CT metal artifact reduction algorithms: Toward a framework for objective performance assessment
Purpose Although several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous, and reproducible method exists for assessing their performance. The lack of assessment methods poses a challenge to regulators, consumers, a...
        Saved in:
      
    
          | Published in | Medical Physics Vol. 47; no. 8; pp. 3344 - 3355 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Wiley
    
        01.08.2020
     John Wiley and Sons Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0094-2405 2473-4209 1522-8541 2473-4209  | 
| DOI | 10.1002/mp.14231 | 
Cover
| Abstract | Purpose
Although several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous, and reproducible method exists for assessing their performance. The lack of assessment methods poses a challenge to regulators, consumers, and industry. We explored a phantom‐based framework for assessing an important aspect of MAR performance: how applying MAR in the presence of metal affects model observer performance at a low‐contrast detectability (LCD) task This work is, to our knowledge, the first model observer–based framework for the evaluation of MAR algorithms in the published literature.
Methods
We designed a numerical head phantom with metal implants. In order to incorporate an element of randomness, the phantom included a rotatable inset with an inhomogeneous background. We generated simulated projection data for the phantom. We applied two variants of a simple MAR algorithm, sinogram inpainting, to the projection data, that we reconstructed using filtered backprojection. To assess how MAR affected observer performance, we examined the detectability of a signal at the center of a region of interest (ROI) by a channelized Hotelling observer (CHO). As a figure of merit, we used the area under the ROC curve (AUC).
Results
We used simulation to test our framework on two variants of the MAR technique of sinogram inpainting. We found that our method was able to resolve the difference in two different MAR algorithms’ effect on LCD task performance, as well as the difference in task performances when MAR was applied, vs not.
Conclusion
We laid out a phantom‐based framework for objective assessment of how MAR impacts low‐contrast detectability, that we tested on two MAR algorithms. Our results demonstrate the importance of testing MAR performance over a range of object and imaging parameters, since applying MAR does not always improve the quality of an image for a given diagnostic task. Our framework is an initial step toward developing a more comprehensive objective assessment method for MAR, which would require developing additional phantoms and methods specific to various clinical applications of MAR, and increasing study efficiency. | 
    
|---|---|
| AbstractList | Although several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous, and reproducible method exists for assessing their performance. The lack of assessment methods poses a challenge to regulators, consumers, and industry. We explored a phantom-based framework for assessing an important aspect of MAR performance: how applying MAR in the presence of metal affects model observer performance at a low-contrast detectability (LCD) task This work is, to our knowledge, the first model observer-based framework for the evaluation of MAR algorithms in the published literature.PURPOSEAlthough several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous, and reproducible method exists for assessing their performance. The lack of assessment methods poses a challenge to regulators, consumers, and industry. We explored a phantom-based framework for assessing an important aspect of MAR performance: how applying MAR in the presence of metal affects model observer performance at a low-contrast detectability (LCD) task This work is, to our knowledge, the first model observer-based framework for the evaluation of MAR algorithms in the published literature.We designed a numerical head phantom with metal implants. In order to incorporate an element of randomness, the phantom included a rotatable inset with an inhomogeneous background. We generated simulated projection data for the phantom. We applied two variants of a simple MAR algorithm, sinogram inpainting, to the projection data, that we reconstructed using filtered backprojection. To assess how MAR affected observer performance, we examined the detectability of a signal at the center of a region of interest (ROI) by a channelized Hotelling observer (CHO). As a figure of merit, we used the area under the ROC curve (AUC).METHODSWe designed a numerical head phantom with metal implants. In order to incorporate an element of randomness, the phantom included a rotatable inset with an inhomogeneous background. We generated simulated projection data for the phantom. We applied two variants of a simple MAR algorithm, sinogram inpainting, to the projection data, that we reconstructed using filtered backprojection. To assess how MAR affected observer performance, we examined the detectability of a signal at the center of a region of interest (ROI) by a channelized Hotelling observer (CHO). As a figure of merit, we used the area under the ROC curve (AUC).We used simulation to test our framework on two variants of the MAR technique of sinogram inpainting. We found that our method was able to resolve the difference in two different MAR algorithms' effect on LCD task performance, as well as the difference in task performances when MAR was applied, vs not.RESULTSWe used simulation to test our framework on two variants of the MAR technique of sinogram inpainting. We found that our method was able to resolve the difference in two different MAR algorithms' effect on LCD task performance, as well as the difference in task performances when MAR was applied, vs not.We laid out a phantom-based framework for objective assessment of how MAR impacts low-contrast detectability, that we tested on two MAR algorithms. Our results demonstrate the importance of testing MAR performance over a range of object and imaging parameters, since applying MAR does not always improve the quality of an image for a given diagnostic task. Our framework is an initial step toward developing a more comprehensive objective assessment method for MAR, which would require developing additional phantoms and methods specific to various clinical applications of MAR, and increasing study efficiency.CONCLUSIONWe laid out a phantom-based framework for objective assessment of how MAR impacts low-contrast detectability, that we tested on two MAR algorithms. Our results demonstrate the importance of testing MAR performance over a range of object and imaging parameters, since applying MAR does not always improve the quality of an image for a given diagnostic task. Our framework is an initial step toward developing a more comprehensive objective assessment method for MAR, which would require developing additional phantoms and methods specific to various clinical applications of MAR, and increasing study efficiency. Although several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous, and reproducible method exists for assessing their performance. The lack of assessment methods poses a challenge to regulators, consumers, and industry. We explored a phantom-based framework for assessing an important aspect of MAR performance: how applying MAR in the presence of metal affects model observer performance at a low-contrast detectability (LCD) task This work is, to our knowledge, the first model observer-based framework for the evaluation of MAR algorithms in the published literature. We designed a numerical head phantom with metal implants. In order to incorporate an element of randomness, the phantom included a rotatable inset with an inhomogeneous background. We generated simulated projection data for the phantom. We applied two variants of a simple MAR algorithm, sinogram inpainting, to the projection data, that we reconstructed using filtered backprojection. To assess how MAR affected observer performance, we examined the detectability of a signal at the center of a region of interest (ROI) by a channelized Hotelling observer (CHO). As a figure of merit, we used the area under the ROC curve (AUC). We used simulation to test our framework on two variants of the MAR technique of sinogram inpainting. We found that our method was able to resolve the difference in two different MAR algorithms' effect on LCD task performance, as well as the difference in task performances when MAR was applied, vs not. We laid out a phantom-based framework for objective assessment of how MAR impacts low-contrast detectability, that we tested on two MAR algorithms. Our results demonstrate the importance of testing MAR performance over a range of object and imaging parameters, since applying MAR does not always improve the quality of an image for a given diagnostic task. Our framework is an initial step toward developing a more comprehensive objective assessment method for MAR, which would require developing additional phantoms and methods specific to various clinical applications of MAR, and increasing study efficiency. Purpose Although several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous, and reproducible method exists for assessing their performance. The lack of assessment methods poses a challenge to regulators, consumers, and industry. We explored a phantom‐based framework for assessing an important aspect of MAR performance: how applying MAR in the presence of metal affects model observer performance at a low‐contrast detectability (LCD) task This work is, to our knowledge, the first model observer–based framework for the evaluation of MAR algorithms in the published literature. Methods We designed a numerical head phantom with metal implants. In order to incorporate an element of randomness, the phantom included a rotatable inset with an inhomogeneous background. We generated simulated projection data for the phantom. We applied two variants of a simple MAR algorithm, sinogram inpainting, to the projection data, that we reconstructed using filtered backprojection. To assess how MAR affected observer performance, we examined the detectability of a signal at the center of a region of interest (ROI) by a channelized Hotelling observer (CHO). As a figure of merit, we used the area under the ROC curve (AUC). Results We used simulation to test our framework on two variants of the MAR technique of sinogram inpainting. We found that our method was able to resolve the difference in two different MAR algorithms’ effect on LCD task performance, as well as the difference in task performances when MAR was applied, vs not. Conclusion We laid out a phantom‐based framework for objective assessment of how MAR impacts low‐contrast detectability, that we tested on two MAR algorithms. Our results demonstrate the importance of testing MAR performance over a range of object and imaging parameters, since applying MAR does not always improve the quality of an image for a given diagnostic task. Our framework is an initial step toward developing a more comprehensive objective assessment method for MAR, which would require developing additional phantoms and methods specific to various clinical applications of MAR, and increasing study efficiency.  | 
    
| Author | M. Leifer L. Jiang Kyle J. Myers J. Y. Vaishnav Rongping Zeng Bahaa Ghammraoui  | 
    
| AuthorAffiliation | 3 Canon Medical Systems, USA, Inc. 2441 Michelle Drive Tustin CA 92780 USA 2 Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories Center for Devices and Radiological Health United States Food & Drug Administration 10903 New Hampshire Ave. Silver Spring MD 20993 USA 1 Diagnostic X‐Ray Systems Branch Office of In Vitro Diagnostic Devices and Radiological Health, Center for Devices and Radiological Health United States Food & Drug Administration 10903 New Hampshire Ave. Silver Spring MD 20993 USA  | 
    
| AuthorAffiliation_xml | – name: 2 Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories Center for Devices and Radiological Health United States Food & Drug Administration 10903 New Hampshire Ave. Silver Spring MD 20993 USA – name: 1 Diagnostic X‐Ray Systems Branch Office of In Vitro Diagnostic Devices and Radiological Health, Center for Devices and Radiological Health United States Food & Drug Administration 10903 New Hampshire Ave. Silver Spring MD 20993 USA – name: 3 Canon Medical Systems, USA, Inc. 2441 Michelle Drive Tustin CA 92780 USA  | 
    
| Author_xml | – sequence: 1 givenname: J. Y. surname: Vaishnav fullname: Vaishnav, J. Y. email: jvaishnav@us.medical.canon organization: Canon Medical Systems, USA, Inc – sequence: 2 givenname: B. surname: Ghammraoui fullname: Ghammraoui, B. organization: United States Food & Drug Administration – sequence: 3 givenname: M. surname: Leifer fullname: Leifer, M. organization: United States Food & Drug Administration – sequence: 4 givenname: R. surname: Zeng fullname: Zeng, R. organization: United States Food & Drug Administration – sequence: 5 givenname: L. surname: Jiang fullname: Jiang, L. organization: United States Food & Drug Administration – sequence: 6 givenname: K. J. surname: Myers fullname: Myers, K. J. organization: United States Food & Drug Administration  | 
    
| BackLink | https://cir.nii.ac.jp/crid/1873680965952411776$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/32406534$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNp9kU1v1DAQhi1URLelEr8A-cCBHrLY8VfMoRJa8SUVwWE5WxPHaQ1xHOxsV_vv8bItBQRcbGnmmXdevXOCjsY4OoSeULKkhNQvwrSkvGb0AVrUXLGK10QfoQUhmlc1J-IYneXsWyIarpkk6hE6ZqUuBeMLZFZrHNwMA4Y0-x7sjJPrNnb2ccQwXMXk5-uQX-J13ELqMOA-QXDbmL7iPiYc2y-uwDcOTy6VQoDROgw5u5yDG-fH6GEPQ3Znt_8p-vzm9Xr1rrr8-Pb96tVlZQURtOqYULquO005s8TJXvG-I7JplFJNL7rWAVDdEqq1a0XhuoaAEK2UQBlrLDtF5wfdzTjBbgvDYKbkA6SdocTsczJhMj9yKuzFgZ02bXCdLTYT3PMRvPm9M_prcxVvjOJaMr4XeH4rkOK3jcuzCT5bNwwwurjJpqTLCFNa8II-_XXXzyV3F7jXsinmnFz_P9_LP1DrZ9hfqrj0w98GqsPA1g9u909h8-HTHf_swI_eF-39SxvFZEO0FFrUnFKlJPsOWDO_WQ | 
    
| CitedBy_id | crossref_primary_10_1088_1361_6560_ad9541 crossref_primary_10_3390_medicina60122040 crossref_primary_10_1186_s42492_021_00083_z crossref_primary_10_1007_s12194_024_00869_9 crossref_primary_10_1016_j_ejmp_2024_104848 crossref_primary_10_1186_s41747_023_00354_9 crossref_primary_10_1111_clr_14381 crossref_primary_10_1016_j_ejrad_2020_109357 crossref_primary_10_1093_jrr_rrac051  | 
    
| Cites_doi | 10.1002/mp.13115 10.1097/00004728-197902000-00009 10.1155/2012/786281 10.2214/AJR.15.15850 10.1002/jmri.20144 10.1118/1.4824055 10.1118/1.1677252 10.1118/1.4881148 10.1118/1.2745920 10.1117/1.JMI.1.3.031001 10.1118/1.3484090 10.4018/IJRSDA.2015070106 10.1148/radiol.13122089 10.1148/radiol.11101782 10.1364/JOSAA.18.000473 10.1118/1.4762814 10.1118/1.1915015 10.1109/TNS.2013.2275919 10.1109/23.856534 10.1007/s00330-012-2501-7 10.1109/23.775600 10.3348/kjr.2017.18.3.526 10.1007/s00256-013-1802-5 10.1118/1.598805 10.1001/jamanetworkopen.2018.5474 10.1109/42.959297 10.1148/radiology.164.2.3602406 10.1056/NEJMra1512592 10.1118/1.4905106 10.4103/2152-7806.84769 10.1117/12.18985 10.1118/1.595032 10.1056/NEJMra072149 10.1109/TMI.2014.2360496 10.1118/1.4749931 10.1118/1.3533711 10.1109/42.897816 10.1109/ACCESS.2016.2608621 10.1118/1.2218062 10.3174/ajnr.A1883 10.1007/s00256-015-2155-z 10.1097/00005373-200010000-00017 10.1109/TMI.2008.929103 10.1088/0031-9155/60/3/1047 10.2214/AJR.13.10980 10.1097/01.rli.0000086495.96457.54 10.1118/1.3276777 10.1109/ICASSP.2002.5745362 10.2106/JBJS.N.01141 10.1177/0284185117751278  | 
    
| ContentType | Journal Article | 
    
| Copyright | Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine. | 
    
| Copyright_xml | – notice: Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine. | 
    
| DBID | RYH 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1002/mp.14231 | 
    
| DatabaseName | CiNii Complete Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Physics  | 
    
| DocumentTitleAlternate | CT MAR: Objective performance assessment | 
    
| EISSN | 2473-4209 | 
    
| EndPage | 3355 | 
    
| ExternalDocumentID | 10.1002/mp.14231 PMC7496341 32406534 10_1002_mp_14231 MP14231  | 
    
| Genre | article Journal Article  | 
    
| GroupedDBID | --- --Z -DZ 0R~ 1OB 1OC 29M 33P 36B 4.4 53G 5GY 5RE AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABEFU ABFTF ABJNI ABLJU ABQWH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADMLS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFWVQ AGHNM AGYGG AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EMB EMOBN F5P HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PHY RNS ROL RYH SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR ZVN ZZTAW .GJ 24P 2WC 3O- 5VS ABDPE ABTAH EJD HDBZQ PALCI RJQFR SAMSI XJT ZGI ZXP ZY4 AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY AIQQE CITATION LH4 CGR CUY CVF ECM EIF NPM 7X8 5PM ABUFD ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c5051-d357922d9143c0e6f74fd06887778f5dbeaa19b0199eb52d9d80a55b66a1338c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0094-2405 2473-4209 1522-8541  | 
    
| IngestDate | Sun Oct 26 04:10:40 EDT 2025 Tue Sep 30 16:48:24 EDT 2025 Fri Sep 05 11:46:38 EDT 2025 Wed Feb 19 02:29:42 EST 2025 Wed Oct 01 04:33:04 EDT 2025 Thu Apr 24 22:56:03 EDT 2025 Wed Jan 22 17:00:11 EST 2025 Fri Jun 27 00:10:54 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Keywords | computed tomography performance evaluation metal artifact reduction validation  | 
    
| Language | English | 
    
| License | Attribution Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c5051-d357922d9143c0e6f74fd06887778f5dbeaa19b0199eb52d9d80a55b66a1338c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://aapm.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.14231 | 
    
| PMID | 32406534 | 
    
| PQID | 2403037954 | 
    
| PQPubID | 23479 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_mp_14231 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7496341 proquest_miscellaneous_2403037954 pubmed_primary_32406534 crossref_primary_10_1002_mp_14231 crossref_citationtrail_10_1002_mp_14231 wiley_primary_10_1002_mp_14231_MP14231 nii_cinii_1873680965952411776  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | August 2020 | 
    
| PublicationDateYYYYMMDD | 2020-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2020 text: August 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Hoboken  | 
    
| PublicationTitle | Medical Physics | 
    
| PublicationTitleAlternate | Med Phys | 
    
| PublicationYear | 2020 | 
    
| Publisher | Wiley John Wiley and Sons Inc  | 
    
| Publisher_xml | – name: Wiley – name: John Wiley and Sons Inc  | 
    
| References | 2015; 34 2004; 20 2012; 2012 2000; 49 2000; 47 2006; 33 1999; 46 2018; 45 2007; 34 2014; 1 2000; 19 1990 2017b 2018; 1 2015; 42 2015; 44 2013; 60 1979; 3 2005; 32 2001; 18 2012; 22 2014; 203 2015; 2 2011; 259 1987; 164 2010; 31 2010; 37 2011; 2 2011 2016; 207 2015; 97 2013; 40 1999; 26 2008 2013; 268 1996 1981; 8 2003; 38 2012; 39 2004 2002 2014; 41 2011; 38 2017; 376 2014; 43 2001; 20 2009; 28 1999 2016; 4 2007; 357 2015; 60 2016 2015 2017; 18 2014 2013 2018; 59 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 MATLAB (e_1_2_8_58_1) 2017 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Chen Y (e_1_2_8_30_1) 2012; 2012 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 Wagner R (e_1_2_8_62_1) 2008 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Fukunaga K. (e_1_2_8_65_1) 2013 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 Bushberg JT (e_1_2_8_2_1) 2002 e_1_2_8_50_1  | 
    
| References_xml | – year: 2011 – volume: 18 start-page: 473 year: 2001 end-page: 488 article-title: Human and model‐observer performance in ramp‐spectrum noise: effects of regularization and object variability publication-title: J Opt Soc Am A – volume: 1 start-page: e185474 year: 2018 end-page: e185474 article-title: Evaluation of digital breast tomosynthesis as replacement of full‐field digital mammography using an in silico imaging trial: digital breast tomosynthesis as replacement of full‐field digital mammography publication-title: JAMA Netw Open – volume: 8 start-page: 799 year: 1981 end-page: 807 article-title: An algorithm for the reduction of metal clip artifacts in CT reconstructions publication-title: Med Phys – volume: 41 start-page: 071904 year: 2014 article-title: Objective assessment of image quality and dose reduction in CT iterative reconstruction publication-title: Med Phys – volume: 97 start-page: 1386 year: 2015 article-title: Prevalence of total hip and knee replacement in the United States publication-title: J Bone Joint Surg – volume: 2012 start-page: 1 year: 2012 end-page: 18 article-title: CT metal artifact reduction method based on improved image segmentation and sinogram in‐painting publication-title: Math Probl Eng – volume: 60 start-page: 3318 year: 2013 end-page: 3332 article-title: 3D prior image constrained projection completion for X‐ray CT metal artifact reduction publication-title: IEEE Trans Nucl Sci – volume: 39 start-page: 5857 year: 2012 end-page: 5868 article-title: Segmentation of artifacts and anatomy in CT metal artifact reduction publication-title: Med Phys – volume: 49 start-page: 689 year: 2000 end-page: 695 article-title: Helical computed tomographic scan in the evaluation of mediastinal gunshot wounds publication-title: J Trauma Acute Care Surg – volume: 207 start-page: 378 year: 2016 end-page: 385 article-title: Imaging of arthroplasties: improved image quality and lesion detection with iterative metal artifact reduction, a new CT metal artifact reduction technique publication-title: Am J Roentgenol – year: 2017b – volume: 59 start-page: 1110 year: 2018 end-page: 1118 article-title: Metal artifact reduction in CT, a phantom study: subjective and objective evaluation of four commercial metal artifact reduction algorithms when used on three different orthopedic metal implants publication-title: Acta Radiol – volume: 60 start-page: 1047 year: 2015 article-title: An evaluation of three commercially available metal artifact reduction methods for CT imaging publication-title: Phys Med Biol – volume: 2 start-page: 122 year: 2011 article-title: Stray bullet: an accidental killer during riot control publication-title: Surg Neurol Int – volume: 268 start-page: 237 year: 2013 end-page: 244 article-title: Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions publication-title: Radiology – year: 2014 – volume: 38 start-page: 769 year: 2003 end-page: 775 article-title: A new algorithm for metal artifact reduction in computed tomography: in vitro and in vivo evaluation after total hip replacement publication-title: Invest Radiol – volume: 38 start-page: 701 year: 2011 end-page: 711 article-title: Metal artifact reduction in x‐ray computed tomography (CT) by constrained optimization publication-title: Med Phys – volume: 164 start-page: 576 year: 1987 end-page: 577 article-title: Reduction of CT artifacts caused by metallic implants publication-title: Radiology – year: 2008 – year: 2004 – volume: 39 start-page: 7507 year: 2012 end-page: 7517 article-title: Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy publication-title: Med Phys – volume: 376 start-page: 1350 year: 2017 end-page: 1357 article-title: viewpoint on unique considerations for medical‐device clinical trials publication-title: N Engl J Med – volume: 259 start-page: 894 year: 2011 end-page: 902 article-title: Evaluation of two iterative techniques for reducing metal artifacts in computed tomography publication-title: Radiology – volume: 46 start-page: 691 year: 1999 end-page: 696 article-title: Metal streak artifacts in X‐ray computed tomography: a simulation study publication-title: IEEE Trans Nucl Sci – volume: 18 start-page: 526 year: 2017 end-page: 535 article-title: Value and clinical application of orthopedic metal artifact reduction algorithm in CT scans after orthopedic metal implantation publication-title: Kor J Radiol – volume: 34 start-page: 453 year: 2015 end-page: 464 article-title: Exact confidence intervals for channelized Hotelling observer performance in image quality studies publication-title: IEEE Trans Med Imaging – year: 2015 – volume: 37 start-page: 620 year: 2010 end-page: 628 article-title: Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT publication-title: Med Phys – volume: 22 start-page: 2357 year: 2012 end-page: 2364 article-title: Metallic artefact reduction with monoenergetic dual‐energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels publication-title: Eur Radiol – volume: 32 start-page: 1676 year: 2005 end-page: 1683 article-title: Penalized‐likelihood sinogram smoothing for low‐dose CT publication-title: Med Phys – volume: 31 start-page: 634 year: 2010 end-page: 639 article-title: Metal artifact reduction for clipping and coiling in interventional C‐arm CT publication-title: Am J Neuroradiol – volume: 2 start-page: 92 year: 2015 end-page: 114 article-title: Comprehensive survey on metal artifact reduction methods in computed tomography images publication-title: Int J Rough Sets Data Anal – volume: 40 start-page: 111908 year: 2013 article-title: CT image assessment by low contrast signal detectability evaluation with unknown signal location publication-title: Med Phys – volume: 3 start-page: 52 year: 1979 end-page: 57 article-title: Computed tomography reconstruction from hollow projections: an application to in vivo evaluation of artificial hip joints publication-title: J Comput Assist Tomogr – volume: 44 start-page: 1287 year: 2015 end-page: 1294 article-title: Value of monoenergetic dual‐energy CT (DECT) for artefact reduction from metallic orthopedic implants in post‐mortem studies publication-title: Skeletal Radiol – volume: 20 start-page: 487 year: 2004 end-page: 495 article-title: Quantitative evaluation of metal artifact reduction techniques publication-title: J Magn Reson Imaging – volume: 4 start-page: 5826 year: 2016 end-page: 5849 article-title: Metal artifact reduction in CT: where are we after four decades publication-title: IEEE Access – volume: 42 start-page: 1023 year: 2015 end-page: 1036 article-title: Dual energy CT: how well can pseudo‐monochromatic imaging reduce metal artifacts publication-title: Med Phys – volume: 34 start-page: 3034 year: 2007 end-page: 3044 article-title: Hardware assessment using the multi‐module, multi‐resolution system (M3R): a signal‐detection study publication-title: Med Phys – year: 2016 – volume: 19 start-page: 1238 year: 2000 end-page: 1247 article-title: X‐ray CT metal artifact reduction using wavelets: an application for imaging total hip prostheses publication-title: IEEE Trans Med Imaging – start-page: 881 year: 1996 end-page: 884 – volume: 26 start-page: 2654 year: 1999 end-page: 2668 article-title: Classifier design for computer‐aided diagnosis: effects of finite sample size on the mean performance of classical and neural network classifiers publication-title: Med Phys – volume: 45 start-page: 4329 year: 2018 end-page: 4344 article-title: Evaluation of two commercial CT metal artifact reduction algorithms for use in proton radiotherapy treatment planning in the head and neck area publication-title: Med Phys – volume: 28 start-page: 250 year: 2009 end-page: 260 article-title: Suppression of metal artifacts in CT using a reconstruction procedure that combines MAP and projection completion publication-title: IEEE Trans Med Imaging – volume: 33 start-page: 2852 year: 2006 article-title: Metal artifact reduction in CT using tissue‐class modeling and adaptive prefiltering publication-title: Med Phys – volume: 47 start-page: 977 year: 2000 end-page: 981 article-title: Reduction of metal streak artifacts in x‐ray computed tomography using a transmission maximum a posteriori algorithm publication-title: IEEE Trans Nucl Sci – start-page: 642 year: 1990 end-page: 651 – volume: 43 start-page: 567 year: 2014 end-page: 575 article-title: Peering through the glare: using dual‐energy CT to overcome the problem of metal artefacts in bone radiology publication-title: Skeletal Radiol – start-page: 129 141 year: 2008 – year: 2002 – volume: 203 start-page: 788 year: 2014 end-page: 795 article-title: Metal artifact reduction software used with abdominopelvic dual‐energy CT of patients with metal hip prostheses: assessment of image quality and clinical feasibility publication-title: Am J Roentgenol – volume: 357 start-page: 2277 year: 2007 end-page: 2284 article-title: Computed tomography ‐ an increasing source of radiation exposure publication-title: N Engl J Med – volume: 20 start-page: 999 year: 2001 end-page: 1008 article-title: An iterative maximum‐likelihood polychromatic algorithm for CT publication-title: IEEE Trans Med Imaging – volume: 1 start-page: 031001 year: 2014 article-title: Special Section guest editorial: pioneers in medical imaging: honoring the memory of Robert F. Wagner publication-title: J Med Imaging – volume: 37 start-page: 5482 year: 2010 end-page: 5493 article-title: Normalized metal artifact reduction (NMAR) in computed tomography publication-title: Med Phys – year: 2013 – year: 1999 – ident: e_1_2_8_6_1 doi: 10.1002/mp.13115 – ident: e_1_2_8_19_1 doi: 10.1097/00004728-197902000-00009 – volume: 2012 start-page: 1 year: 2012 ident: e_1_2_8_30_1 article-title: CT metal artifact reduction method based on improved image segmentation and sinogram in‐painting publication-title: Math Probl Eng doi: 10.1155/2012/786281 – ident: e_1_2_8_37_1 – volume-title: The Essential Physics of Medical Imaging year: 2002 ident: e_1_2_8_2_1 – ident: e_1_2_8_14_1 – ident: e_1_2_8_48_1 doi: 10.2214/AJR.15.15850 – ident: e_1_2_8_41_1 doi: 10.1002/jmri.20144 – ident: e_1_2_8_67_1 doi: 10.1118/1.4824055 – ident: e_1_2_8_49_1 doi: 10.1118/1.1677252 – ident: e_1_2_8_54_1 – ident: e_1_2_8_59_1 doi: 10.1118/1.4881148 – ident: e_1_2_8_52_1 doi: 10.1118/1.2745920 – ident: e_1_2_8_63_1 doi: 10.1117/1.JMI.1.3.031001 – ident: e_1_2_8_24_1 doi: 10.1118/1.3484090 – ident: e_1_2_8_26_1 doi: 10.4018/IJRSDA.2015070106 – ident: e_1_2_8_29_1 doi: 10.1148/radiol.13122089 – ident: e_1_2_8_38_1 doi: 10.1148/radiol.11101782 – ident: e_1_2_8_60_1 doi: 10.1364/JOSAA.18.000473 – ident: e_1_2_8_36_1 – ident: e_1_2_8_40_1 – ident: e_1_2_8_44_1 – ident: e_1_2_8_13_1 – ident: e_1_2_8_39_1 doi: 10.1118/1.4762814 – ident: e_1_2_8_10_1 – ident: e_1_2_8_66_1 – ident: e_1_2_8_55_1 doi: 10.1118/1.1915015 – ident: e_1_2_8_56_1 doi: 10.1109/TNS.2013.2275919 – ident: e_1_2_8_4_1 doi: 10.1109/23.856534 – ident: e_1_2_8_31_1 doi: 10.1007/s00330-012-2501-7 – ident: e_1_2_8_3_1 doi: 10.1109/23.775600 – ident: e_1_2_8_47_1 doi: 10.3348/kjr.2017.18.3.526 – ident: e_1_2_8_12_1 – ident: e_1_2_8_32_1 doi: 10.1007/s00256-013-1802-5 – ident: e_1_2_8_53_1 – ident: e_1_2_8_64_1 doi: 10.1118/1.598805 – ident: e_1_2_8_70_1 doi: 10.1001/jamanetworkopen.2018.5474 – ident: e_1_2_8_43_1 doi: 10.1109/42.959297 – ident: e_1_2_8_16_1 doi: 10.1148/radiology.164.2.3602406 – ident: e_1_2_8_69_1 doi: 10.1056/NEJMra1512592 – ident: e_1_2_8_11_1 – ident: e_1_2_8_35_1 doi: 10.1118/1.4905106 – ident: e_1_2_8_50_1 doi: 10.4103/2152-7806.84769 – ident: e_1_2_8_20_1 doi: 10.1117/12.18985 – ident: e_1_2_8_15_1 doi: 10.1118/1.595032 – ident: e_1_2_8_9_1 doi: 10.1056/NEJMra072149 – ident: e_1_2_8_61_1 doi: 10.1109/TMI.2014.2360496 – volume-title: Release year: 2017 ident: e_1_2_8_58_1 – ident: e_1_2_8_17_1 doi: 10.1118/1.4749931 – ident: e_1_2_8_28_1 doi: 10.1118/1.3533711 – ident: e_1_2_8_22_1 doi: 10.1109/42.897816 – ident: e_1_2_8_7_1 – ident: e_1_2_8_25_1 doi: 10.1109/ACCESS.2016.2608621 – ident: e_1_2_8_42_1 doi: 10.1118/1.2218062 – volume-title: Introduction to Statistical Pattern Recognition year: 2013 ident: e_1_2_8_65_1 – ident: e_1_2_8_23_1 doi: 10.3174/ajnr.A1883 – ident: e_1_2_8_33_1 doi: 10.1007/s00256-015-2155-z – ident: e_1_2_8_51_1 doi: 10.1097/00005373-200010000-00017 – ident: e_1_2_8_27_1 doi: 10.1109/TMI.2008.929103 – ident: e_1_2_8_5_1 doi: 10.1088/0031-9155/60/3/1047 – ident: e_1_2_8_57_1 – ident: e_1_2_8_34_1 doi: 10.2214/AJR.13.10980 – start-page: 129 volume-title: Advances in Medical Physics 2008 year: 2008 ident: e_1_2_8_62_1 – ident: e_1_2_8_21_1 doi: 10.1097/01.rli.0000086495.96457.54 – ident: e_1_2_8_18_1 doi: 10.1118/1.3276777 – ident: e_1_2_8_45_1 doi: 10.1109/ICASSP.2002.5745362 – ident: e_1_2_8_8_1 doi: 10.2106/JBJS.N.01141 – ident: e_1_2_8_68_1 – ident: e_1_2_8_46_1 doi: 10.1177/0284185117751278  | 
    
| SSID | ssib058493607 ssib004865916 ssib002399406 ssj0006350  | 
    
| Score | 2.3797007 | 
    
| Snippet | Purpose
Although several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous,... Although several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous, and...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley nii  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 3344 | 
    
| SubjectTerms | Algorithms computed tomography DIAGNOSTIC IMAGING (IONIZING AND NON‐IONIZING) metal artifact reduction Metals performance evaluation Phantoms, Imaging Tomography, X-Ray Computed validation  | 
    
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZgUYFLRWmBhYLcqiqniDz8SLhVqCuEBOKwSNwi27HLot1stA8h_j0zzgOtClUvycETx8q8viQznwn5gXHfSKScLQoRQMDTQeYiHQijHONMgRl4ts8bcXnHru75fVNVib0wNT9E98ENPcPHa3Rwpednr6Shkwq8PMYW6o0IYAxad8xuuygMibRuP4F1QNbiLfFsGJ-1V66kovVyNHoLZf5dLLm1LCv1_KTG41VA6zPSYId8bKAk_VXr_hNZs-Uu2bxufpbvkg--utPMP5P8YkgnFmA2RUPBXgY6Q8pWVApV4z_T2WjxMJmf06EvoqWKurZmiwKopVP9WMdFWr32GVDVkXp-IXeD38OLy6DZWSEwgHiioEi4zOK4yAAtmdAKJ5krcPsZKWXqeKGtUlGmAf5lVnOQK9JQca6FUPhOa5I90iunpT0gFPCf48zaVCnDhM1S7VhsAJhBEgiNS_rktH3IuWlox3H3i3FeEybH-aTKvTr65FsnWdVUG2_IHIOeYCI8RqlMRBp6SkQAIpGUAuZoNZiDn-DPD1Xa6XKeI-9gmMiMsz7ZrzXa3QVJCQVPYESu6LoTQA7u1ZFy9OC5uCWDCMZgXd87q_jH4n96c3lXIL--9efD_xU8Itsxvv_7gsSvpLeYLe0xgKSFPvHe8ALZVgoW priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | CT metal artifact reduction algorithms: Toward a framework for objective performance assessment | 
    
| URI | https://cir.nii.ac.jp/crid/1873680965952411776 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.14231 https://www.ncbi.nlm.nih.gov/pubmed/32406534 https://www.proquest.com/docview/2403037954 https://pubmed.ncbi.nlm.nih.gov/PMC7496341 https://aapm.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.14231  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 47 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2473-4209 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0006350 issn: 0094-2405 databaseCode: ADMLS dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFH6aacVyYRm2AlMZhOCUksVLwq0qjEaIjirRSsMpchybKbRp1EUIfj3PzgKFASFxSQ55chzne8-f7efPAM9s3FfCSs7mOfcw4GVeYoLM40oayqhEGDi1zzN-OqNvz9n5AYyavTBSlstBJRLRzrpZ93BB23p5mZsq2NdL_OHLZYnuHtq91F3OkJB3oDs7mww_VPqT1K4fMKeaisOumLmzLEMqIqyYnzRytD8Vs9dBHRbz-WXc8_cUymu7opRfv8jFYp_mun7q5CbkzRdW6SmfB7ttNlDffhF__M8muAU3ah5LhhXwbsOBLo7g6rheqT-CKy61VG3uQDqakqVGjk8sSu1GCrK2erEWEUQuPq7W8-3FcvOKTF0GL5HENAljBBk1WWWfqqBMyh-bHIhsFUXvwuzkzXR06tXHOngK6Vbg5RETSRjmCVI15WtuBDW5PftGCBEblmdayiDJkHsmOmNol8e-ZCzjXNoBtYruQadYFfoBECSfhlGtYykV5TqJM0NDhawQeyBfmagHL5p_mapa89wevbFIK7XmMF2WqWu5HjxpLctK5-MSm2OEAxZkr0EsIh77To8RWVAgBMcyGqCk6KR25UUWerXbpFb00I9EwmgP7lfAad9iFRE5i_CJ2INUa2AFwPefFPMLJwQuKIZPivV62oLvL5V_7lD0R4N0PHH3h_9S2iO4HtqJB5cJ-Rg62_VOHyM722Z9OAzppA_d4evxu_f92he_AwKMNl8 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKKygXVAqFBQoGIThFzcOPBE5V1WqBbtXDVurNsh273Wo3G-1DiH_PjLNJtWqLuCSHTBwr45n5bM98JuQz-n0rkXK2LEUEDs9EhU9MJKz2jDMNwyCwfZ6J_gX7eckvN8j3tham4YfoFtzQMoK_RgPHBemDW9bQSQ1mnmIN9RYTicCZV8rOOzcMkbSpP4GOQNjiLfNsnB60b67FokfVaHQfzLybLbm9rGr957cej9cRbQhJJzvk2QpL0sNG-c_Jhqt2yZPBard8lzwO6Z12_oKooyGdOMDZFEcKFjPQGXK2olaoHl9NZ6PF9WT-jQ5DFi3V1LdJWxRQLZ2am8Yx0vq20IDqjtXzJbk4OR4e9aPV0QqRBciTRGXGZZGmZQFwycZOeMl8iefPSClzz0vjtE4KA_ivcIaDXJnHmnMjhMZJrc32yGY1rdxrQgEAes6cy7W2TLgiN56lFpAZRIHY-qxHvrY_WdkV7zgefzFWDWNyqia1CurokY-dZN1wbdwjsw96gobwmuQyE3kcOBEBiSRSCmij1aACQ8HdD1256XKukHgwzmTBWY-8ajTafQVZCQXP4Ilc03UngCTc60-q0XUg45YMXBiDfn3qRsU_Ov8lDJcHBdTgPNzf_K_gB7LdHw5O1emPs19vydMUFwNCduI7srmYLd0-IKaFeR8s4y804g2C | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKKwoXVAotWygYhOAUNQ8_EjihllV5tNrDVurNsh27XbSbjfYhxL_vjLNJtWpBXJKDJ46V8cx8sWc-E_Ie_b6VSDlbliICh2eiwicmElZ7xpmGaRDYPs_F6QX7fskvN8jntham4YfoFtzQMoK_RgN3demPbllDJzWYeYo11FuMQyBEWmc26NwwRNKm_gQGAmGLt8yzcXrUPrkWix5Uo9F9MPNutuSjZVXrP7_1eLyOaENI6u-QJyssSb80yn9KNly1S7bPVrvlu-RhSO-082dEHQ_pxAHOpjhTsJiBzpCzFbVC9fhqOhstrifzT3QYsmippr5N2qKAaunU_GocI61vCw2o7lg9n5OL_tfh8Wm0OlohsgB5kqjMuCzStCwALtnYCS-ZL_H8GSll7nlpnNZJYQD_Fc5wkCvzWHNuhND4U2uzPbJZTSv3glAAgJ4z53KtLROuyI1nqQVkBlEgtj7rkY_tR1Z2xTuOx1-MVcOYnKpJrYI6euRtJ1k3XBv3yByCnqAjvCa5zEQeB05EQCKJlAL6aDWowFBw90NXbrqcKyQejDNZcNYj-41Gu7cgK6HgGbTINV13AkjCvd5Sja4DGbdk4MIYjOtdNyv-MfgPYbr8VUCdDcL94H8F35DtwUlf_fx2_uMleZziWkBITnxFNhezpTsEwLQwr4Nh3ADd4w0R | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVlAuPAqFBYoMQnDKkocfCbdqRVUhtephVyqnyHbsdmGTjfYhBL-eGecBCwUhcUkOGTmO8834sz3-TMgrjPtGouRsUYgAAp4OMhfpQBjlGGcKYODVPs_EyZR9uOAXO2Tc7YVRqi5HjUhEP-uG7uGDNnp5Xbgm2LdL_PHbsgZ3j3Ev9a7gQMgHZHd6dn70sdGfZLh-wL1qKgy7Uu7PsoyZTKBiYdbJ0f5UzFYHdaOaza7jnr-nUO5tqlp9_aLm822a6_up47uk6L6wSU_5PNqs9ch8-0X88T-b4B650_JYetQA7z7ZsdU-uXXartTvk5s-tdSsHpB8PKGlBY5PEaW4kYIuUS8WEUHV_HKxnK2vytU7OvEZvFRR1yWMUWDUdKE_NUGZ1j82OVDVK4o-JNPj95PxSdAe6xAYoFtRUCRcZnFcZEDVTGiFk8wVePaNlDJ1vNBWqSjTwD0zqznYFWmoONdCKBxQm-SADKpFZR8TCuTTcWZtqpRhwmapdiw2wAqhBwqNS4bkTfcvc9NqnuPRG_O8UWuO87LOfcsNyYvesm50Pq6xOQQ4QEF4jVKZiDT0eozAgiIpBZTRASUHJ8WVF1XZxWaVo-hhmMiMsyF51ACnfwsqIgqewBO5BaneAAXAt59UsysvBC4ZhE8G9XrZg-8vlX_tUfRHg_z03N-f_EtpT8ntGCcefCbkMzJYLzf2ENjZWj9vve87IVQz9A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CT+metal+artifact+reduction+algorithms%3A+Toward+a+framework+for+objective+performance+assessment&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Vaishnav%2C+J+Y&rft.au=Ghammraoui%2C+B&rft.au=Leifer%2C+M&rft.au=Zeng%2C+R&rft.date=2020-08-01&rft.issn=2473-4209&rft.eissn=2473-4209&rft.volume=47&rft.issue=8&rft.spage=3344&rft_id=info:doi/10.1002%2Fmp.14231&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |