recruitment of contralesional cortex.
We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression.
We interpret these findings as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control. Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task-dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low-level motor control at the cost of fine motor control.KEY POINTSActivation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task-dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low-level motor control at the cost of fine motor control.A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter-related mechanisms are necessary for flexion synergy expression: increased task-dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post-stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico-reticulospinal pathways as an adaptive strategy that preserves low-level motor control at the cost of fine motor control.ABSTRACTA hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter-related mechanisms are necessary for flexion synergy expression: increased task-dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post-stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico-reticulospinal pathways as an adaptive strategy that preserves low-level motor control at the cost of fine motor control. A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter‐related mechanisms are necessary for flexion synergy expression: increased task‐dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post‐stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico‐reticulospinal pathways as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control. Key points Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task‐dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control. A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter‐related mechanisms are necessary for flexion synergy expression: increased task‐dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post‐stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico‐reticulospinal pathways as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control. Key points Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task‐dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control. Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task-dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low-level motor control at the cost of fine motor control. A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter-related mechanisms are necessary for flexion synergy expression: increased task-dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post-stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico-reticulospinal pathways as an adaptive strategy that preserves low-level motor control at the cost of fine motor control. |
Author | Dewald, Julius P. A. Yao, Jun Heckman, C. J. McPherson, Jacob G. Chen, Albert Ellis, Michael D. |
AuthorAffiliation | 3 Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation Northwestern University 345 East Superior Street Chicago IL 60611 USA 2 Department of Biomedical Engineering Florida International University 10555 West Flagler Street, EC 2600 Miami FL 33174 USA 4 Feinberg School of Medicine, Department of Physiology Northwestern University 303 East Chicago Ave, M211 Chicago IL 60611 USA 5 McCormick School of Engineering, Department of Biomedical Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA 1 Feinberg School of Medicine Department of Physical Therapy and Human Movement Sciences Northwestern University 645 N Michigan Ave, Suite 1100 Chicago IL 60611 USA |
AuthorAffiliation_xml | – name: 4 Feinberg School of Medicine, Department of Physiology Northwestern University 303 East Chicago Ave, M211 Chicago IL 60611 USA – name: 1 Feinberg School of Medicine Department of Physical Therapy and Human Movement Sciences Northwestern University 645 N Michigan Ave, Suite 1100 Chicago IL 60611 USA – name: 5 McCormick School of Engineering, Department of Biomedical Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA – name: 3 Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation Northwestern University 345 East Superior Street Chicago IL 60611 USA – name: 2 Department of Biomedical Engineering Florida International University 10555 West Flagler Street, EC 2600 Miami FL 33174 USA |
Author_xml | – sequence: 1 givenname: Jacob G. orcidid: 0000-0002-4554-7531 surname: McPherson fullname: McPherson, Jacob G. organization: Florida International University – sequence: 2 givenname: Albert surname: Chen fullname: Chen, Albert organization: Northwestern University – sequence: 3 givenname: Michael D. surname: Ellis fullname: Ellis, Michael D. organization: Northwestern University – sequence: 4 givenname: Jun surname: Yao fullname: Yao, Jun organization: Northwestern University – sequence: 5 givenname: C. J. surname: Heckman fullname: Heckman, C. J. organization: Northwestern University – sequence: 6 givenname: Julius P. A. surname: Dewald fullname: Dewald, Julius P. A. email: j-dewald@northwestern.edu organization: Northwestern University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29457651$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1O3DAURi1EBQOt1CdAkbrpJtTXjuN4g1Qh-oOQOgu6tjzODZgmcbAd0Oz6CH3GPkkzwwzQiq5s6x4fffZ3QHZ73yMhb4EeAwD_cD5nslBltUNmUJQql1LxXTKjlLGcSwH75CDGG0qBU6X2yD5ThZClgBnx8-CvAsbo7jALaMPoUod9ynyTWd-nYFqMzvemnY4hOet___wVcNqMrY-DWw0Gk67vzTJmdZgsMet88iFz3WBcWLsGH1MWU_A_8DV51Zg24pvNeki-fzq7PP2SX3z7_PX040VuBRUsb6AxQpQCa255yReG2lIaa3gta0UttwC0rhcgmKIKLEUlYcGNVEihrirGD8nJg3cYFx3WFtdP0UNwnQlL7Y3Tf096d62v_J0WlawYrATvN4Lgb0eMSXcuWmxb06Mfo2aUFgWv5Bp99w9648cw_cyKAqUkkxwm6uh5osco2y4m4PgBsMHHGLDR1iWT3LoF12qgelW23pb9FPHxwtb5Arpx37sWl__l9OX5HFjFGP8D9i27Bw |
CitedBy_id | crossref_primary_10_1007_s13760_023_02212_2 crossref_primary_10_1113_JP281232 crossref_primary_10_1113_JP278464 crossref_primary_10_3233_RNN_231367 crossref_primary_10_1007_s00221_021_06118_4 crossref_primary_10_1111_cns_14889 crossref_primary_10_1186_s12984_019_0504_1 crossref_primary_10_1016_j_clinph_2019_01_010 crossref_primary_10_1097_PHM_0000000000001147 crossref_primary_10_1177_15459683241281299 crossref_primary_10_3389_fneur_2022_934670 crossref_primary_10_1177_1545968320932135 crossref_primary_10_1523_JNEUROSCI_1107_20_2020 crossref_primary_10_1016_j_arrct_2024_100385 crossref_primary_10_1088_1741_2552_ac20bc crossref_primary_10_3390_s20133754 crossref_primary_10_3390_jcm11226835 crossref_primary_10_1177_15459683211011214 crossref_primary_10_1523_JNEUROSCI_1106_19_2019 crossref_primary_10_1016_j_nicl_2021_102710 crossref_primary_10_1136_bmjopen_2018_026435 crossref_primary_10_1113_JP285563 crossref_primary_10_3389_fspor_2023_1177004 crossref_primary_10_1113_JP285562 crossref_primary_10_3389_fneur_2019_00468 crossref_primary_10_1016_j_neuroimage_2020_117298 crossref_primary_10_3389_fnhum_2021_644335 crossref_primary_10_1109_TNSRE_2021_3102493 crossref_primary_10_1007_s00221_021_06070_3 crossref_primary_10_1007_s00221_022_06368_w crossref_primary_10_1097_MD_0000000000033604 crossref_primary_10_1016_j_eclinm_2021_101258 crossref_primary_10_3389_fnhum_2020_590198 crossref_primary_10_3390_medicina60060937 crossref_primary_10_1088_1741_2552_ac5757 crossref_primary_10_1142_S0129065722500095 crossref_primary_10_3389_fneur_2024_1284780 crossref_primary_10_1371_journal_pone_0217969 crossref_primary_10_1038_s41467_019_11244_3 crossref_primary_10_1177_1545968319868718 crossref_primary_10_3389_fneur_2022_764650 crossref_primary_10_1152_jn_00301_2024 crossref_primary_10_1097_WNR_0000000000001283 crossref_primary_10_1186_s12984_022_01045_z crossref_primary_10_1016_j_yebeh_2021_108518 crossref_primary_10_1088_1741_2552_ab5eda crossref_primary_10_3390_biology10100976 crossref_primary_10_1093_braincomms_fcac301 crossref_primary_10_3389_fneur_2018_00564 crossref_primary_10_1177_1545968319834903 crossref_primary_10_3389_fresc_2023_1250579 crossref_primary_10_3389_fncir_2018_00079 crossref_primary_10_1016_j_jns_2021_120091 crossref_primary_10_1038_s41598_020_64179_x crossref_primary_10_1177_1545968319836233 crossref_primary_10_1097_PHM_0000000000002522 crossref_primary_10_1152_jn_00367_2021 crossref_primary_10_1016_j_bspc_2024_106719 crossref_primary_10_3389_fnhum_2023_1286238 crossref_primary_10_1016_j_arrct_2021_100136 crossref_primary_10_1016_j_neuroscience_2020_12_001 crossref_primary_10_1007_s00221_020_06005_4 crossref_primary_10_3389_fneur_2021_687624 crossref_primary_10_3389_fneur_2024_1335795 crossref_primary_10_1021_acsomega_4c02537 crossref_primary_10_1016_j_mehy_2024_111487 crossref_primary_10_1177_1545968320943582 crossref_primary_10_1016_j_clinph_2019_02_018 crossref_primary_10_3389_fneur_2018_00071 crossref_primary_10_1038_s41598_021_01805_2 crossref_primary_10_3389_fneur_2020_577855 crossref_primary_10_3389_fneur_2018_00470 crossref_primary_10_1177_15459683211028243 crossref_primary_10_1186_s12984_024_01513_8 crossref_primary_10_1177_15394492231151887 crossref_primary_10_3389_fneur_2021_598554 crossref_primary_10_1177_1545968320926162 crossref_primary_10_3389_fnhum_2024_1340374 crossref_primary_10_2147_NDT_S351667 crossref_primary_10_1152_jn_00158_2019 crossref_primary_10_1113_JP281681 crossref_primary_10_1113_JP285403 crossref_primary_10_1016_j_clinph_2023_09_014 crossref_primary_10_1055_a_1900_4137 crossref_primary_10_3389_fnhum_2022_1023246 crossref_primary_10_14814_phy2_15659 crossref_primary_10_1016_j_neuron_2022_06_024 crossref_primary_10_1162_imag_a_00057 crossref_primary_10_3390_jcm11216449 crossref_primary_10_1007_s00221_019_05687_9 crossref_primary_10_1073_pnas_2008597118 crossref_primary_10_3390_electronics9040660 crossref_primary_10_1080_10749357_2022_2127669 crossref_primary_10_51507_j_jams_2021_14_6_238 crossref_primary_10_1177_11795735211072731 crossref_primary_10_1113_JP279377 crossref_primary_10_1109_TNSRE_2019_2955029 crossref_primary_10_3389_fnsys_2019_00086 crossref_primary_10_1109_TNSRE_2020_2986304 crossref_primary_10_15407_fz69_04_029 crossref_primary_10_3389_fneur_2019_00258 crossref_primary_10_3389_fnhum_2018_00131 crossref_primary_10_1038_s41598_021_91605_5 crossref_primary_10_1016_j_pmr_2023_07_006 crossref_primary_10_1113_JP278335 crossref_primary_10_1523_JNEUROSCI_1379_20_2020 crossref_primary_10_3389_fnins_2021_666697 crossref_primary_10_1038_s41467_022_29992_0 crossref_primary_10_3389_fneur_2022_968385 crossref_primary_10_3389_fnhum_2021_662006 crossref_primary_10_3389_fneur_2024_1282685 crossref_primary_10_1044_2023_AJSLP_22_00296 crossref_primary_10_4103_1673_5374_360167 crossref_primary_10_1186_s12984_021_00924_1 crossref_primary_10_1152_jn_00447_2021 |
Cites_doi | 10.1016/0006-8993(79)90337-8 10.1016/S0006-8993(98)00505-8 10.1371/journal.pone.0152094 10.1016/j.neuroimage.2006.12.026 10.1093/brain/aws115 10.1161/STROKEAHA.111.000382 10.1177/1545968307313509 10.1002/(SICI)1096-9861(19990802)410:3<413::AID-CNE5>3.0.CO;2-Q 10.1007/s00221-006-0374-1 10.1007/BF00412364 10.1093/brain/91.1.15 10.1007/s002210050651 10.1007/s00221-004-1956-4 10.1161/01.STR.28.12.2518 10.1177/1545968309332927 10.1016/j.brs.2017.03.008 10.1016/j.neuroimage.2005.08.053 10.1523/JNEUROSCI.23-05-01867.2003 10.1152/jn.90563.2008 10.1152/jn.1998.80.1.389 10.1016/S0079-6123(03)43024-0 10.1016/S0079-6123(08)64048-0 10.1007/BF01191074 10.3389/fnhum.2015.00082 10.1002/hbm.20770 10.1016/0924-980X(96)95560-5 10.1109/TRO.2009.2017111 10.1523/JNEUROSCI.3720-08.2009 10.1002/cne.903320107 10.1177/1545968317697033 10.1007/s00221-007-1169-8 10.1109/10.554770 10.1007/BF02474537 10.1016/0306-4522(87)90160-6 10.1007/BF00248864 10.1212/WNL.0b013e31826356e8 10.1002/(SICI)1096-9861(19971229)389:4<617::AID-CNE6>3.0.CO;2-3 10.1093/brain/awl333 10.1093/brain/113.2.303 10.1007/BF00234256 10.1016/j.clinph.2006.04.025 10.3171/jns.2003.98.1.0064 10.1007/BF00235823 10.1002/mds.21323 10.1093/brain/120.9.1579 10.1177/1073858405283392 10.1152/jn.01030.2011 10.1113/jphysiol.2011.215160 10.1152/jn.1982.48.1.62 10.3389/fneur.2017.00257 10.1152/jn.1987.57.6.1716 10.1093/brain/74.4.443 10.1002/cne.903390309 10.1016/j.neulet.2011.11.030 10.1016/0006-8993(86)91632-X 10.1093/cercor/bhr344 10.1186/s12984-016-0203-0 10.1016/j.neuroimage.2004.11.036 10.1093/brain/118.2.495 10.1016/0304-3940(87)90515-5 10.1016/j.nicl.2013.12.003 10.1016/j.clinph.2012.01.009 10.1212/01.wnl.0000343961.35429.09 10.1007/s00221-010-2231-5 10.1016/j.jneumeth.2010.11.021 10.1016/0167-8760(84)90014-X 10.1007/s00221-007-1029-6 |
ContentType | Journal Article |
Copyright | 2018 Northwestern University. The Journal of Physiology © 2018 The Physiological Society 2018 Northwestern University. The Journal of Physiology © 2018 The Physiological Society. Journal compilation © 2018 The Physiological Society |
Copyright_xml | – notice: 2018 Northwestern University. The Journal of Physiology © 2018 The Physiological Society – notice: 2018 Northwestern University. The Journal of Physiology © 2018 The Physiological Society. – notice: Journal compilation © 2018 The Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
DOI | 10.1113/JP274968 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | J. G. McPherson and others |
EISSN | 1469-7793 |
EndPage | 1225 |
ExternalDocumentID | PMC5878212 29457651 10_1113_JP274968 TJP12822 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: R01HD039343; R01NS054269; R01HD047569 – fundername: NICHD NIH HHS grantid: R01 HD047569 – fundername: NINDS NIH HHS grantid: R01 NS054269 – fundername: NICHD NIH HHS grantid: R01 HD039343 – fundername: National Institutes of Health grantid: R01HD039343; R01NS054269; R01HD047569 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 123 18M 1OC 29L 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AI. AIACR AIAGR AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HGLYW HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ TEORI TLM TN5 TR2 UB1 UPT V8K VH1 W8F W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WXI WXSBR WYISQ XG1 YBU YHG YKV YQT YSK YZZ ZZTAW ~IA ~WT .55 .GJ .Y3 0YM 31~ 3EH 3O- AAHHS AAYJJ AAYXX ACCFJ ADXHL AEEZP AEQDE AFFNX AIWBW AJBDE C1A CAG CHEAL CITATION COF FA8 H13 HF~ H~9 MVM NEJ OHT RIG UKR WHG X7M XOL YXB YYP ZGI ZXP 1OB 24P AEUQT AFPWT CGR CUY CVF ECM EIF NPM WRC 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c5052-f1fa5565ed3c363ba0c67aca3d7d90c3c110ddb1529091c0e971b3a79e01d8823 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 1469-7793 |
IngestDate | Thu Aug 21 18:27:07 EDT 2025 Fri Jul 11 06:58:46 EDT 2025 Fri Jul 25 12:13:44 EDT 2025 Wed Feb 19 02:30:00 EST 2025 Tue Jul 01 04:29:22 EDT 2025 Thu Apr 24 22:59:32 EDT 2025 Wed Aug 20 07:24:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | neural plasticity motor control stroke |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2018 Northwestern University. The Journal of Physiology © 2018 The Physiological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5052-f1fa5565ed3c363ba0c67aca3d7d90c3c110ddb1529091c0e971b3a79e01d8823 |
Notes | Edited by: Janet Taylor & Richard Carson J. G. McPherson and A. Chen contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4554-7531 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5878212 |
PMID | 29457651 |
PQID | 2019972731 |
PQPubID | 1086388 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5878212 proquest_miscellaneous_2004438712 proquest_journals_2019972731 pubmed_primary_29457651 crossref_citationtrail_10_1113_JP274968 crossref_primary_10_1113_JP274968 wiley_primary_10_1113_JP274968_TJP12822 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 April 2018 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 1 April 2018 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Hoboken |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 1987; 77 2017; 8 2012; 123 1997; 44 2007; 183 1950; 219 2006; 173 1998; 80 1999; 125 1970 2008; 100 2011; 195 1994; 339 1996; 101 2007; 35 1936 2008; 185 2003; 98 1993; 6 2005; 25 1989; 74 1997; 389 2017; 31 2014; 4 2012; 135 1984; 54 2007; 130 2006; 29 1998; 803 1999; 410 2008; 22 1968; 91 1982 2009a; 23 2007; 22 2012; 22 1951; 74 1993; 332 1987; 57 2004; 143 1966; 39 2009b; 25 2006; 12 2013; 44 2010; 203 1965; 284 1995; 118 2012; 508 1997; 28 1983; 30 1979; 171 2015; 9 2012; 79 2006; 117 2012; 108 2016; 13 2009; 29 2016; 11 2011; 589 1982; 48 1987; 23 2009; 30 2004; 159 1974; 21 2009; 72 1986; 365 1997; 120 2017; 10 2002; 24 1967; 5 1964; 11 1994; 18 1990; 113 2003; 23 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_44_1 e_1_2_5_65_1 e_1_2_5_67_1 Pascual‐Marqui RD (e_1_2_5_52_1) 2002; 24 e_1_2_5_69_1 e_1_2_5_61_1 e_1_2_5_42_1 Brunnstrom S (e_1_2_5_9_1) 1970 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_70_1 e_1_2_5_72_1 e_1_2_5_74_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 Jankowska E (e_1_2_5_29_1) 2003; 23 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_66_1 e_1_2_5_68_1 e_1_2_5_60_1 e_1_2_5_62_1 e_1_2_5_20_1 e_1_2_5_41_1 Foerster O (e_1_2_5_21_1) 1936 Srivastava UC (e_1_2_5_64_1) 1983; 30 e_1_2_5_14_1 Nyberg‐Hansen R (e_1_2_5_50_1) 1966; 39 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 Sjölund BH (e_1_2_5_63_1) 1982 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_71_1 e_1_2_5_73_1 e_1_2_5_75_1 e_1_2_5_31_1 McCough CG (e_1_2_5_39_1) 1950; 219 31414487 - J Physiol. 2019 Aug;597(16):4411-4412 31414488 - J Physiol. 2019 Aug;597(16):4413-4414 |
References_xml | – volume: 11 start-page: 178 year: 1964 end-page: 202 article-title: The descending pathways to the spinal cord, their anatomy and function publication-title: Prog Brain Res – volume: 803 start-page: 1 year: 1998 end-page: 8 article-title: Follow‐up of interhemispheric differences of motor evoked potentials from the ‘affected’ and ‘unaffected’ hemispheres in human stroke publication-title: Brain Res – volume: 173 start-page: 25 year: 2006 end-page: 39 article-title: Bilateral actions of the reticulospinal tract on arm and shoulder muscles in the monkey: stimulus triggered averaging publication-title: Exp Brain Res – volume: 18 start-page: 49 year: 1994 end-page: 65 article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain publication-title: Int J Psychophysiol – volume: 98 start-page: 64 year: 2003 end-page: 73 article-title: Cortical reorganization in patients with subcortical hemiparesis: neural mechanisms of functional recovery and prognostic implication publication-title: J Neurosurg – volume: 123 start-page: 1216 year: 2012 end-page: 1225 article-title: Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke publication-title: Clin Neurophysiol – volume: 365 start-page: 211 year: 1986 end-page: 227 article-title: Collaterals of corticospinal and pyramidal fibres to the pontine grey demonstrated by a new application of the fluorescent fibre labelling technique publication-title: Brain Res – volume: 339 start-page: 421 year: 1994 end-page: 437 article-title: Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey publication-title: J Comp Neurol – volume: 171 start-page: 329 year: 1979 end-page: 333 article-title: Anatomical evidence for direct brain stem projections to the somatic motoneuronal cell groups and autonomic preganglionic cell groups in cat spinal cord publication-title: Brain Res – volume: 48 start-page: 62 year: 1982 end-page: 74 article-title: Muscle spindle complexes in muscles around upper cervical vertebrae in the cat publication-title: J Neurophysiol – volume: 410 start-page: 413 year: 1999 end-page: 430 article-title: Morphology of single pontine reticulospinal axons in the lumbar enlargement of the cat: a study using the anterograde tracer PHA‐L publication-title: J Comp Neurol – volume: 39 start-page: 3 year: 1966 end-page: 48 article-title: Functional organization of descending supraspinal fibre systems to the spinalcord. Anatomical observations and physiological correlations publication-title: Ergeb Anat Entwicklungsgesch – volume: 44 start-page: 220 year: 1997 end-page: 223 article-title: The electrical conductivity of human cerebrospinal fluid at body temperature publication-title: IEEE Trans Biomed Eng – volume: 113 start-page: 303 year: 1990 end-page: 324 article-title: The corticospinal tracts in man. Course and location of fibres at different segmental levels publication-title: Brain – start-page: 1 year: 1936 end-page: 357 – volume: 332 start-page: 89 year: 1993 end-page: 104 article-title: Corticofugal projections to the vestibular nuclei in squirrel monkeys: further evidence of multiple cortical vestibular fields publication-title: J Comp Neurol – volume: 29 start-page: 734 year: 2006 end-page: 753 article-title: Evaluation of EEG localization methods using realistic simulations of interictal spikes publication-title: Neuroimage – volume: 22 start-page: 601 year: 2007 end-page: 610 article-title: Bereitschaftspotential and movement‐related potentials: origin, significance, and application in disorders of human movement publication-title: Mov Disord – volume: 91 start-page: 15 year: 1968 end-page: 36 article-title: The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain‐stem pathways publication-title: Brain – volume: 9 start-page: 82 year: 2015 article-title: A neuroanatomical framework for upper limb synergies after stroke publication-title: Front Hum Neurosci – volume: 57 start-page: 1716 year: 1987 end-page: 1729 article-title: Dynamics and directional sensitivity of neck muscle spindle responses to head rotation publication-title: J Neurophysiol – volume: 79 start-page: 515 year: 2012 end-page: 522 article-title: Compensatory role of the cortico‐rubro‐spinal tract in motor recovery after stroke publication-title: Neurology – volume: 30 start-page: 3461 year: 2009 end-page: 3474 article-title: Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients publication-title: Hum Brain Mapp – year: 1982 – volume: 159 start-page: 284 year: 2004 end-page: 300 article-title: Movement‐related and preparatory activity in the reticulospinal system of the monkey publication-title: Exp Brain Res – volume: 118 start-page: 495 year: 1995 end-page: 510 article-title: Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects publication-title: Brain – volume: 4 start-page: 201 year: 2014 end-page: 208 article-title: Motor recovery and microstructural change in rubro‐spinal tract in subcortical stroke publication-title: Neuroimage Clin – volume: 25 start-page: 369 year: 2005 end-page: 382 article-title: Evaluation of different cortical source localization methods using simulated and experimental EEG data publication-title: Neuroimage – volume: 22 start-page: 2662 year: 2012 end-page: 2671 article-title: Contralesional hemisphere control of the proximal paretic upper limb following stroke publication-title: Cereb Cortex – volume: 117 start-page: 2341 year: 2006 end-page: 2356 article-title: What is the Bereitschaftspotential publication-title: Clin Neurophysiol – volume: 589 start-page: 5603 year: 2011 end-page: 5612 article-title: The primate reticulospinal tract, hand function and functional recovery publication-title: J Physiol – volume: 23 start-page: 862 year: 2009a end-page: 869 article-title: Progressive shoulder abduction loading is a crucial element of arm rehabilitation in chronic stroke publication-title: Neurorehabil Neural Repair – volume: 143 start-page: 239 year: 2004 end-page: 249 article-title: Locomotor role of the corticoreticular‐reticulospinal‐spinal interneuronal system publication-title: Prog Brain Res – volume: 31 start-page: 521 year: 2017 end-page: 529 article-title: The impact of shoulder abduction loading on volitional hand opening and grasping in chronic hemiparetic stroke publication-title: Neurorehabil Neural Repair – volume: 185 start-page: 509 year: 2008 end-page: 519 article-title: Ipsilateral versus contralateral cortical motor projections to a shoulder adductor in chronic hemiparetic stroke: implications for the expression of arm synergies publication-title: Exp Brain Res – volume: 13 start-page: 95 year: 2016 article-title: Robotic quantification of upper extremity loss of independent joint control or flexion synergy in individuals with hemiparetic stroke: a review of paradigms addressing the effects of shoulder abduction loading publication-title: J Neuroeng Rehabil – volume: 6 start-page: 99 year: 1993 end-page: 109 article-title: Thickness and resistivity variations over the upper surface of the human skull publication-title: Brain Topogr – volume: 74 start-page: 443 year: 1951 end-page: 480 article-title: The restoration of motor function following hemiplegia in man publication-title: Brain – volume: 10 start-page: 721 year: 2017 end-page: 734 article-title: TMS measures of motor cortex function after stroke: a meta‐analysis publication-title: Brain Stimul – volume: 28 start-page: 2518 year: 1997 end-page: 2527 article-title: A functional MRI study of subjects recovered from hemiparetic stroke publication-title: Stroke – volume: 30 start-page: 302 year: 1983 end-page: 305 article-title: Frequency response of medullary reticulospinal neurons to sinusoidal rotation of the neck publication-title: Adv Otorhinolaryngol – volume: 21 start-page: 19 year: 1974 end-page: 44 article-title: Responses of ponto‐medullary reticular neurons to cortical, tectal and cutaneous stimuli publication-title: Exp Brain Res – volume: 101 start-page: 316 year: 1996 end-page: 328 article-title: Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke publication-title: Electroencephalogr Clin Neurophysiol – volume: 389 start-page: 617 year: 1997 end-page: 641 article-title: Organization of the projections from the pericruciate cortex to the pontomedullary brainstem of the cat: a study using the anterograde tracer Phaseolus vulgaris‐leucoagglutinin publication-title: J Comp Neurol – volume: 284 start-page: 1 year: 1965 end-page: 17 article-title: [Changes in the brain potential in voluntary movements and passive movements in man: readiness potential and reafferent potentials.] publication-title: Pflugers Arch Gesamte Physiol Menschen Tiere – volume: 195 start-page: 151 year: 2011 end-page: 160 article-title: Using paired pulse TMS to facilitate contralateral and ipsilateral MEPs in upper extremity muscles of chronic hemiparetic stroke patients publication-title: J Neurosci Methods – volume: 22 start-page: 321 year: 2008 end-page: 329 article-title: Augmenting clinical evaluation of hemiparetic arm movement with a laboratory‐based quantitative measurement of kinematics as a function of limb loading publication-title: Neurorehabil Neural Repair – volume: 54 start-page: 107 year: 1984 end-page: 120 article-title: Distribution of corticospinal neurons with collaterals to lower brain stem reticular formation in cat publication-title: Exp Brain Res – volume: 29 start-page: 4993 year: 2009 end-page: 4999 article-title: Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract publication-title: J Neurosci – volume: 125 start-page: 1 year: 1999 end-page: 13 article-title: Cortical influences on the vestibular nuclei of the cat publication-title: Exp Brain Res – volume: 72 start-page: 850 year: 2009 end-page: 853 article-title: The tripartite origins of the tonic neck reflex: Gesell, Gerstmann, and Magnus publication-title: Neurology – volume: 8 start-page: 257 year: 2017 article-title: Upper Extremity motor impairments and microstructural changes in bulbospinal pathways in chronic hemiparetic stroke publication-title: Front Neurol – volume: 23 start-page: 1867 year: 2003 end-page: 1878 article-title: Neuronal basis of crossed actions from the reticular formation on feline hindlimb motoneurons publication-title: J Neurosci – volume: 35 start-page: 598 year: 2007 end-page: 608 article-title: Evaluation of cortical current density imaging methods using intracranial electrocorticograms and functional MRI publication-title: Neuroimage – volume: 24 start-page: 91 issue: Suppl. C year: 2002 end-page: 95 article-title: Functional imaging with low‐resolution brain electromagnetic tomography (LORETA): a review publication-title: Methods Find Exp Clin Pharmacol – volume: 12 start-page: 67 year: 2006 end-page: 79 article-title: How can corticospinal tract neurons contribute to ipsilateral movements? A question with implications for recovery of motor functions publication-title: Neuroscientist – volume: 508 start-page: 9 year: 2012 end-page: 12 article-title: Corticoreticular pathway in the human brain: diffusion tensor tractography study publication-title: Neurosci Lett – volume: 130 start-page: 170 year: 2007 end-page: 180 article-title: Functional potential in chronic stroke patients depends on corticospinal tract integrity publication-title: Brain – volume: 203 start-page: 271 year: 2010 end-page: 283 article-title: Measuring the motor output of the pontomedullary reticular formation in the monkey: do stimulus‐triggered averaging and stimulus trains produce comparable results in the upper limbs publication-title: Exp Brain Res – volume: 120 start-page: 1579 year: 1997 end-page: 1586 article-title: Reorganization of motor output in the non‐affected hemisphere after stroke publication-title: Brain – volume: 80 start-page: 389 year: 1998 end-page: 405 article-title: Corticoreticular pathways in the cat. I. Projection patterns and collaterization publication-title: J Neurophysiol – volume: 219 start-page: 347 year: 1950 article-title: Location of receptors for tonic neck reflexes publication-title: Am J Med Sci – volume: 108 start-page: 3096 year: 2012 end-page: 3104 article-title: Neck rotation modulates flexion synergy torques, indicating an ipsilateral reticulospinal source for impairment in stroke publication-title: J Neurophysiol – volume: 44 start-page: 2016 year: 2013 end-page: 2018 article-title: Decreased corticospinal tract fractional anisotropy predicts long‐term motor outcome after stroke publication-title: Stroke – volume: 5 start-page: 271 year: 1967 end-page: 293 article-title: The specific resistance of biological material–a compendium of data for the biomedical engineer and physiologist publication-title: Med Biol Eng – volume: 11 start-page: e0152094 year: 2016 article-title: Corticospinal and reticulospinal contacts on cervical commissural and long descending propriospinal neurons in the adult rat spinal cord; evidence for powerful reticulospinal connections publication-title: PLoS One – volume: 135 start-page: 2277 year: 2012 end-page: 2289 article-title: Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey publication-title: Brain – year: 1970 – volume: 74 start-page: 311 year: 1989 end-page: 318 article-title: Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in monkey ( ) publication-title: Exp Brain Res – volume: 25 start-page: 549 year: 2009b end-page: 555 article-title: Impairment‐based 3‐D robotic intervention improves upper extremity work area in chronic stroke: targeting abnormal joint torque coupling with progressive shoulder abduction loading publication-title: IEEE Trans Robot – volume: 183 start-page: 215 year: 2007 end-page: 223 article-title: Shoulder abduction‐induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications publication-title: Exp Brain Res – volume: 23 start-page: 809 year: 1987 end-page: 821 article-title: Brainstem projections to spinal motoneurons: an update publication-title: Neuroscience – volume: 100 start-page: 3236 year: 2008 end-page: 3243 article-title: Evidence for increased activation of persistent inward currents in individuals with chronic hemiparetic stroke publication-title: J Neurophysiol – volume: 77 start-page: 293 year: 1987 end-page: 297 article-title: Integration of cortical and peripheral information in the lateral vestibular nucleus in the cat publication-title: Neurosci Lett – ident: e_1_2_5_26_1 doi: 10.1016/0006-8993(79)90337-8 – volume-title: Brain Stem Control of Spinal Mechanisms: Proceedings of the 1st Eric K. Fernström Symposium, held in Lund (Sweden) on 10–13 November 1981 year: 1982 ident: e_1_2_5_63_1 – ident: e_1_2_5_68_1 doi: 10.1016/S0006-8993(98)00505-8 – ident: e_1_2_5_47_1 doi: 10.1371/journal.pone.0152094 – ident: e_1_2_5_4_1 doi: 10.1016/j.neuroimage.2006.12.026 – ident: e_1_2_5_75_1 doi: 10.1093/brain/aws115 – ident: e_1_2_5_55_1 doi: 10.1161/STROKEAHA.111.000382 – ident: e_1_2_5_18_1 doi: 10.1177/1545968307313509 – ident: e_1_2_5_44_1 doi: 10.1002/(SICI)1096-9861(19990802)410:3<413::AID-CNE5>3.0.CO;2-Q – ident: e_1_2_5_14_1 doi: 10.1007/s00221-006-0374-1 – ident: e_1_2_5_33_1 doi: 10.1007/BF00412364 – ident: e_1_2_5_37_1 doi: 10.1093/brain/91.1.15 – ident: e_1_2_5_72_1 doi: 10.1007/s002210050651 – ident: e_1_2_5_10_1 doi: 10.1007/s00221-004-1956-4 – ident: e_1_2_5_13_1 doi: 10.1161/01.STR.28.12.2518 – ident: e_1_2_5_19_1 doi: 10.1177/1545968309332927 – ident: e_1_2_5_40_1 doi: 10.1016/j.brs.2017.03.008 – ident: e_1_2_5_24_1 doi: 10.1016/j.neuroimage.2005.08.053 – volume: 23 start-page: 1867 year: 2003 ident: e_1_2_5_29_1 article-title: Neuronal basis of crossed actions from the reticular formation on feline hindlimb motoneurons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-05-01867.2003 – ident: e_1_2_5_42_1 doi: 10.1152/jn.90563.2008 – ident: e_1_2_5_30_1 doi: 10.1152/jn.1998.80.1.389 – ident: e_1_2_5_45_1 doi: 10.1016/S0079-6123(03)43024-0 – ident: e_1_2_5_34_1 doi: 10.1016/S0079-6123(08)64048-0 – ident: e_1_2_5_36_1 doi: 10.1007/BF01191074 – ident: e_1_2_5_41_1 doi: 10.3389/fnhum.2015.00082 – ident: e_1_2_5_58_1 doi: 10.1002/hbm.20770 – ident: e_1_2_5_69_1 doi: 10.1016/0924-980X(96)95560-5 – ident: e_1_2_5_20_1 doi: 10.1109/TRO.2009.2017111 – start-page: 1 volume-title: Handbuch der Neurologie year: 1936 ident: e_1_2_5_21_1 – ident: e_1_2_5_56_1 doi: 10.1523/JNEUROSCI.3720-08.2009 – ident: e_1_2_5_2_1 doi: 10.1002/cne.903320107 – ident: e_1_2_5_35_1 doi: 10.1177/1545968317697033 – ident: e_1_2_5_59_1 doi: 10.1007/s00221-007-1169-8 – ident: e_1_2_5_7_1 doi: 10.1109/10.554770 – ident: e_1_2_5_23_1 doi: 10.1007/BF02474537 – ident: e_1_2_5_27_1 doi: 10.1016/0306-4522(87)90160-6 – ident: e_1_2_5_32_1 doi: 10.1007/BF00248864 – ident: e_1_2_5_57_1 doi: 10.1212/WNL.0b013e31826356e8 – ident: e_1_2_5_43_1 doi: 10.1002/(SICI)1096-9861(19971229)389:4<617::AID-CNE6>3.0.CO;2-3 – ident: e_1_2_5_65_1 doi: 10.1093/brain/awl333 – ident: e_1_2_5_48_1 doi: 10.1093/brain/113.2.303 – ident: e_1_2_5_54_1 doi: 10.1007/BF00234256 – ident: e_1_2_5_62_1 doi: 10.1016/j.clinph.2006.04.025 – ident: e_1_2_5_22_1 doi: 10.3171/jns.2003.98.1.0064 – ident: e_1_2_5_31_1 doi: 10.1007/BF00235823 – ident: e_1_2_5_12_1 doi: 10.1002/mds.21323 – ident: e_1_2_5_49_1 doi: 10.1093/brain/120.9.1579 – volume: 24 start-page: 91 year: 2002 ident: e_1_2_5_52_1 article-title: Functional imaging with low‐resolution brain electromagnetic tomography (LORETA): a review publication-title: Methods Find Exp Clin Pharmacol – volume-title: Movement Therapy in Hemiplegia: A Neurophysiological Approach year: 1970 ident: e_1_2_5_9_1 – volume: 219 start-page: 347 year: 1950 ident: e_1_2_5_39_1 article-title: Location of receptors for tonic neck reflexes publication-title: Am J Med Sci – ident: e_1_2_5_28_1 doi: 10.1177/1073858405283392 – ident: e_1_2_5_16_1 doi: 10.1152/jn.01030.2011 – ident: e_1_2_5_5_1 doi: 10.1113/jphysiol.2011.215160 – ident: e_1_2_5_6_1 doi: 10.1152/jn.1982.48.1.62 – volume: 39 start-page: 3 year: 1966 ident: e_1_2_5_50_1 article-title: Functional organization of descending supraspinal fibre systems to the spinalcord. Anatomical observations and physiological correlations publication-title: Ergeb Anat Entwicklungsgesch – ident: e_1_2_5_51_1 doi: 10.3389/fneur.2017.00257 – volume: 30 start-page: 302 year: 1983 ident: e_1_2_5_64_1 article-title: Frequency response of medullary reticulospinal neurons to sinusoidal rotation of the neck publication-title: Adv Otorhinolaryngol – ident: e_1_2_5_11_1 doi: 10.1152/jn.1987.57.6.1716 – ident: e_1_2_5_70_1 doi: 10.1093/brain/74.4.443 – ident: e_1_2_5_3_1 doi: 10.1002/cne.903390309 – ident: e_1_2_5_74_1 doi: 10.1016/j.neulet.2011.11.030 – ident: e_1_2_5_71_1 doi: 10.1016/0006-8993(86)91632-X – ident: e_1_2_5_8_1 doi: 10.1093/cercor/bhr344 – ident: e_1_2_5_17_1 doi: 10.1186/s12984-016-0203-0 – ident: e_1_2_5_73_1 doi: 10.1016/j.neuroimage.2004.11.036 – ident: e_1_2_5_15_1 doi: 10.1093/brain/118.2.495 – ident: e_1_2_5_38_1 doi: 10.1016/0304-3940(87)90515-5 – ident: e_1_2_5_67_1 doi: 10.1016/j.nicl.2013.12.003 – ident: e_1_2_5_46_1 doi: 10.1016/j.clinph.2012.01.009 – ident: e_1_2_5_61_1 doi: 10.1212/01.wnl.0000343961.35429.09 – ident: e_1_2_5_25_1 doi: 10.1007/s00221-010-2231-5 – ident: e_1_2_5_60_1 doi: 10.1016/j.jneumeth.2010.11.021 – ident: e_1_2_5_53_1 doi: 10.1016/0167-8760(84)90014-X – ident: e_1_2_5_66_1 doi: 10.1007/s00221-007-1029-6 – reference: 31414487 - J Physiol. 2019 Aug;597(16):4411-4412 – reference: 31414488 - J Physiol. 2019 Aug;597(16):4413-4414 |
SSID | ssj0013099 |
Score | 2.5970807 |
Snippet | Key points
Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger... Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in... A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1211 |
SubjectTerms | Adult Aged Aged, 80 and over Arm Brain stem Elbow Female Humans Male Middle Aged Molecular and Cellular motor control Motor Cortex - pathology Motor task performance Muscle Weakness neural plasticity Paresis Paresis - etiology Paresis - pathology Pyramidal Tracts - pathology Recruitment Reflex Research Paper Reticular Formation - pathology Shoulder Spinal Cord - pathology Stroke Stroke - complications Wrist |
Title | Progressive recruitment of contralesional cortico‐reticulospinal pathways drives motor impairment post stroke |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP274968 https://www.ncbi.nlm.nih.gov/pubmed/29457651 https://www.proquest.com/docview/2019972731 https://www.proquest.com/docview/2004438712 https://pubmed.ncbi.nlm.nih.gov/PMC5878212 |
Volume | 596 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1469-7793 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0013099 issn: 0022-3751 databaseCode: DIK dateStart: 18780101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1469-7793 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0013099 issn: 0022-3751 databaseCode: GX1 dateStart: 18780101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1469-7793 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0013099 issn: 0022-3751 databaseCode: RPM dateStart: 18780101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0022-3751 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1469-7793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013099 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB6kT754ab2stjKC2KfUTCbJZB5LaS0LyiItLPgQ5opLa1KyiVKf_An-Rn-J50wuulZBfFkIc2Y2lzOZ72S-8x1CXiTKS1jXVZQVWMJMWB1pK9LISpd4p7zLg4Dpm7f56Xk6X2bLgVWJuTC9PsT0wQ1nRnhf4wRXeqhCwlBsYL6AgErmmOfLeBZ2aN8lPzcQYiknoXCRsUF3Frq-GjturkQ34OVNluSv6DUsPyd3yfvxxHvWycVB1-oD8-U3Tcf_u7J75M6ASulh70b3yS1XbZOdwwoi8o_X9CUNPNHwAX6H1AukdCF79pOj8L5sulVgqtPa00B8hyWnl_qAQxyw_v71W8iV7C6xSAk2YB3kz-p6TW2DsrcU_KVuKGZsrpow1lW9bum6beoL94CcnxyfHZ1GQ9mGyGBVvMgzrzLAic5yw3OuVWxyoYziVlgZG24AcVirAThIACsmdlIwzZWQLmYWAD9_SLaqunKPCS1SzRNvYgCpOuWJKLRWXhvmtDcAVOSM7I-PsDSDpjmW1rgs-9iGl-O9nJHnk-VVr-PxB5vd0QvKYSavSwBImFssOIMhpmaYg7ixoipXd2gTpymH0DOZkUe900x_ksgUQroMeosNd5oMUN97s6VafQg631kB8A3H3A_e8tfzLs_mC4Z04Cf_bPmU3IYLK3oK0i7ZapvO7QG6avWzMI_g9_WS_QCo-SWM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcClFMpjoYCRED2lJHESx-JUAdWytNUKbaUekCK_IlZtkyqbgMqpP6G_kV_SGecBS0FCHCOPnWR3Jv7G_vwNIS9DmQuY16UXp1jCjBvlKcMjzwgb5lbmNnECpvsHyfgwmhzFRyvkTX8WptWHGBbcMDLc9xoDHBekuyhHtYHJFDIqkaQ3yE3cnsOofPcp_LmF4AsxSIXzOOiUZ6Hv677n8lx0DWBe50n-il_dBLR7h3zuH73lnRxvN7Xa1t9_U3X8z3dbJ2sdMKU7rSfdJSu2uEc2dgpIyk_P6SvqqKJuDX6DlFNkdSGB9qul8Mmsmrkjq9Myp477DrNOq_YBlzhg-ePi0h2XbE6wTgk2YCnkb_J8QU2FyrcUXKasKB7anFdurLNyUdNFXZXH9j453H0_ezv2usoNnsbCeF4e5DIGqGgN0yxhSvo64VJLZrgRvmYaQIcxCrCDALyifSt4oJjkwvqBAczPHpDVoizsI0LTSLEw1z7gVBWxkKdKyVzpwKpcA1YRI7LV_4eZ7mTNsbrGSdamNyzrf8sReTFYnrVSHn-w2ezdIOuCeZEBRsLjxZwFMMTQDGGIeyuysGWDNn4UMcg-wxF52HrNcJNQRJDVxdCbL_nTYIAS38stxfyLk_qOU0BwOOaWc5e_Pnc2m0wDZAQ__mfL5-TWeLa_l-19OPj4hNyGl0xbRtImWa2rxj4FsFWrZy6orgDrfCi3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWgSIiXcimXhQJGQvQpJYmTOH6sgFVZoFqhVqrEQ-SrWLVNVtkEVJ74BL6RL2HGucBSkBCPkcfObSY-4xyfIeRpLJ2AeV0GaY4lzLhRgTI8CYywsbPS2cwLmL47yPaPktlxetyzKnEvTKcPMS64YWT47zUG-NK4PshRbGA2h4RKZPllciXJILlCQPQ-_vkHIRRiVArnadQLz0Lf50PP9anoAr68SJP8Fb76-Wd6nXwYrryjnZzsto3a1V9-E3X8v1u7QTZ7WEr3Oj-6SS7Z8hbZ2ishJT87p8-oJ4r6FfgtUs2R04X02U-Wwgezbheeqk4rRz3zHeacTusDDnHA6vvXb36zZHuKVUqwAQshf5bnK2pq1L2l4DBVTXHL5qL2Yy2rVUNXTV2d2NvkaPrq8MV-0NdtCDSWxQtc5GQKQNEaplnGlAx1xqWWzHAjQs00QA5jFCAHAWhFh1bwSDHJhQ0jA4if3SEbZVXae4TmiWKx0yGgVJWwmOdKSad0ZJXTgFTEhOwMr7DQvag51tY4LbrkhhXDs5yQJ6PlshPy-IPN9uAFRR_KqwIQEm4u5iyCIcZmCEL8syJLW7VoEyYJg9wznpC7ndOMJ4lFAjldCr35mjuNBijwvd5SLj56oe80B_yGY-54b_nrdReHs3mEfOD7_2z5mFydv5wWb18fvHlArsE95h0daZtsNHVrHwLSatQjH1I_AGHpJ2Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progressive+recruitment+of+contralesional+cortico%E2%80%90reticulospinal+pathways+drives+motor+impairment+post+stroke&rft.jtitle=The+Journal+of+physiology&rft.au=McPherson%2C+Jacob+G.&rft.au=Chen%2C+Albert&rft.au=Ellis%2C+Michael+D.&rft.au=Yao%2C+Jun&rft.date=2018-04-01&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=596&rft.issue=7&rft.spage=1211&rft.epage=1225&rft_id=info:doi/10.1113%2FJP274968&rft.externalDBID=10.1113%252FJP274968&rft.externalDocID=TJP12822 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |