CT metal artifact reduction algorithms: Toward a framework for objective performance assessment

Purpose Although several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous, and reproducible method exists for assessing their performance. The lack of assessment methods poses a challenge to regulators, consumers, a...

Full description

Saved in:
Bibliographic Details
Published inMedical Physics Vol. 47; no. 8; pp. 3344 - 3355
Main Authors Vaishnav, J. Y., Ghammraoui, B., Leifer, M., Zeng, R., Jiang, L., Myers, K. J.
Format Journal Article
LanguageEnglish
Published United States Wiley 01.08.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
1522-8541
2473-4209
DOI10.1002/mp.14231

Cover

Abstract Purpose Although several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous, and reproducible method exists for assessing their performance. The lack of assessment methods poses a challenge to regulators, consumers, and industry. We explored a phantom‐based framework for assessing an important aspect of MAR performance: how applying MAR in the presence of metal affects model observer performance at a low‐contrast detectability (LCD) task This work is, to our knowledge, the first model observer–based framework for the evaluation of MAR algorithms in the published literature. Methods We designed a numerical head phantom with metal implants. In order to incorporate an element of randomness, the phantom included a rotatable inset with an inhomogeneous background. We generated simulated projection data for the phantom. We applied two variants of a simple MAR algorithm, sinogram inpainting, to the projection data, that we reconstructed using filtered backprojection. To assess how MAR affected observer performance, we examined the detectability of a signal at the center of a region of interest (ROI) by a channelized Hotelling observer (CHO). As a figure of merit, we used the area under the ROC curve (AUC). Results We used simulation to test our framework on two variants of the MAR technique of sinogram inpainting. We found that our method was able to resolve the difference in two different MAR algorithms’ effect on LCD task performance, as well as the difference in task performances when MAR was applied, vs not. Conclusion We laid out a phantom‐based framework for objective assessment of how MAR impacts low‐contrast detectability, that we tested on two MAR algorithms. Our results demonstrate the importance of testing MAR performance over a range of object and imaging parameters, since applying MAR does not always improve the quality of an image for a given diagnostic task. Our framework is an initial step toward developing a more comprehensive objective assessment method for MAR, which would require developing additional phantoms and methods specific to various clinical applications of MAR, and increasing study efficiency.
AbstractList Although several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous, and reproducible method exists for assessing their performance. The lack of assessment methods poses a challenge to regulators, consumers, and industry. We explored a phantom-based framework for assessing an important aspect of MAR performance: how applying MAR in the presence of metal affects model observer performance at a low-contrast detectability (LCD) task This work is, to our knowledge, the first model observer-based framework for the evaluation of MAR algorithms in the published literature.PURPOSEAlthough several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous, and reproducible method exists for assessing their performance. The lack of assessment methods poses a challenge to regulators, consumers, and industry. We explored a phantom-based framework for assessing an important aspect of MAR performance: how applying MAR in the presence of metal affects model observer performance at a low-contrast detectability (LCD) task This work is, to our knowledge, the first model observer-based framework for the evaluation of MAR algorithms in the published literature.We designed a numerical head phantom with metal implants. In order to incorporate an element of randomness, the phantom included a rotatable inset with an inhomogeneous background. We generated simulated projection data for the phantom. We applied two variants of a simple MAR algorithm, sinogram inpainting, to the projection data, that we reconstructed using filtered backprojection. To assess how MAR affected observer performance, we examined the detectability of a signal at the center of a region of interest (ROI) by a channelized Hotelling observer (CHO). As a figure of merit, we used the area under the ROC curve (AUC).METHODSWe designed a numerical head phantom with metal implants. In order to incorporate an element of randomness, the phantom included a rotatable inset with an inhomogeneous background. We generated simulated projection data for the phantom. We applied two variants of a simple MAR algorithm, sinogram inpainting, to the projection data, that we reconstructed using filtered backprojection. To assess how MAR affected observer performance, we examined the detectability of a signal at the center of a region of interest (ROI) by a channelized Hotelling observer (CHO). As a figure of merit, we used the area under the ROC curve (AUC).We used simulation to test our framework on two variants of the MAR technique of sinogram inpainting. We found that our method was able to resolve the difference in two different MAR algorithms' effect on LCD task performance, as well as the difference in task performances when MAR was applied, vs not.RESULTSWe used simulation to test our framework on two variants of the MAR technique of sinogram inpainting. We found that our method was able to resolve the difference in two different MAR algorithms' effect on LCD task performance, as well as the difference in task performances when MAR was applied, vs not.We laid out a phantom-based framework for objective assessment of how MAR impacts low-contrast detectability, that we tested on two MAR algorithms. Our results demonstrate the importance of testing MAR performance over a range of object and imaging parameters, since applying MAR does not always improve the quality of an image for a given diagnostic task. Our framework is an initial step toward developing a more comprehensive objective assessment method for MAR, which would require developing additional phantoms and methods specific to various clinical applications of MAR, and increasing study efficiency.CONCLUSIONWe laid out a phantom-based framework for objective assessment of how MAR impacts low-contrast detectability, that we tested on two MAR algorithms. Our results demonstrate the importance of testing MAR performance over a range of object and imaging parameters, since applying MAR does not always improve the quality of an image for a given diagnostic task. Our framework is an initial step toward developing a more comprehensive objective assessment method for MAR, which would require developing additional phantoms and methods specific to various clinical applications of MAR, and increasing study efficiency.
Although several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous, and reproducible method exists for assessing their performance. The lack of assessment methods poses a challenge to regulators, consumers, and industry. We explored a phantom-based framework for assessing an important aspect of MAR performance: how applying MAR in the presence of metal affects model observer performance at a low-contrast detectability (LCD) task This work is, to our knowledge, the first model observer-based framework for the evaluation of MAR algorithms in the published literature. We designed a numerical head phantom with metal implants. In order to incorporate an element of randomness, the phantom included a rotatable inset with an inhomogeneous background. We generated simulated projection data for the phantom. We applied two variants of a simple MAR algorithm, sinogram inpainting, to the projection data, that we reconstructed using filtered backprojection. To assess how MAR affected observer performance, we examined the detectability of a signal at the center of a region of interest (ROI) by a channelized Hotelling observer (CHO). As a figure of merit, we used the area under the ROC curve (AUC). We used simulation to test our framework on two variants of the MAR technique of sinogram inpainting. We found that our method was able to resolve the difference in two different MAR algorithms' effect on LCD task performance, as well as the difference in task performances when MAR was applied, vs not. We laid out a phantom-based framework for objective assessment of how MAR impacts low-contrast detectability, that we tested on two MAR algorithms. Our results demonstrate the importance of testing MAR performance over a range of object and imaging parameters, since applying MAR does not always improve the quality of an image for a given diagnostic task. Our framework is an initial step toward developing a more comprehensive objective assessment method for MAR, which would require developing additional phantoms and methods specific to various clinical applications of MAR, and increasing study efficiency.
Purpose Although several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous, and reproducible method exists for assessing their performance. The lack of assessment methods poses a challenge to regulators, consumers, and industry. We explored a phantom‐based framework for assessing an important aspect of MAR performance: how applying MAR in the presence of metal affects model observer performance at a low‐contrast detectability (LCD) task This work is, to our knowledge, the first model observer–based framework for the evaluation of MAR algorithms in the published literature. Methods We designed a numerical head phantom with metal implants. In order to incorporate an element of randomness, the phantom included a rotatable inset with an inhomogeneous background. We generated simulated projection data for the phantom. We applied two variants of a simple MAR algorithm, sinogram inpainting, to the projection data, that we reconstructed using filtered backprojection. To assess how MAR affected observer performance, we examined the detectability of a signal at the center of a region of interest (ROI) by a channelized Hotelling observer (CHO). As a figure of merit, we used the area under the ROC curve (AUC). Results We used simulation to test our framework on two variants of the MAR technique of sinogram inpainting. We found that our method was able to resolve the difference in two different MAR algorithms’ effect on LCD task performance, as well as the difference in task performances when MAR was applied, vs not. Conclusion We laid out a phantom‐based framework for objective assessment of how MAR impacts low‐contrast detectability, that we tested on two MAR algorithms. Our results demonstrate the importance of testing MAR performance over a range of object and imaging parameters, since applying MAR does not always improve the quality of an image for a given diagnostic task. Our framework is an initial step toward developing a more comprehensive objective assessment method for MAR, which would require developing additional phantoms and methods specific to various clinical applications of MAR, and increasing study efficiency.
Author M. Leifer
L. Jiang
Kyle J. Myers
J. Y. Vaishnav
Rongping Zeng
Bahaa Ghammraoui
AuthorAffiliation 3 Canon Medical Systems, USA, Inc. 2441 Michelle Drive Tustin CA 92780 USA
2 Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories Center for Devices and Radiological Health United States Food & Drug Administration 10903 New Hampshire Ave. Silver Spring MD 20993 USA
1 Diagnostic X‐Ray Systems Branch Office of In Vitro Diagnostic Devices and Radiological Health, Center for Devices and Radiological Health United States Food & Drug Administration 10903 New Hampshire Ave. Silver Spring MD 20993 USA
AuthorAffiliation_xml – name: 2 Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories Center for Devices and Radiological Health United States Food & Drug Administration 10903 New Hampshire Ave. Silver Spring MD 20993 USA
– name: 1 Diagnostic X‐Ray Systems Branch Office of In Vitro Diagnostic Devices and Radiological Health, Center for Devices and Radiological Health United States Food & Drug Administration 10903 New Hampshire Ave. Silver Spring MD 20993 USA
– name: 3 Canon Medical Systems, USA, Inc. 2441 Michelle Drive Tustin CA 92780 USA
Author_xml – sequence: 1
  givenname: J. Y.
  surname: Vaishnav
  fullname: Vaishnav, J. Y.
  email: jvaishnav@us.medical.canon
  organization: Canon Medical Systems, USA, Inc
– sequence: 2
  givenname: B.
  surname: Ghammraoui
  fullname: Ghammraoui, B.
  organization: United States Food & Drug Administration
– sequence: 3
  givenname: M.
  surname: Leifer
  fullname: Leifer, M.
  organization: United States Food & Drug Administration
– sequence: 4
  givenname: R.
  surname: Zeng
  fullname: Zeng, R.
  organization: United States Food & Drug Administration
– sequence: 5
  givenname: L.
  surname: Jiang
  fullname: Jiang, L.
  organization: United States Food & Drug Administration
– sequence: 6
  givenname: K. J.
  surname: Myers
  fullname: Myers, K. J.
  organization: United States Food & Drug Administration
BackLink https://cir.nii.ac.jp/crid/1873680965952411776$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/32406534$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLelEr8A-cCBHrLY8VfMoRJa8SUVwWE5WxPHaQ1xHOxsV_vv8bItBQRcbGnmmXdevXOCjsY4OoSeULKkhNQvwrSkvGb0AVrUXLGK10QfoQUhmlc1J-IYneXsWyIarpkk6hE6ZqUuBeMLZFZrHNwMA4Y0-x7sjJPrNnb2ccQwXMXk5-uQX-J13ELqMOA-QXDbmL7iPiYc2y-uwDcOTy6VQoDROgw5u5yDG-fH6GEPQ3Znt_8p-vzm9Xr1rrr8-Pb96tVlZQURtOqYULquO005s8TJXvG-I7JplFJNL7rWAVDdEqq1a0XhuoaAEK2UQBlrLDtF5wfdzTjBbgvDYKbkA6SdocTsczJhMj9yKuzFgZ02bXCdLTYT3PMRvPm9M_prcxVvjOJaMr4XeH4rkOK3jcuzCT5bNwwwurjJpqTLCFNa8II-_XXXzyV3F7jXsinmnFz_P9_LP1DrZ9hfqrj0w98GqsPA1g9u909h8-HTHf_swI_eF-39SxvFZEO0FFrUnFKlJPsOWDO_WQ
CitedBy_id crossref_primary_10_1088_1361_6560_ad9541
crossref_primary_10_3390_medicina60122040
crossref_primary_10_1186_s42492_021_00083_z
crossref_primary_10_1007_s12194_024_00869_9
crossref_primary_10_1016_j_ejmp_2024_104848
crossref_primary_10_1186_s41747_023_00354_9
crossref_primary_10_1111_clr_14381
crossref_primary_10_1016_j_ejrad_2020_109357
crossref_primary_10_1093_jrr_rrac051
Cites_doi 10.1002/mp.13115
10.1097/00004728-197902000-00009
10.1155/2012/786281
10.2214/AJR.15.15850
10.1002/jmri.20144
10.1118/1.4824055
10.1118/1.1677252
10.1118/1.4881148
10.1118/1.2745920
10.1117/1.JMI.1.3.031001
10.1118/1.3484090
10.4018/IJRSDA.2015070106
10.1148/radiol.13122089
10.1148/radiol.11101782
10.1364/JOSAA.18.000473
10.1118/1.4762814
10.1118/1.1915015
10.1109/TNS.2013.2275919
10.1109/23.856534
10.1007/s00330-012-2501-7
10.1109/23.775600
10.3348/kjr.2017.18.3.526
10.1007/s00256-013-1802-5
10.1118/1.598805
10.1001/jamanetworkopen.2018.5474
10.1109/42.959297
10.1148/radiology.164.2.3602406
10.1056/NEJMra1512592
10.1118/1.4905106
10.4103/2152-7806.84769
10.1117/12.18985
10.1118/1.595032
10.1056/NEJMra072149
10.1109/TMI.2014.2360496
10.1118/1.4749931
10.1118/1.3533711
10.1109/42.897816
10.1109/ACCESS.2016.2608621
10.1118/1.2218062
10.3174/ajnr.A1883
10.1007/s00256-015-2155-z
10.1097/00005373-200010000-00017
10.1109/TMI.2008.929103
10.1088/0031-9155/60/3/1047
10.2214/AJR.13.10980
10.1097/01.rli.0000086495.96457.54
10.1118/1.3276777
10.1109/ICASSP.2002.5745362
10.2106/JBJS.N.01141
10.1177/0284185117751278
ContentType Journal Article
Copyright Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
Copyright_xml – notice: Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
DBID RYH
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/mp.14231
DatabaseName CiNii Complete
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate CT MAR: Objective performance assessment
EISSN 2473-4209
EndPage 3355
ExternalDocumentID 10.1002/mp.14231
PMC7496341
32406534
10_1002_mp_14231
MP14231
Genre article
Journal Article
GroupedDBID ---
--Z
-DZ
0R~
1OB
1OC
29M
33P
36B
4.4
53G
5GY
5RE
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AGHNM
AGYGG
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EMB
EMOBN
F5P
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PHY
RNS
ROL
RYH
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
ZVN
ZZTAW
.GJ
24P
2WC
3O-
5VS
ABDPE
ABTAH
EJD
HDBZQ
PALCI
RJQFR
SAMSI
XJT
ZGI
ZXP
ZY4
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ABUFD
ADTOC
UNPAY
ID FETCH-LOGICAL-c5051-d357922d9143c0e6f74fd06887778f5dbeaa19b0199eb52d9d80a55b66a1338c3
IEDL.DBID UNPAY
ISSN 0094-2405
2473-4209
1522-8541
IngestDate Sun Oct 26 04:10:40 EDT 2025
Tue Sep 30 16:48:24 EDT 2025
Fri Sep 05 11:46:38 EDT 2025
Wed Feb 19 02:29:42 EST 2025
Wed Oct 01 04:33:04 EDT 2025
Thu Apr 24 22:56:03 EDT 2025
Wed Jan 22 17:00:11 EST 2025
Fri Jun 27 00:10:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords computed tomography
performance evaluation
metal artifact reduction
validation
Language English
License Attribution
Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5051-d357922d9143c0e6f74fd06887778f5dbeaa19b0199eb52d9d80a55b66a1338c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://aapm.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.14231
PMID 32406534
PQID 2403037954
PQPubID 23479
PageCount 12
ParticipantIDs unpaywall_primary_10_1002_mp_14231
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7496341
proquest_miscellaneous_2403037954
pubmed_primary_32406534
crossref_primary_10_1002_mp_14231
crossref_citationtrail_10_1002_mp_14231
wiley_primary_10_1002_mp_14231_MP14231
nii_cinii_1873680965952411776
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Medical Physics
PublicationTitleAlternate Med Phys
PublicationYear 2020
Publisher Wiley
John Wiley and Sons Inc
Publisher_xml – name: Wiley
– name: John Wiley and Sons Inc
References 2015; 34
2004; 20
2012; 2012
2000; 49
2000; 47
2006; 33
1999; 46
2018; 45
2007; 34
2014; 1
2000; 19
1990
2017b
2018; 1
2015; 42
2015; 44
2013; 60
1979; 3
2005; 32
2001; 18
2012; 22
2014; 203
2015; 2
2011; 259
1987; 164
2010; 31
2010; 37
2011; 2
2011
2016; 207
2015; 97
2013; 40
1999; 26
2008
2013; 268
1996
1981; 8
2003; 38
2012; 39
2004
2002
2014; 41
2011; 38
2017; 376
2014; 43
2001; 20
2009; 28
1999
2016; 4
2007; 357
2015; 60
2016
2015
2017; 18
2014
2013
2018; 59
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
MATLAB (e_1_2_8_58_1) 2017
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Chen Y (e_1_2_8_30_1) 2012; 2012
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
Wagner R (e_1_2_8_62_1) 2008
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Fukunaga K. (e_1_2_8_65_1) 2013
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
Bushberg JT (e_1_2_8_2_1) 2002
e_1_2_8_50_1
References_xml – year: 2011
– volume: 18
  start-page: 473
  year: 2001
  end-page: 488
  article-title: Human and model‐observer performance in ramp‐spectrum noise: effects of regularization and object variability
  publication-title: J Opt Soc Am A
– volume: 1
  start-page: e185474
  year: 2018
  end-page: e185474
  article-title: Evaluation of digital breast tomosynthesis as replacement of full‐field digital mammography using an in silico imaging trial: digital breast tomosynthesis as replacement of full‐field digital mammography
  publication-title: JAMA Netw Open
– volume: 8
  start-page: 799
  year: 1981
  end-page: 807
  article-title: An algorithm for the reduction of metal clip artifacts in CT reconstructions
  publication-title: Med Phys
– volume: 41
  start-page: 071904
  year: 2014
  article-title: Objective assessment of image quality and dose reduction in CT iterative reconstruction
  publication-title: Med Phys
– volume: 97
  start-page: 1386
  year: 2015
  article-title: Prevalence of total hip and knee replacement in the United States
  publication-title: J Bone Joint Surg
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 18
  article-title: CT metal artifact reduction method based on improved image segmentation and sinogram in‐painting
  publication-title: Math Probl Eng
– volume: 60
  start-page: 3318
  year: 2013
  end-page: 3332
  article-title: 3D prior image constrained projection completion for X‐ray CT metal artifact reduction
  publication-title: IEEE Trans Nucl Sci
– volume: 39
  start-page: 5857
  year: 2012
  end-page: 5868
  article-title: Segmentation of artifacts and anatomy in CT metal artifact reduction
  publication-title: Med Phys
– volume: 49
  start-page: 689
  year: 2000
  end-page: 695
  article-title: Helical computed tomographic scan in the evaluation of mediastinal gunshot wounds
  publication-title: J Trauma Acute Care Surg
– volume: 207
  start-page: 378
  year: 2016
  end-page: 385
  article-title: Imaging of arthroplasties: improved image quality and lesion detection with iterative metal artifact reduction, a new CT metal artifact reduction technique
  publication-title: Am J Roentgenol
– year: 2017b
– volume: 59
  start-page: 1110
  year: 2018
  end-page: 1118
  article-title: Metal artifact reduction in CT, a phantom study: subjective and objective evaluation of four commercial metal artifact reduction algorithms when used on three different orthopedic metal implants
  publication-title: Acta Radiol
– volume: 60
  start-page: 1047
  year: 2015
  article-title: An evaluation of three commercially available metal artifact reduction methods for CT imaging
  publication-title: Phys Med Biol
– volume: 2
  start-page: 122
  year: 2011
  article-title: Stray bullet: an accidental killer during riot control
  publication-title: Surg Neurol Int
– volume: 268
  start-page: 237
  year: 2013
  end-page: 244
  article-title: Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions
  publication-title: Radiology
– year: 2014
– volume: 38
  start-page: 769
  year: 2003
  end-page: 775
  article-title: A new algorithm for metal artifact reduction in computed tomography: in vitro and in vivo evaluation after total hip replacement
  publication-title: Invest Radiol
– volume: 38
  start-page: 701
  year: 2011
  end-page: 711
  article-title: Metal artifact reduction in x‐ray computed tomography (CT) by constrained optimization
  publication-title: Med Phys
– volume: 164
  start-page: 576
  year: 1987
  end-page: 577
  article-title: Reduction of CT artifacts caused by metallic implants
  publication-title: Radiology
– year: 2008
– year: 2004
– volume: 39
  start-page: 7507
  year: 2012
  end-page: 7517
  article-title: Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy
  publication-title: Med Phys
– volume: 376
  start-page: 1350
  year: 2017
  end-page: 1357
  article-title: viewpoint on unique considerations for medical‐device clinical trials
  publication-title: N Engl J Med
– volume: 259
  start-page: 894
  year: 2011
  end-page: 902
  article-title: Evaluation of two iterative techniques for reducing metal artifacts in computed tomography
  publication-title: Radiology
– volume: 46
  start-page: 691
  year: 1999
  end-page: 696
  article-title: Metal streak artifacts in X‐ray computed tomography: a simulation study
  publication-title: IEEE Trans Nucl Sci
– volume: 18
  start-page: 526
  year: 2017
  end-page: 535
  article-title: Value and clinical application of orthopedic metal artifact reduction algorithm in CT scans after orthopedic metal implantation
  publication-title: Kor J Radiol
– volume: 34
  start-page: 453
  year: 2015
  end-page: 464
  article-title: Exact confidence intervals for channelized Hotelling observer performance in image quality studies
  publication-title: IEEE Trans Med Imaging
– year: 2015
– volume: 37
  start-page: 620
  year: 2010
  end-page: 628
  article-title: Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT
  publication-title: Med Phys
– volume: 22
  start-page: 2357
  year: 2012
  end-page: 2364
  article-title: Metallic artefact reduction with monoenergetic dual‐energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels
  publication-title: Eur Radiol
– volume: 32
  start-page: 1676
  year: 2005
  end-page: 1683
  article-title: Penalized‐likelihood sinogram smoothing for low‐dose CT
  publication-title: Med Phys
– volume: 31
  start-page: 634
  year: 2010
  end-page: 639
  article-title: Metal artifact reduction for clipping and coiling in interventional C‐arm CT
  publication-title: Am J Neuroradiol
– volume: 2
  start-page: 92
  year: 2015
  end-page: 114
  article-title: Comprehensive survey on metal artifact reduction methods in computed tomography images
  publication-title: Int J Rough Sets Data Anal
– volume: 40
  start-page: 111908
  year: 2013
  article-title: CT image assessment by low contrast signal detectability evaluation with unknown signal location
  publication-title: Med Phys
– volume: 3
  start-page: 52
  year: 1979
  end-page: 57
  article-title: Computed tomography reconstruction from hollow projections: an application to in vivo evaluation of artificial hip joints
  publication-title: J Comput Assist Tomogr
– volume: 44
  start-page: 1287
  year: 2015
  end-page: 1294
  article-title: Value of monoenergetic dual‐energy CT (DECT) for artefact reduction from metallic orthopedic implants in post‐mortem studies
  publication-title: Skeletal Radiol
– volume: 20
  start-page: 487
  year: 2004
  end-page: 495
  article-title: Quantitative evaluation of metal artifact reduction techniques
  publication-title: J Magn Reson Imaging
– volume: 4
  start-page: 5826
  year: 2016
  end-page: 5849
  article-title: Metal artifact reduction in CT: where are we after four decades
  publication-title: IEEE Access
– volume: 42
  start-page: 1023
  year: 2015
  end-page: 1036
  article-title: Dual energy CT: how well can pseudo‐monochromatic imaging reduce metal artifacts
  publication-title: Med Phys
– volume: 34
  start-page: 3034
  year: 2007
  end-page: 3044
  article-title: Hardware assessment using the multi‐module, multi‐resolution system (M3R): a signal‐detection study
  publication-title: Med Phys
– year: 2016
– volume: 19
  start-page: 1238
  year: 2000
  end-page: 1247
  article-title: X‐ray CT metal artifact reduction using wavelets: an application for imaging total hip prostheses
  publication-title: IEEE Trans Med Imaging
– start-page: 881
  year: 1996
  end-page: 884
– volume: 26
  start-page: 2654
  year: 1999
  end-page: 2668
  article-title: Classifier design for computer‐aided diagnosis: effects of finite sample size on the mean performance of classical and neural network classifiers
  publication-title: Med Phys
– volume: 45
  start-page: 4329
  year: 2018
  end-page: 4344
  article-title: Evaluation of two commercial CT metal artifact reduction algorithms for use in proton radiotherapy treatment planning in the head and neck area
  publication-title: Med Phys
– volume: 28
  start-page: 250
  year: 2009
  end-page: 260
  article-title: Suppression of metal artifacts in CT using a reconstruction procedure that combines MAP and projection completion
  publication-title: IEEE Trans Med Imaging
– volume: 33
  start-page: 2852
  year: 2006
  article-title: Metal artifact reduction in CT using tissue‐class modeling and adaptive prefiltering
  publication-title: Med Phys
– volume: 47
  start-page: 977
  year: 2000
  end-page: 981
  article-title: Reduction of metal streak artifacts in x‐ray computed tomography using a transmission maximum a posteriori algorithm
  publication-title: IEEE Trans Nucl Sci
– start-page: 642
  year: 1990
  end-page: 651
– volume: 43
  start-page: 567
  year: 2014
  end-page: 575
  article-title: Peering through the glare: using dual‐energy CT to overcome the problem of metal artefacts in bone radiology
  publication-title: Skeletal Radiol
– start-page: 129 141
  year: 2008
– year: 2002
– volume: 203
  start-page: 788
  year: 2014
  end-page: 795
  article-title: Metal artifact reduction software used with abdominopelvic dual‐energy CT of patients with metal hip prostheses: assessment of image quality and clinical feasibility
  publication-title: Am J Roentgenol
– volume: 357
  start-page: 2277
  year: 2007
  end-page: 2284
  article-title: Computed tomography ‐ an increasing source of radiation exposure
  publication-title: N Engl J Med
– volume: 20
  start-page: 999
  year: 2001
  end-page: 1008
  article-title: An iterative maximum‐likelihood polychromatic algorithm for CT
  publication-title: IEEE Trans Med Imaging
– volume: 1
  start-page: 031001
  year: 2014
  article-title: Special Section guest editorial: pioneers in medical imaging: honoring the memory of Robert F. Wagner
  publication-title: J Med Imaging
– volume: 37
  start-page: 5482
  year: 2010
  end-page: 5493
  article-title: Normalized metal artifact reduction (NMAR) in computed tomography
  publication-title: Med Phys
– year: 2013
– year: 1999
– ident: e_1_2_8_6_1
  doi: 10.1002/mp.13115
– ident: e_1_2_8_19_1
  doi: 10.1097/00004728-197902000-00009
– volume: 2012
  start-page: 1
  year: 2012
  ident: e_1_2_8_30_1
  article-title: CT metal artifact reduction method based on improved image segmentation and sinogram in‐painting
  publication-title: Math Probl Eng
  doi: 10.1155/2012/786281
– ident: e_1_2_8_37_1
– volume-title: The Essential Physics of Medical Imaging
  year: 2002
  ident: e_1_2_8_2_1
– ident: e_1_2_8_14_1
– ident: e_1_2_8_48_1
  doi: 10.2214/AJR.15.15850
– ident: e_1_2_8_41_1
  doi: 10.1002/jmri.20144
– ident: e_1_2_8_67_1
  doi: 10.1118/1.4824055
– ident: e_1_2_8_49_1
  doi: 10.1118/1.1677252
– ident: e_1_2_8_54_1
– ident: e_1_2_8_59_1
  doi: 10.1118/1.4881148
– ident: e_1_2_8_52_1
  doi: 10.1118/1.2745920
– ident: e_1_2_8_63_1
  doi: 10.1117/1.JMI.1.3.031001
– ident: e_1_2_8_24_1
  doi: 10.1118/1.3484090
– ident: e_1_2_8_26_1
  doi: 10.4018/IJRSDA.2015070106
– ident: e_1_2_8_29_1
  doi: 10.1148/radiol.13122089
– ident: e_1_2_8_38_1
  doi: 10.1148/radiol.11101782
– ident: e_1_2_8_60_1
  doi: 10.1364/JOSAA.18.000473
– ident: e_1_2_8_36_1
– ident: e_1_2_8_40_1
– ident: e_1_2_8_44_1
– ident: e_1_2_8_13_1
– ident: e_1_2_8_39_1
  doi: 10.1118/1.4762814
– ident: e_1_2_8_10_1
– ident: e_1_2_8_66_1
– ident: e_1_2_8_55_1
  doi: 10.1118/1.1915015
– ident: e_1_2_8_56_1
  doi: 10.1109/TNS.2013.2275919
– ident: e_1_2_8_4_1
  doi: 10.1109/23.856534
– ident: e_1_2_8_31_1
  doi: 10.1007/s00330-012-2501-7
– ident: e_1_2_8_3_1
  doi: 10.1109/23.775600
– ident: e_1_2_8_47_1
  doi: 10.3348/kjr.2017.18.3.526
– ident: e_1_2_8_12_1
– ident: e_1_2_8_32_1
  doi: 10.1007/s00256-013-1802-5
– ident: e_1_2_8_53_1
– ident: e_1_2_8_64_1
  doi: 10.1118/1.598805
– ident: e_1_2_8_70_1
  doi: 10.1001/jamanetworkopen.2018.5474
– ident: e_1_2_8_43_1
  doi: 10.1109/42.959297
– ident: e_1_2_8_16_1
  doi: 10.1148/radiology.164.2.3602406
– ident: e_1_2_8_69_1
  doi: 10.1056/NEJMra1512592
– ident: e_1_2_8_11_1
– ident: e_1_2_8_35_1
  doi: 10.1118/1.4905106
– ident: e_1_2_8_50_1
  doi: 10.4103/2152-7806.84769
– ident: e_1_2_8_20_1
  doi: 10.1117/12.18985
– ident: e_1_2_8_15_1
  doi: 10.1118/1.595032
– ident: e_1_2_8_9_1
  doi: 10.1056/NEJMra072149
– ident: e_1_2_8_61_1
  doi: 10.1109/TMI.2014.2360496
– volume-title: Release
  year: 2017
  ident: e_1_2_8_58_1
– ident: e_1_2_8_17_1
  doi: 10.1118/1.4749931
– ident: e_1_2_8_28_1
  doi: 10.1118/1.3533711
– ident: e_1_2_8_22_1
  doi: 10.1109/42.897816
– ident: e_1_2_8_7_1
– ident: e_1_2_8_25_1
  doi: 10.1109/ACCESS.2016.2608621
– ident: e_1_2_8_42_1
  doi: 10.1118/1.2218062
– volume-title: Introduction to Statistical Pattern Recognition
  year: 2013
  ident: e_1_2_8_65_1
– ident: e_1_2_8_23_1
  doi: 10.3174/ajnr.A1883
– ident: e_1_2_8_33_1
  doi: 10.1007/s00256-015-2155-z
– ident: e_1_2_8_51_1
  doi: 10.1097/00005373-200010000-00017
– ident: e_1_2_8_27_1
  doi: 10.1109/TMI.2008.929103
– ident: e_1_2_8_5_1
  doi: 10.1088/0031-9155/60/3/1047
– ident: e_1_2_8_57_1
– ident: e_1_2_8_34_1
  doi: 10.2214/AJR.13.10980
– start-page: 129
  volume-title: Advances in Medical Physics 2008
  year: 2008
  ident: e_1_2_8_62_1
– ident: e_1_2_8_21_1
  doi: 10.1097/01.rli.0000086495.96457.54
– ident: e_1_2_8_18_1
  doi: 10.1118/1.3276777
– ident: e_1_2_8_45_1
  doi: 10.1109/ICASSP.2002.5745362
– ident: e_1_2_8_8_1
  doi: 10.2106/JBJS.N.01141
– ident: e_1_2_8_68_1
– ident: e_1_2_8_46_1
  doi: 10.1177/0284185117751278
SSID ssib058493607
ssib004865916
ssib002399406
ssj0006350
Score 2.3797007
Snippet Purpose Although several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous,...
Although several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous, and...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
nii
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3344
SubjectTerms Algorithms
computed tomography
DIAGNOSTIC IMAGING (IONIZING AND NON‐IONIZING)
metal artifact reduction
Metals
performance evaluation
Phantoms, Imaging
Tomography, X-Ray Computed
validation
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZgUYFLRWmBhYLcqiqniDz8SLhVqCuEBOKwSNwi27HLot1stA8h_j0zzgOtClUvycETx8q8viQznwn5gXHfSKScLQoRQMDTQeYiHQijHONMgRl4ts8bcXnHru75fVNVib0wNT9E98ENPcPHa3Rwpednr6Shkwq8PMYW6o0IYAxad8xuuygMibRuP4F1QNbiLfFsGJ-1V66kovVyNHoLZf5dLLm1LCv1_KTG41VA6zPSYId8bKAk_VXr_hNZs-Uu2bxufpbvkg--utPMP5P8YkgnFmA2RUPBXgY6Q8pWVApV4z_T2WjxMJmf06EvoqWKurZmiwKopVP9WMdFWr32GVDVkXp-IXeD38OLy6DZWSEwgHiioEi4zOK4yAAtmdAKJ5krcPsZKWXqeKGtUlGmAf5lVnOQK9JQca6FUPhOa5I90iunpT0gFPCf48zaVCnDhM1S7VhsAJhBEgiNS_rktH3IuWlox3H3i3FeEybH-aTKvTr65FsnWdVUG2_IHIOeYCI8RqlMRBp6SkQAIpGUAuZoNZiDn-DPD1Xa6XKeI-9gmMiMsz7ZrzXa3QVJCQVPYESu6LoTQA7u1ZFy9OC5uCWDCMZgXd87q_jH4n96c3lXIL--9efD_xU8Itsxvv_7gsSvpLeYLe0xgKSFPvHe8ALZVgoW
  priority: 102
  providerName: Wiley-Blackwell
Title CT metal artifact reduction algorithms: Toward a framework for objective performance assessment
URI https://cir.nii.ac.jp/crid/1873680965952411776
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.14231
https://www.ncbi.nlm.nih.gov/pubmed/32406534
https://www.proquest.com/docview/2403037954
https://pubmed.ncbi.nlm.nih.gov/PMC7496341
https://aapm.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.14231
UnpaywallVersion publishedVersion
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFH6aacVyYRm2AlMZhOCUksVLwq0qjEaIjirRSsMpchybKbRp1EUIfj3PzgKFASFxSQ55chzne8-f7efPAM9s3FfCSs7mOfcw4GVeYoLM40oayqhEGDi1zzN-OqNvz9n5AYyavTBSlstBJRLRzrpZ93BB23p5mZsq2NdL_OHLZYnuHtq91F3OkJB3oDs7mww_VPqT1K4fMKeaisOumLmzLEMqIqyYnzRytD8Vs9dBHRbz-WXc8_cUymu7opRfv8jFYp_mun7q5CbkzRdW6SmfB7ttNlDffhF__M8muAU3ah5LhhXwbsOBLo7g6rheqT-CKy61VG3uQDqakqVGjk8sSu1GCrK2erEWEUQuPq7W8-3FcvOKTF0GL5HENAljBBk1WWWfqqBMyh-bHIhsFUXvwuzkzXR06tXHOngK6Vbg5RETSRjmCVI15WtuBDW5PftGCBEblmdayiDJkHsmOmNol8e-ZCzjXNoBtYruQadYFfoBECSfhlGtYykV5TqJM0NDhawQeyBfmagHL5p_mapa89wevbFIK7XmMF2WqWu5HjxpLctK5-MSm2OEAxZkr0EsIh77To8RWVAgBMcyGqCk6KR25UUWerXbpFb00I9EwmgP7lfAad9iFRE5i_CJ2INUa2AFwPefFPMLJwQuKIZPivV62oLvL5V_7lD0R4N0PHH3h_9S2iO4HtqJB5cJ-Rg62_VOHyM722Z9OAzppA_d4evxu_f92he_AwKMNl8
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKKygXVAqFBQoGIThFzcOPBE5V1WqBbtXDVurNsh273Wo3G-1DiH_PjLNJtWqLuCSHTBwr45n5bM98JuQz-n0rkXK2LEUEDs9EhU9MJKz2jDMNwyCwfZ6J_gX7eckvN8j3tham4YfoFtzQMoK_RgPHBemDW9bQSQ1mnmIN9RYTicCZV8rOOzcMkbSpP4GOQNjiLfNsnB60b67FokfVaHQfzLybLbm9rGr957cej9cRbQhJJzvk2QpL0sNG-c_Jhqt2yZPBard8lzwO6Z12_oKooyGdOMDZFEcKFjPQGXK2olaoHl9NZ6PF9WT-jQ5DFi3V1LdJWxRQLZ2am8Yx0vq20IDqjtXzJbk4OR4e9aPV0QqRBciTRGXGZZGmZQFwycZOeMl8iefPSClzz0vjtE4KA_ivcIaDXJnHmnMjhMZJrc32yGY1rdxrQgEAes6cy7W2TLgiN56lFpAZRIHY-qxHvrY_WdkV7zgefzFWDWNyqia1CurokY-dZN1wbdwjsw96gobwmuQyE3kcOBEBiSRSCmij1aACQ8HdD1256XKukHgwzmTBWY-8ajTafQVZCQXP4Ilc03UngCTc60-q0XUg45YMXBiDfn3qRsU_Ov8lDJcHBdTgPNzf_K_gB7LdHw5O1emPs19vydMUFwNCduI7srmYLd0-IKaFeR8s4y804g2C
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKKwoXVAotWygYhOAUNQ8_EjihllV5tNrDVurNsh27XbSbjfYhxL_vjLNJtWpBXJKDJ46V8cx8sWc-E_Ie_b6VSDlbliICh2eiwicmElZ7xpmGaRDYPs_F6QX7fskvN8jntham4YfoFtzQMoK_RgN3demPbllDJzWYeYo11FuMQyBEWmc26NwwRNKm_gQGAmGLt8yzcXrUPrkWix5Uo9F9MPNutuSjZVXrP7_1eLyOaENI6u-QJyssSb80yn9KNly1S7bPVrvlu-RhSO-082dEHQ_pxAHOpjhTsJiBzpCzFbVC9fhqOhstrifzT3QYsmippr5N2qKAaunU_GocI61vCw2o7lg9n5OL_tfh8Wm0OlohsgB5kqjMuCzStCwALtnYCS-ZL_H8GSll7nlpnNZJYQD_Fc5wkCvzWHNuhND4U2uzPbJZTSv3glAAgJ4z53KtLROuyI1nqQVkBlEgtj7rkY_tR1Z2xTuOx1-MVcOYnKpJrYI6euRtJ1k3XBv3yByCnqAjvCa5zEQeB05EQCKJlAL6aDWowFBw90NXbrqcKyQejDNZcNYj-41Gu7cgK6HgGbTINV13AkjCvd5Sja4DGbdk4MIYjOtdNyv-MfgPYbr8VUCdDcL94H8F35DtwUlf_fx2_uMleZziWkBITnxFNhezpTsEwLQwr4Nh3ADd4w0R
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVlAuPAqFBYoMQnDKkocfCbdqRVUhtephVyqnyHbsdmGTjfYhBL-eGecBCwUhcUkOGTmO8834sz3-TMgrjPtGouRsUYgAAp4OMhfpQBjlGGcKYODVPs_EyZR9uOAXO2Tc7YVRqi5HjUhEP-uG7uGDNnp5Xbgm2LdL_PHbsgZ3j3Ev9a7gQMgHZHd6dn70sdGfZLh-wL1qKgy7Uu7PsoyZTKBiYdbJ0f5UzFYHdaOaza7jnr-nUO5tqlp9_aLm822a6_up47uk6L6wSU_5PNqs9ch8-0X88T-b4B650_JYetQA7z7ZsdU-uXXartTvk5s-tdSsHpB8PKGlBY5PEaW4kYIuUS8WEUHV_HKxnK2vytU7OvEZvFRR1yWMUWDUdKE_NUGZ1j82OVDVK4o-JNPj95PxSdAe6xAYoFtRUCRcZnFcZEDVTGiFk8wVePaNlDJ1vNBWqSjTwD0zqznYFWmoONdCKBxQm-SADKpFZR8TCuTTcWZtqpRhwmapdiw2wAqhBwqNS4bkTfcvc9NqnuPRG_O8UWuO87LOfcsNyYvesm50Pq6xOQQ4QEF4jVKZiDT0eozAgiIpBZTRASUHJ8WVF1XZxWaVo-hhmMiMsyF51ACnfwsqIgqewBO5BaneAAXAt59UsysvBC4ZhE8G9XrZg-8vlX_tUfRHg_z03N-f_EtpT8ntGCcefCbkMzJYLzf2ENjZWj9vve87IVQz9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CT+metal+artifact+reduction+algorithms%3A+Toward+a+framework+for+objective+performance+assessment&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Vaishnav%2C+J+Y&rft.au=Ghammraoui%2C+B&rft.au=Leifer%2C+M&rft.au=Zeng%2C+R&rft.date=2020-08-01&rft.issn=2473-4209&rft.eissn=2473-4209&rft.volume=47&rft.issue=8&rft.spage=3344&rft_id=info:doi/10.1002%2Fmp.14231&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon