Facial Expression Recognition with LBP and ORB Features

Emotion plays an important role in communication. For human–computer interaction, facial expression recognition has become an indispensable part. Recently, deep neural networks (DNNs) are widely used in this field and they overcome the limitations of conventional approaches. However, application of...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2021; no. 1; p. 8828245
Main Authors Niu, Ben, Gao, Zhenxing, Guo, Bingbing
Format Journal Article
LanguageEnglish
Published United States Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2021/8828245

Cover

Abstract Emotion plays an important role in communication. For human–computer interaction, facial expression recognition has become an indispensable part. Recently, deep neural networks (DNNs) are widely used in this field and they overcome the limitations of conventional approaches. However, application of DNNs is very limited due to excessive hardware specifications requirement. Considering low hardware specifications used in real-life conditions, to gain better results without DNNs, in this paper, we propose an algorithm with the combination of the oriented FAST and rotated BRIEF (ORB) features and Local Binary Patterns (LBP) features extracted from facial expression. First of all, every image is passed through face detection algorithm to extract more effective features. Second, in order to increase computational speed, the ORB and LBP features are extracted from the face region; specifically, region division is innovatively employed in the traditional ORB to avoid the concentration of the features. The features are invariant to scale and grayscale as well as rotation changes. Finally, the combined features are classified by Support Vector Machine (SVM). The proposed method is evaluated on several challenging databases such as Cohn-Kanade database (CK+), Japanese Female Facial Expressions database (JAFFE), and MMI database; experimental results of seven emotion state (neutral, joy, sadness, surprise, anger, fear, and disgust) show that the proposed framework is effective and accurate.
AbstractList Emotion plays an important role in communication. For human–computer interaction, facial expression recognition has become an indispensable part. Recently, deep neural networks (DNNs) are widely used in this field and they overcome the limitations of conventional approaches. However, application of DNNs is very limited due to excessive hardware specifications requirement. Considering low hardware specifications used in real‐life conditions, to gain better results without DNNs, in this paper, we propose an algorithm with the combination of the oriented FAST and rotated BRIEF (ORB) features and Local Binary Patterns (LBP) features extracted from facial expression. First of all, every image is passed through face detection algorithm to extract more effective features. Second, in order to increase computational speed, the ORB and LBP features are extracted from the face region; specifically, region division is innovatively employed in the traditional ORB to avoid the concentration of the features. The features are invariant to scale and grayscale as well as rotation changes. Finally, the combined features are classified by Support Vector Machine (SVM). The proposed method is evaluated on several challenging databases such as Cohn‐Kanade database (CK+), Japanese Female Facial Expressions database (JAFFE), and MMI database; experimental results of seven emotion state (neutral, joy, sadness, surprise, anger, fear, and disgust) show that the proposed framework is effective and accurate.
Emotion plays an important role in communication. For human-computer interaction, facial expression recognition has become an indispensable part. Recently, deep neural networks (DNNs) are widely used in this field and they overcome the limitations of conventional approaches. However, application of DNNs is very limited due to excessive hardware specifications requirement. Considering low hardware specifications used in real-life conditions, to gain better results without DNNs, in this paper, we propose an algorithm with the combination of the oriented FAST and rotated BRIEF (ORB) features and Local Binary Patterns (LBP) features extracted from facial expression. First of all, every image is passed through face detection algorithm to extract more effective features. Second, in order to increase computational speed, the ORB and LBP features are extracted from the face region; specifically, region division is innovatively employed in the traditional ORB to avoid the concentration of the features. The features are invariant to scale and grayscale as well as rotation changes. Finally, the combined features are classified by Support Vector Machine (SVM). The proposed method is evaluated on several challenging databases such as Cohn-Kanade database (CK+), Japanese Female Facial Expressions database (JAFFE), and MMI database; experimental results of seven emotion state (neutral, joy, sadness, surprise, anger, fear, and disgust) show that the proposed framework is effective and accurate.Emotion plays an important role in communication. For human-computer interaction, facial expression recognition has become an indispensable part. Recently, deep neural networks (DNNs) are widely used in this field and they overcome the limitations of conventional approaches. However, application of DNNs is very limited due to excessive hardware specifications requirement. Considering low hardware specifications used in real-life conditions, to gain better results without DNNs, in this paper, we propose an algorithm with the combination of the oriented FAST and rotated BRIEF (ORB) features and Local Binary Patterns (LBP) features extracted from facial expression. First of all, every image is passed through face detection algorithm to extract more effective features. Second, in order to increase computational speed, the ORB and LBP features are extracted from the face region; specifically, region division is innovatively employed in the traditional ORB to avoid the concentration of the features. The features are invariant to scale and grayscale as well as rotation changes. Finally, the combined features are classified by Support Vector Machine (SVM). The proposed method is evaluated on several challenging databases such as Cohn-Kanade database (CK+), Japanese Female Facial Expressions database (JAFFE), and MMI database; experimental results of seven emotion state (neutral, joy, sadness, surprise, anger, fear, and disgust) show that the proposed framework is effective and accurate.
Audience Academic
Author Gao, Zhenxing
Niu, Ben
Guo, Bingbing
AuthorAffiliation 3 School of Psychology, South China Normal University, Guangzhou 510631, China
1 School of Electronic and Information Engineering, Jinling Institute of Technology, Nanjing 211169, China
2 College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
AuthorAffiliation_xml – name: 3 School of Psychology, South China Normal University, Guangzhou 510631, China
– name: 1 School of Electronic and Information Engineering, Jinling Institute of Technology, Nanjing 211169, China
– name: 2 College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Author_xml – sequence: 1
  givenname: Ben
  orcidid: 0000-0001-6802-1826
  surname: Niu
  fullname: Niu, Ben
  organization: School of Electronic and Information EngineeringJinling Institute of TechnologyNanjing 211169Chinajit.edu.cn
– sequence: 2
  givenname: Zhenxing
  surname: Gao
  fullname: Gao, Zhenxing
  organization: College of Civil AviationNanjing University of Aeronautics and AstronauticsNanjing 210016Chinanuaa.edu.cn
– sequence: 3
  givenname: Bingbing
  surname: Guo
  fullname: Guo, Bingbing
  organization: School of PsychologySouth China Normal UniversityGuangzhou 510631Chinascnu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33505453$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhoNU7IfeeS0D3gg6Nl8nmdwU2tJVYaFS9DpkMpndlNlkncy49t83011bLVivciDPeXPOk0O0F2JwCL0m-CMhAMcUU3JcVbSiHJ6hAyIqWQKVbO--FrCPDlO6xhgkYPoC7TMGGDiwAyRnxnrTFRe_1r1LycdQXDkbF8EPU73xw7KYn30tTGiKy6uzYubMMGbyJXremi65V7vzCH2fXXw7_1zOLz99OT-dlxYwH8qWKQZtSyUBybjjRBkGlLQKC0solzXmtKkllgqEVY00kilhhaopY66ugB2hcps7hrW52Ziu0-ver0x_ownWkwA9CdA7AZk_2fLrsV65xrow9OahJxqv_74JfqkX8aeWFQGmcA54twvo44_RpUGvfLKu60xwcUya8ooKIUCxjL59hF7HsQ9Zx0RhQoFy8UAtTOe0D23M79opVJ8KJSTDTOCnqYrl0fjdcG_-3O5-rd__mQG6BWwfU-pdq60fzPSVOc53_3L24VHTfxS_3-JLHxqz8U_Tt8mnxvU
CitedBy_id crossref_primary_10_1038_s41598_022_11173_0
crossref_primary_10_1007_s42979_023_02447_z
crossref_primary_10_3390_sym15040956
crossref_primary_10_1007_s00500_024_09668_1
crossref_primary_10_2339_politeknik_992720
crossref_primary_10_3390_ijerph19053085
crossref_primary_10_1111_exsy_13517
crossref_primary_10_3390_s21051870
crossref_primary_10_3390_info15070384
crossref_primary_10_1016_j_asoc_2023_110530
crossref_primary_10_1142_S0218001422520280
crossref_primary_10_1155_2023_2457898
crossref_primary_10_15622_ia_21_6_2
crossref_primary_10_32604_cmes_2022_022312
crossref_primary_10_3390_app122312134
crossref_primary_10_3390_s23094204
crossref_primary_10_1007_s00530_022_00984_w
crossref_primary_10_1007_s00521_023_08498_w
crossref_primary_10_26634_jip_9_2_18968
crossref_primary_10_1109_ACCESS_2022_3188730
crossref_primary_10_3390_diagnostics14222497
crossref_primary_10_3390_s24206748
crossref_primary_10_1007_s11276_023_03323_7
crossref_primary_10_1007_s00521_024_10938_0
crossref_primary_10_3233_JIFS_230524
crossref_primary_10_3390_s21093046
crossref_primary_10_1016_j_neucom_2023_01_027
crossref_primary_10_1007_s10489_023_05052_y
crossref_primary_10_1007_s12652_023_04627_4
crossref_primary_10_1049_tje2_70060
crossref_primary_10_1016_j_ijleo_2022_169053
crossref_primary_10_1049_ipr2_12817
crossref_primary_10_1007_s11042_025_20698_1
crossref_primary_10_1007_s40747_023_01100_9
crossref_primary_10_1016_j_imavis_2023_104677
crossref_primary_10_7717_peerj_cs_2272
Cites_doi 10.1109/CVPRW.2010.5543262
10.1109/ICPR.2018.8545596
10.1109/tip.2017.2726010
10.1109/tip.2020.2972114
10.1109/tmm.2020.2966858
10.1007/s11760-019-01547-9
10.1109/tifs.2020.3007327
10.1007/s11042-018-6040-3
10.1109/tpami.2002.1017623
10.1109/ICSIPA.2011.6144162
10.1371/journal.pone.0032321
10.1016/j.imavis.2008.08.005
10.1049/iet-ipr.2015.0519
10.1145/1961189.1961199
10.3390/s17040712
10.1007/s11042-016-3418-y
10.1109/CVPR.2017.605
10.1016/0031-3203(95)00067-4
10.1007/s00500-017-2634-3
10.1016/j.jvcir.2018.05.024
10.1049/iet-ipr.2018.6235
10.1007/s00521-019-04138-4
10.1016/j.patcog.2019.106966
10.1023/b:visi.0000013087.49260.fb
10.1109/taffc.2016.2593719
10.1109/CVPR.2014.241
10.1016/j.patrec.2020.01.016
10.1145/2502081.2502115
10.1109/ICPR.2000.903698
10.1109/CVPR.2016.369
10.1007/978-3-540-73007-1_84
10.1155/2019/3587036
10.1049/iet-ipr.2018.5683
10.1109/ICCV.2011.6126544
10.1007/978-3-540-73105-4_3
10.1016/j.image.2019.01.002
10.1109/access.2018.2858278
10.1016/j.neucom.2018.12.037
10.1155/2008/542918
10.1109/CVPR42600.2020.00693
10.1016/j.ridd.2014.10.015
ContentType Journal Article
Copyright Copyright © 2021 Ben Niu et al.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Ben Niu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2021 Ben Niu et al. 2021
Copyright_xml – notice: Copyright © 2021 Ben Niu et al.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Ben Niu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2021 Ben Niu et al. 2021
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2021/8828245
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (via ProQuest)
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Hernández-Pérez, José Alfredo
Editor_xml – sequence: 1
  givenname: José Alfredo
  surname: Hernández-Pérez
  fullname: Hernández-Pérez, José Alfredo
ExternalDocumentID 10.1155/2021/8828245
PMC7815390
A696730360
A683539490
33505453
10_1155_2021_8828245
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31700993; U1733122
– fundername: Jinling Institute of Technology
  grantid: jit-b-201704
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
2UF
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
C1A
CITATION
EJD
H13
IHR
IL9
OVT
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
UZ4
CGR
CNMHZ
CUY
CVCKV
CVF
ECM
EIF
NPM
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c504t-f3935ff2715734e419a3521f906c1247b042db707956c9d7a7396c69b233eb853
IEDL.DBID M48
ISSN 1687-5265
1687-5273
IngestDate Sun Oct 26 03:47:49 EDT 2025
Tue Sep 30 16:19:55 EDT 2025
Sat Sep 27 19:34:31 EDT 2025
Tue Oct 07 05:56:22 EDT 2025
Mon Oct 20 22:47:37 EDT 2025
Mon Oct 20 22:48:31 EDT 2025
Wed Feb 19 02:04:17 EST 2025
Wed Oct 01 02:22:13 EDT 2025
Thu Apr 24 22:59:41 EDT 2025
Sun Jun 02 18:51:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2021 Ben Niu et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-f3935ff2715734e419a3521f906c1247b042db707956c9d7a7396c69b233eb853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: José Alfredo Hernández-Pérez
ORCID 0000-0001-6802-1826
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2021/8828245
PMID 33505453
PQID 2480125246
PQPubID 237303
ParticipantIDs unpaywall_primary_10_1155_2021_8828245
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7815390
proquest_miscellaneous_2482666593
proquest_journals_2480125246
gale_infotracmisc_A696730360
gale_infotracmisc_A683539490
pubmed_primary_33505453
crossref_citationtrail_10_1155_2021_8828245
crossref_primary_10_1155_2021_8828245
hindawi_primary_10_1155_2021_8828245
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationTitleAlternate Comput Intell Neurosci
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_10_23_2
e_1_2_10_44_2
e_1_2_10_21_2
e_1_2_10_42_2
e_1_2_10_40_2
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_39_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_37_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_35_2
e_1_2_10_11_2
e_1_2_10_8_2
e_1_2_10_32_2
King D. E. (e_1_2_10_34_2) 2009; 10
e_1_2_10_30_2
e_1_2_10_29_2
e_1_2_10_27_2
e_1_2_10_48_2
e_1_2_10_25_2
e_1_2_10_46_2
e_1_2_10_22_2
e_1_2_10_45_2
e_1_2_10_20_2
e_1_2_10_43_2
e_1_2_10_41_2
Mehrabian A. (e_1_2_10_1_2) 1968; 2
e_1_2_10_19_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_9_2
e_1_2_10_12_2
e_1_2_10_33_2
e_1_2_10_10_2
e_1_2_10_31_2
e_1_2_10_28_2
e_1_2_10_26_2
e_1_2_10_49_2
e_1_2_10_24_2
e_1_2_10_47_2
References_xml – ident: e_1_2_10_43_2
  doi: 10.1109/CVPRW.2010.5543262
– volume: 2
  start-page: 53
  year: 1968
  ident: e_1_2_10_1_2
  article-title: Communication without words
  publication-title: Psychology Today
– ident: e_1_2_10_29_2
  doi: 10.1109/ICPR.2018.8545596
– ident: e_1_2_10_20_2
  doi: 10.1109/tip.2017.2726010
– ident: e_1_2_10_16_2
  doi: 10.1109/tip.2020.2972114
– ident: e_1_2_10_12_2
– ident: e_1_2_10_32_2
  doi: 10.1109/tmm.2020.2966858
– ident: e_1_2_10_27_2
  doi: 10.1007/s11760-019-01547-9
– ident: e_1_2_10_15_2
  doi: 10.1109/tifs.2020.3007327
– ident: e_1_2_10_42_2
– ident: e_1_2_10_23_2
  doi: 10.1007/s11042-018-6040-3
– ident: e_1_2_10_37_2
  doi: 10.1109/tpami.2002.1017623
– ident: e_1_2_10_7_2
  doi: 10.1109/ICSIPA.2011.6144162
– ident: e_1_2_10_41_2
– ident: e_1_2_10_2_2
  doi: 10.1371/journal.pone.0032321
– ident: e_1_2_10_39_2
  doi: 10.1016/j.imavis.2008.08.005
– ident: e_1_2_10_24_2
  doi: 10.1049/iet-ipr.2015.0519
– ident: e_1_2_10_46_2
  doi: 10.1145/1961189.1961199
– ident: e_1_2_10_21_2
  doi: 10.3390/s17040712
– ident: e_1_2_10_22_2
  doi: 10.1007/s11042-016-3418-y
– ident: e_1_2_10_44_2
– ident: e_1_2_10_13_2
  doi: 10.1109/CVPR.2017.605
– ident: e_1_2_10_36_2
  doi: 10.1016/0031-3203(95)00067-4
– ident: e_1_2_10_18_2
  doi: 10.1007/s00500-017-2634-3
– ident: e_1_2_10_25_2
  doi: 10.1016/j.jvcir.2018.05.024
– ident: e_1_2_10_26_2
  doi: 10.1049/iet-ipr.2018.6235
– ident: e_1_2_10_28_2
  doi: 10.1007/s00521-019-04138-4
– ident: e_1_2_10_30_2
  doi: 10.1016/j.patcog.2019.106966
– ident: e_1_2_10_11_2
  doi: 10.1023/b:visi.0000013087.49260.fb
– ident: e_1_2_10_19_2
  doi: 10.1109/taffc.2016.2593719
– ident: e_1_2_10_35_2
  doi: 10.1109/CVPR.2014.241
– ident: e_1_2_10_31_2
  doi: 10.1016/j.patrec.2020.01.016
– ident: e_1_2_10_9_2
  doi: 10.1145/2502081.2502115
– ident: e_1_2_10_38_2
  doi: 10.1109/ICPR.2000.903698
– ident: e_1_2_10_45_2
– ident: e_1_2_10_10_2
  doi: 10.1109/CVPR.2016.369
– ident: e_1_2_10_3_2
  doi: 10.1007/978-3-540-73007-1_84
– ident: e_1_2_10_5_2
– ident: e_1_2_10_47_2
  doi: 10.1155/2019/3587036
– ident: e_1_2_10_17_2
  doi: 10.1049/iet-ipr.2018.5683
– ident: e_1_2_10_40_2
  doi: 10.1109/ICCV.2011.6126544
– ident: e_1_2_10_4_2
  doi: 10.1007/978-3-540-73105-4_3
– ident: e_1_2_10_48_2
  doi: 10.1016/j.image.2019.01.002
– ident: e_1_2_10_14_2
  doi: 10.1109/access.2018.2858278
– volume: 10
  start-page: 1755
  year: 2009
  ident: e_1_2_10_34_2
  article-title: Dlib-ml: a machine learning toolkit
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_10_49_2
  doi: 10.1016/j.neucom.2018.12.037
– ident: e_1_2_10_8_2
  doi: 10.1155/2008/542918
– ident: e_1_2_10_33_2
  doi: 10.1109/CVPR42600.2020.00693
– ident: e_1_2_10_6_2
  doi: 10.1016/j.ridd.2014.10.015
SSID ssj0057502
Score 2.5279474
Snippet Emotion plays an important role in communication. For human–computer interaction, facial expression recognition has become an indispensable part. Recently,...
Emotion plays an important role in communication. For human-computer interaction, facial expression recognition has become an indispensable part. Recently,...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8828245
SubjectTerms Algorithms
Artificial neural networks
Cable television broadcasting industry
Computer applications
Deep learning
Emotions
Face
Face recognition
Facial Expression
Facial Recognition
Feature extraction
Female
Hardware
Humans
Methods
Neural networks
Neural Networks, Computer
Pattern recognition
Principal components analysis
Specifications
Support vector machines
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYAqSoXVEoLSwEZiXJBUZP4FR-XitWqAlqtirS3yHEcgbQYBLsC_n1nEidiefaWZCZx_BjPN-PxmJC9OCljmbkyypjLIs6NiwAn2wgMIF0AgAajAjcKn5zK4Rn_NRbjkCTp9vkSPmg7NM-THwAEs5SLRbKYSYzcGg3H7YQLgKMJLZQgL5jtvY1vf_LunOYJ8--Hc7R87y5ewpfPwyQ_zvy1ebgzk8kjHTT4RFYCeKT9prdXyYLzn8la34PhfPlA92kdzln7ydeIGhj0htOj-xDq6umoDRaCa_S_0uPDP9T4kv4eHVLEgjPg_ELOBkd_fw6jcEpCZEXMp1GFm2urKlWJUIw7nmgDoCqpdCwtKG9VgFiWBSbCE9LqUhnFtLRSFyljrgBt_ZUs-SvvNgg18KjQlunSpNziimCaGJkJZ3UFlmLRIwdtC-Y2pBDHkywmeW1KCJFje-ehvXvke8d93aTOeIVvCzsjR4mCr1kY3zbvS4CGTHMdv0LWUqH2BfJe6MP3Cmk7OA9SepunmDsnFSmXPbLbkbEAjDzz7mpW8wCGkUKzHllvxkNXEGOAH7kAipobKR0D5u6ep_iL8zqHt8pA1WDl9rsx9eb_b_5fNb-RZbxtfERbZGl6M3PbgJqmxU4tM_8AIJEHrA
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGJwQvCBiMwkBGGntB0RJ_xg8ItajVhKBMFZP2FjmOo00qboFWY_89d4kTNsHGW5Q7xYl95_vd5XxHyH6aVanKfZXk3OeJENYngJNdAg6QKQFAg1OBB4U_z9TRifh4Kk-3yKw7C4Npld2e2GzU1dJhjPyQYZ0TJplQ71ffE-wahX9XuxYaNrZWqN41JcbukG2GlbEGZHs8mR3Pu70ZsEmbhahAtbAwfJcKLyVGAbJDwJs5w6NNV4xU3KrvnqGTfHH-Lyj6d0blvU1Y2csLu1hcMVfTh-RBxJl01ArGI7Llw2OyMwrgY3-7pAe0yfxsQuo7RE8tBs7p5FfMig103uUVwTWGaumn8TG1oaJf5mOKsHEDnE_IyXTy9cNREhsqJE6mYp3UeA63rpnOpObCi8xYwF9ZbVLlwM7rEjS4KrFmnlTOVNpqbpRTpmSc-xIM-1MyCMvgnxFq4VZpHDeVZcLhz0OWWZVL70wNTmU5JG-7GSxcrDaOTS8WReN1SFngfBdxvofkTc-9aqts3MC3h4tRoPLB0xyogitGClAkN8KkN5CN0miogbwf1_B_g3QLXESF_ln8Eb8hed2TcQBMUgt-uWl4AO4oafiQ7Lby0A_EOUBNIYGir0lKz4Blvq9TwvlZU-5b52CV8OMOepm69f2f3_7-L8h95G7DSHtksP6x8S8BWK3LV1FbfgPSsxhY
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGJwQvfI2PwkBGGntB6ZL4KxZPHVo1IRjTRKUhIUW242gTJa1YozH-eu4SJ1BggHhLcqdcbJ_t3885nwnZipMilpkvooz5LOLc-AhwsouAAGkLABpIBW4UfnMg96f81bE4XiMvur0wBaaIn5vibHSCnPT8tBmtQ72e7Thgi0DXkx0AhlnKxWhRlFfIuhRgYEDWpweH4_dIsSR0HUz8_v1asS7sXYiVV6xMSGFYvhqM_w52_ho9ea2uFubi3MxmP0xNk5vkQ1eoNiLl46he2pH7-lO-x_8s9S1yI0BWOm597DZZ89UdsjGugK5_uqDbtAkibVbnN4iaGFyDp3tfQoBtRY-6ECW4xlVf-nr3kJqqoG-Pdiki0Bo075LpZO_dy_0onM0QORHzZVTilt6yTFUiFOOeJ9oAlEtKHUsHkEFZGAwKi-n3hHS6UEYxLZ3UNmXMW8AI98igmlf-AaEGHlntmC5Myh3-h0wTIzPhnS6Bn9ohed41UO5C4nI8P2OWNwRGiBzrJg91MyTPeu1Fm7DjEr1NbOsc-zG8zUGvcvlYAiBlmuv4ErGWCud8EG-Flvqbkc5_8q418xQz9qQi5XJInvZiNIDxbpWf140OICdwazYk91t36w0xBqiVC5CoFUfsFTBj-KqkOj1pMoerDCY4LNx277J__P6H_6r4iFzH23ZtapMMlp9r_xjQ2tI-Cb3yG1YEM7Y
  priority: 102
  providerName: Unpaywall
Title Facial Expression Recognition with LBP and ORB Features
URI https://dx.doi.org/10.1155/2021/8828245
https://www.ncbi.nlm.nih.gov/pubmed/33505453
https://www.proquest.com/docview/2480125246
https://www.proquest.com/docview/2482666593
https://pubmed.ncbi.nlm.nih.gov/PMC7815390
https://downloads.hindawi.com/journals/cin/2021/8828245.pdf
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070625
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-5273
  dateEnd: 20230628
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: ABDBF
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: M48
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9NADD_tQwheEGN8FEZ1SGMvKCzJfeUeEGqndhVipaqoFJ6iy-WiTSrZGK22_vfY-dI6tvESpbWba3x2_POdYxOy7weZLyOXeRFzkce5cR7gZOtBAKRTANAQVOCLwidjOZrxr7GIN0jTbbQW4J87QzvsJzW7nH-6_r36Agb_uTR4ITB-Dw4BKUYhF5tkG3yUxiYOJ7zdTwBMUmUfSjApLAjfpMDf-vWac6of0Y9OMTi-OrsLgv6bSfl4WVyY1ZWZz2-4qeEz8rTGl7RXKcQO2XDFc7LbKyC2_rWiB7TM-CyX0neJGhpcMKeD6zobtqDTJp8IznGJln7rT6gpMvp92qcIF5fA-YLMhoMfRyOvbqTgWeHzhZfj-7d5HqpAKMYdD7QB3BXk2pcW_LtKwXKzFGvlCWl1poxiWlqp05Axl4JDf0m2ivPCvSbUwFeptkxnJuQWNw3DwMhIOKtzCCbTDvnYSDCxdZVxbHYxT8poQ4gE5Z3U8u6QDy33RVVd4x6-PZyMBNUArmbBBGzSk4Aemebav4espUIHDeT9eg7_N0gzwUmjh0mI5XVCEXLZIe9bMg6AyWmFO1-WPABzpNCsQ15V-tAOxBhATC6AotY0pWXA8t7rlOLstCzzrSLwRnhzB61OPfj_3zwshbfkCXJXy0d7ZGtxuXTvAFAt0i7ZVLGCYzQ87pLt_mA8mcKn4zjollYEx-koBspsPOn9_Asobxp2
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4p6TDlwqs8AgXETJsL4zaWLdk6cEgfIaVpYTrttDcjy8q0Q3ACTSaEH8Vf4S-xa8uhBVpOPXDLZDeRH592v5VWuwDLTT9rythmXhzY2AtDbT3kycbDAEilSKAxqKCDwrt7snMYvj0Wx3PwvToLQ2mVlU0sDHU2MLRGvsapzgkXPJQug3LHTicYn5293t7El7nCeXvrYKPjuRYCnhHNcOT16ORpr8cjX0RBaENfaWQcfk81pUHPFqWI2SylKnFCGpVFOgqUNFKlPAhsGlNLCN4YfvaoSxXt5rqWHTdgHnHu8xrMbxxtvulUth-5T5nlKHHqUuH5KtVeCFpl8NeQz8acjk6dc4LOFdw8oSB8cvo3qvtnxubCOB_q6UT3--fcYfsO_KgeZJkF83F1PEpXzbffakz-P0_6Ltx2zJy1yql0D-Zsfh8WW7keDT5NWYMVubLFJsQiRG1NWw1s66vLI87ZfpWJhZ9pcZt1198znWfs3f46I6I9Rs0HcHgtd_UQavkgt4-BafwqVSZQmeahoe1W7msZC2tUD8PwtA6vKkwkxtVnpzYh_aSI04RICEGJQ1AdVmbaw7IuySV6SwSvhMwV_ptB42GSlkTeHahQNS8RKxkRtUHxskPlvwapkJQ4E3iW_IJRHV7OxDQApfXldjAudJAgSqGCOjwqET4bKAiQnIcCJdEF7M8UqDD6RUl-elIUSI9i9ON0c43ZLLny-p9cff0vYKFzsNtNutt7O0_hFv2yXIRbgtroy9g-Q1o6Sp87W8Dgw3XPk59blo7Z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VrXhceJVHoMAitb0gN7b3Ye8BobRpSGkpVUVFb2a9XqsVwQnUVgg_jb_Cn2HGL1qg5dQDtygzyfrxzcw3u7OzhCy7XuLK0CZOyGzocK6tAzzZOJAAqRgINCQVuFH4za4cHvDXh-Jwjnxv9sJgWWXjE0tHnYwNzpF3fexz4gufy25al0Xs9QcvJ58dPEEKV1qb4zQqiGzb2RTSt5MXW3141yu-P9h8tzF06hMGHCNcnjspbkxNUz_wRMC45Z7SQEi8VLnSQOALYoB0EmMTOSGNSgIdMCWNVLHPmI1DPDEC3P9CKAMJTmFh433_1bCJA8CDqopHCWaMTeibsnshcMbB6wK3DX3cRnUqINZh4coRJuTT47_R3j-rN68V2UTPpno0OhUaBzfJj-ahVhUxH9eKPF4z337rN_l_PvVb5EbN2GmvMrHbZM5md8hiL9P5-NOMrtKyhrZcnFgkwUDjEgTd_FrXF2d0v6nQgs846U131veozhL6dn-dIgEvQPMuObiUW7hH5rNxZh8QquGrWBmmEu1zg8uwvqdlKKxRKaTncYc8b_ARmbpvOx4fMorK_E2ICNEU1WjqkJVWe1L1KzlHbwmhFqEbg38z4FRM1JPAx5niyj1HrGSAlAfEyzVC_zVIg6qodo0n0S9IdcizVowDYLlfZsdFqQPEUQrFOuR-hfZ2IMaAtHMBkuCMHbQK2DD9rCQ7PiobpwchxHe8udXWYi68_ocXX_9TchWMIdrZ2t1-RK7jD6u5uSUyn38p7GNgq3n8pHYLlHy4bJv4Cddol6E
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGJwQvfI2PwkBGGntB6ZL4KxZPHVo1IRjTRKUhIUW242gTJa1YozH-eu4SJ1BggHhLcqdcbJ_t3885nwnZipMilpkvooz5LOLc-AhwsouAAGkLABpIBW4UfnMg96f81bE4XiMvur0wBaaIn5vibHSCnPT8tBmtQ72e7Thgi0DXkx0AhlnKxWhRlFfIuhRgYEDWpweH4_dIsSR0HUz8_v1asS7sXYiVV6xMSGFYvhqM_w52_ho9ea2uFubi3MxmP0xNk5vkQ1eoNiLl46he2pH7-lO-x_8s9S1yI0BWOm597DZZ89UdsjGugK5_uqDbtAkibVbnN4iaGFyDp3tfQoBtRY-6ECW4xlVf-nr3kJqqoG-Pdiki0Bo075LpZO_dy_0onM0QORHzZVTilt6yTFUiFOOeJ9oAlEtKHUsHkEFZGAwKi-n3hHS6UEYxLZ3UNmXMW8AI98igmlf-AaEGHlntmC5Myh3-h0wTIzPhnS6Bn9ohed41UO5C4nI8P2OWNwRGiBzrJg91MyTPeu1Fm7DjEr1NbOsc-zG8zUGvcvlYAiBlmuv4ErGWCud8EG-Flvqbkc5_8q418xQz9qQi5XJInvZiNIDxbpWf140OICdwazYk91t36w0xBqiVC5CoFUfsFTBj-KqkOj1pMoerDCY4LNx277J__P6H_6r4iFzH23ZtapMMlp9r_xjQ2tI-Cb3yG1YEM7Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facial+Expression+Recognition+with+LBP+and+ORB+Features&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Niu%2C+Ben&rft.au=Gao%2C+Zhenxing&rft.au=Guo%2C+Bingbing&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-5265&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F8828245&rft.externalDocID=A696730360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon