Optimization of Tumor Disease Monitoring in Medical Big Data Environment Based on High-Order Simulated Annealing Neural Network Algorithm
With the development of medical informatization, the data related to medical field are growing at an amazing speed, and medical big data appears. The mining and analysis of these data plays an important role in the prediction, monitoring, diagnosis, and treatment of tumor diseases. Therefore, this p...
Saved in:
| Published in | Computational intelligence and neuroscience Vol. 2021; no. 1; p. 8996673 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Hindawi
2021
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5265 1687-5273 1687-5273 |
| DOI | 10.1155/2021/8996673 |
Cover
| Abstract | With the development of medical informatization, the data related to medical field are growing at an amazing speed, and medical big data appears. The mining and analysis of these data plays an important role in the prediction, monitoring, diagnosis, and treatment of tumor diseases. Therefore, this paper proposes a clustering algorithm of the high-order simulated annealing neural network algorithm and uses this algorithm to extract tumor disease-related big data, constructs training set according to the relevant information mined, designs a kind of dimension reduction model, aiming at the problem of excessive and wrong diagnosis and treatment in the diagnosis and treatment module of tumor disease monitoring mode, and establishes the corresponding control mechanism, so as to optimize the tumor disease monitoring mode. The results show that the clustering accuracy of the high-order simulated annealing neural network algorithm on different data sets (iris, wine, and Pima India diabetes) is 97.33%, 82.11%, and 70.56% and the execution time is 0.75 s, 0.562 s, and 1.092 s, which are better than those of the fast k-medoids algorithm and improved k-medoids clustering algorithm. To sum up, the high-order simulated annealing neural network algorithm can achieve good clustering effect in medical big data mining. The establishment of model M1 can reduce the probability of excessive and wrong medical treatment and improve the effectiveness of diagnosis and treatment module monitoring in tumor disease monitoring mode. |
|---|---|
| AbstractList | With the development of medical informatization, the data related to medical field are growing at an amazing speed, and medical big data appears. The mining and analysis of these data plays an important role in the prediction, monitoring, diagnosis, and treatment of tumor diseases. Therefore, this paper proposes a clustering algorithm of the high‐order simulated annealing neural network algorithm and uses this algorithm to extract tumor disease‐related big data, constructs training set according to the relevant information mined, designs a kind of dimension reduction model, aiming at the problem of excessive and wrong diagnosis and treatment in the diagnosis and treatment module of tumor disease monitoring mode, and establishes the corresponding control mechanism, so as to optimize the tumor disease monitoring mode. The results show that the clustering accuracy of the high‐order simulated annealing neural network algorithm on different data sets (iris, wine, and Pima India diabetes) is 97.33%, 82.11%, and 70.56% and the execution time is 0.75 s, 0.562 s, and 1.092 s, which are better than those of the fast
k
‐medoids algorithm and improved
k
‐medoids clustering algorithm. To sum up, the high‐order simulated annealing neural network algorithm can achieve good clustering effect in medical big data mining. The establishment of model M1 can reduce the probability of excessive and wrong medical treatment and improve the effectiveness of diagnosis and treatment module monitoring in tumor disease monitoring mode. With the development of medical informatization, the data related to medical field are growing at an amazing speed, and medical big data appears. The mining and analysis of these data plays an important role in the prediction, monitoring, diagnosis, and treatment of tumor diseases. Therefore, this paper proposes a clustering algorithm of the high-order simulated annealing neural network algorithm and uses this algorithm to extract tumor disease-related big data, constructs training set according to the relevant information mined, designs a kind of dimension reduction model, aiming at the problem of excessive and wrong diagnosis and treatment in the diagnosis and treatment module of tumor disease monitoring mode, and establishes the corresponding control mechanism, so as to optimize the tumor disease monitoring mode. The results show that the clustering accuracy of the high-order simulated annealing neural network algorithm on different data sets (iris, wine, and Pima India diabetes) is 97.33%, 82.11%, and 70.56% and the execution time is 0.75 s, 0.562 s, and 1.092 s, which are better than those of the fast k-medoids algorithm and improved k-medoids clustering algorithm. To sum up, the high-order simulated annealing neural network algorithm can achieve good clustering effect in medical big data mining. The establishment of model M1 can reduce the probability of excessive and wrong medical treatment and improve the effectiveness of diagnosis and treatment module monitoring in tumor disease monitoring mode. With the development of medical informatization, the data related to medical field are growing at an amazing speed, and medical big data appears. The mining and analysis of these data plays an important role in the prediction, monitoring, diagnosis, and treatment of tumor diseases. Therefore, this paper proposes a clustering algorithm of the high-order simulated annealing neural network algorithm and uses this algorithm to extract tumor disease-related big data, constructs training set according to the relevant information mined, designs a kind of dimension reduction model, aiming at the problem of excessive and wrong diagnosis and treatment in the diagnosis and treatment module of tumor disease monitoring mode, and establishes the corresponding control mechanism, so as to optimize the tumor disease monitoring mode. The results show that the clustering accuracy of the high-order simulated annealing neural network algorithm on different data sets (iris, wine, and Pima India diabetes) is 97.33%, 82.11%, and 70.56% and the execution time is 0.75 s, 0.562 s, and 1.092 s, which are better than those of the fast k-medoids algorithm and improved k-medoids clustering algorithm. To sum up, the high-order simulated annealing neural network algorithm can achieve good clustering effect in medical big data mining. The establishment of model M1 can reduce the probability of excessive and wrong medical treatment and improve the effectiveness of diagnosis and treatment module monitoring in tumor disease monitoring mode.With the development of medical informatization, the data related to medical field are growing at an amazing speed, and medical big data appears. The mining and analysis of these data plays an important role in the prediction, monitoring, diagnosis, and treatment of tumor diseases. Therefore, this paper proposes a clustering algorithm of the high-order simulated annealing neural network algorithm and uses this algorithm to extract tumor disease-related big data, constructs training set according to the relevant information mined, designs a kind of dimension reduction model, aiming at the problem of excessive and wrong diagnosis and treatment in the diagnosis and treatment module of tumor disease monitoring mode, and establishes the corresponding control mechanism, so as to optimize the tumor disease monitoring mode. The results show that the clustering accuracy of the high-order simulated annealing neural network algorithm on different data sets (iris, wine, and Pima India diabetes) is 97.33%, 82.11%, and 70.56% and the execution time is 0.75 s, 0.562 s, and 1.092 s, which are better than those of the fast k-medoids algorithm and improved k-medoids clustering algorithm. To sum up, the high-order simulated annealing neural network algorithm can achieve good clustering effect in medical big data mining. The establishment of model M1 can reduce the probability of excessive and wrong medical treatment and improve the effectiveness of diagnosis and treatment module monitoring in tumor disease monitoring mode. With the development of medical informatization, the data related to medical field are growing at an amazing speed, and medical big data appears. The mining and analysis of these data plays an important role in the prediction, monitoring, diagnosis, and treatment of tumor diseases. Therefore, this paper proposes a clustering algorithm of the high-order simulated annealing neural network algorithm and uses this algorithm to extract tumor disease-related big data, constructs training set according to the relevant information mined, designs a kind of dimension reduction model, aiming at the problem of excessive and wrong diagnosis and treatment in the diagnosis and treatment module of tumor disease monitoring mode, and establishes the corresponding control mechanism, so as to optimize the tumor disease monitoring mode. The results show that the clustering accuracy of the high-order simulated annealing neural network algorithm on different data sets (iris, wine, and Pima India diabetes) is 97.33%, 82.11%, and 70.56% and the execution time is 0.75 s, 0.562 s, and 1.092 s, which are better than those of the fast -medoids algorithm and improved -medoids clustering algorithm. To sum up, the high-order simulated annealing neural network algorithm can achieve good clustering effect in medical big data mining. The establishment of model M1 can reduce the probability of excessive and wrong medical treatment and improve the effectiveness of diagnosis and treatment module monitoring in tumor disease monitoring mode. |
| Audience | Academic |
| Author | Zhong, Qixiang Zhang, Lei Yu, Zhenglun |
| AuthorAffiliation | 1 Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China 2 Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China |
| AuthorAffiliation_xml | – name: 1 Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China – name: 2 Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China |
| Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0003-3108-5783 surname: Zhang fullname: Zhang, Lei organization: Department of Breast SurgeryThe First Affiliated Hospital of China Medical UniversityShenyangLiaoning 110001Chinacmu.edu.cn – sequence: 2 givenname: Qixiang orcidid: 0000-0001-6412-3753 surname: Zhong fullname: Zhong, Qixiang organization: Department of Thoracic SurgeryThe First Affiliated Hospital of China Medical UniversityShenyangLiaoning 110001Chinacmu.edu.cn – sequence: 3 givenname: Zhenglun orcidid: 0000-0001-6303-031X surname: Yu fullname: Yu, Zhenglun organization: Department of Thoracic SurgeryThe First Affiliated Hospital of China Medical UniversityShenyangLiaoning 110001Chinacmu.edu.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34712319$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktv1DAURiNURB-wY40ssUGioX7H3iBNH1CktrOgrC1P4mRcHHtwnI7KP-Bf18MMA1SirGzZ557r-8n7xY4P3hTFSwTfIcTYEYYYHQkpOa_Ik2IPcVGVDFdkZ7vnbLfYH4YbCFnFIH5W7BJaIUyQ3Ct-TBfJ9va7TjZ4EFpwPfYhglM7GD0YcBm8TSFa3wHrwaVpbK0dOLYdONVJgzN_a2PwvfEJHGe-AVlybrt5OY2NieCz7UenUz6feG-0W3muzBiz48qkZYhfwcR12Z_m_fPiaavdYF5s1oPiy4ez65Pz8mL68dPJ5KKsGaSpbFnVcEZlSw3RSLY1IbShFZ1h3BraNBo1eJWGhKJqEYeUCVxXrZxJyWYtReSgKNfe0S_03VI7pxbR9jreKQTVKlK1ilRtIs38-zW_GGe9aeo8a37_tiZoq_6-8XauunCrBKMCcZoFbzaCGL6NZkiqt0NtnNPehHFQmEkIpYBIZPT1A_QmjNHnODIlJKuQ4Og31WlnlPVtyH3rlVRNuOSCUgLp45QgjGHCeKZe_TnddqxfPyQDh2ugjmEYomn_lxZ-gNc2_fxcubt1_yp6uy6aW9_opX28xT0Q5ObS |
| CitedBy_id | crossref_primary_10_3389_fncom_2022_1005617 crossref_primary_10_1155_2023_9894742 |
| Cites_doi | 10.1016/j.matpr.2017.12.075 10.1038/s41575-020-0327-3 10.1142/s1793962319500247 10.1007/s11771-017-3631-5 10.3390/brainsci11030352 10.1016/j.neucom.2017.04.060 10.1007/s11227-018-2283-z 10.1007/s12083-019-00852-x 10.1007/s00371-021-02176-5 10.21147/j.issn.1000-9604.2020.01.10 10.1016/j.csbj.2020.08.019 10.1007/s40139-017-0123-0 10.1016/j.engappai.2016.07.006 10.3390/app11020480 10.3390/s17040894 10.1016/j.eswa.2017.10.014 10.1049/joe.2020.0126 10.1016/j.ijrefrig.2020.10.023 10.3390/atmos9040119 10.21928/uhdjst.v1n2y2017.pp31-36 10.1007/s10916-016-0484-7 10.1515/jaiscr-2017-0015 10.1038/s41698-018-0059-9 10.1007/s10729-019-09498-w 10.1007/s42241-021-0033-9 10.21820/23987073.2018.3.22 10.1016/j.ijmedinf.2019.01.013 10.1016/j.is.2021.101804 10.1016/j.cie.2020.106864 10.5306/wjco.v11.i11.918 10.1088/1742-6596/1921/1/012080 10.1155/2021/8888168 10.1007/s42235-021-0068-1 10.1016/j.knosys.2020.106728 10.1016/j.asoc.2020.106452 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Lei Zhang et al. COPYRIGHT 2021 John Wiley & Sons, Inc. Copyright © 2021 Lei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2021 Lei Zhang et al. 2021 |
| Copyright_xml | – notice: Copyright © 2021 Lei Zhang et al. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: Copyright © 2021 Lei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2021 Lei Zhang et al. 2021 |
| DBID | RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2021/8996673 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) ProQuest Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1687-5273 |
| Editor | Ahmed, Syed Hassan |
| Editor_xml | – sequence: 1 givenname: Syed Hassan surname: Ahmed fullname: Ahmed, Syed Hassan |
| ExternalDocumentID | 10.1155/2021/8996673 PMC8548164 A696844304 A683552356 34712319 10_1155_2021_8996673 |
| Genre | Retracted Publication Journal Article |
| GrantInformation_xml | – fundername: the First Hospital Affiliated China Medical University |
| GroupedDBID | --- 188 29F 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABIVO ABJCF ABUWG ACGFO ACIWK ACM ACPRK ADBBV ADRAZ AENEX AFKRA AHMBA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO ICD INH INR IPY ITC K6V K7- KQ8 L6V LK8 M0N M1P M48 M7P M7S MK~ O5R O5S OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO PSYQQ PTHSS Q2X RHU RHW RHX RNS RPM SV3 TR2 TUS UKHRP XH6 ~8M 0R~ 24P 2UF AAMMB AAYXX ACCMX ACUHS AEFGJ AGXDD AIDQK AIDYY C1A CITATION EJD H13 IHR IL9 OVT PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO UZ4 CGR CNMHZ CUY CVCKV CVF ECM EIF NPM 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c504t-f57d6549f4e3a19fc334d474b22fe4dda1d289969087f1604582c7f9b995bf413 |
| IEDL.DBID | RHX |
| ISSN | 1687-5265 1687-5273 |
| IngestDate | Sun Oct 26 01:33:41 EDT 2025 Tue Sep 30 16:55:13 EDT 2025 Thu Oct 02 06:52:47 EDT 2025 Tue Oct 07 06:11:48 EDT 2025 Mon Oct 20 22:47:39 EDT 2025 Mon Oct 20 22:48:32 EDT 2025 Wed Feb 19 02:22:31 EST 2025 Wed Oct 01 02:22:15 EDT 2025 Thu Apr 24 23:03:23 EDT 2025 Sun Jun 02 18:51:55 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2021 Lei Zhang et al. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c504t-f57d6549f4e3a19fc334d474b22fe4dda1d289969087f1604582c7f9b995bf413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Correction/Retraction-3 Academic Editor: Syed Hassan Ahmed |
| ORCID | 0000-0001-6412-3753 0000-0003-3108-5783 0000-0001-6303-031X |
| OpenAccessLink | https://dx.doi.org/10.1155/2021/8996673 |
| PMID | 34712319 |
| PQID | 2589571861 |
| PQPubID | 237303 |
| ParticipantIDs | unpaywall_primary_10_1155_2021_8996673 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8548164 proquest_miscellaneous_2590098018 proquest_journals_2589571861 gale_infotracmisc_A696844304 gale_infotracmisc_A683552356 pubmed_primary_34712319 crossref_primary_10_1155_2021_8996673 crossref_citationtrail_10_1155_2021_8996673 hindawi_primary_10_1155_2021_8996673 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | Computational intelligence and neuroscience |
| PublicationTitleAlternate | Comput Intell Neurosci |
| PublicationYear | 2021 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_1_2 e_1_2_7_14_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 Woźniak M. (e_1_2_7_13_2) 2021 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 Luo W. (e_1_2_7_15_2) 2018; 10 37564532 - Comput Intell Neurosci. 2023 Aug 2;2023:9894742 |
| References_xml | – ident: e_1_2_7_5_2 doi: 10.1016/j.matpr.2017.12.075 – ident: e_1_2_7_19_2 doi: 10.1038/s41575-020-0327-3 – ident: e_1_2_7_6_2 doi: 10.1142/s1793962319500247 – ident: e_1_2_7_10_2 doi: 10.1007/s11771-017-3631-5 – ident: e_1_2_7_12_2 doi: 10.3390/brainsci11030352 – ident: e_1_2_7_14_2 doi: 10.1016/j.neucom.2017.04.060 – ident: e_1_2_7_16_2 doi: 10.1007/s11227-018-2283-z – ident: e_1_2_7_37_2 doi: 10.1007/s12083-019-00852-x – ident: e_1_2_7_17_2 doi: 10.1007/s00371-021-02176-5 – start-page: 1 year: 2021 ident: e_1_2_7_13_2 article-title: Deep neural network correlation learning mechanism for CT brain tumor detection publication-title: Neural Computing and Applications – ident: e_1_2_7_2_2 doi: 10.21147/j.issn.1000-9604.2020.01.10 – ident: e_1_2_7_11_2 doi: 10.1016/j.csbj.2020.08.019 – ident: e_1_2_7_3_2 doi: 10.1007/s40139-017-0123-0 – ident: e_1_2_7_29_2 doi: 10.1016/j.engappai.2016.07.006 – ident: e_1_2_7_22_2 doi: 10.3390/app11020480 – ident: e_1_2_7_9_2 doi: 10.3390/s17040894 – ident: e_1_2_7_27_2 doi: 10.1016/j.eswa.2017.10.014 – ident: e_1_2_7_35_2 doi: 10.1049/joe.2020.0126 – ident: e_1_2_7_7_2 doi: 10.1016/j.ijrefrig.2020.10.023 – ident: e_1_2_7_24_2 doi: 10.3390/atmos9040119 – ident: e_1_2_7_25_2 doi: 10.21928/uhdjst.v1n2y2017.pp31-36 – volume: 10 start-page: 3911 year: 2018 ident: e_1_2_7_15_2 article-title: Applications of liquid biopsy in lung cancer-diagnosis, prognosis prediction, and disease monitoring publication-title: American Journal of Tourism Research – ident: e_1_2_7_32_2 doi: 10.1007/s10916-016-0484-7 – ident: e_1_2_7_8_2 doi: 10.1515/jaiscr-2017-0015 – ident: e_1_2_7_4_2 doi: 10.1038/s41698-018-0059-9 – ident: e_1_2_7_21_2 doi: 10.1007/s10729-019-09498-w – ident: e_1_2_7_26_2 doi: 10.1007/s42241-021-0033-9 – ident: e_1_2_7_1_2 doi: 10.21820/23987073.2018.3.22 – ident: e_1_2_7_30_2 doi: 10.1016/j.ijmedinf.2019.01.013 – ident: e_1_2_7_36_2 doi: 10.1016/j.is.2021.101804 – ident: e_1_2_7_28_2 doi: 10.1016/j.cie.2020.106864 – ident: e_1_2_7_18_2 doi: 10.5306/wjco.v11.i11.918 – ident: e_1_2_7_20_2 doi: 10.1088/1742-6596/1921/1/012080 – ident: e_1_2_7_23_2 doi: 10.1155/2021/8888168 – ident: e_1_2_7_31_2 doi: 10.1007/s42235-021-0068-1 – ident: e_1_2_7_34_2 doi: 10.1016/j.knosys.2020.106728 – ident: e_1_2_7_33_2 doi: 10.1016/j.asoc.2020.106452 – reference: 37564532 - Comput Intell Neurosci. 2023 Aug 2;2023:9894742 |
| SSID | ssj0057502 |
| Score | 2.2212687 |
| SecondaryResourceType | retracted_publication |
| Snippet | With the development of medical informatization, the data related to medical field are growing at an amazing speed, and medical big data appears. The mining... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 8996673 |
| SubjectTerms | Algorithms Big Data Biopsy Brain cancer Care and treatment Chronic illnesses Cluster Analysis Clustering Computer simulation Data mining Diabetes mellitus Diagnosis Digital signal processors Disease Fault diagnosis Genetic algorithms Health services Humans Information systems Medical imaging equipment Medical prognosis Medical treatment Modules Monitoring Monitoring systems Neoplasms - diagnosis Neural networks Neural Networks, Computer Optimization Simulated annealing Telemedicine Tumors |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELXKVgguFVAoKQUZqfSCoubDduIDQlm6VYXEFkEr9RY5cdxdaZMsJauqP4F_zUzipKyg5RqP7EieGb8Zj98Qsi88pqSfGRegROYyHgsXcBwEK4BNkR9cqwzzHV-m4uScfb7gFxtk2r-FwbLK3ie2jlrXOebIDwMeSw6OVPgflz9c7BqFt6t9Cw1lWyvoDy3F2AOyGSAz1ohsjifTr9963wzYpKtCFGBaSAzfl8JzjlkA_zBG-B-Fa4eUddUPZxgkX8__BUX_rqh8tKqW6uZaLRZ_HFfHT8iWxZk06RTjKdkoqmdkO6kgxi5v6AFtKz_blPo2-XUKfqO0DzJpbejZqqyv6FF3d0M7s8f8H51X1N7s0PH8kh6pRtHJ7VM5OgZ5TWESLB9xT5HWk36fl9giDL4n4NMVPn-nSAkCc0y7GnSaLC5h_mZWPifnx5OzTyeubdHg5txjjWt4pAWEmIYVofKlycOQaRaxLAhMwbRWvsaIDkLwODK-wFvZII-MzKTkmYED9AUZVXVVvCRUcSO07ytPK3AscaxMyKTOudEyzHXIHPK-35M0t_zl2EZjkbZxDOcp7mBqd9Ah7wbpZcfbcYfcHm5viuYMs-VgXHmaCMClEKFzccewFDFjoQf_tG-14n-L9CqTWhfxM71VaIe8HYZxASx7q4p6hTISCV89P3bITqdhw0IhwAoA59Ih0ZruDQJIHL4-Us1nLYF4DGEqhMkOORi09N7_373__1-RxyjdJab2yKi5WhWvAao12Rtrf78B6sc4fA priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQXBJRHSkFGKr2g0GRjO_EBoZS2qpDaHuhKvUVOHHcjZbNlm1XZn8C_ZiYvWGiBY-KJncQz9vfZ4xmAbelxrfzUugglUpeLSLqI45CsIDal-OBGp7TecXwij8b887k4X4M-22j3A69upHaUT2o8L99_-7r8iAb_oTF4IYi_-7sRAfcwuAN3cY5SlMThmA_7CYhJWu9DiSZFAeF7F_jfnl6ZnLoh-t6EyPF1cRME_dOT8v6iutTLa12Wv0xTh4_gYYcvWdwqxGNYy6snsBFXyK2nS7bDGo_PZil9A76f4ngx7Q5ispllZ4vpbM722z0b1po7rfuxomLdjg7bKy7Yvq41O_h5RI7tobxhWAm5jbinFM6TfSmmlBoM78c4lms69s4oFAjWcdL6nrO4vMD668n0KYwPD84-HbldagY3Ex6vXStCI5FaWp4H2lc2CwJueMjT0cjm3BjtG2JySL2j0PqSdmNHWWhVqpRILU6cz2C9mlX5C2BaWGl8X3tG44ASRdoGXJlMWKOCzATcgXd9nyRZF7ec0meUScNfhEioB5OuBx14O0hftvE6bpHbou5NSLGwtgyNKktiiXgUmbmQtxQrGXEeePhO251W_KuRXmWSXrOTkYiUQEQgfQfeDMXUALm7VflsQTKKAr16fuTA81bDhoYChBMIypUD4YruDQIUMHy1pComTeDwCOkp0mMHdgYt_ev7b_7fZ76EB3TZLkxtwXo9X-SvEKrV6evGCn8AvBU1MQ priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXKVggufJWPQEFGKr2gbJON7cTilNJWFRJbBF2pCFDkxHF3xW5StYmqcuIncOP_8UuYSZwtCxQQt0Qe2Yk1Hr9nj58JWRMeU9JPjQtQInUZj4QLOA7ICmBT1AfXKsX1jpdDsTtiLw74wRJ51p2F0SgRXyp90h8jJz2dNNHa9uvJRgZsEei6vxEhTg-BB2pziSwLDkC8R5ZHw1fxW6RYAoYOCr-fP4dBl_bO-UIVCxOSDcuXbeO_g52_Zk9eqYsjdXaqptMfpqad6-R991NtRsrHfl2l_ezTT3qP__nXN8g1C1lp3PrYTbKUF7fISlwAXZ-d0XXaJJE2q_Mr5Ou713nVKEDrD3QPwtHMnvOkpaH79aw8plvtlhBtowkuK9JJQe2GEd2cHNItVSm6fX4Cj26CvaZQCWalfPv8ZQ_1QumbyQzvHoOSGCYLhefqKWqNQC3DNrmdxtNDaKEaz26T0c72_vNd19794GbcY5VreKgFcFfD8kD50mRBwDQLWToYmJxprXyNVBG4fRQaX-B27yALjUyl5KmBmfkO6RVlkd8jVHEjtO8rTyuIWFGkTMCkzrjRMsh0wBzytHOAJLPC6Hg_xzRpCBLnCfZ9YvveIU_m1ketIMgFdqvoSwnGCex3GLVZEgsAvED9ubigWIqIscCDb1qznvC3Rjr_TDpvSQY8khwgh_Ad8nhejA1gPl2RlzXaSFSS9fzIIXdbd543FABeAdQvHRIuOPrcABXJF0uKybhRJo-A_wL_dsj6fEj88fvv_6vhA3IVX9u1r1XSq47r_CGgwSp9ZEf9d146WiA priority: 102 providerName: Unpaywall |
| Title | Optimization of Tumor Disease Monitoring in Medical Big Data Environment Based on High-Order Simulated Annealing Neural Network Algorithm |
| URI | https://dx.doi.org/10.1155/2021/8996673 https://www.ncbi.nlm.nih.gov/pubmed/34712319 https://www.proquest.com/docview/2589571861 https://www.proquest.com/docview/2590098018 https://pubmed.ncbi.nlm.nih.gov/PMC8548164 https://downloads.hindawi.com/journals/cin/2021/8996673.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2021 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070625 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-5273 dateEnd: 20230628 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 7X7 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1687-5273 dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: M48 dateStart: 20070101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELboEIIXBAxGYFRGGntBEXFjO_ZjytpVSOumsUrhKXLieK3UptPWatpP2L_eXZMGyhjwEinxxU50d_b32eczIXsy4EazzPkAJTKfCyV9wHFAVgCbYn5wazKc7zgaysGIf0tEUidJurq_hA-jHdJz9kUhLo_CFmkpiZFbp4Nk3eEC4KhCCyX4C2Z7X8e3__buxshT979Pxsh8ryd_wpf3wySfLssLc3NtptNfxqD-C_K8Bo80rrT9kjwqyldkOy6BOM9u6D5dhXOu5sm3ye0xdAazepclnTt6tpzNL-lBtSBDK1_GST06KWm9XEO7k3N6YBaG9n7uf6NdkLcUKsGYEP8Yc3XS75MZnvsFz2PoqA3uaaeY5wPqGFaB5TSenkP9i_HsNRn1e2dfB3597oKfi4AvfCciK4E3Ol6EhmmXhyG3POJZp-MKbq1hFmka8GoVOSZxqbWTR05nWovMwaj4hmyV87J4S6gRTlrGTGAN9BZKGRdybXPhrA5zG3KPfF7rJM3rpOR4NsY0XZETIVLUYFpr0COfGumLKhnHA3K7qN4UfRRqy8Fj8jSWADaBdgv5QLGWivMwgG_aq63iX42sTSat_f4q7QilBQz3knnkY1OMDWAsW1nMlyijMYtrwJRHdioLaxoKASsA4tYeiTZsrxHAbOCbJeVkvMoKroB7Avf1yH5jpX_9_nf_95vvyTO8rWaddsnW4nJZfAActsjapBUlEVxV_7BNHnd7w5NTuDtMGFyPuGqvvBRKRsOT-Mcd99UupA |
| linkProvider | Hindawi Publishing |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LctMwFNWUdJiy4VUegQJips2GcRvbkmwvWKRNS0rbdEE6dGdky2oyJHZoncmEP-Bn-BV-iXttOSVAy6oLtpEiaeR7j-5LR4SsiyaTgR1pC0yJyGLcFxbYceCsgG2K_OBKRhjvOOqKzgl7f8pPl8j36i4MllVWmFgAtcpijJFvOdwPOACpsE0F5UEym4J_dvF2vw0fc8Nx9nZ7Ox3LPCFgxbzJcktzTwlwgTRLXGkHOnZdppjHIsfRCVNK2go9DnARfU_bArOGTuzpIAoCHmkAeBi3Mf5i4StVmM01T3bcIssg57ZTI8s7H9vvOhX2g-1TVjkKUF0knq9K7TnHKIO9hXMJz104BM1RcLuPTvh08DdT98-KzZVJOpazqRwOfzkO9-6RH9VGllUwnzcnebQZf_2NY_L_2en75K6xzGmrVKUHZClJH5LVVirzbDSjDVrUyhZJiFXy7RiQdmSusNJM095klJ3TdpntoiVQYsSUDlJqcmF0e3BG2zKXdPfyciHdhv6KwiBYcGMdIxEq_TAY4aNq8HsLTkGJhAEUSVRgjG5ZtU9bwzMYP--PHpGTG9mnx6SWZmnylFDJtVC2LZtKAhT7vtQuC1TMtQrcWLmsTt5UUhbGhvEdHx4ZhoXnx3mIMhkamayTjXnvccl0ckW_NRTYEAEQRosBjuKwJcCS547LxRXNgfAZc5uwpnUj5_-apJLN0IDqRXgpmHXyet6ME2ChYJpkE-wTIEVu0_br5EmpM_OJXDDEwJ0J6sRb0KZ5B6RaX2xJB_2Cct0Hx94WsPrGXO-uXf-z69f_iqx0ekeH4eF-9-A5uYP_LMN6a6SWn0-SF2Do5tFLgy6UfLppzfsJ-G2xiw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NctMwENaUdvi58Fd-AgXETNsL4ya2Jdk6MEzaNKQUWmZoh96MbFlNhsQOrTOZ8Aa8Eq_Cy7AbyykBWk49cI2UlUbe_bS7Wn0iZFU0mJJubBxwJWKH8VA44MdBsAK-KfKDaxVjvuPdnugcsjdH_GiBfK_uwmBZZYWJU6DWeYI58rrHQ8kBSIVbN7Ys4n2r_Wr4xcEXpPCktXpOo1SR3XQyhvDt9OVOC771mue1tw-2Oo59YcBJeIMVjuGBFhAhGZb6ypUm8X2mWcBizzMp01q5GgMSiCDDwLgCDxW9JDAylpLHBvAf5F4hS6EIBIDC0tbH1utOtQ-AH1RWPAowYyShr8ruOceMg1tHwSLw5zZEuy1c7WJAPu79ze39s3rz-igbqslY9fu_bI3tW-RHtahlRcznjVERbyRff-Ob_D9X_Ta5aT122ixN7A5ZSLO7ZLmZqSIfTOg6ndbQTg8nlsm3fUDggb3aSnNDD0aD_IS2ylMwWgIoZlJpL6P2jIxu9o5pSxWKbp9dOqSb0F9TEIKFOM4-EqTSD70BPrYGvzdhd1RIJECRXAVk7JXV_LTZPwb5RXdwjxxeyqLcJ4tZnqUPCVXcCO26qqEVQHQYKuMzqRNutPQT7bMaeVFpXJRYJnh8kKQfTSNCziPUz8jqZ42szXoPSwaUc_qtoPJGCIwgLQGYSqKmAA-fez4X5zRLETLmN2BOq1bn_zVIpaeRBdvT6ExJa-T5rBkHwALCLM1H2EcidW7DDWvkQWk_s4F8cNAgzJE1EsxZ1qwDUrDPt2S97pSKPYSA3xUw-_WZDV44_0cXz_8ZuQbmFb3d2dt9TG7gH8ts3wpZLE5G6RPwf4v4qQUaSj5dtpX9BCTBulM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXKVggufJWPQEFGKr2gbJON7cTilNJWFRJbBF2pCFDkxHF3xW5StYmqcuIncOP_8UuYSZwtCxQQt0Qe2Yk1Hr9nj58JWRMeU9JPjQtQInUZj4QLOA7ICmBT1AfXKsX1jpdDsTtiLw74wRJ51p2F0SgRXyp90h8jJz2dNNHa9uvJRgZsEei6vxEhTg-BB2pziSwLDkC8R5ZHw1fxW6RYAoYOCr-fP4dBl_bO-UIVCxOSDcuXbeO_g52_Zk9eqYsjdXaqptMfpqad6-R991NtRsrHfl2l_ezTT3qP__nXN8g1C1lp3PrYTbKUF7fISlwAXZ-d0XXaJJE2q_Mr5Ou713nVKEDrD3QPwtHMnvOkpaH79aw8plvtlhBtowkuK9JJQe2GEd2cHNItVSm6fX4Cj26CvaZQCWalfPv8ZQ_1QumbyQzvHoOSGCYLhefqKWqNQC3DNrmdxtNDaKEaz26T0c72_vNd19794GbcY5VreKgFcFfD8kD50mRBwDQLWToYmJxprXyNVBG4fRQaX-B27yALjUyl5KmBmfkO6RVlkd8jVHEjtO8rTyuIWFGkTMCkzrjRMsh0wBzytHOAJLPC6Hg_xzRpCBLnCfZ9YvveIU_m1ketIMgFdqvoSwnGCex3GLVZEgsAvED9ubigWIqIscCDb1qznvC3Rjr_TDpvSQY8khwgh_Ad8nhejA1gPl2RlzXaSFSS9fzIIXdbd543FABeAdQvHRIuOPrcABXJF0uKybhRJo-A_wL_dsj6fEj88fvv_6vhA3IVX9u1r1XSq47r_CGgwSp9ZEf9d146WiA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Tumor+Disease+Monitoring+in+Medical+Big+Data+Environment+Based+on+High-Order+Simulated+Annealing+Neural+Network+Algorithm&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Zhang%2C+Lei&rft.au=Zhong%2C+Qixiang&rft.au=Yu%2C+Zhenglun&rft.date=2021&rft.pub=Hindawi&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F8996673&rft.externalDocID=10_1155_2021_8996673 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |