Deploying Fluorescent Nucleoside Analogues for High‐Throughput Inhibitor Screening

High‐throughput small‐molecule screening in drug discovery processes commonly rely on fluorescence‐based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false‐neg...

Full description

Saved in:
Bibliographic Details
Published inChembiochem : a European journal of chemical biology Vol. 21; no. 1-2; pp. 108 - 112
Main Authors Seebald, Leah, Madec, Amaël G. E., Imperiali, Barbara
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 15.01.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1439-4227
1439-7633
1439-7633
DOI10.1002/cbic.201900671

Cover

Abstract High‐throughput small‐molecule screening in drug discovery processes commonly rely on fluorescence‐based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false‐negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment‐sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside‐based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment‐based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile. The uridine‐based probe used for this high‐throughput screen has a KD value of 7.2 μm with the TcdB GT and shows a >30‐fold increase in fluorescence intensity upon binding. The ES‐based probe assay is benchmarked against two other screening approaches. An advantageous alternative: We present the development of nucleoside‐based environment‐sensitive fluorophore (ESF) probes that are applicable to competitive‐binding analyses. Use of the ESF probes is illustrated by application to a high‐throughput fragment‐based screen for identification of leads for inhibitor development against a clinically relevant glycosyltransferase from the C. difficile TcdB toxin.
AbstractList High-throughput small-molecule screening in drug discovery processes commonly rely on fluorescence-based methods including fluorescent polarization and fluorescence/Forster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false-negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment-sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside-based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment-based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile. The uridine-based probe used for this high-throughput screen has a K-D value of 7.2 mu m with the TcdB GT and shows a >30-fold increase in fluorescence intensity upon binding. The ES-based probe assay is benchmarked against two other screening approaches.
High-throughput small-molecule screening in drug discovery processes commonly rely on fluorescence-based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false-negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment-sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside-based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment-based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile. The uridine-based probe used for this high-throughput screen has a K value of 7.2 μm with the TcdB GT and shows a >30-fold increase in fluorescence intensity upon binding. The ES-based probe assay is benchmarked against two other screening approaches.
High‐throughput small‐molecule screening in drug discovery processes commonly rely on fluorescence‐based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false‐negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment‐sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside‐based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment‐based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile. The uridine‐based probe used for this high‐throughput screen has a KD value of 7.2 μm with the TcdB GT and shows a >30‐fold increase in fluorescence intensity upon binding. The ES‐based probe assay is benchmarked against two other screening approaches.
High-throughput small molecule screening in drug discovery processes commonly rely on fluorescence-based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation, however may suffer from high false negative rates and background signals or, may involve complex schemes for the introduction of fluorophore pairs. Herein, we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment-sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside-based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment-based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile . The uridine-based probe used for this HTS has a K D of 7.2 μM with the TcdB GT and shows a >30-fold increase in fluorescence intensity upon binding. The ES-based probe assay is benchmarked against two other screening approaches.
High‐throughput small‐molecule screening in drug discovery processes commonly rely on fluorescence‐based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false‐negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment‐sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside‐based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment‐based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile . The uridine‐based probe used for this high‐throughput screen has a K D value of 7.2 μ m with the TcdB GT and shows a >30‐fold increase in fluorescence intensity upon binding. The ES‐based probe assay is benchmarked against two other screening approaches.
High‐throughput small‐molecule screening in drug discovery processes commonly rely on fluorescence‐based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false‐negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment‐sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside‐based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment‐based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile. The uridine‐based probe used for this high‐throughput screen has a KD value of 7.2 μm with the TcdB GT and shows a >30‐fold increase in fluorescence intensity upon binding. The ES‐based probe assay is benchmarked against two other screening approaches. An advantageous alternative: We present the development of nucleoside‐based environment‐sensitive fluorophore (ESF) probes that are applicable to competitive‐binding analyses. Use of the ESF probes is illustrated by application to a high‐throughput fragment‐based screen for identification of leads for inhibitor development against a clinically relevant glycosyltransferase from the C. difficile TcdB toxin.
High-throughput small-molecule screening in drug discovery processes commonly rely on fluorescence-based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false-negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment-sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside-based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment-based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile. The uridine-based probe used for this high-throughput screen has a KD value of 7.2 μm with the TcdB GT and shows a >30-fold increase in fluorescence intensity upon binding. The ES-based probe assay is benchmarked against two other screening approaches.High-throughput small-molecule screening in drug discovery processes commonly rely on fluorescence-based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false-negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment-sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside-based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment-based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile. The uridine-based probe used for this high-throughput screen has a KD value of 7.2 μm with the TcdB GT and shows a >30-fold increase in fluorescence intensity upon binding. The ES-based probe assay is benchmarked against two other screening approaches.
Author Madec, Amaël G. E.
Imperiali, Barbara
Seebald, Leah
Author_xml – sequence: 1
  givenname: Leah
  orcidid: 0000-0001-8890-8985
  surname: Seebald
  fullname: Seebald, Leah
  organization: Massachusetts Institute of Technology
– sequence: 2
  givenname: Amaël G. E.
  surname: Madec
  fullname: Madec, Amaël G. E.
  organization: Massachusetts Institute of Technology
– sequence: 3
  givenname: Barbara
  orcidid: 0000-0002-5749-7869
  surname: Imperiali
  fullname: Imperiali, Barbara
  email: imper@mit.edu
  organization: Massachusetts Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31709708$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URD_gyhFF4oJU7WLHztcFqU0pXamCA8vZcpxx4sprL3YC2hs_gd_IL8HRpgtUQnCwPZKf9_XMeE7RkXUWEHpO8JJgnL6WjZbLFJMK47wgj9AJYbRaFDmlR3PM0rQ4Rqch3GGMq5ySJ-iYkgJXBS5P0PoKtsbttO2SazM6D0GCHZL3ozTggm4hubDCuG6EkCjnkxvd9T--fV_33o1dvx2HZGV73egh3n2UHsBGq6fosRImwLP5PEOfrt-u65vF7Yd3q_ridiEznJGFakmpStLQMqMFVpgUFYkhzlVGWdoCSQWRbdmoTJVtTiMpKRVZ0wgJrIo1nqE3e9_t2GygnTL3wvCt1xvhd9wJzf-8sbrnnfvC86rENJ0MXs0G3n2OJQ58o2MDjBEW3Bh4SgnNs4JVZURfPkDv3OhjbyaKEZbmjJFIvfg9o0Mq9w2PQLkHvkLjVJAarIQDFn8oi6ug045JrQcxaGdrN9ohSs__XxpptqeldyF4UFzObrET2nCC-TRAfBogfhigKFs-kN0_8FdBNWelDez-QfP6clX_0v4EluXXfw
CitedBy_id crossref_primary_10_1007_s10562_023_04570_1
crossref_primary_10_1021_jacs_3c11402
crossref_primary_10_1021_acs_orglett_2c00462
crossref_primary_10_1039_D0OB01892A
crossref_primary_10_1002_cmdc_202400311
Cites_doi 10.1016/j.bmcl.2013.03.028
10.1016/1010-6030(93)85048-D
10.1021/cr900267p
10.1021/cr00032a005
10.1146/annurev.biochem.76.061005.092322
10.1002/pro.3036
10.1038/nchembio868
10.1021/cb500957k
10.1021/ja804754y
10.1016/j.jinf.2010.03.025
10.1042/bj3180729
10.1093/glycob/cwx064
10.1021/ja413031h
10.1529/biophysj.108.134973
10.1021/jp1097487
10.1039/C5PP00122F
10.1042/EBC20170028
10.1177/1087057110380455
10.1021/ja5111267
10.1073/pnas.1304045110
10.1016/j.chembiol.2014.12.010
10.1016/j.jhin.2009.10.016
10.1038/nbt1186
10.3390/molecules18089797
10.1093/glycob/cwq187
10.1016/j.tibtech.2009.11.002
10.1517/17460441.2011.537322
10.1088/2050-6120/4/2/022001
10.3141/2548-01
10.1039/c5pp00122f
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
17B
1KM
AOWDO
BLEPL
DTL
EGQ
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
5PM
DOI 10.1002/cbic.201900671
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science - Science Citation Index Expanded - 2020
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Web of Science
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Web of Science
MEDLINE
Virology and AIDS Abstracts

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1439-7633
EndPage 112
ExternalDocumentID PMC6980326
31709708
000500073500001
10_1002_cbic_201900671
CBIC201900671
Genre shortCommunication
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: GM097241; GM131627
– fundername: US National Institutes of Health; United States Department of Health & Human Services; National Institutes of Health (NIH) - USA
  grantid: GM097241; GM131627
– fundername: NIGMS NIH HHS
  grantid: R01 GM131627
– fundername: NIGMS NIH HHS
  grantid: R01 GM097241
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
4ZD
50Y
5GY
5VS
66C
6J9
6P2
77Q
8-0
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
P4E
PQQKQ
R.K
ROL
RWI
RX1
SUPJJ
SV3
V2E
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
WYJ
XPP
XV2
Y6R
YZZ
ZZTAW
~KM
~S-
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
BLEPL
DTL
GROUPED_WOS_WEB_OF_SCIENCE
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
LH4
5PM
ID FETCH-LOGICAL-c5051-fd18f81b385370f0179185306f5342de12a1cd8bf5f8d6381bc33a5bbace49763
IEDL.DBID DR2
ISICitedReferencesCount 5
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000500073500001
ISSN 1439-4227
1439-7633
IngestDate Thu Aug 21 18:01:35 EDT 2025
Fri Sep 05 12:23:14 EDT 2025
Fri Jul 25 12:12:48 EDT 2025
Mon Jul 21 06:00:00 EDT 2025
Wed Jul 09 19:56:17 EDT 2025
Fri Sep 26 20:27:38 EDT 2025
Thu Apr 24 23:12:21 EDT 2025
Tue Jul 01 04:34:52 EDT 2025
Wed Jan 22 16:37:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords environment-sensitive fluorophores
POLARITY
glycosyltransferase
high-throughput screening
nucleoside analogues
PROTEINS
BINDING
PROBES
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c5051-fd18f81b385370f0179185306f5342de12a1cd8bf5f8d6381bc33a5bbace49763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5749-7869
0000-0001-8890-8985
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cbic.201900671
PMID 31709708
PQID 2341426441
PQPubID 986344
PageCount 5
ParticipantIDs wiley_primary_10_1002_cbic_201900671_CBIC201900671
proquest_journals_2341426441
webofscience_primary_000500073500001CitationCount
crossref_citationtrail_10_1002_cbic_201900671
webofscience_primary_000500073500001
crossref_primary_10_1002_cbic_201900671
proquest_miscellaneous_2313657498
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6980326
pubmed_primary_31709708
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 15, 2020
PublicationDateYYYYMMDD 2020-01-15
PublicationDate_xml – month: 01
  year: 2020
  text: January 15, 2020
  day: 15
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Chembiochem : a European journal of chemical biology
PublicationTitleAbbrev CHEMBIOCHEM
PublicationTitleAlternate Chembiochem
PublicationYear 2020
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2017; 61
2015; 14
2010; 15
2013; 23
2017; 27
2015; 10
2008; 77
2008; 95
2011; 6
2014; 136
2010; 61
2016; 4
2013; 18
1996; 318
2015; 137
2006; 24
2010; 28
1993; 70
2010; 114
2015; 22
2010; 110
2017
2011; 21
2016
2013; 110
2007; 3
1994; 94
2010; 74
2008; 130
2016; 25
e_1_2_2_4_1
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_22_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_20_1
e_1_2_2_3_1
e_1_2_2_29_2
e_1_2_2_9_1
e_1_2_2_28_2
e_1_2_2_27_1
e_1_2_2_26_1
Huynh K. (e_1_2_2_2_1) 2016
e_1_2_2_14_1
e_1_2_2_12_2
e_1_2_2_13_1
e_1_2_2_11_2
e_1_2_2_10_1
e_1_2_2_30_1
e_1_2_2_31_1
e_1_2_2_19_1
e_1_2_2_18_1
e_1_2_2_32_2
e_1_2_2_17_1
e_1_2_2_33_2
e_1_2_2_16_1
e_1_2_2_15_1
Davis B. J. (e_1_2_2_8_1) 2017
Boettcher, A (WOS:000284696900001) 2010; 15
Jameson, DM (WOS:000277811600005) 2010; 110
Lamoree, B (WOS:000450231200003) 2017; 61
Venkatraman, P (WOS:000245103000012) 2007; 3
Wu, ZL (WOS:000290610500002) 2011; 21
Lagorio, MG (WOS:000360458100001) 2015; 14
Davis, BJ (WOS:000318750000002) 2013; 23
Goh, WL (WOS:000335369200003) 2014; 136
REICHARDT, C (WOS:A1994PY50400005) 1994; 94
Lea, WA (WOS:000285552500003) 2011; 6
Karas, JA (WOS:000278817900001) 2010; 61
Lairson, LL (WOS:000257596800022) 2008; 77
Huynh, N (WOS:000381781100002) 2016
Loving, G (WOS:000259924000031) 2008; 130
Ghantoji, SS (WOS:000276456400001) 2010; 74
Hall, MD (WOS:000378831000001) 2016; 4
Kabir, A (WOS:000389218500002) 2016; 25
Denhardt, DT (WOS:A1996VJ91700001) 1996; 318
Davis, B. J. (000500073500001.4) 2017; 50
Tam, J (WOS:000349966200003) 2015; 22
Telmer, CA (WOS:000354907400011) 2015; 10
Lukose, V (WOS:000409143900005) 2017; 27
Silvestre, HL (WOS:000322771100042) 2013; 110
Li, HY (WOS:000330304100071) 2013; 18
Marini, A (WOS:000285560100015) 2010; 114
Malo, N (WOS:000235232300032) 2006; 24
FERYFORGUES, S (WOS:A1993KT79500004) 1993; 70
Karpenko, IA (WOS:000348483500069) 2015; 137
Cimmperman, P (WOS:000259393200014) 2008; 95
Loving, GS (WOS:000274556900003) 2010; 28
References_xml – volume: 14
  start-page: 1538
  year: 2015
  end-page: 1559
  publication-title: Photochem. Photobiol. Sci.
– volume: 94
  start-page: 2319
  year: 1994
  end-page: 2358
  publication-title: Chem. Rev.
– volume: 61
  start-page: 453
  year: 2017
  end-page: 464
  publication-title: Essays Biochem.
– volume: 22
  start-page: 175
  year: 2015
  end-page: 185
  publication-title: Chem. Biol.
– volume: 4
  start-page: 022001
  year: 2016
  publication-title: Methods Appl. Fluoresc.
– start-page: 1
  year: 2016
  end-page: 19
  publication-title: Curr. Protoc. Protein Sci.
– volume: 3
  start-page: 222
  year: 2007
  publication-title: Nat. Chem. Biol.
– volume: 137
  start-page: 405
  year: 2015
  end-page: 412
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 13630
  year: 2008
  end-page: 13638
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 17
  year: 2011
  end-page: 32
  publication-title: Expert Opin. Drug Discovery
– volume: 77
  start-page: 521
  year: 2008
  end-page: 555
  publication-title: Annu. Rev. Biochem.
– volume: 24
  start-page: 167
  year: 2006
  end-page: 175
  publication-title: Nat. Biotechnol.
– volume: 95
  start-page: 3222
  year: 2008
  end-page: 3231
  publication-title: Biophys. J.
– volume: 15
  start-page: 1029
  year: 2010
  end-page: 1041
  publication-title: J. Biomol. Screening
– volume: 110
  start-page: 12984
  year: 2013
  end-page: 12989
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 61
  start-page: 1
  year: 2010
  end-page: 8
  publication-title: J. Infect.
– volume: 18
  start-page: 9797
  year: 2013
  end-page: 9817
  publication-title: Molecules
– volume: 10
  start-page: 1239
  year: 2015
  end-page: 1246
  publication-title: ACS Chem. Biol.
– volume: 110
  start-page: 2685
  year: 2010
  end-page: 2708
  publication-title: Chem. Rev.
– volume: 74
  start-page: 309
  year: 2010
  end-page: 318
  publication-title: J. Hosp. Infect.
– volume: 25
  start-page: 2132
  year: 2016
  end-page: 2141
  publication-title: Protein Sci.
– volume: 27
  start-page: 820
  year: 2017
  end-page: 833
  publication-title: Glycobiology
– volume: 114
  start-page: 17128
  year: 2010
  end-page: 17135
  publication-title: J. Phys. Chem. B
– volume: 70
  start-page: 229
  year: 1993
  end-page: 243
  publication-title: Photochem. Photobiol.
– volume: 28
  start-page: 73
  year: 2010
  end-page: 83
  publication-title: Trends Biotechnol.
– volume: 318
  start-page: 729
  year: 1996
  publication-title: Biochem. J.
– year: 2017
– volume: 21
  start-page: 727
  year: 2011
  end-page: 733
  publication-title: Glycobiology
– volume: 136
  start-page: 6159
  year: 2014
  end-page: 6162
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 2844
  year: 2013
  end-page: 2852
  publication-title: Bioorg. Med. Chem. Lett.
– start-page: 1
  year: 2016
  ident: e_1_2_2_2_1
  publication-title: Curr. Protoc. Protein Sci.
– ident: e_1_2_2_6_1
  doi: 10.1016/j.bmcl.2013.03.028
– ident: e_1_2_2_22_1
  doi: 10.1016/1010-6030(93)85048-D
– ident: e_1_2_2_3_1
  doi: 10.1021/cr900267p
– ident: e_1_2_2_9_1
  doi: 10.1021/cr00032a005
– ident: e_1_2_2_32_2
  doi: 10.1146/annurev.biochem.76.061005.092322
– ident: e_1_2_2_29_2
  doi: 10.1002/pro.3036
– ident: e_1_2_2_27_1
– volume-title: Fragment-Based Lead Discovery, Vol. 50
  year: 2017
  ident: e_1_2_2_8_1
– ident: e_1_2_2_23_1
  doi: 10.1038/nchembio868
– ident: e_1_2_2_31_1
– ident: e_1_2_2_14_1
  doi: 10.1021/cb500957k
– ident: e_1_2_2_21_1
  doi: 10.1021/ja804754y
– ident: e_1_2_2_17_1
  doi: 10.1016/j.jinf.2010.03.025
– ident: e_1_2_2_18_1
  doi: 10.1042/bj3180729
– ident: e_1_2_2_33_2
  doi: 10.1093/glycob/cwx064
– ident: e_1_2_2_12_2
  doi: 10.1021/ja413031h
– ident: e_1_2_2_28_2
  doi: 10.1529/biophysj.108.134973
– ident: e_1_2_2_13_1
  doi: 10.1021/jp1097487
– ident: e_1_2_2_1_1
  doi: 10.1039/C5PP00122F
– ident: e_1_2_2_26_1
  doi: 10.1042/EBC20170028
– ident: e_1_2_2_30_1
  doi: 10.1177/1087057110380455
– ident: e_1_2_2_15_1
  doi: 10.1021/ja5111267
– ident: e_1_2_2_16_1
  doi: 10.1073/pnas.1304045110
– ident: e_1_2_2_19_1
  doi: 10.1016/j.chembiol.2014.12.010
– ident: e_1_2_2_20_1
  doi: 10.1016/j.jhin.2009.10.016
– ident: e_1_2_2_7_1
  doi: 10.1038/nbt1186
– ident: e_1_2_2_24_1
  doi: 10.3390/molecules18089797
– ident: e_1_2_2_25_1
  doi: 10.1093/glycob/cwq187
– ident: e_1_2_2_11_2
  doi: 10.1016/j.tibtech.2009.11.002
– ident: e_1_2_2_10_1
– ident: e_1_2_2_4_1
  doi: 10.1517/17460441.2011.537322
– ident: e_1_2_2_5_1
  doi: 10.1088/2050-6120/4/2/022001
– volume: 318
  start-page: 729
  year: 1996
  ident: WOS:A1996VJ91700001
  article-title: Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: The potential for multiplex signalling
  publication-title: BIOCHEMICAL JOURNAL
– volume: 21
  start-page: 727
  year: 2011
  ident: WOS:000290610500002
  article-title: Universal phosphatase-coupled glycosyltransferase assay
  publication-title: GLYCOBIOLOGY
  doi: 10.1093/glycob/cwq187
– volume: 95
  start-page: 3222
  year: 2008
  ident: WOS:000259393200014
  article-title: A quantitative model of thermal stabilization and destabilization of proteins by ligands
  publication-title: BIOPHYSICAL JOURNAL
  doi: 10.1529/biophysj.108.134973
– volume: 4
  start-page: ARTN 022001
  year: 2016
  ident: WOS:000378831000001
  article-title: Fluorescence polarization assays in high-throughput screening and drug discovery: a review
  publication-title: METHODS AND APPLICATIONS IN FLUORESCENCE
  doi: 10.1088/2050-6120/4/2/022001
– volume: 27
  start-page: 820
  year: 2017
  ident: WOS:000409143900005
  article-title: Bacterial phosphoglycosyl transferases: initiators of glycan biosynthesis at the membrane interface
  publication-title: GLYCOBIOLOGY
  doi: 10.1093/glycob/cwx064
– volume: 130
  start-page: 13630
  year: 2008
  ident: WOS:000259924000031
  article-title: A versatile amino acid analogue of the solvatochromic fluorophore 4-N,N-dimethylamino-1,8-naphthalimide: A powerful tool for the study of dynamic protein interactions
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja804754y
– volume: 28
  start-page: 73
  year: 2010
  ident: WOS:000274556900003
  article-title: Monitoring protein interactions and dynamics with solvatochromic fluorophores
  publication-title: TRENDS IN BIOTECHNOLOGY
  doi: 10.1016/j.tibtech.2009.11.002
– volume: 15
  start-page: 1029
  year: 2010
  ident: WOS:000284696900001
  article-title: Fragment-Based Screening by Biochemical Assays: Systematic Feasibility Studies with Trypsin and MMP12
  publication-title: JOURNAL OF BIOMOLECULAR SCREENING
  doi: 10.1177/1087057110380455
– volume: 94
  start-page: 2319
  year: 1994
  ident: WOS:A1994PY50400005
  article-title: SOLVATOCHROMIC DYES AS SOLVENT POLARITY INDICATORS
  publication-title: CHEMICAL REVIEWS
– volume: 3
  start-page: 222
  year: 2007
  ident: WOS:000245103000012
  article-title: Fluorogenic probes for monitoring peptide binding to class II MHC proteins in living cells
  publication-title: NATURE CHEMICAL BIOLOGY
  doi: 10.1038/nchembio868
– volume: 61
  start-page: 453
  year: 2017
  ident: WOS:000450231200003
  article-title: Current perspectives in fragment-based lead discovery (FBLD)
  publication-title: STRUCTURE-BASED DRUG DESIGN: INSIGHTS FROM ACADEMIA AND INDUSTRY
  doi: 10.1042/EBC20170028
– volume: 110
  start-page: 12984
  year: 2013
  ident: WOS:000322771100042
  article-title: Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  doi: 10.1073/pnas.1304045110
– volume: 74
  start-page: 309
  year: 2010
  ident: WOS:000276456400001
  article-title: Economic healthcare costs of Clostridium difficile infection: a systematic review
  publication-title: JOURNAL OF HOSPITAL INFECTION
  doi: 10.1016/j.jhin.2009.10.016
– volume: 24
  start-page: 167
  year: 2006
  ident: WOS:000235232300032
  article-title: Statistical practice in high-throughput screening data analysis
  publication-title: NATURE BIOTECHNOLOGY
  doi: 10.1038/nbt1186
– volume: 22
  start-page: 175
  year: 2015
  ident: WOS:000349966200003
  article-title: Small Molecule Inhibitors of Clostridium difficile Toxin B-Induced Cellular Damage
  publication-title: CHEMISTRY & BIOLOGY
  doi: 10.1016/j.chembiol.2014.12.010
– volume: 50
  year: 2017
  ident: 000500073500001.4
  publication-title: Fragment-Based Lead Discovery
– start-page: 1
  year: 2016
  ident: WOS:000381781100002
  article-title: Truck Appointment Systems Where We Are and Where to Go from Here
  publication-title: TRANSPORTATION RESEARCH RECORD
  doi: 10.3141/2548-01
– volume: 137
  start-page: 405
  year: 2015
  ident: WOS:000348483500069
  article-title: Fluorogenic Squaraine Dimers with Polarity-Sensitive Folding As Bright Far-Red Probes for Background-Free Bioimaging
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja5111267
– volume: 114
  start-page: 17128
  year: 2010
  ident: WOS:000285560100015
  article-title: What is Solvatochromism?
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY B
  doi: 10.1021/jp1097487
– volume: 18
  start-page: 9797
  year: 2013
  ident: WOS:000330304100071
  article-title: Click Chemistry in Peptide-Based Drug Design
  publication-title: MOLECULES
  doi: 10.3390/molecules18089797
– volume: 25
  start-page: 2132
  year: 2016
  ident: WOS:000389218500002
  article-title: Effects of ligand binding on the stability of aldo-keto reductases: Implications for stabilizer or destabilizer chaperones
  publication-title: PROTEIN SCIENCE
  doi: 10.1002/pro.3036
– volume: 136
  start-page: 6159
  year: 2014
  ident: WOS:000335369200003
  article-title: Molecular Rotors As Conditionally Fluorescent Labels for Rapid Detection of Biomolecular Interactions
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja413031h
– volume: 23
  start-page: 2844
  year: 2013
  ident: WOS:000318750000002
  article-title: Learning from our mistakes: The 'unknown knowns' in fragment screening
  publication-title: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS
  doi: 10.1016/j.bmcl.2013.03.028
– volume: 10
  start-page: 1239
  year: 2015
  ident: WOS:000354907400011
  article-title: Rapid, Specific, No-wash, Far-red Fluorogen Activation in Subcellular Compartments by Targeted Fluorogen Activating Proteins
  publication-title: ACS CHEMICAL BIOLOGY
  doi: 10.1021/cb500957k
– volume: 70
  start-page: 229
  year: 1993
  ident: WOS:A1993KT79500004
  article-title: DRASTIC CHANGES IN THE FLUORESCENCE PROPERTIES OF NBD PROBES WITH THE POLARITY OF THE MEDIUM - INVOLVEMENT OF A TICT STATE
  publication-title: JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY
– volume: 14
  start-page: 1538
  year: 2015
  ident: WOS:000360458100001
  article-title: Reviewing the relevance of fluorescence in biological systems
  publication-title: PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES
  doi: 10.1039/c5pp00122f
– volume: 110
  start-page: 2685
  year: 2010
  ident: WOS:000277811600005
  article-title: Fluorescence Polarization/Anisotropy in Diagnostics and Imaging
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr900267p
– volume: 6
  start-page: 17
  year: 2011
  ident: WOS:000285552500003
  article-title: Fluorescence polarization assays in small molecule screening
  publication-title: EXPERT OPINION ON DRUG DISCOVERY
  doi: 10.1517/17460441.2011.537322
– volume: 77
  start-page: 521
  year: 2008
  ident: WOS:000257596800022
  article-title: Glycosyltransferases: Structures, functions, and mechanisms
  publication-title: ANNUAL REVIEW OF BIOCHEMISTRY
  doi: 10.1146/annurev.biochem.76.061005.092322
– volume: 61
  start-page: 1
  year: 2010
  ident: WOS:000278817900001
  article-title: A review of mortality due to Clostridium difficile infection
  publication-title: JOURNAL OF INFECTION
  doi: 10.1016/j.jinf.2010.03.025
SSID ssj0009631
Score 2.3158937
Snippet High‐throughput small‐molecule screening in drug discovery processes commonly rely on fluorescence‐based methods including fluorescent polarization and...
High-throughput small-molecule screening in drug discovery processes commonly rely on fluorescence-based methods including fluorescent polarization and...
High-throughput small molecule screening in drug discovery processes commonly rely on fluorescence-based methods including fluorescent polarization and...
Source Web of Science
SourceID pubmedcentral
proquest
pubmed
webofscience
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108
SubjectTerms Antiretroviral drugs
Binding
Biochemistry & Molecular Biology
Chemistry, Medicinal
Clostridioides difficile - enzymology
Drug Evaluation, Preclinical
Energy transfer
environment-sensitive fluorophores
Enzyme Inhibitors - chemical synthesis
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - pharmacology
Fluorescence
Fluorescent Dyes - chemical synthesis
Fluorescent Dyes - chemistry
Fluorescent Dyes - pharmacology
Glycosyltransferase
Glycosyltransferases - antagonists & inhibitors
Glycosyltransferases - metabolism
High-Throughput Nucleotide Sequencing
high-throughput screening
Instrumentation
Life Sciences & Biomedicine
Models, Molecular
Nucleoside analogs
nucleoside analogues
Nucleosides
Nucleosides - chemical synthesis
Nucleosides - chemistry
Nucleosides - pharmacology
Pharmacology & Pharmacy
Science & Technology
Screening
Substrates
Uridine
Virulence
Title Deploying Fluorescent Nucleoside Analogues for High‐Throughput Inhibitor Screening
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbic.201900671
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000500073500001
https://www.ncbi.nlm.nih.gov/pubmed/31709708
https://www.proquest.com/docview/2341426441
https://www.proquest.com/docview/2313657498
https://pubmed.ncbi.nlm.nih.gov/PMC6980326
Volume 21
WOS 000500073500001
WOSCitedRecordID wos000500073500001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh0fIILchIFZzSxo-8jiVl1SLRA2yl3iLbsdUVJVvtJody4ifwG_klzDiPNjwEguPK411l9vPMZ3vyDSG7wtokz6sqjDOXh9IoG-aWu7DiQgoNKOC-nc-7k-ToVL49i89uvMXf6UOMB264Mny8xgWu9Hr_WjTU6AVKEEJCg4CL-x8mEhTPP3x_rR8F6PI7LonXnZyng2pjxPen06dZ6Seq-euKyTFLTYmtz0yze0QNz9QVpHzcaxu9Zz7_IPf4Pw99n9ztaSs96HD2gNyy9SbZOqhhy_7pir6kvpDUn9BvktvF0ERui8wPLXYUhvxIZxftctWJR9ETVFFeYqdQiqooeHy0pkCfKZadfPvydd51D7psG3pcny80hJ0V_WCwRgi-6iE5nb2ZF0dh38ghNECwWOgqljngxwK4QRo5DAJIE6LExULyyjKumKky7WKXVRAQmDZCqFhrZawEviQekY16WdsnhCpZ5TFPbOSklSw3mbDSqkTI1EWKMxeQcPgjS9OrnGOzjYuy02fmJbqwHF0YkFej_WWn7_Fby50BF2W_ztclIJp1nDIgL8Zh8DFeu6jaLlu0wVLCVOZZQB53MBp_CthblKcRjKQTgI0GqP49HakX514FPMmzCLh3QHZvQnGc6JV98B429hc4AWF_Y1b0LkNBhCYg3GPxD44pi9fHxfjp6b9M2iZ3OJ5jRCxk8Q7ZaFatfQZkr9HP_YL-Dmh9S9c
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcigXHi2PlAJGquCUNnac17EEVrvQ7gG2ErcocWx1RclW2-RQTvwEfiO_hBnnUcJDIDiuPN5VZsczn2cm3wDs-VqHSVKWbhCbxJUq126ihXFL4Uu_QCsQdpzP8TycnsjX74O-m5DehWn5IYaEG50M66_pgFNC-uCKNVQVS-IgxIiGHhcvQNdtkY5w0dsrBim0L3vnklTwFCLqeRs9cTDeP45LP4HNX_dMDnFqDG1tbJrcgqJ_qrYl5cN-Uxf76tMPhI__9di34WaHXNlha2p34JqutmD7sMJb-8dL9ozZXlKbpN-CzbSfI7cNi5eahgpjiGSTs2a1bvmj2JyIlFc0LJQRMQplkC4YImhGnSdfP39ZtAOEzpuazarTZYGeZ83eKWoTwq-6CyeTV4t06nazHFyFGIu7puSxQYjsIzyIPEN-gJCCF5rAl6LUXORclXFhAhOX6BN4oXw_D4oiV1oiZPLvwUa1qvQDYLksk0CE2jNSS56o2NdS56EvI-PlghsH3P6fzFRHdE7zNs6ylqJZZKTCbFChA88H-fOW4uO3kru9YWTdUb_I0Kh5CysdeDoso46p8pJXetWQDHUTRjKJHbjf2tHwUwjgvCTycCUaWdggQATg45VqeWqJwMMk9hB-O7D3vS0OGy25D5ViA1vDcYD_jVjaqYw4EWoHhDXGPygmS1_M0uHTzr9segKb08XxUXY0m795CDcEpTU87vJgFzbqdaMfIfari8f2dH8DDYJP9Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIgEXHi2PQAEjVXBKGzvO61hSVl0eKwRbqbcocWx1RcmutskBTvwEfiO_hBnn0YaHQHBcebyrzH6e-WxPvgHY8bUOk6Qs3SA2iStVrt1EC-OWwpd-gSgQtp3Pm1l4eCRfHgfHF97ib_UhhgM3Whk2XtMCX5Vm71w0VBULkiDEhIYBF_c_l2WIuZJo0btzASmEl91ySbrvFCLqZRs9sTeeP05LP3HNX5dMDmlqzGxtaprcgLx_qLYi5cNuUxe76vMPeo__89Q34XrHW9l-C7RbcElXm7C1X-Ge_eMn9pTZSlJ7RL8JV9O-i9wWzA80tRTGBMkmp81y3apHsRnJKC-pVSgjWRQ6PzpjyJ8Z1Z18-_J13rYPWjU1m1YniwLjzpq9V1QkhF91G44mL-bpodt1cnAVMizumpLHBgmyj-Qg8gxFAeIJXmgCX4pSc5FzVcaFCUxcYkTghfL9PCiKXGmJhMm_AxvVstL3gOWyTAIRas9ILXmiYl9LnYe-jIyXC24ccPs_MlOdzDl12zjNWoFmkZELs8GFDjwb7FetwMdvLbd7XGTdQj_LENK8JZUOPBmG0cd075JXetmQDdUSRjKJHbjbwmj4KaRvXhJ5OBKNADYYkPz3eKRanFgZ8DCJPSTfDuxchOIw0Ur70EVsYG9wHOB_Y5Z2LiNFhNoBYbH4B8dk6fNpOny6_y-THsOVtweT7PV09uoBXBN0puFxlwfbsFGvG_0QiV9dPLJr-zvY506k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deploying+Fluorescent+Nucleoside+Analogues+for+High%E2%80%90Throughput+Inhibitor+Screening&rft.jtitle=Chembiochem+%3A+a+European+journal+of+chemical+biology&rft.au=Seebald%2C+Leah&rft.au=Madec%2C+Ama%C3%ABl+G+E&rft.au=Imperiali%2C+Barbara&rft.date=2020-01-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1439-4227&rft.eissn=1439-7633&rft.volume=21&rft.issue=1-2&rft.spage=108&rft.epage=112&rft_id=info:doi/10.1002%2Fcbic.201900671&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4227&client=summon