Facial Expression Recognition with LBP and ORB Features
Emotion plays an important role in communication. For human–computer interaction, facial expression recognition has become an indispensable part. Recently, deep neural networks (DNNs) are widely used in this field and they overcome the limitations of conventional approaches. However, application of...
Saved in:
| Published in | Computational intelligence and neuroscience Vol. 2021; no. 1; p. 8828245 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Hindawi
2021
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5265 1687-5273 1687-5273 |
| DOI | 10.1155/2021/8828245 |
Cover
| Abstract | Emotion plays an important role in communication. For human–computer interaction, facial expression recognition has become an indispensable part. Recently, deep neural networks (DNNs) are widely used in this field and they overcome the limitations of conventional approaches. However, application of DNNs is very limited due to excessive hardware specifications requirement. Considering low hardware specifications used in real-life conditions, to gain better results without DNNs, in this paper, we propose an algorithm with the combination of the oriented FAST and rotated BRIEF (ORB) features and Local Binary Patterns (LBP) features extracted from facial expression. First of all, every image is passed through face detection algorithm to extract more effective features. Second, in order to increase computational speed, the ORB and LBP features are extracted from the face region; specifically, region division is innovatively employed in the traditional ORB to avoid the concentration of the features. The features are invariant to scale and grayscale as well as rotation changes. Finally, the combined features are classified by Support Vector Machine (SVM). The proposed method is evaluated on several challenging databases such as Cohn-Kanade database (CK+), Japanese Female Facial Expressions database (JAFFE), and MMI database; experimental results of seven emotion state (neutral, joy, sadness, surprise, anger, fear, and disgust) show that the proposed framework is effective and accurate. |
|---|---|
| AbstractList | Emotion plays an important role in communication. For human–computer interaction, facial expression recognition has become an indispensable part. Recently, deep neural networks (DNNs) are widely used in this field and they overcome the limitations of conventional approaches. However, application of DNNs is very limited due to excessive hardware specifications requirement. Considering low hardware specifications used in real‐life conditions, to gain better results without DNNs, in this paper, we propose an algorithm with the combination of the oriented FAST and rotated BRIEF (ORB) features and Local Binary Patterns (LBP) features extracted from facial expression. First of all, every image is passed through face detection algorithm to extract more effective features. Second, in order to increase computational speed, the ORB and LBP features are extracted from the face region; specifically, region division is innovatively employed in the traditional ORB to avoid the concentration of the features. The features are invariant to scale and grayscale as well as rotation changes. Finally, the combined features are classified by Support Vector Machine (SVM). The proposed method is evaluated on several challenging databases such as Cohn‐Kanade database (CK+), Japanese Female Facial Expressions database (JAFFE), and MMI database; experimental results of seven emotion state (neutral, joy, sadness, surprise, anger, fear, and disgust) show that the proposed framework is effective and accurate. Emotion plays an important role in communication. For human-computer interaction, facial expression recognition has become an indispensable part. Recently, deep neural networks (DNNs) are widely used in this field and they overcome the limitations of conventional approaches. However, application of DNNs is very limited due to excessive hardware specifications requirement. Considering low hardware specifications used in real-life conditions, to gain better results without DNNs, in this paper, we propose an algorithm with the combination of the oriented FAST and rotated BRIEF (ORB) features and Local Binary Patterns (LBP) features extracted from facial expression. First of all, every image is passed through face detection algorithm to extract more effective features. Second, in order to increase computational speed, the ORB and LBP features are extracted from the face region; specifically, region division is innovatively employed in the traditional ORB to avoid the concentration of the features. The features are invariant to scale and grayscale as well as rotation changes. Finally, the combined features are classified by Support Vector Machine (SVM). The proposed method is evaluated on several challenging databases such as Cohn-Kanade database (CK+), Japanese Female Facial Expressions database (JAFFE), and MMI database; experimental results of seven emotion state (neutral, joy, sadness, surprise, anger, fear, and disgust) show that the proposed framework is effective and accurate.Emotion plays an important role in communication. For human-computer interaction, facial expression recognition has become an indispensable part. Recently, deep neural networks (DNNs) are widely used in this field and they overcome the limitations of conventional approaches. However, application of DNNs is very limited due to excessive hardware specifications requirement. Considering low hardware specifications used in real-life conditions, to gain better results without DNNs, in this paper, we propose an algorithm with the combination of the oriented FAST and rotated BRIEF (ORB) features and Local Binary Patterns (LBP) features extracted from facial expression. First of all, every image is passed through face detection algorithm to extract more effective features. Second, in order to increase computational speed, the ORB and LBP features are extracted from the face region; specifically, region division is innovatively employed in the traditional ORB to avoid the concentration of the features. The features are invariant to scale and grayscale as well as rotation changes. Finally, the combined features are classified by Support Vector Machine (SVM). The proposed method is evaluated on several challenging databases such as Cohn-Kanade database (CK+), Japanese Female Facial Expressions database (JAFFE), and MMI database; experimental results of seven emotion state (neutral, joy, sadness, surprise, anger, fear, and disgust) show that the proposed framework is effective and accurate. |
| Audience | Academic |
| Author | Gao, Zhenxing Niu, Ben Guo, Bingbing |
| AuthorAffiliation | 3 School of Psychology, South China Normal University, Guangzhou 510631, China 1 School of Electronic and Information Engineering, Jinling Institute of Technology, Nanjing 211169, China 2 College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
| AuthorAffiliation_xml | – name: 3 School of Psychology, South China Normal University, Guangzhou 510631, China – name: 1 School of Electronic and Information Engineering, Jinling Institute of Technology, Nanjing 211169, China – name: 2 College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
| Author_xml | – sequence: 1 givenname: Ben orcidid: 0000-0001-6802-1826 surname: Niu fullname: Niu, Ben organization: School of Electronic and Information EngineeringJinling Institute of TechnologyNanjing 211169Chinajit.edu.cn – sequence: 2 givenname: Zhenxing surname: Gao fullname: Gao, Zhenxing organization: College of Civil AviationNanjing University of Aeronautics and AstronauticsNanjing 210016Chinanuaa.edu.cn – sequence: 3 givenname: Bingbing surname: Guo fullname: Guo, Bingbing organization: School of PsychologySouth China Normal UniversityGuangzhou 510631Chinascnu.edu.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33505453$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkV1rFDEUhoNU7IfeeS0D3gg6Nl8nmdwU2tJVYaFS9DpkMpndlNlkncy49t83011bLVivciDPeXPOk0O0F2JwCL0m-CMhAMcUU3JcVbSiHJ6hAyIqWQKVbO--FrCPDlO6xhgkYPoC7TMGGDiwAyRnxnrTFRe_1r1LycdQXDkbF8EPU73xw7KYn30tTGiKy6uzYubMMGbyJXremi65V7vzCH2fXXw7_1zOLz99OT-dlxYwH8qWKQZtSyUBybjjRBkGlLQKC0solzXmtKkllgqEVY00kilhhaopY66ugB2hcps7hrW52Ziu0-ver0x_ownWkwA9CdA7AZk_2fLrsV65xrow9OahJxqv_74JfqkX8aeWFQGmcA54twvo44_RpUGvfLKu60xwcUya8ooKIUCxjL59hF7HsQ9Zx0RhQoFy8UAtTOe0D23M79opVJ8KJSTDTOCnqYrl0fjdcG_-3O5-rd__mQG6BWwfU-pdq60fzPSVOc53_3L24VHTfxS_3-JLHxqz8U_Tt8mnxvU |
| CitedBy_id | crossref_primary_10_1038_s41598_022_11173_0 crossref_primary_10_1007_s42979_023_02447_z crossref_primary_10_3390_sym15040956 crossref_primary_10_1007_s00500_024_09668_1 crossref_primary_10_2339_politeknik_992720 crossref_primary_10_3390_ijerph19053085 crossref_primary_10_1111_exsy_13517 crossref_primary_10_3390_s21051870 crossref_primary_10_3390_info15070384 crossref_primary_10_1016_j_asoc_2023_110530 crossref_primary_10_1142_S0218001422520280 crossref_primary_10_1155_2023_2457898 crossref_primary_10_15622_ia_21_6_2 crossref_primary_10_32604_cmes_2022_022312 crossref_primary_10_3390_app122312134 crossref_primary_10_3390_s23094204 crossref_primary_10_1007_s00530_022_00984_w crossref_primary_10_1007_s00521_023_08498_w crossref_primary_10_26634_jip_9_2_18968 crossref_primary_10_1109_ACCESS_2022_3188730 crossref_primary_10_3390_diagnostics14222497 crossref_primary_10_3390_s24206748 crossref_primary_10_1007_s11276_023_03323_7 crossref_primary_10_1007_s00521_024_10938_0 crossref_primary_10_3233_JIFS_230524 crossref_primary_10_3390_s21093046 crossref_primary_10_1016_j_neucom_2023_01_027 crossref_primary_10_1007_s10489_023_05052_y crossref_primary_10_1007_s12652_023_04627_4 crossref_primary_10_1049_tje2_70060 crossref_primary_10_1016_j_ijleo_2022_169053 crossref_primary_10_1049_ipr2_12817 crossref_primary_10_1007_s11042_025_20698_1 crossref_primary_10_1007_s40747_023_01100_9 crossref_primary_10_1016_j_imavis_2023_104677 crossref_primary_10_7717_peerj_cs_2272 |
| Cites_doi | 10.1109/CVPRW.2010.5543262 10.1109/ICPR.2018.8545596 10.1109/tip.2017.2726010 10.1109/tip.2020.2972114 10.1109/tmm.2020.2966858 10.1007/s11760-019-01547-9 10.1109/tifs.2020.3007327 10.1007/s11042-018-6040-3 10.1109/tpami.2002.1017623 10.1109/ICSIPA.2011.6144162 10.1371/journal.pone.0032321 10.1016/j.imavis.2008.08.005 10.1049/iet-ipr.2015.0519 10.1145/1961189.1961199 10.3390/s17040712 10.1007/s11042-016-3418-y 10.1109/CVPR.2017.605 10.1016/0031-3203(95)00067-4 10.1007/s00500-017-2634-3 10.1016/j.jvcir.2018.05.024 10.1049/iet-ipr.2018.6235 10.1007/s00521-019-04138-4 10.1016/j.patcog.2019.106966 10.1023/b:visi.0000013087.49260.fb 10.1109/taffc.2016.2593719 10.1109/CVPR.2014.241 10.1016/j.patrec.2020.01.016 10.1145/2502081.2502115 10.1109/ICPR.2000.903698 10.1109/CVPR.2016.369 10.1007/978-3-540-73007-1_84 10.1155/2019/3587036 10.1049/iet-ipr.2018.5683 10.1109/ICCV.2011.6126544 10.1007/978-3-540-73105-4_3 10.1016/j.image.2019.01.002 10.1109/access.2018.2858278 10.1016/j.neucom.2018.12.037 10.1155/2008/542918 10.1109/CVPR42600.2020.00693 10.1016/j.ridd.2014.10.015 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Ben Niu et al. COPYRIGHT 2021 John Wiley & Sons, Inc. Copyright © 2021 Ben Niu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2021 Ben Niu et al. 2021 |
| Copyright_xml | – notice: Copyright © 2021 Ben Niu et al. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: Copyright © 2021 Ben Niu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2021 Ben Niu et al. 2021 |
| DBID | RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2021/8828245 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College Middle East & Africa Database ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection (via ProQuest) Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1687-5273 |
| Editor | Hernández-Pérez, José Alfredo |
| Editor_xml | – sequence: 1 givenname: José Alfredo surname: Hernández-Pérez fullname: Hernández-Pérez, José Alfredo |
| ExternalDocumentID | 10.1155/2021/8828245 PMC7815390 A696730360 A683539490 33505453 10_1155_2021_8828245 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31700993; U1733122 – fundername: Jinling Institute of Technology grantid: jit-b-201704 |
| GroupedDBID | --- 188 29F 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABIVO ABJCF ABUWG ACGFO ACIWK ACM ACPRK ADBBV ADRAZ AENEX AFKRA AHMBA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO ICD INH INR IPY ITC K6V K7- KQ8 L6V LK8 M0N M1P M48 M7P M7S MK~ O5R O5S OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO PSYQQ PTHSS Q2X RHU RHW RHX RNS RPM SV3 TR2 TUS UKHRP XH6 ~8M 0R~ 24P 2UF AAMMB AAYXX ACCMX ACUHS AEFGJ AGXDD AIDQK AIDYY C1A CITATION EJD H13 IHR IL9 OVT PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO UZ4 CGR CNMHZ CUY CVCKV CVF ECM EIF NPM 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c504t-f3935ff2715734e419a3521f906c1247b042db707956c9d7a7396c69b233eb853 |
| IEDL.DBID | M48 |
| ISSN | 1687-5265 1687-5273 |
| IngestDate | Sun Oct 26 03:47:49 EDT 2025 Tue Sep 30 16:19:55 EDT 2025 Sat Sep 27 19:34:31 EDT 2025 Tue Oct 07 05:56:22 EDT 2025 Mon Oct 20 22:47:37 EDT 2025 Mon Oct 20 22:48:31 EDT 2025 Wed Feb 19 02:04:17 EST 2025 Wed Oct 01 02:22:13 EDT 2025 Thu Apr 24 22:59:41 EDT 2025 Sun Jun 02 18:51:55 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2021 Ben Niu et al. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c504t-f3935ff2715734e419a3521f906c1247b042db707956c9d7a7396c69b233eb853 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: José Alfredo Hernández-Pérez |
| ORCID | 0000-0001-6802-1826 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2021/8828245 |
| PMID | 33505453 |
| PQID | 2480125246 |
| PQPubID | 237303 |
| ParticipantIDs | unpaywall_primary_10_1155_2021_8828245 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7815390 proquest_miscellaneous_2482666593 proquest_journals_2480125246 gale_infotracmisc_A696730360 gale_infotracmisc_A683539490 pubmed_primary_33505453 crossref_citationtrail_10_1155_2021_8828245 crossref_primary_10_1155_2021_8828245 hindawi_primary_10_1155_2021_8828245 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | Computational intelligence and neuroscience |
| PublicationTitleAlternate | Comput Intell Neurosci |
| PublicationYear | 2021 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | e_1_2_10_23_2 e_1_2_10_44_2 e_1_2_10_21_2 e_1_2_10_42_2 e_1_2_10_40_2 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_39_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_37_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_35_2 e_1_2_10_11_2 e_1_2_10_8_2 e_1_2_10_32_2 King D. E. (e_1_2_10_34_2) 2009; 10 e_1_2_10_30_2 e_1_2_10_29_2 e_1_2_10_27_2 e_1_2_10_48_2 e_1_2_10_25_2 e_1_2_10_46_2 e_1_2_10_22_2 e_1_2_10_45_2 e_1_2_10_20_2 e_1_2_10_43_2 e_1_2_10_41_2 Mehrabian A. (e_1_2_10_1_2) 1968; 2 e_1_2_10_19_2 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_36_2 e_1_2_10_9_2 e_1_2_10_12_2 e_1_2_10_33_2 e_1_2_10_10_2 e_1_2_10_31_2 e_1_2_10_28_2 e_1_2_10_26_2 e_1_2_10_49_2 e_1_2_10_24_2 e_1_2_10_47_2 |
| References_xml | – ident: e_1_2_10_43_2 doi: 10.1109/CVPRW.2010.5543262 – volume: 2 start-page: 53 year: 1968 ident: e_1_2_10_1_2 article-title: Communication without words publication-title: Psychology Today – ident: e_1_2_10_29_2 doi: 10.1109/ICPR.2018.8545596 – ident: e_1_2_10_20_2 doi: 10.1109/tip.2017.2726010 – ident: e_1_2_10_16_2 doi: 10.1109/tip.2020.2972114 – ident: e_1_2_10_12_2 – ident: e_1_2_10_32_2 doi: 10.1109/tmm.2020.2966858 – ident: e_1_2_10_27_2 doi: 10.1007/s11760-019-01547-9 – ident: e_1_2_10_15_2 doi: 10.1109/tifs.2020.3007327 – ident: e_1_2_10_42_2 – ident: e_1_2_10_23_2 doi: 10.1007/s11042-018-6040-3 – ident: e_1_2_10_37_2 doi: 10.1109/tpami.2002.1017623 – ident: e_1_2_10_7_2 doi: 10.1109/ICSIPA.2011.6144162 – ident: e_1_2_10_41_2 – ident: e_1_2_10_2_2 doi: 10.1371/journal.pone.0032321 – ident: e_1_2_10_39_2 doi: 10.1016/j.imavis.2008.08.005 – ident: e_1_2_10_24_2 doi: 10.1049/iet-ipr.2015.0519 – ident: e_1_2_10_46_2 doi: 10.1145/1961189.1961199 – ident: e_1_2_10_21_2 doi: 10.3390/s17040712 – ident: e_1_2_10_22_2 doi: 10.1007/s11042-016-3418-y – ident: e_1_2_10_44_2 – ident: e_1_2_10_13_2 doi: 10.1109/CVPR.2017.605 – ident: e_1_2_10_36_2 doi: 10.1016/0031-3203(95)00067-4 – ident: e_1_2_10_18_2 doi: 10.1007/s00500-017-2634-3 – ident: e_1_2_10_25_2 doi: 10.1016/j.jvcir.2018.05.024 – ident: e_1_2_10_26_2 doi: 10.1049/iet-ipr.2018.6235 – ident: e_1_2_10_28_2 doi: 10.1007/s00521-019-04138-4 – ident: e_1_2_10_30_2 doi: 10.1016/j.patcog.2019.106966 – ident: e_1_2_10_11_2 doi: 10.1023/b:visi.0000013087.49260.fb – ident: e_1_2_10_19_2 doi: 10.1109/taffc.2016.2593719 – ident: e_1_2_10_35_2 doi: 10.1109/CVPR.2014.241 – ident: e_1_2_10_31_2 doi: 10.1016/j.patrec.2020.01.016 – ident: e_1_2_10_9_2 doi: 10.1145/2502081.2502115 – ident: e_1_2_10_38_2 doi: 10.1109/ICPR.2000.903698 – ident: e_1_2_10_45_2 – ident: e_1_2_10_10_2 doi: 10.1109/CVPR.2016.369 – ident: e_1_2_10_3_2 doi: 10.1007/978-3-540-73007-1_84 – ident: e_1_2_10_5_2 – ident: e_1_2_10_47_2 doi: 10.1155/2019/3587036 – ident: e_1_2_10_17_2 doi: 10.1049/iet-ipr.2018.5683 – ident: e_1_2_10_40_2 doi: 10.1109/ICCV.2011.6126544 – ident: e_1_2_10_4_2 doi: 10.1007/978-3-540-73105-4_3 – ident: e_1_2_10_48_2 doi: 10.1016/j.image.2019.01.002 – ident: e_1_2_10_14_2 doi: 10.1109/access.2018.2858278 – volume: 10 start-page: 1755 year: 2009 ident: e_1_2_10_34_2 article-title: Dlib-ml: a machine learning toolkit publication-title: Journal of Machine Learning Research – ident: e_1_2_10_49_2 doi: 10.1016/j.neucom.2018.12.037 – ident: e_1_2_10_8_2 doi: 10.1155/2008/542918 – ident: e_1_2_10_33_2 doi: 10.1109/CVPR42600.2020.00693 – ident: e_1_2_10_6_2 doi: 10.1016/j.ridd.2014.10.015 |
| SSID | ssj0057502 |
| Score | 2.5279474 |
| Snippet | Emotion plays an important role in communication. For human–computer interaction, facial expression recognition has become an indispensable part. Recently,... Emotion plays an important role in communication. For human-computer interaction, facial expression recognition has become an indispensable part. Recently,... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 8828245 |
| SubjectTerms | Algorithms Artificial neural networks Cable television broadcasting industry Computer applications Deep learning Emotions Face Face recognition Facial Expression Facial Recognition Feature extraction Female Hardware Humans Methods Neural networks Neural Networks, Computer Pattern recognition Principal components analysis Specifications Support vector machines |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYAqSoXVEoLSwEZiXJBUZP4FR-XitWqAlqtirS3yHEcgbQYBLsC_n1nEidiefaWZCZx_BjPN-PxmJC9OCljmbkyypjLIs6NiwAn2wgMIF0AgAajAjcKn5zK4Rn_NRbjkCTp9vkSPmg7NM-THwAEs5SLRbKYSYzcGg3H7YQLgKMJLZQgL5jtvY1vf_LunOYJ8--Hc7R87y5ewpfPwyQ_zvy1ebgzk8kjHTT4RFYCeKT9prdXyYLzn8la34PhfPlA92kdzln7ydeIGhj0htOj-xDq6umoDRaCa_S_0uPDP9T4kv4eHVLEgjPg_ELOBkd_fw6jcEpCZEXMp1GFm2urKlWJUIw7nmgDoCqpdCwtKG9VgFiWBSbCE9LqUhnFtLRSFyljrgBt_ZUs-SvvNgg18KjQlunSpNziimCaGJkJZ3UFlmLRIwdtC-Y2pBDHkywmeW1KCJFje-ehvXvke8d93aTOeIVvCzsjR4mCr1kY3zbvS4CGTHMdv0LWUqH2BfJe6MP3Cmk7OA9SepunmDsnFSmXPbLbkbEAjDzz7mpW8wCGkUKzHllvxkNXEGOAH7kAipobKR0D5u6ep_iL8zqHt8pA1WDl9rsx9eb_b_5fNb-RZbxtfERbZGl6M3PbgJqmxU4tM_8AIJEHrA priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGJwQvCBiMwkBGGntB0RJ_xg8ItajVhKBMFZP2FjmOo00qboFWY_89d4kTNsHGW5Q7xYl95_vd5XxHyH6aVanKfZXk3OeJENYngJNdAg6QKQFAg1OBB4U_z9TRifh4Kk-3yKw7C4Npld2e2GzU1dJhjPyQYZ0TJplQ71ffE-wahX9XuxYaNrZWqN41JcbukG2GlbEGZHs8mR3Pu70ZsEmbhahAtbAwfJcKLyVGAbJDwJs5w6NNV4xU3KrvnqGTfHH-Lyj6d0blvU1Y2csLu1hcMVfTh-RBxJl01ArGI7Llw2OyMwrgY3-7pAe0yfxsQuo7RE8tBs7p5FfMig103uUVwTWGaumn8TG1oaJf5mOKsHEDnE_IyXTy9cNREhsqJE6mYp3UeA63rpnOpObCi8xYwF9ZbVLlwM7rEjS4KrFmnlTOVNpqbpRTpmSc-xIM-1MyCMvgnxFq4VZpHDeVZcLhz0OWWZVL70wNTmU5JG-7GSxcrDaOTS8WReN1SFngfBdxvofkTc-9aqts3MC3h4tRoPLB0xyogitGClAkN8KkN5CN0miogbwf1_B_g3QLXESF_ln8Eb8hed2TcQBMUgt-uWl4AO4oafiQ7Lby0A_EOUBNIYGir0lKz4Blvq9TwvlZU-5b52CV8OMOepm69f2f3_7-L8h95G7DSHtksP6x8S8BWK3LV1FbfgPSsxhY priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGJwQvfI2PwkBGGntB6ZL4KxZPHVo1IRjTRKUhIUW242gTJa1YozH-eu4SJ1BggHhLcqdcbJ_t3885nwnZipMilpkvooz5LOLc-AhwsouAAGkLABpIBW4UfnMg96f81bE4XiMvur0wBaaIn5vibHSCnPT8tBmtQ72e7Thgi0DXkx0AhlnKxWhRlFfIuhRgYEDWpweH4_dIsSR0HUz8_v1asS7sXYiVV6xMSGFYvhqM_w52_ho9ea2uFubi3MxmP0xNk5vkQ1eoNiLl46he2pH7-lO-x_8s9S1yI0BWOm597DZZ89UdsjGugK5_uqDbtAkibVbnN4iaGFyDp3tfQoBtRY-6ECW4xlVf-nr3kJqqoG-Pdiki0Bo075LpZO_dy_0onM0QORHzZVTilt6yTFUiFOOeJ9oAlEtKHUsHkEFZGAwKi-n3hHS6UEYxLZ3UNmXMW8AI98igmlf-AaEGHlntmC5Myh3-h0wTIzPhnS6Bn9ohed41UO5C4nI8P2OWNwRGiBzrJg91MyTPeu1Fm7DjEr1NbOsc-zG8zUGvcvlYAiBlmuv4ErGWCud8EG-Flvqbkc5_8q418xQz9qQi5XJInvZiNIDxbpWf140OICdwazYk91t36w0xBqiVC5CoFUfsFTBj-KqkOj1pMoerDCY4LNx277J__P6H_6r4iFzH23ZtapMMlp9r_xjQ2tI-Cb3yG1YEM7Y priority: 102 providerName: Unpaywall |
| Title | Facial Expression Recognition with LBP and ORB Features |
| URI | https://dx.doi.org/10.1155/2021/8828245 https://www.ncbi.nlm.nih.gov/pubmed/33505453 https://www.proquest.com/docview/2480125246 https://www.proquest.com/docview/2482666593 https://pubmed.ncbi.nlm.nih.gov/PMC7815390 https://downloads.hindawi.com/journals/cin/2021/8828245.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2021 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070625 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-5273 dateEnd: 20230628 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 7X7 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1687-5273 dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: M48 dateStart: 20070101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9NADD_tQwheEGN8FEZ1SGMvKCzJfeUeEGqndhVipaqoFJ6iy-WiTSrZGK22_vfY-dI6tvESpbWba3x2_POdYxOy7weZLyOXeRFzkce5cR7gZOtBAKRTANAQVOCLwidjOZrxr7GIN0jTbbQW4J87QzvsJzW7nH-6_r36Agb_uTR4ITB-Dw4BKUYhF5tkG3yUxiYOJ7zdTwBMUmUfSjApLAjfpMDf-vWac6of0Y9OMTi-OrsLgv6bSfl4WVyY1ZWZz2-4qeEz8rTGl7RXKcQO2XDFc7LbKyC2_rWiB7TM-CyX0neJGhpcMKeD6zobtqDTJp8IznGJln7rT6gpMvp92qcIF5fA-YLMhoMfRyOvbqTgWeHzhZfj-7d5HqpAKMYdD7QB3BXk2pcW_LtKwXKzFGvlCWl1poxiWlqp05Axl4JDf0m2ivPCvSbUwFeptkxnJuQWNw3DwMhIOKtzCCbTDvnYSDCxdZVxbHYxT8poQ4gE5Z3U8u6QDy33RVVd4x6-PZyMBNUArmbBBGzSk4Aemebav4espUIHDeT9eg7_N0gzwUmjh0mI5XVCEXLZIe9bMg6AyWmFO1-WPABzpNCsQ15V-tAOxBhATC6AotY0pWXA8t7rlOLstCzzrSLwRnhzB61OPfj_3zwshbfkCXJXy0d7ZGtxuXTvAFAt0i7ZVLGCYzQ87pLt_mA8mcKn4zjollYEx-koBspsPOn9_Asobxp2 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4p6TDlwqs8AgXETJsL4zaWLdk6cEgfIaVpYTrttDcjy8q0Q3ACTSaEH8Vf4S-xa8uhBVpOPXDLZDeRH592v5VWuwDLTT9rythmXhzY2AtDbT3kycbDAEilSKAxqKCDwrt7snMYvj0Wx3PwvToLQ2mVlU0sDHU2MLRGvsapzgkXPJQug3LHTicYn5293t7El7nCeXvrYKPjuRYCnhHNcOT16ORpr8cjX0RBaENfaWQcfk81pUHPFqWI2SylKnFCGpVFOgqUNFKlPAhsGlNLCN4YfvaoSxXt5rqWHTdgHnHu8xrMbxxtvulUth-5T5nlKHHqUuH5KtVeCFpl8NeQz8acjk6dc4LOFdw8oSB8cvo3qvtnxubCOB_q6UT3--fcYfsO_KgeZJkF83F1PEpXzbffakz-P0_6Ltx2zJy1yql0D-Zsfh8WW7keDT5NWYMVubLFJsQiRG1NWw1s66vLI87ZfpWJhZ9pcZt1198znWfs3f46I6I9Rs0HcHgtd_UQavkgt4-BafwqVSZQmeahoe1W7msZC2tUD8PwtA6vKkwkxtVnpzYh_aSI04RICEGJQ1AdVmbaw7IuySV6SwSvhMwV_ptB42GSlkTeHahQNS8RKxkRtUHxskPlvwapkJQ4E3iW_IJRHV7OxDQApfXldjAudJAgSqGCOjwqET4bKAiQnIcCJdEF7M8UqDD6RUl-elIUSI9i9ON0c43ZLLny-p9cff0vYKFzsNtNutt7O0_hFv2yXIRbgtroy9g-Q1o6Sp87W8Dgw3XPk59blo7Z |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VrXhceJVHoMAitb0gN7b3Ye8BobRpSGkpVUVFb2a9XqsVwQnUVgg_jb_Cn2HGL1qg5dQDtygzyfrxzcw3u7OzhCy7XuLK0CZOyGzocK6tAzzZOJAAqRgINCQVuFH4za4cHvDXh-Jwjnxv9sJgWWXjE0tHnYwNzpF3fexz4gufy25al0Xs9QcvJ58dPEEKV1qb4zQqiGzb2RTSt5MXW3141yu-P9h8tzF06hMGHCNcnjspbkxNUz_wRMC45Z7SQEi8VLnSQOALYoB0EmMTOSGNSgIdMCWNVLHPmI1DPDEC3P9CKAMJTmFh433_1bCJA8CDqopHCWaMTeibsnshcMbB6wK3DX3cRnUqINZh4coRJuTT47_R3j-rN68V2UTPpno0OhUaBzfJj-ahVhUxH9eKPF4z337rN_l_PvVb5EbN2GmvMrHbZM5md8hiL9P5-NOMrtKyhrZcnFgkwUDjEgTd_FrXF2d0v6nQgs846U131veozhL6dn-dIgEvQPMuObiUW7hH5rNxZh8QquGrWBmmEu1zg8uwvqdlKKxRKaTncYc8b_ARmbpvOx4fMorK_E2ICNEU1WjqkJVWe1L1KzlHbwmhFqEbg38z4FRM1JPAx5niyj1HrGSAlAfEyzVC_zVIg6qodo0n0S9IdcizVowDYLlfZsdFqQPEUQrFOuR-hfZ2IMaAtHMBkuCMHbQK2DD9rCQ7PiobpwchxHe8udXWYi68_ocXX_9TchWMIdrZ2t1-RK7jD6u5uSUyn38p7GNgq3n8pHYLlHy4bJv4Cddol6E |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGJwQvfI2PwkBGGntB6ZL4KxZPHVo1IRjTRKUhIUW242gTJa1YozH-eu4SJ1BggHhLcqdcbJ_t3885nwnZipMilpkvooz5LOLc-AhwsouAAGkLABpIBW4UfnMg96f81bE4XiMvur0wBaaIn5vibHSCnPT8tBmtQ72e7Thgi0DXkx0AhlnKxWhRlFfIuhRgYEDWpweH4_dIsSR0HUz8_v1asS7sXYiVV6xMSGFYvhqM_w52_ho9ea2uFubi3MxmP0xNk5vkQ1eoNiLl46he2pH7-lO-x_8s9S1yI0BWOm597DZZ89UdsjGugK5_uqDbtAkibVbnN4iaGFyDp3tfQoBtRY-6ECW4xlVf-nr3kJqqoG-Pdiki0Bo075LpZO_dy_0onM0QORHzZVTilt6yTFUiFOOeJ9oAlEtKHUsHkEFZGAwKi-n3hHS6UEYxLZ3UNmXMW8AI98igmlf-AaEGHlntmC5Myh3-h0wTIzPhnS6Bn9ohed41UO5C4nI8P2OWNwRGiBzrJg91MyTPeu1Fm7DjEr1NbOsc-zG8zUGvcvlYAiBlmuv4ErGWCud8EG-Flvqbkc5_8q418xQz9qQi5XJInvZiNIDxbpWf140OICdwazYk91t36w0xBqiVC5CoFUfsFTBj-KqkOj1pMoerDCY4LNx277J__P6H_6r4iFzH23ZtapMMlp9r_xjQ2tI-Cb3yG1YEM7Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facial+Expression+Recognition+with+LBP+and+ORB+Features&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Niu%2C+Ben&rft.au=Gao%2C+Zhenxing&rft.au=Guo%2C+Bingbing&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-5265&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F8828245&rft.externalDocID=A696730360 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |