Deploying Fluorescent Nucleoside Analogues for High‐Throughput Inhibitor Screening
High‐throughput small‐molecule screening in drug discovery processes commonly rely on fluorescence‐based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false‐neg...
Saved in:
Published in | Chembiochem : a European journal of chemical biology Vol. 21; no. 1-2; pp. 108 - 112 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
15.01.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1439-4227 1439-7633 1439-7633 |
DOI | 10.1002/cbic.201900671 |
Cover
Abstract | High‐throughput small‐molecule screening in drug discovery processes commonly rely on fluorescence‐based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false‐negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment‐sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside‐based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment‐based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile. The uridine‐based probe used for this high‐throughput screen has a KD value of 7.2 μm with the TcdB GT and shows a >30‐fold increase in fluorescence intensity upon binding. The ES‐based probe assay is benchmarked against two other screening approaches.
An advantageous alternative: We present the development of nucleoside‐based environment‐sensitive fluorophore (ESF) probes that are applicable to competitive‐binding analyses. Use of the ESF probes is illustrated by application to a high‐throughput fragment‐based screen for identification of leads for inhibitor development against a clinically relevant glycosyltransferase from the C. difficile TcdB toxin. |
---|---|
AbstractList | High-throughput small-molecule screening in drug discovery processes commonly rely on fluorescence-based methods including fluorescent polarization and fluorescence/Forster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false-negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment-sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside-based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment-based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile. The uridine-based probe used for this high-throughput screen has a K-D value of 7.2 mu m with the TcdB GT and shows a >30-fold increase in fluorescence intensity upon binding. The ES-based probe assay is benchmarked against two other screening approaches. High-throughput small-molecule screening in drug discovery processes commonly rely on fluorescence-based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false-negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment-sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside-based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment-based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile. The uridine-based probe used for this high-throughput screen has a K value of 7.2 μm with the TcdB GT and shows a >30-fold increase in fluorescence intensity upon binding. The ES-based probe assay is benchmarked against two other screening approaches. High‐throughput small‐molecule screening in drug discovery processes commonly rely on fluorescence‐based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false‐negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment‐sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside‐based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment‐based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile. The uridine‐based probe used for this high‐throughput screen has a KD value of 7.2 μm with the TcdB GT and shows a >30‐fold increase in fluorescence intensity upon binding. The ES‐based probe assay is benchmarked against two other screening approaches. High-throughput small molecule screening in drug discovery processes commonly rely on fluorescence-based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation, however may suffer from high false negative rates and background signals or, may involve complex schemes for the introduction of fluorophore pairs. Herein, we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment-sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside-based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment-based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile . The uridine-based probe used for this HTS has a K D of 7.2 μM with the TcdB GT and shows a >30-fold increase in fluorescence intensity upon binding. The ES-based probe assay is benchmarked against two other screening approaches. High‐throughput small‐molecule screening in drug discovery processes commonly rely on fluorescence‐based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false‐negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment‐sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside‐based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment‐based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile . The uridine‐based probe used for this high‐throughput screen has a K D value of 7.2 μ m with the TcdB GT and shows a >30‐fold increase in fluorescence intensity upon binding. The ES‐based probe assay is benchmarked against two other screening approaches. High‐throughput small‐molecule screening in drug discovery processes commonly rely on fluorescence‐based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false‐negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment‐sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside‐based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment‐based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile. The uridine‐based probe used for this high‐throughput screen has a KD value of 7.2 μm with the TcdB GT and shows a >30‐fold increase in fluorescence intensity upon binding. The ES‐based probe assay is benchmarked against two other screening approaches. An advantageous alternative: We present the development of nucleoside‐based environment‐sensitive fluorophore (ESF) probes that are applicable to competitive‐binding analyses. Use of the ESF probes is illustrated by application to a high‐throughput fragment‐based screen for identification of leads for inhibitor development against a clinically relevant glycosyltransferase from the C. difficile TcdB toxin. High-throughput small-molecule screening in drug discovery processes commonly rely on fluorescence-based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false-negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment-sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside-based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment-based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile. The uridine-based probe used for this high-throughput screen has a KD value of 7.2 μm with the TcdB GT and shows a >30-fold increase in fluorescence intensity upon binding. The ES-based probe assay is benchmarked against two other screening approaches.High-throughput small-molecule screening in drug discovery processes commonly rely on fluorescence-based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false-negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment-sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside-based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment-based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile. The uridine-based probe used for this high-throughput screen has a KD value of 7.2 μm with the TcdB GT and shows a >30-fold increase in fluorescence intensity upon binding. The ES-based probe assay is benchmarked against two other screening approaches. |
Author | Madec, Amaël G. E. Imperiali, Barbara Seebald, Leah |
Author_xml | – sequence: 1 givenname: Leah orcidid: 0000-0001-8890-8985 surname: Seebald fullname: Seebald, Leah organization: Massachusetts Institute of Technology – sequence: 2 givenname: Amaël G. E. surname: Madec fullname: Madec, Amaël G. E. organization: Massachusetts Institute of Technology – sequence: 3 givenname: Barbara orcidid: 0000-0002-5749-7869 surname: Imperiali fullname: Imperiali, Barbara email: imper@mit.edu organization: Massachusetts Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31709708$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URD_gyhFF4oJU7WLHztcFqU0pXamCA8vZcpxx4sprL3YC2hs_gd_IL8HRpgtUQnCwPZKf9_XMeE7RkXUWEHpO8JJgnL6WjZbLFJMK47wgj9AJYbRaFDmlR3PM0rQ4Rqch3GGMq5ySJ-iYkgJXBS5P0PoKtsbttO2SazM6D0GCHZL3ozTggm4hubDCuG6EkCjnkxvd9T--fV_33o1dvx2HZGV73egh3n2UHsBGq6fosRImwLP5PEOfrt-u65vF7Yd3q_ridiEznJGFakmpStLQMqMFVpgUFYkhzlVGWdoCSQWRbdmoTJVtTiMpKRVZ0wgJrIo1nqE3e9_t2GygnTL3wvCt1xvhd9wJzf-8sbrnnfvC86rENJ0MXs0G3n2OJQ58o2MDjBEW3Bh4SgnNs4JVZURfPkDv3OhjbyaKEZbmjJFIvfg9o0Mq9w2PQLkHvkLjVJAarIQDFn8oi6ug045JrQcxaGdrN9ohSs__XxpptqeldyF4UFzObrET2nCC-TRAfBogfhigKFs-kN0_8FdBNWelDez-QfP6clX_0v4EluXXfw |
CitedBy_id | crossref_primary_10_1007_s10562_023_04570_1 crossref_primary_10_1021_jacs_3c11402 crossref_primary_10_1021_acs_orglett_2c00462 crossref_primary_10_1039_D0OB01892A crossref_primary_10_1002_cmdc_202400311 |
Cites_doi | 10.1016/j.bmcl.2013.03.028 10.1016/1010-6030(93)85048-D 10.1021/cr900267p 10.1021/cr00032a005 10.1146/annurev.biochem.76.061005.092322 10.1002/pro.3036 10.1038/nchembio868 10.1021/cb500957k 10.1021/ja804754y 10.1016/j.jinf.2010.03.025 10.1042/bj3180729 10.1093/glycob/cwx064 10.1021/ja413031h 10.1529/biophysj.108.134973 10.1021/jp1097487 10.1039/C5PP00122F 10.1042/EBC20170028 10.1177/1087057110380455 10.1021/ja5111267 10.1073/pnas.1304045110 10.1016/j.chembiol.2014.12.010 10.1016/j.jhin.2009.10.016 10.1038/nbt1186 10.3390/molecules18089797 10.1093/glycob/cwq187 10.1016/j.tibtech.2009.11.002 10.1517/17460441.2011.537322 10.1088/2050-6120/4/2/022001 10.3141/2548-01 10.1039/c5pp00122f |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 17B 1KM AOWDO BLEPL DTL EGQ CGR CUY CVF ECM EIF NPM 7QL 7QO 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 5PM |
DOI | 10.1002/cbic.201900671 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2020 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Web of Science MEDLINE Virology and AIDS Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1439-7633 |
EndPage | 112 |
ExternalDocumentID | PMC6980326 31709708 000500073500001 10_1002_cbic_201900671 CBIC201900671 |
Genre | shortCommunication Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: GM097241; GM131627 – fundername: US National Institutes of Health; United States Department of Health & Human Services; National Institutes of Health (NIH) - USA grantid: GM097241; GM131627 – fundername: NIGMS NIH HHS grantid: R01 GM131627 – fundername: NIGMS NIH HHS grantid: R01 GM097241 |
GroupedDBID | --- -DZ -~X 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 4ZD 50Y 5GY 5VS 66C 6J9 6P2 77Q 8-0 8-1 8UM A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IH2 IX1 JPC KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- OIG P2P P2W P4E PQQKQ R.K ROL RWI RX1 SUPJJ SV3 V2E W99 WBKPD WH7 WJL WOHZO WXSBR WYJ XPP XV2 Y6R YZZ ZZTAW ~KM ~S- AAYXX AEYWJ AGHNM AGYGG CITATION 17B 1KM AAMMB AEFGJ AGXDD AIDQK AIDYY BLEPL DTL GROUPED_WOS_WEB_OF_SCIENCE CGR CUY CVF ECM EIF NPM 7QL 7QO 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 LH4 5PM |
ID | FETCH-LOGICAL-c5051-fd18f81b385370f0179185306f5342de12a1cd8bf5f8d6381bc33a5bbace49763 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 5 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000500073500001 |
ISSN | 1439-4227 1439-7633 |
IngestDate | Thu Aug 21 18:01:35 EDT 2025 Fri Sep 05 12:23:14 EDT 2025 Fri Jul 25 12:12:48 EDT 2025 Mon Jul 21 06:00:00 EDT 2025 Wed Jul 09 19:56:17 EDT 2025 Fri Sep 26 20:27:38 EDT 2025 Thu Apr 24 23:12:21 EDT 2025 Tue Jul 01 04:34:52 EDT 2025 Wed Jan 22 16:37:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | environment-sensitive fluorophores POLARITY glycosyltransferase high-throughput screening nucleoside analogues PROTEINS BINDING PROBES |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c5051-fd18f81b385370f0179185306f5342de12a1cd8bf5f8d6381bc33a5bbace49763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5749-7869 0000-0001-8890-8985 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cbic.201900671 |
PMID | 31709708 |
PQID | 2341426441 |
PQPubID | 986344 |
PageCount | 5 |
ParticipantIDs | wiley_primary_10_1002_cbic_201900671_CBIC201900671 proquest_journals_2341426441 webofscience_primary_000500073500001CitationCount crossref_citationtrail_10_1002_cbic_201900671 webofscience_primary_000500073500001 crossref_primary_10_1002_cbic_201900671 proquest_miscellaneous_2313657498 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6980326 pubmed_primary_31709708 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 15, 2020 |
PublicationDateYYYYMMDD | 2020-01-15 |
PublicationDate_xml | – month: 01 year: 2020 text: January 15, 2020 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Chembiochem : a European journal of chemical biology |
PublicationTitleAbbrev | CHEMBIOCHEM |
PublicationTitleAlternate | Chembiochem |
PublicationYear | 2020 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2017; 61 2015; 14 2010; 15 2013; 23 2017; 27 2015; 10 2008; 77 2008; 95 2011; 6 2014; 136 2010; 61 2016; 4 2013; 18 1996; 318 2015; 137 2006; 24 2010; 28 1993; 70 2010; 114 2015; 22 2010; 110 2017 2011; 21 2016 2013; 110 2007; 3 1994; 94 2010; 74 2008; 130 2016; 25 e_1_2_2_4_1 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_22_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_3_1 e_1_2_2_29_2 e_1_2_2_9_1 e_1_2_2_28_2 e_1_2_2_27_1 e_1_2_2_26_1 Huynh K. (e_1_2_2_2_1) 2016 e_1_2_2_14_1 e_1_2_2_12_2 e_1_2_2_13_1 e_1_2_2_11_2 e_1_2_2_10_1 e_1_2_2_30_1 e_1_2_2_31_1 e_1_2_2_19_1 e_1_2_2_18_1 e_1_2_2_32_2 e_1_2_2_17_1 e_1_2_2_33_2 e_1_2_2_16_1 e_1_2_2_15_1 Davis B. J. (e_1_2_2_8_1) 2017 Boettcher, A (WOS:000284696900001) 2010; 15 Jameson, DM (WOS:000277811600005) 2010; 110 Lamoree, B (WOS:000450231200003) 2017; 61 Venkatraman, P (WOS:000245103000012) 2007; 3 Wu, ZL (WOS:000290610500002) 2011; 21 Lagorio, MG (WOS:000360458100001) 2015; 14 Davis, BJ (WOS:000318750000002) 2013; 23 Goh, WL (WOS:000335369200003) 2014; 136 REICHARDT, C (WOS:A1994PY50400005) 1994; 94 Lea, WA (WOS:000285552500003) 2011; 6 Karas, JA (WOS:000278817900001) 2010; 61 Lairson, LL (WOS:000257596800022) 2008; 77 Huynh, N (WOS:000381781100002) 2016 Loving, G (WOS:000259924000031) 2008; 130 Ghantoji, SS (WOS:000276456400001) 2010; 74 Hall, MD (WOS:000378831000001) 2016; 4 Kabir, A (WOS:000389218500002) 2016; 25 Denhardt, DT (WOS:A1996VJ91700001) 1996; 318 Davis, B. J. (000500073500001.4) 2017; 50 Tam, J (WOS:000349966200003) 2015; 22 Telmer, CA (WOS:000354907400011) 2015; 10 Lukose, V (WOS:000409143900005) 2017; 27 Silvestre, HL (WOS:000322771100042) 2013; 110 Li, HY (WOS:000330304100071) 2013; 18 Marini, A (WOS:000285560100015) 2010; 114 Malo, N (WOS:000235232300032) 2006; 24 FERYFORGUES, S (WOS:A1993KT79500004) 1993; 70 Karpenko, IA (WOS:000348483500069) 2015; 137 Cimmperman, P (WOS:000259393200014) 2008; 95 Loving, GS (WOS:000274556900003) 2010; 28 |
References_xml | – volume: 14 start-page: 1538 year: 2015 end-page: 1559 publication-title: Photochem. Photobiol. Sci. – volume: 94 start-page: 2319 year: 1994 end-page: 2358 publication-title: Chem. Rev. – volume: 61 start-page: 453 year: 2017 end-page: 464 publication-title: Essays Biochem. – volume: 22 start-page: 175 year: 2015 end-page: 185 publication-title: Chem. Biol. – volume: 4 start-page: 022001 year: 2016 publication-title: Methods Appl. Fluoresc. – start-page: 1 year: 2016 end-page: 19 publication-title: Curr. Protoc. Protein Sci. – volume: 3 start-page: 222 year: 2007 publication-title: Nat. Chem. Biol. – volume: 137 start-page: 405 year: 2015 end-page: 412 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 13630 year: 2008 end-page: 13638 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 17 year: 2011 end-page: 32 publication-title: Expert Opin. Drug Discovery – volume: 77 start-page: 521 year: 2008 end-page: 555 publication-title: Annu. Rev. Biochem. – volume: 24 start-page: 167 year: 2006 end-page: 175 publication-title: Nat. Biotechnol. – volume: 95 start-page: 3222 year: 2008 end-page: 3231 publication-title: Biophys. J. – volume: 15 start-page: 1029 year: 2010 end-page: 1041 publication-title: J. Biomol. Screening – volume: 110 start-page: 12984 year: 2013 end-page: 12989 publication-title: Proc. Natl. Acad. Sci. USA – volume: 61 start-page: 1 year: 2010 end-page: 8 publication-title: J. Infect. – volume: 18 start-page: 9797 year: 2013 end-page: 9817 publication-title: Molecules – volume: 10 start-page: 1239 year: 2015 end-page: 1246 publication-title: ACS Chem. Biol. – volume: 110 start-page: 2685 year: 2010 end-page: 2708 publication-title: Chem. Rev. – volume: 74 start-page: 309 year: 2010 end-page: 318 publication-title: J. Hosp. Infect. – volume: 25 start-page: 2132 year: 2016 end-page: 2141 publication-title: Protein Sci. – volume: 27 start-page: 820 year: 2017 end-page: 833 publication-title: Glycobiology – volume: 114 start-page: 17128 year: 2010 end-page: 17135 publication-title: J. Phys. Chem. B – volume: 70 start-page: 229 year: 1993 end-page: 243 publication-title: Photochem. Photobiol. – volume: 28 start-page: 73 year: 2010 end-page: 83 publication-title: Trends Biotechnol. – volume: 318 start-page: 729 year: 1996 publication-title: Biochem. J. – year: 2017 – volume: 21 start-page: 727 year: 2011 end-page: 733 publication-title: Glycobiology – volume: 136 start-page: 6159 year: 2014 end-page: 6162 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 2844 year: 2013 end-page: 2852 publication-title: Bioorg. Med. Chem. Lett. – start-page: 1 year: 2016 ident: e_1_2_2_2_1 publication-title: Curr. Protoc. Protein Sci. – ident: e_1_2_2_6_1 doi: 10.1016/j.bmcl.2013.03.028 – ident: e_1_2_2_22_1 doi: 10.1016/1010-6030(93)85048-D – ident: e_1_2_2_3_1 doi: 10.1021/cr900267p – ident: e_1_2_2_9_1 doi: 10.1021/cr00032a005 – ident: e_1_2_2_32_2 doi: 10.1146/annurev.biochem.76.061005.092322 – ident: e_1_2_2_29_2 doi: 10.1002/pro.3036 – ident: e_1_2_2_27_1 – volume-title: Fragment-Based Lead Discovery, Vol. 50 year: 2017 ident: e_1_2_2_8_1 – ident: e_1_2_2_23_1 doi: 10.1038/nchembio868 – ident: e_1_2_2_31_1 – ident: e_1_2_2_14_1 doi: 10.1021/cb500957k – ident: e_1_2_2_21_1 doi: 10.1021/ja804754y – ident: e_1_2_2_17_1 doi: 10.1016/j.jinf.2010.03.025 – ident: e_1_2_2_18_1 doi: 10.1042/bj3180729 – ident: e_1_2_2_33_2 doi: 10.1093/glycob/cwx064 – ident: e_1_2_2_12_2 doi: 10.1021/ja413031h – ident: e_1_2_2_28_2 doi: 10.1529/biophysj.108.134973 – ident: e_1_2_2_13_1 doi: 10.1021/jp1097487 – ident: e_1_2_2_1_1 doi: 10.1039/C5PP00122F – ident: e_1_2_2_26_1 doi: 10.1042/EBC20170028 – ident: e_1_2_2_30_1 doi: 10.1177/1087057110380455 – ident: e_1_2_2_15_1 doi: 10.1021/ja5111267 – ident: e_1_2_2_16_1 doi: 10.1073/pnas.1304045110 – ident: e_1_2_2_19_1 doi: 10.1016/j.chembiol.2014.12.010 – ident: e_1_2_2_20_1 doi: 10.1016/j.jhin.2009.10.016 – ident: e_1_2_2_7_1 doi: 10.1038/nbt1186 – ident: e_1_2_2_24_1 doi: 10.3390/molecules18089797 – ident: e_1_2_2_25_1 doi: 10.1093/glycob/cwq187 – ident: e_1_2_2_11_2 doi: 10.1016/j.tibtech.2009.11.002 – ident: e_1_2_2_10_1 – ident: e_1_2_2_4_1 doi: 10.1517/17460441.2011.537322 – ident: e_1_2_2_5_1 doi: 10.1088/2050-6120/4/2/022001 – volume: 318 start-page: 729 year: 1996 ident: WOS:A1996VJ91700001 article-title: Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: The potential for multiplex signalling publication-title: BIOCHEMICAL JOURNAL – volume: 21 start-page: 727 year: 2011 ident: WOS:000290610500002 article-title: Universal phosphatase-coupled glycosyltransferase assay publication-title: GLYCOBIOLOGY doi: 10.1093/glycob/cwq187 – volume: 95 start-page: 3222 year: 2008 ident: WOS:000259393200014 article-title: A quantitative model of thermal stabilization and destabilization of proteins by ligands publication-title: BIOPHYSICAL JOURNAL doi: 10.1529/biophysj.108.134973 – volume: 4 start-page: ARTN 022001 year: 2016 ident: WOS:000378831000001 article-title: Fluorescence polarization assays in high-throughput screening and drug discovery: a review publication-title: METHODS AND APPLICATIONS IN FLUORESCENCE doi: 10.1088/2050-6120/4/2/022001 – volume: 27 start-page: 820 year: 2017 ident: WOS:000409143900005 article-title: Bacterial phosphoglycosyl transferases: initiators of glycan biosynthesis at the membrane interface publication-title: GLYCOBIOLOGY doi: 10.1093/glycob/cwx064 – volume: 130 start-page: 13630 year: 2008 ident: WOS:000259924000031 article-title: A versatile amino acid analogue of the solvatochromic fluorophore 4-N,N-dimethylamino-1,8-naphthalimide: A powerful tool for the study of dynamic protein interactions publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja804754y – volume: 28 start-page: 73 year: 2010 ident: WOS:000274556900003 article-title: Monitoring protein interactions and dynamics with solvatochromic fluorophores publication-title: TRENDS IN BIOTECHNOLOGY doi: 10.1016/j.tibtech.2009.11.002 – volume: 15 start-page: 1029 year: 2010 ident: WOS:000284696900001 article-title: Fragment-Based Screening by Biochemical Assays: Systematic Feasibility Studies with Trypsin and MMP12 publication-title: JOURNAL OF BIOMOLECULAR SCREENING doi: 10.1177/1087057110380455 – volume: 94 start-page: 2319 year: 1994 ident: WOS:A1994PY50400005 article-title: SOLVATOCHROMIC DYES AS SOLVENT POLARITY INDICATORS publication-title: CHEMICAL REVIEWS – volume: 3 start-page: 222 year: 2007 ident: WOS:000245103000012 article-title: Fluorogenic probes for monitoring peptide binding to class II MHC proteins in living cells publication-title: NATURE CHEMICAL BIOLOGY doi: 10.1038/nchembio868 – volume: 61 start-page: 453 year: 2017 ident: WOS:000450231200003 article-title: Current perspectives in fragment-based lead discovery (FBLD) publication-title: STRUCTURE-BASED DRUG DESIGN: INSIGHTS FROM ACADEMIA AND INDUSTRY doi: 10.1042/EBC20170028 – volume: 110 start-page: 12984 year: 2013 ident: WOS:000322771100042 article-title: Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA doi: 10.1073/pnas.1304045110 – volume: 74 start-page: 309 year: 2010 ident: WOS:000276456400001 article-title: Economic healthcare costs of Clostridium difficile infection: a systematic review publication-title: JOURNAL OF HOSPITAL INFECTION doi: 10.1016/j.jhin.2009.10.016 – volume: 24 start-page: 167 year: 2006 ident: WOS:000235232300032 article-title: Statistical practice in high-throughput screening data analysis publication-title: NATURE BIOTECHNOLOGY doi: 10.1038/nbt1186 – volume: 22 start-page: 175 year: 2015 ident: WOS:000349966200003 article-title: Small Molecule Inhibitors of Clostridium difficile Toxin B-Induced Cellular Damage publication-title: CHEMISTRY & BIOLOGY doi: 10.1016/j.chembiol.2014.12.010 – volume: 50 year: 2017 ident: 000500073500001.4 publication-title: Fragment-Based Lead Discovery – start-page: 1 year: 2016 ident: WOS:000381781100002 article-title: Truck Appointment Systems Where We Are and Where to Go from Here publication-title: TRANSPORTATION RESEARCH RECORD doi: 10.3141/2548-01 – volume: 137 start-page: 405 year: 2015 ident: WOS:000348483500069 article-title: Fluorogenic Squaraine Dimers with Polarity-Sensitive Folding As Bright Far-Red Probes for Background-Free Bioimaging publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja5111267 – volume: 114 start-page: 17128 year: 2010 ident: WOS:000285560100015 article-title: What is Solvatochromism? publication-title: JOURNAL OF PHYSICAL CHEMISTRY B doi: 10.1021/jp1097487 – volume: 18 start-page: 9797 year: 2013 ident: WOS:000330304100071 article-title: Click Chemistry in Peptide-Based Drug Design publication-title: MOLECULES doi: 10.3390/molecules18089797 – volume: 25 start-page: 2132 year: 2016 ident: WOS:000389218500002 article-title: Effects of ligand binding on the stability of aldo-keto reductases: Implications for stabilizer or destabilizer chaperones publication-title: PROTEIN SCIENCE doi: 10.1002/pro.3036 – volume: 136 start-page: 6159 year: 2014 ident: WOS:000335369200003 article-title: Molecular Rotors As Conditionally Fluorescent Labels for Rapid Detection of Biomolecular Interactions publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja413031h – volume: 23 start-page: 2844 year: 2013 ident: WOS:000318750000002 article-title: Learning from our mistakes: The 'unknown knowns' in fragment screening publication-title: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS doi: 10.1016/j.bmcl.2013.03.028 – volume: 10 start-page: 1239 year: 2015 ident: WOS:000354907400011 article-title: Rapid, Specific, No-wash, Far-red Fluorogen Activation in Subcellular Compartments by Targeted Fluorogen Activating Proteins publication-title: ACS CHEMICAL BIOLOGY doi: 10.1021/cb500957k – volume: 70 start-page: 229 year: 1993 ident: WOS:A1993KT79500004 article-title: DRASTIC CHANGES IN THE FLUORESCENCE PROPERTIES OF NBD PROBES WITH THE POLARITY OF THE MEDIUM - INVOLVEMENT OF A TICT STATE publication-title: JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY – volume: 14 start-page: 1538 year: 2015 ident: WOS:000360458100001 article-title: Reviewing the relevance of fluorescence in biological systems publication-title: PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES doi: 10.1039/c5pp00122f – volume: 110 start-page: 2685 year: 2010 ident: WOS:000277811600005 article-title: Fluorescence Polarization/Anisotropy in Diagnostics and Imaging publication-title: CHEMICAL REVIEWS doi: 10.1021/cr900267p – volume: 6 start-page: 17 year: 2011 ident: WOS:000285552500003 article-title: Fluorescence polarization assays in small molecule screening publication-title: EXPERT OPINION ON DRUG DISCOVERY doi: 10.1517/17460441.2011.537322 – volume: 77 start-page: 521 year: 2008 ident: WOS:000257596800022 article-title: Glycosyltransferases: Structures, functions, and mechanisms publication-title: ANNUAL REVIEW OF BIOCHEMISTRY doi: 10.1146/annurev.biochem.76.061005.092322 – volume: 61 start-page: 1 year: 2010 ident: WOS:000278817900001 article-title: A review of mortality due to Clostridium difficile infection publication-title: JOURNAL OF INFECTION doi: 10.1016/j.jinf.2010.03.025 |
SSID | ssj0009631 |
Score | 2.3158937 |
Snippet | High‐throughput small‐molecule screening in drug discovery processes commonly rely on fluorescence‐based methods including fluorescent polarization and... High-throughput small-molecule screening in drug discovery processes commonly rely on fluorescence-based methods including fluorescent polarization and... High-throughput small molecule screening in drug discovery processes commonly rely on fluorescence-based methods including fluorescent polarization and... |
Source | Web of Science |
SourceID | pubmedcentral proquest pubmed webofscience crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 108 |
SubjectTerms | Antiretroviral drugs Binding Biochemistry & Molecular Biology Chemistry, Medicinal Clostridioides difficile - enzymology Drug Evaluation, Preclinical Energy transfer environment-sensitive fluorophores Enzyme Inhibitors - chemical synthesis Enzyme Inhibitors - chemistry Enzyme Inhibitors - pharmacology Fluorescence Fluorescent Dyes - chemical synthesis Fluorescent Dyes - chemistry Fluorescent Dyes - pharmacology Glycosyltransferase Glycosyltransferases - antagonists & inhibitors Glycosyltransferases - metabolism High-Throughput Nucleotide Sequencing high-throughput screening Instrumentation Life Sciences & Biomedicine Models, Molecular Nucleoside analogs nucleoside analogues Nucleosides Nucleosides - chemical synthesis Nucleosides - chemistry Nucleosides - pharmacology Pharmacology & Pharmacy Science & Technology Screening Substrates Uridine Virulence |
Title | Deploying Fluorescent Nucleoside Analogues for High‐Throughput Inhibitor Screening |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbic.201900671 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000500073500001 https://www.ncbi.nlm.nih.gov/pubmed/31709708 https://www.proquest.com/docview/2341426441 https://www.proquest.com/docview/2313657498 https://pubmed.ncbi.nlm.nih.gov/PMC6980326 |
Volume | 21 |
WOS | 000500073500001 |
WOSCitedRecordID | wos000500073500001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh0fIILchIFZzSxo-8jiVl1SLRA2yl3iLbsdUVJVvtJody4ifwG_klzDiPNjwEguPK411l9vPMZ3vyDSG7wtokz6sqjDOXh9IoG-aWu7DiQgoNKOC-nc-7k-ToVL49i89uvMXf6UOMB264Mny8xgWu9Hr_WjTU6AVKEEJCg4CL-x8mEhTPP3x_rR8F6PI7LonXnZyng2pjxPen06dZ6Seq-euKyTFLTYmtz0yze0QNz9QVpHzcaxu9Zz7_IPf4Pw99n9ztaSs96HD2gNyy9SbZOqhhy_7pir6kvpDUn9BvktvF0ERui8wPLXYUhvxIZxftctWJR9ETVFFeYqdQiqooeHy0pkCfKZadfPvydd51D7psG3pcny80hJ0V_WCwRgi-6iE5nb2ZF0dh38ghNECwWOgqljngxwK4QRo5DAJIE6LExULyyjKumKky7WKXVRAQmDZCqFhrZawEviQekY16WdsnhCpZ5TFPbOSklSw3mbDSqkTI1EWKMxeQcPgjS9OrnGOzjYuy02fmJbqwHF0YkFej_WWn7_Fby50BF2W_ztclIJp1nDIgL8Zh8DFeu6jaLlu0wVLCVOZZQB53MBp_CthblKcRjKQTgI0GqP49HakX514FPMmzCLh3QHZvQnGc6JV98B429hc4AWF_Y1b0LkNBhCYg3GPxD44pi9fHxfjp6b9M2iZ3OJ5jRCxk8Q7ZaFatfQZkr9HP_YL-Dmh9S9c |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcigXHi2PlAJGquCUNnac17EEVrvQ7gG2ErcocWx1RclW2-RQTvwEfiO_hBnnUcJDIDiuPN5VZsczn2cm3wDs-VqHSVKWbhCbxJUq126ihXFL4Uu_QCsQdpzP8TycnsjX74O-m5DehWn5IYaEG50M66_pgFNC-uCKNVQVS-IgxIiGHhcvQNdtkY5w0dsrBim0L3vnklTwFCLqeRs9cTDeP45LP4HNX_dMDnFqDG1tbJrcgqJ_qrYl5cN-Uxf76tMPhI__9di34WaHXNlha2p34JqutmD7sMJb-8dL9ozZXlKbpN-CzbSfI7cNi5eahgpjiGSTs2a1bvmj2JyIlFc0LJQRMQplkC4YImhGnSdfP39ZtAOEzpuazarTZYGeZ83eKWoTwq-6CyeTV4t06nazHFyFGIu7puSxQYjsIzyIPEN-gJCCF5rAl6LUXORclXFhAhOX6BN4oXw_D4oiV1oiZPLvwUa1qvQDYLksk0CE2jNSS56o2NdS56EvI-PlghsH3P6fzFRHdE7zNs6ylqJZZKTCbFChA88H-fOW4uO3kru9YWTdUb_I0Kh5CysdeDoso46p8pJXetWQDHUTRjKJHbjf2tHwUwjgvCTycCUaWdggQATg45VqeWqJwMMk9hB-O7D3vS0OGy25D5ViA1vDcYD_jVjaqYw4EWoHhDXGPygmS1_M0uHTzr9segKb08XxUXY0m795CDcEpTU87vJgFzbqdaMfIfari8f2dH8DDYJP9Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIgEXHi2PQAEjVXBKGzvO61hSVl0eKwRbqbcocWx1RcmutskBTvwEfiO_hBnn0YaHQHBcebyrzH6e-WxPvgHY8bUOk6Qs3SA2iStVrt1EC-OWwpd-gSgQtp3Pm1l4eCRfHgfHF97ib_UhhgM3Whk2XtMCX5Vm71w0VBULkiDEhIYBF_c_l2WIuZJo0btzASmEl91ySbrvFCLqZRs9sTeeP05LP3HNX5dMDmlqzGxtaprcgLx_qLYi5cNuUxe76vMPeo__89Q34XrHW9l-C7RbcElXm7C1X-Ge_eMn9pTZSlJ7RL8JV9O-i9wWzA80tRTGBMkmp81y3apHsRnJKC-pVSgjWRQ6PzpjyJ8Z1Z18-_J13rYPWjU1m1YniwLjzpq9V1QkhF91G44mL-bpodt1cnAVMizumpLHBgmyj-Qg8gxFAeIJXmgCX4pSc5FzVcaFCUxcYkTghfL9PCiKXGmJhMm_AxvVstL3gOWyTAIRas9ILXmiYl9LnYe-jIyXC24ccPs_MlOdzDl12zjNWoFmkZELs8GFDjwb7FetwMdvLbd7XGTdQj_LENK8JZUOPBmG0cd075JXetmQDdUSRjKJHbjbwmj4KaRvXhJ5OBKNADYYkPz3eKRanFgZ8DCJPSTfDuxchOIw0Ur70EVsYG9wHOB_Y5Z2LiNFhNoBYbH4B8dk6fNpOny6_y-THsOVtweT7PV09uoBXBN0puFxlwfbsFGvG_0QiV9dPLJr-zvY506k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deploying+Fluorescent+Nucleoside+Analogues+for+High%E2%80%90Throughput+Inhibitor+Screening&rft.jtitle=Chembiochem+%3A+a+European+journal+of+chemical+biology&rft.au=Seebald%2C+Leah&rft.au=Madec%2C+Ama%C3%ABl+G+E&rft.au=Imperiali%2C+Barbara&rft.date=2020-01-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1439-4227&rft.eissn=1439-7633&rft.volume=21&rft.issue=1-2&rft.spage=108&rft.epage=112&rft_id=info:doi/10.1002%2Fcbic.201900671&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4227&client=summon |