Transfer function analysis of dynamic cerebral autoregulation: A CARNet white paper 2022 update

Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can...

Full description

Saved in:
Bibliographic Details
Published inJournal of cerebral blood flow and metabolism Vol. 43; no. 1; pp. 3 - 25
Main Authors Panerai, Ronney B, Brassard, Patrice, Burma, Joel S, Castro, Pedro, Claassen, Jurgen AHR, van Lieshout, Johannes J, Liu, Jia, Lucas, Samuel JE, Minhas, Jatinder S, Mitsis, Georgios D, Nogueira, Ricardo C, Ogoh, Shigehiko, Payne, Stephen J, Rickards, Caroline A, Robertson, Andrew D, Rodrigues, Gabriel D, Smirl, Jonathan D, Simpson, David M
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2023
Subjects
Online AccessGet full text
ISSN0271-678X
1559-7016
1559-7016
DOI10.1177/0271678X221119760

Cover

Abstract Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies.
AbstractList Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies.
Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies.
Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies.Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies.
Author Castro, Pedro
Rickards, Caroline A
Simpson, David M
Lucas, Samuel JE
Rodrigues, Gabriel D
van Lieshout, Johannes J
Mitsis, Georgios D
Smirl, Jonathan D
Robertson, Andrew D
Nogueira, Ricardo C
Panerai, Ronney B
Burma, Joel S
Brassard, Patrice
Ogoh, Shigehiko
Minhas, Jatinder S
Liu, Jia
Claassen, Jurgen AHR
Payne, Stephen J
Author_xml – sequence: 1
  givenname: Ronney B
  orcidid: 0000-0001-6983-8707
  surname: Panerai
  fullname: Panerai, Ronney B
  organization: Department of Cardiovascular Sciences, University of Leicester and NIHR Biomedical Research Centre, Leicester, UK
– sequence: 2
  givenname: Patrice
  orcidid: 0000-0002-6254-5044
  surname: Brassard
  fullname: Brassard, Patrice
  organization: Department of Kinesiology, Faculty of Medicine, and Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
– sequence: 3
  givenname: Joel S
  orcidid: 0000-0001-9756-5793
  surname: Burma
  fullname: Burma, Joel S
  organization: Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
– sequence: 4
  givenname: Pedro
  orcidid: 0000-0003-1401-2398
  surname: Castro
  fullname: Castro, Pedro
  organization: Department of Neurology, Centro Hospitalar Universitário de São João, Faculty of Medicine, University of Porto, Porto, Portugal
– sequence: 5
  givenname: Jurgen AHR
  orcidid: 0000-0002-1778-8151
  surname: Claassen
  fullname: Claassen, Jurgen AHR
  organization: Department of Geriatric Medicine and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
– sequence: 6
  givenname: Johannes J
  surname: van Lieshout
  fullname: van Lieshout, Johannes J
  organization: Department of Internal Medicine, Amsterdam, UMC, The Netherlands and Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Queen’s Medical Centre, UK
– sequence: 7
  givenname: Jia
  surname: Liu
  fullname: Liu, Jia
  organization: Institute of Advanced Computing and Digital Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town, Shenzhen, China
– sequence: 8
  givenname: Samuel JE
  surname: Lucas
  fullname: Lucas, Samuel JE
  organization: School of Sport, Exercise and Rehabilitation Sciences and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
– sequence: 9
  givenname: Jatinder S
  surname: Minhas
  fullname: Minhas, Jatinder S
  organization: Department of Cardiovascular Sciences, University of Leicester and NIHR Biomedical Research Centre, Leicester, UK
– sequence: 10
  givenname: Georgios D
  orcidid: 0000-0001-9975-5128
  surname: Mitsis
  fullname: Mitsis, Georgios D
  organization: Department of Bioengineering, McGill University, Montreal, Québec, QC, Canada
– sequence: 11
  givenname: Ricardo C
  orcidid: 0000-0003-3309-3760
  surname: Nogueira
  fullname: Nogueira, Ricardo C
  organization: Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil
– sequence: 12
  givenname: Shigehiko
  orcidid: 0000-0001-5297-6468
  surname: Ogoh
  fullname: Ogoh, Shigehiko
  organization: Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
– sequence: 13
  givenname: Stephen J
  orcidid: 0000-0003-1156-2810
  surname: Payne
  fullname: Payne, Stephen J
  organization: Institute of Applied Mechanics, National Taiwan University, Taipei
– sequence: 14
  givenname: Caroline A
  surname: Rickards
  fullname: Rickards, Caroline A
  organization: Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
– sequence: 15
  givenname: Andrew D
  orcidid: 0000-0002-9095-9877
  surname: Robertson
  fullname: Robertson, Andrew D
  organization: Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
– sequence: 16
  givenname: Gabriel D
  surname: Rodrigues
  fullname: Rodrigues, Gabriel D
  organization: Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
– sequence: 17
  givenname: Jonathan D
  orcidid: 0000-0003-1054-0038
  surname: Smirl
  fullname: Smirl, Jonathan D
  organization: Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
– sequence: 18
  givenname: David M
  orcidid: 0000-0001-9072-5088
  surname: Simpson
  fullname: Simpson, David M
  organization: Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35962478$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URKeFH8AGeckmxc_YYYE0GvGSKpBQkdhZHvtm6ipjB9spmn9PwrSIh9SVF_c75_jec4ZOYoqA0HNKLihV6hVhirZKf2OMUtqpljxCKypl1yhC2xO0WubNApyis1JuCCGaS_kEnXLZtUwovULmKttYesi4n6KrIUVsox0OJRSceuwP0e6Dww4ybLMdsJ1qyrCbBruwr_Eab9ZfPkHFP65DBTzacbZihDE8jd5WeIoe93Yo8OzuPUdf37292nxoLj-__7hZXzZOElEbcF4I5VSvhXdKUqa8BHDcS9XaVnDNBdvqDogi0koKzAvPYdtxIC2fN-fn6M3Rd5y2e_AOYp2_a8Yc9jYfTLLB_D2J4drs0q3ptJJcLAYv7wxy-j5BqWYfioNhsBHSVAxThFGlWatn9MWfWb9D7q86A-oIuJxKydAbF-qvg83RYTCUmKU_819_s5L-o7w3f0hzcdQUuwNzk6Y8F1geEPwEoD-pvA
CitedBy_id crossref_primary_10_1007_s12028_023_01840_z
crossref_primary_10_1177_0271678X241229908
crossref_primary_10_1177_0271678X231168507
crossref_primary_10_1152_japplphysiol_00635_2023
crossref_primary_10_1113_EP091500
crossref_primary_10_1113_JP285679
crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107454
crossref_primary_10_1152_japplphysiol_00851_2023
crossref_primary_10_14814_phy2_15622
crossref_primary_10_1016_j_ultrasmedbio_2023_07_009
crossref_primary_10_1177_0271678X231203475
crossref_primary_10_3389_fphys_2024_1423195
crossref_primary_10_3389_fphys_2024_1350832
crossref_primary_10_1152_ajpheart_00625_2023
crossref_primary_10_3389_fnhum_2023_1115355
crossref_primary_10_1177_0271678X221142527
crossref_primary_10_3390_neurolint16060119
crossref_primary_10_1016_j_cmpb_2024_108298
crossref_primary_10_1113_EP092245
crossref_primary_10_3390_healthcare12100966
crossref_primary_10_1177_0271678X251318922
crossref_primary_10_3390_s24134404
crossref_primary_10_1177_0271678X241254676
crossref_primary_10_1016_j_wneu_2023_10_046
crossref_primary_10_1113_EP091900
crossref_primary_10_1152_japplphysiol_00217_2024
crossref_primary_10_4103_bc_bc_83_23
crossref_primary_10_1007_s10286_023_00986_2
crossref_primary_10_1097_MBP_0000000000000710
crossref_primary_10_1177_0271678X231224504
crossref_primary_10_1007_s12028_023_01841_y
crossref_primary_10_1088_1361_6579_acdfb6
crossref_primary_10_1080_02640414_2024_2442257
crossref_primary_10_1177_11795735241302725
crossref_primary_10_1016_j_msard_2024_105882
crossref_primary_10_1177_0271678X241247633
crossref_primary_10_1177_0271678X231219568
crossref_primary_10_1016_j_inat_2023_101886
crossref_primary_10_1113_EP092178
crossref_primary_10_1002_alz_14574
crossref_primary_10_1113_EP090502
crossref_primary_10_1111_cns_14584
crossref_primary_10_1016_j_ultrasmedbio_2024_02_003
crossref_primary_10_1177_0271678X251313747
crossref_primary_10_3390_bioengineering12030247
crossref_primary_10_1113_EP091719
crossref_primary_10_1515_tnsci_2022_0278
crossref_primary_10_1007_s00421_023_05324_y
crossref_primary_10_1038_s41390_024_03161_z
crossref_primary_10_5492_wjccm_v13_i4_97149
crossref_primary_10_3389_fneur_2024_1465226
crossref_primary_10_1371_journal_pone_0305658
crossref_primary_10_1152_ajpheart_00498_2024
crossref_primary_10_1007_s11571_024_10136_7
crossref_primary_10_1016_j_preghy_2023_07_176
crossref_primary_10_1111_cns_70323
crossref_primary_10_1177_0271678X241235878
crossref_primary_10_1152_ajpregu_00112_2024
crossref_primary_10_1088_1741_2552_ada4de
crossref_primary_10_1113_EP091327
crossref_primary_10_3389_fneur_2023_1287873
crossref_primary_10_14814_phy2_15676
crossref_primary_10_1089_neu_2023_0421
crossref_primary_10_1109_TBME_2024_3463873
crossref_primary_10_14814_phy2_15919
crossref_primary_10_3390_diseases12030053
crossref_primary_10_1088_1361_6579_ace3a2
crossref_primary_10_1177_0271678X231153728
crossref_primary_10_3389_fneur_2024_1392773
crossref_primary_10_1113_EP091807
Cites_doi 10.1007/s00421-021-04681-w
10.1088/1361-6579/aaf160
10.1007/s00421-018-3964-2
10.1016/j.ultrasmedbio.2009.10.011
10.2174/1874120701206010042
10.1371/journal.pone.0070821
10.1097/SHK.0000000000001488
10.14814/phy2.14367
10.3389/fnins.2019.00193
10.1152/ajpheart.1998.274.1.H233
10.1007/s11517-010-0706-y
10.1371/journal.pone.0227651
10.1007/s11517-019-02064-0
10.1371/journal.pone.0104849
10.1038/jcbfm.2015.5
10.1152/japplphysiol.00402.2012
10.1016/j.jns.2006.07.011
10.1038/jcbfm.2012.191
10.1152/japplphysiol.00068.2013
10.1016/j.medengphy.2017.06.006
10.1111/j.1552-6569.2006.00064.x
10.1152/ajpregu.00361.2016
10.1088/0967-3334/37/7/1056
10.3390/brainsci10090641
10.1097/ALN.0b013e31824f94ed
10.1016/j.ajog.2021.03.017
10.1088/0967-3334/24/2/312
10.14814/phy2.14421
10.1088/0967-3334/37/5/661
10.1113/JP278710
10.14814/phy2.14185
10.1152/japplphysiol.00893.2013
10.1152/ajpheart.00790.2016
10.1016/j.medengphy.2013.12.012
10.1161/01.STR.0000081981.99908.F3
10.1088/1361-6579/aae9fd
10.1016/B978-0-12-819641-0.00157-2
10.1161/01.STR.26.10.1801
10.1016/j.medengphy.2017.06.007
10.14814/phy2.13486
10.3389/fneur.2021.653167
10.1152/japplphysiol.00667.2015
10.1177/1747493019873690
10.1016/j.medengphy.2014.02.002
10.1161/HYPERTENSIONAHA.118.10900
10.1159/000380819
10.1016/j.jstrokecerebrovasdis.2016.12.024
10.1007/s00421-006-0136-6
10.1152/ajpregu.00010.2018
10.1007/978-3-319-65798-1_59
10.1161/01.STR.26.5.834
10.1152/japplphysiol.00653.2021
10.1161/JAHA.117.006126
10.3389/fneur.2017.00113
10.1114/1.1335537
10.1088/1361-6579/aa6f9f
10.1088/1361-6579/aae469
10.1038/s41598-020-67404-9
10.1186/s12576-020-00732-7
10.1161/01.STR.20.1.45
10.1177/0271678X19871013
10.1016/j.clinph.2018.11.008
10.1088/1361-6579/aafab6
10.1016/j.medengphy.2014.02.001
10.1088/0967-3334/20/3/304
10.1002/brb3.46
10.1016/S0008-6363(98)00067-4
10.1088/0967-3334/24/1/303
10.3389/fphys.2019.00865
10.1097/AOG.0b013e3182a93fb5
10.1080/02688690400012343
10.1016/j.medengphy.2013.10.011
10.1007/s12028-014-9994-7
10.1152/ajpregu.00161.2012
10.1109/TAU.1967.1161901
10.1007/s12028-020-01185-x
10.1007/BF01826057
10.1152/ajpheart.2001.280.5.H2162
10.1016/j.neuroimage.2017.12.049
10.1177/0271678X19870770
10.1177/0271678X18794835
10.1046/j.1365-2281.2000.00286.x
10.1088/1361-6579/ab39d3
10.1016/j.medengphy.2010.12.007
10.1161/hc3301.094908
10.1113/jphysiol.2011.206953
10.1007/978-3-319-65798-1_52
10.14814/phy2.13984
10.3389/fnins.2019.00433
10.1088/1361-6579/abf1af
10.1088/1361-6579/ac27b8
10.1177/0271678X211045222
10.1152/japplphysiol.00316.2017
10.1016/j.autneu.2019.102581
10.14814/phy2.14458
10.1016/S1350-4533(03)00015-8
10.1152/japplphysiol.00271.2007
10.1016/S1350-4533(03)00028-6
10.3389/fphys.2014.00349
10.1177/0271678X221098448
10.1152/physrev.00022.2020
10.1016/j.medengphy.2013.09.012
10.1152/japplphysiol.00475.2009
10.1016/j.jstrokecerebrovasdis.2016.12.003
10.1007/s00424-020-02508-9
10.1152/ajpheart.00639.2006
10.1152/japplphysiol.00906.2006
10.1007/s11883-018-0739-5
10.1038/jcbfm.2008.13
10.1016/j.ultrasmedbio.2010.06.016
10.1088/0967-3334/37/9/1485
10.1152/japplphysiol.90822.2008
10.1113/EP087883
10.3389/fphys.2018.01642
10.1152/japplphysiol.00963.2020
10.1007/s00421-017-3674-1
10.1152/japplphysiol.00264.2015
10.1152/ajpheart.01348.2005
10.1161/01.STR.29.11.2341
10.1177/0271678X15626425
10.1117/1.NPh.1.1.015005
10.1088/1361-6579/aa76a9
10.1088/1361-6579/ac0c0b
10.1007/s10439-007-9412-9
10.1088/1361-6579/ab7ddf
10.1038/jcbfm.2010.225
10.1177/0271678X211004131
10.1161/STROKEAHA.115.011453
10.1152/ajpheart.00107.2022
10.1227/00006123-199009000-00004
10.1111/cns.12130
10.1038/jcbfm.2014.192
10.1152/ajpheart.00328.2012
10.1016/j.ultrasmedbio.2007.11.022
10.1152/ajpheart.2000.278.6.H1848
10.1161/HYPERTENSIONAHA.110.152066
10.1152/ajpheart.00890.2011
10.1161/01.STR.26.6.1014
10.1177/0271678X18806107
10.1161/STROKEAHA.109.574749
10.1002/cphy.c180021
10.1109/JBHI.2020.3015907
10.1177/0271678X15615874
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022 2022 International Society for Cerebral Blood Flow and Metabolism
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022 2022 International Society for Cerebral Blood Flow and Metabolism
CorporateAuthor on behalf of the Cerebrovascular Research Network (CARNet)
Cerebrovascular Research Network (CARNet)
CorporateAuthor_xml – name: on behalf of the Cerebrovascular Research Network (CARNet)
– name: Cerebrovascular Research Network (CARNet)
DBID AFRWT
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1177/0271678X221119760
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1559-7016
EndPage 25
ExternalDocumentID PMC9875346
35962478
10_1177_0271678X221119760
10.1177_0271678X221119760
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Department of Health
GroupedDBID ---
-Q-
-TM
.55
.GJ
0R~
29K
2WC
36B
39C
3O-
4.4
53G
54M
5GY
5RE
5VS
70F
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
AABMB
AACKU
AACMV
AADUE
AAEWN
AAGGD
AAGMC
AAJIQ
AAJPV
AAKGS
AANSI
AAPEO
AAQGT
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAUAS
AAVDI
AAXOT
AAYTG
AAZBJ
ABAWP
ABAWZ
ABCCA
ABCJG
ABDWY
ABEIX
ABFWQ
ABHKI
ABJNI
ABJZC
ABKRH
ABLUO
ABNCE
ABPGX
ABPNF
ABQKF
ABQNX
ABQXT
ABRHV
ABUJY
ABUWG
ABVFX
ABXGC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFO
ACGFS
ACGZU
ACJER
ACJTF
ACLFY
ACLHI
ACNXM
ACOFE
ACOXC
ACPRK
ACROE
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADEBD
ADEIA
ADMPF
ADNON
ADRRZ
ADTBJ
ADUKL
ADVBO
ADZZY
AECGH
AENEX
AEPTA
AEQLS
AESZF
AEUHG
AEWDL
AEWHI
AEXFG
AEXNY
AFEET
AFFNX
AFFZS
AFKRA
AFKRG
AFMOU
AFOSN
AFQAA
AFRWT
AFUIA
AFVCE
AGHKR
AGKLV
AGNHF
AGPXR
AGWFA
AHDMH
AHMBA
AIGRN
AJABX
AJEFB
AJMMQ
AJSCY
AJUZI
AJXAJ
AJXGE
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
AMCVQ
ANDLU
AOIJS
ARTOV
AUTPY
AYAKG
B8M
BAWUL
BBNVY
BBRGL
BDDNI
BENPR
BHPHI
BKIIM
BKSCU
BPACV
BPHCQ
BSEHC
BVXVI
BWJAD
C45
CAG
CBRKF
CCPQU
CDWPY
CFDXU
COF
CORYS
CQQTX
CS3
CUTAK
D-I
DC-
DC.
DIK
DOPDO
DV7
E3Z
EBS
EE.
EJD
EMOBN
F5P
FHBDP
FYUFA
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GX1
H13
HCIFZ
HMCUK
HYE
HZ~
J8X
JSO
K.F
KQ8
LK8
M1P
M7P
O9-
OK1
OVD
P2P
P6G
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q1R
Q2X
RNS
RNTTT
ROL
RPM
SASJQ
SAUOL
SCNPE
SFC
SHG
SPQ
SPV
TEORI
TR2
UKHRP
W2D
X7M
YFH
YOC
ZGI
ZONMY
ZPPRI
ZRKOI
ZSSAH
ZXP
AAEJI
AAPII
AAYXX
AJGYC
AJHME
AJVBE
CITATION
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c504t-ecd447c7f84dc75127d5eec3d576a6438342b89e0705a51e2d4d3eb93e0639763
IEDL.DBID AFRWT
ISSN 0271-678X
1559-7016
IngestDate Thu Aug 21 18:38:41 EDT 2025
Sun Sep 28 09:18:47 EDT 2025
Mon Jul 07 01:53:12 EDT 2025
Sun Sep 21 06:16:45 EDT 2025
Thu Apr 24 22:52:24 EDT 2025
Tue Jun 17 22:31:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords reference values
transfer function analysis
Cerebral hemodynamics
consensus guidelines
Language English
License This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-ecd447c7f84dc75127d5eec3d576a6438342b89e0705a51e2d4d3eb93e0639763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Cerebrovascular Research Network (CARNet) – www.car-net.org
ORCID 0000-0001-9756-5793
0000-0002-9095-9877
0000-0003-3309-3760
0000-0003-1156-2810
0000-0001-5297-6468
0000-0002-1778-8151
0000-0003-1054-0038
0000-0003-1401-2398
0000-0001-6983-8707
0000-0002-6254-5044
0000-0001-9975-5128
0000-0001-9072-5088
OpenAccessLink https://journals.sagepub.com/doi/full/10.1177/0271678X221119760?utm_source=summon&utm_medium=discovery-provider
PMID 35962478
PQID 2702178268
PQPubID 23479
PageCount 23
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9875346
proquest_miscellaneous_2702178268
pubmed_primary_35962478
crossref_citationtrail_10_1177_0271678X221119760
crossref_primary_10_1177_0271678X221119760
sage_journals_10_1177_0271678X221119760
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: United States
– name: Sage UK: London, England
PublicationTitle Journal of cerebral blood flow and metabolism
PublicationTitleAlternate J Cereb Blood Flow Metab
PublicationYear 2023
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Panerai, Kerins, Fan 2004; 18
Panerai, Intharakham, Haunton 2020; 41
Castro, Freitas, Santos 2017; 117
Washio, Watanabe, Ogoh 2020; 70
Aengevaeren, Claassen, Levine 2013; 114
Zhang, Zuckerman, Levine 2000; 278
Simpson, Panerai, Evans 2001; 29
Imholz, Wieling, Langewouters 1991; 1
Labrecque, Rahimaly, Imhoff 2019; 7
Madureira, Castro, Azevedo 2017; 26
van Beek, Claassen, Rikkert 2008; 28
Castro, Serrador, Rocha 2017; 8
Fraser, Brady, Rhee 2013; 115
Lewis, Smielewski, Rosenfeld 2014; 21
Xiong, Tian, Lin 2017; 26
Elting, Sanders, Panerai 2020; 15
Intharakham, Panerai, Katsogridakis 2019; 40
Panerai, Dawson, Eames 2001; 280
Czosnyka, Smielewski, Piechnik 2002; 81
Nogueira, Bor-Seng-Shu, Santos 2013; 8
Liu, Birch, Allen 2003; 25
Panerai, White, Markus 1998; 29
Klein, Bailey, Wollseiffen 2020; 8
Depreitere, Citerio, Smith 2021; 34
Sanders, Elting, Panerai 2019; 10
Labrecque, Rahimaly, Imhoff, Paquette, Le Blanc, Malenfant 2017; 5
van Beek, Rikkert, Pasman 2010; 36
Giller 1990; 27
Drapeau, Labrecque, Imhoff 2019; 7
Carey, Panerai, Potter 2003; 34
Mahdi, Rutter, Payne 2017; 47
Birch, Dirnhuber, Hartley-Davies 1995; 26
Aaslid, Lindegaard, Sorteberg 1989; 20
Panerai, Deverson, Mahony 1999; 20
Guo, Xing, Liu 2014; 9
Deegan, Serrador, Nakagawa 2011; 33
Perry, Cotter, Mejuto 2014; 5
Caldas, Panerai, Haunton 2017; 312
Kainerstorfer, Sassaroli, Tgavalekos 2015; 35
Liu, Czosnyka, Donnelly 2015; 35
Tzeng, Ainslie, Cooke 2012; 303
Haubrich, Pies, Dafotakis 2010; 36
Sheriff, Castro, Kozberg 2020; 10
Mahdi, Nikolic, Birch 2017; 38
Panerai, Barnes, Nath 2018; 315
Castro, Azevedo, Sorond 2018; 20
Diehl, Linden, LüCke 1995; 26
Gerlach, Manuel, Hoff 2019; 13
Minhas, Kennedy, Robinson 2019; 40
Subudhi, Panerai, Roach 2010; 41
Liu, Simpson, Panerai 2022
Elting, Tas, Aries 2020; 40
Caldas, Panerai, Bor-Seng-Shu 2019; 130
Brassard, Ferland-Dutil, Smirl 2017; 312
Junejo, Braz, Lucas 2020; 40
Bryant, Birch, Panerai 2021
Panerai, Eyre, Potter 2012; 303
Kwon, Kim, Kang 2006; 16
Reinhard, Muller, Guschlbauer 2003; 24
Nogueira, Lam, Llwyd 2020; 10
Hoiland, Fisher, Ainslie 2019; 9
Imholz, Wieling, van Montfrans 1998; 38
Labrecque, Burma, Roy 2022; 132
Salinet, Silva, Caldas 2019; 39
Angarita-Jaimes, Kouchakpour, Liu 2014; 36
Panerai, Robinson, Minhas 2019; 597
Gommer, Shijaku, Mess 2010; 48
Intharakham, Beishon, Panerai 2019; 39
Reehal, Cummings, Mullen 2021; 12
Panerai, Eames, Potter 2003; 24
Brothers, Zhang, Wingo 2009; 107
Minhas, Panerai, Robinson 2018; 39
Ma, Guo, Liu 2016; 47
Meel-van den Abeelen, Simpson, Wang 2014; 36
Mehagnoul-Schipper, Kraaij, Jansen 2000; 20
Whittaker, Driver, Venzi 2019; 13
Peng, Rowley, Ainslie 2008; 36
Burma, Miutz, Newel 2021; 42
Bergman, Cluver, Carlberg 2021; 225
Claassen, Thijssen, Panerai 2021; 101
Welch 1967; 15
Brunser, Silva, Cárcamo 2012; 2
Giller, Mueller 2003; 25
Kostoglou, Debert, Poulin 2014; 36
Marmarelis, Shin, Zhang 2012; 6
Beishon, Clough, Kadicheeni 2021; 473
Wright, Smirl, Bryk 2018; 126
Claassen, Meel-van den Abeelen, Simpson 2016; 36
Guo, Ma, Liu 2018; 9
Barnes, Ball, Haunton 2017; 123
Caldas, Passos, Ramos 2020; 54
Smirl, Hoffman, Tzeng 2015; 119
Skow, Brothers, Claassen 2022
Smirl, Hoffman, Tzeng 2016; 120
Malenfant, Brassard, Paquette 2017; 6
Llwyd, Haunton, Salinet 2019; 57
Barnes, Ball, Haunton 2018; 118
Liu, Guo, Simpson 2021; 25
Tiecks, Lam, Aaslid 1995; 26
Mahdi, Nikolic, Birch 2017; 47
Smirl, Wright, Ainslie 2018; 126
Meel-van den Abeelen, Van Beek, Slump 2014; 36
Panerai, Haunton, Llwyd 2021; 41
Burma, Copeland, Macaulay 2020; 8
Carey, Manktelow, Panerai 2001; 104
Katsogridakis, Bush, Fan 2013; 33
Reinhard, Wehrle-Wieland, Grabiak 2006; 250
Claassen, Levine, Zhang 2009; 106
Panerai, Jara, Saeed 2016; 36
Martina, Westerhof, van Goudoever 2012; 116
Labrecque, Drapeau, Rahimaly 2021; 130
Castro, Santos, Freitas 2014; 117
Chi, Wang, Chan 2018; 7803426
Bright, Croal, Blockley 2019; 187
Saeed, Horsfield, Panerai 2011; 31
Patel, Panerai, Haunton, Katsogridakis 2016; 37
Zhang, Zuckerman, Giller 1998; 274
Nader, Andrade, Espinosa 2015; 73
de Heus, de Jong, Sanders 2018; 72
Minhas, Panerai, Swienton 2020; 15
Nogueira, Aries, Minhas 2022; 42
Immink, Secher, Roos 2006; 96
Claassen, Zhang, Fu 2007; 102
Panerai, Haunton, Hanby 2016; 37
van Veen, Panerai, Haeri 2013; 122
Salinet, Moura, Romaneli 2021; 42
Panerai, Haunton, Minhas 2018; 39
Tzeng, Chan, Willie 2011; 589
Beishon, Minhas, Nogueira 2020; 24
Panerai, Eames, Potter 2006; 291
Kostoglou, Wright, Smirl 2016
Chen, Liu, Duan 2013; 19
Mol, Meskers, Sanders 2021; 121
Minhas, Robinson, Panerai 2017; 38
Herrington, Thrall, Mann 2019; 222
Burley, Lucas, Whittaker 2020; 105
Panerai, Salinet, Robinson 2012; 302
Katsogridakis, Simpson, Bush 2016; 37
Tzeng, Willie, Atkinson 2010; 56
Wijnhoud, Franckena, van der Lugt 2008; 34
Sammons, Samani, Smith 2007; 103
Selb, Boas, Chan 2014; 1
Ainslie, Barach, Murrell 2007; 292
Sanders, Claassen, Aries 2018; 39
Elting, Aries, van der Hoeven 2014; 36
bibr123-0271678X221119760
bibr110-0271678X221119760
bibr2-0271678X221119760
bibr149-0271678X221119760
bibr25-0271678X221119760
bibr93-0271678X221119760
bibr38-0271678X221119760
bibr136-0271678X221119760
bibr108-0271678X221119760
bibr12-0271678X221119760
bibr39-0271678X221119760
bibr79-0271678X221119760
bibr66-0271678X221119760
bibr3-0271678X221119760
bibr53-0271678X221119760
bibr80-0271678X221119760
bibr137-0271678X221119760
Bendat JS. (bibr24-0271678X221119760) 1986
bibr26-0271678X221119760
bibr111-0271678X221119760
bibr13-0271678X221119760
bibr40-0271678X221119760
bibr107-0271678X221119760
bibr135-0271678X221119760
bibr54-0271678X221119760
bibr64-0271678X221119760
bibr94-0271678X221119760
bibr4-0271678X221119760
bibr65-0271678X221119760
bibr125-0271678X221119760
bibr55-0271678X221119760
bibr150-0271678X221119760
Czosnyka M (bibr133-0271678X221119760) 2002; 81
bibr95-0271678X221119760
bibr28-0271678X221119760
bibr83-0271678X221119760
bibr48-0271678X221119760
bibr76-0271678X221119760
bibr139-0271678X221119760
Chi NF (bibr44-0271678X221119760) 2018; 7803426
bibr96-0271678X221119760
bibr5-0271678X221119760
bibr140-0271678X221119760
bibr120-0271678X221119760
bibr91-0271678X221119760
bibr100-0271678X221119760
bibr36-0271678X221119760
bibr127-0271678X221119760
bibr56-0271678X221119760
bibr147-0271678X221119760
bibr63-0271678X221119760
bibr134-0271678X221119760
bibr16-0271678X221119760
bibr43-0271678X221119760
bibr23-0271678X221119760
bibr114-0271678X221119760
bibr9-0271678X221119760
bibr31-0271678X221119760
bibr41-0271678X221119760
bibr142-0271678X221119760
bibr21-0271678X221119760
bibr11-0271678X221119760
bibr122-0271678X221119760
bibr51-0271678X221119760
bibr132-0271678X221119760
bibr61-0271678X221119760
bibr71-0271678X221119760
bibr81-0271678X221119760
bibr88-0271678X221119760
bibr78-0271678X221119760
bibr7-0271678X221119760
bibr112-0271678X221119760
bibr119-0271678X221119760
bibr102-0271678X221119760
bibr109-0271678X221119760
bibr58-0271678X221119760
bibr129-0271678X221119760
bibr68-0271678X221119760
bibr98-0271678X221119760
Beishon LC (bibr14-0271678X221119760) 2020; 24
Minhas JS (bibr32-0271678X221119760) 2018; 39
bibr60-0271678X221119760
bibr73-0271678X221119760
bibr99-0271678X221119760
bibr86-0271678X221119760
bibr143-0271678X221119760
bibr18-0271678X221119760
bibr116-0271678X221119760
bibr103-0271678X221119760
bibr130-0271678X221119760
bibr131-0271678X221119760
bibr59-0271678X221119760
bibr144-0271678X221119760
bibr46-0271678X221119760
bibr19-0271678X221119760
bibr33-0271678X221119760
bibr104-0271678X221119760
bibr20-0271678X221119760
bibr117-0271678X221119760
bibr34-0271678X221119760
bibr74-0271678X221119760
bibr145-0271678X221119760
bibr84-0271678X221119760
bibr115-0271678X221119760
bibr75-0271678X221119760
bibr85-0271678X221119760
bibr105-0271678X221119760
bibr45-0271678X221119760
bibr15-0271678X221119760
bibr113-0271678X221119760
bibr126-0271678X221119760
bibr35-0271678X221119760
bibr89-0271678X221119760
bibr146-0271678X221119760
bibr106-0271678X221119760
Kostoglou K (bibr124-0271678X221119760) 2016
bibr22-0271678X221119760
bibr118-0271678X221119760
bibr49-0271678X221119760
bibr10-0271678X221119760
bibr69-0271678X221119760
bibr90-0271678X221119760
bibr101-0271678X221119760
bibr30-0271678X221119760
bibr29-0271678X221119760
bibr70-0271678X221119760
bibr121-0271678X221119760
bibr6-0271678X221119760
bibr50-0271678X221119760
bibr141-0271678X221119760
bibr92-0271678X221119760
bibr37-0271678X221119760
bibr87-0271678X221119760
bibr27-0271678X221119760
bibr97-0271678X221119760
bibr47-0271678X221119760
bibr77-0271678X221119760
bibr67-0271678X221119760
bibr138-0271678X221119760
bibr57-0271678X221119760
bibr148-0271678X221119760
bibr52-0271678X221119760
bibr128-0271678X221119760
bibr17-0271678X221119760
bibr1-0271678X221119760
bibr42-0271678X221119760
bibr8-0271678X221119760
bibr62-0271678X221119760
bibr72-0271678X221119760
bibr82-0271678X221119760
References_xml – volume: 107
  start-page: 1722
  year: 2009
  end-page: 1729
  article-title: Effects of heat stress on dynamic autoregulation during large fluctuations in arterial blood pressure
  publication-title: J Appl Physiol
– volume: 10
  start-page: 10554
  year: 2020
  article-title: Cerebral autoregulation and response to intravenous thrombolysis for acute ischemic stroke
  publication-title: Sci Rep
– volume: 303
  start-page: R395
  year: 2012
  end-page: R407
  article-title: Multivariate modeling of cognitive-motor stimulation on neurovascular coupling: transcranial doppler used to characterize myogenic and metabolic influences
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 8
  start-page: 1
  year: 2017
  end-page: 5
  article-title: Efficacy of cerebral autoregulation in early ischemic stroke predicts smaller infarcts and better outcomes
  publication-title: Front Neurol
– volume: 15
  start-page: 627
  year: 2020
  end-page: 637
  article-title: Feasibility of improving cerebral autoregulation in acute intracerebral hemorrhage (BREATHE-ICH) study: Results from an experimental interventional study
  publication-title: Int J Stroke
– volume: 597
  start-page: 5821
  year: 2019
  end-page: 5833
  article-title: The upper frequency limit of dynamic cerebral autoregulation
  publication-title: J Physiol
– volume: 222
  start-page: 102581
  year: 2019
  article-title: The effect of steady-state CO on regional brain blood flow responses to increases in blood pressure via the cold pressor test
  publication-title: Auton Neurosci
– volume: 38
  start-page: N101
  year: 2017
  end-page: N106
  article-title: PaCO measurement in cerebral haemodynamics: face mask or nasal cannulae?
  publication-title: Physiol Meas
– volume: 7803426
  start-page: 1
  year: 2018
  end-page: 6
  article-title: Comparing different recording lenghts of dynamic cerebral autoregulation: 5 versus 10 minutes
  publication-title: BioMed Res Int
– volume: 130
  start-page: 101
  year: 2019
  end-page: 108
  article-title: Dynamic cerebral autoregulation: a marker of post-operative delirium?
  publication-title: Clin Neurophysiol
– volume: 105
  start-page: 893
  year: 2020
  end-page: 903
  article-title: The CO stimulus duration and steady-state time point used for data extraction alters the CO reactivity outcome measure
  publication-title: Exp Physiol
– volume: 6
  start-page: 42
  year: 2012
  end-page: 55
  article-title: Linear and nonlinear modeling of cerebral flow autoregulation using principal dynamic modes
  publication-title: Open Biomed Eng J
– volume: 8
  start-page: e14367
  year: 2020
  article-title: Dynamic cerebral autoregulation across the cardiac cycle during 8 hr of recovery from acute exercise
  publication-title: Physiol Rep
– volume: 10
  year: 2019
  article-title: Dynamic cerebral autoregulation reproducibility is affected by physiological variability
  publication-title: Front Physiol
– volume: 10
  start-page: 641
  year: 2020
  article-title: Dynamic cerebral autoregulation post endovascular thrombectomy in acute ischemic stroke
  publication-title: Brain Sci
– volume: 47
  start-page: 151
  year: 2017
  end-page: 158
  article-title: Increased blood pressure variability upon standing improves reproducibility of cerebral autoregulation indices
  publication-title: Med Eng Phys
– volume: 312
  start-page: H701
  year: 2017
  end-page: H704
  article-title: Evidence for hysteresis in the cerebral pressure-flow relationship in healthy men
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 48
  start-page: 1243
  year: 2010
  end-page: 1250
  article-title: Dynamic cerebral autoregulation: different signal processing methods without influence on results and reproducibility
  publication-title: Med Biol Eng Comput
– volume: 5
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Diminished dynamic cerebral autoregulatory capacity with forced oscillations in mean arterial pressure with elevated cardiorespiratory fitness
  publication-title: Physiol Rep
– volume: 101
  start-page: 1487
  year: 2021
  end-page: 1559
  article-title: Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation
  publication-title: Physiol Rev
– volume: 36
  start-page: 585
  year: 2014
  end-page: 591
  article-title: Reproducibility and variability of dynamic cerebral autoregulation during passive cycling leg raising
  publication-title: Med Eng Phys
– volume: 42
  year: 2021
  article-title: CAAos platform: an integrated platform for analysis of cerebral hemodynamics data
  publication-title: Physiol Meas
– volume: 70
  start-page: 1
  year: 2020
  article-title: Dynamic cerebral autoregulation in anterior and posterior cerebral circulation during cold pressor test
  publication-title: J Physiol Sci
– volume: 6
  start-page: e006126
  year: 2017
  article-title: Compromised cerebrovascular regulation and cerebral oxygenation in pulmonary arterial hypertension
  publication-title: J Am Heart Assoc
– volume: 118
  start-page: 2377
  year: 2018
  end-page: 2384
  article-title: How many squat-stand manoeuvres to assess dynamic cerebral autoregulation?
  publication-title: Eur J Appl Physiol
– volume: 36
  start-page: 620
  year: 2014
  end-page: 627
  article-title: Between-centre variability in transfer function analysis, a widely used method for linear quantification of the dynamic pressure-flow relation: the CARNet study
  publication-title: Med Eng Phys
– volume: 37
  start-page: 1485
  year: 2016
  end-page: 1498
  article-title: The Leicester cerebral haemodynamics database: normative values and the influence of age and sex
  publication-title: Physiol Meas
– volume: 274
  start-page: H233
  year: 1998
  end-page: H241
  article-title: Transfer function analysis of dynamic cerebral autoregulation in humans
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 104
  start-page: 898
  year: 2001
  end-page: 902
  article-title: Cerebral autoregulatory responses to head-up tilt in normal subjects and patients with recurrent vasovagal syncope
  publication-title: Circulation
– volume: 250
  start-page: 103
  year: 2006
  end-page: 109
  article-title: Oscillatory cerebral hemodynamics – the macro- vs. microvascular level
  publication-title: J Neurol Sci
– volume: 12
  year: 2021
  article-title: Differentiating dynamic cerebral autoregulation across vascular territories
  publication-title: Front Neurol
– start-page: 696
  year: 2016
  end-page: 699
  article-title: Dynamic cerebral autoregulation in young athletes following concussion.
  publication-title: IEEE Eng Med Biol Soc
– volume: 13
  year: 2019
  article-title: Cerebral autoregulation evidenced by synchronized low frequency oscillations in blood pressure and resting-state fMRI
  publication-title: Front Neurosci
– volume: 132
  start-page: 154
  year: 2022
  end-page: 166
  article-title: Reproducibility and diurnal variation of the directional sensitivity of the cerebral pressure-flow relationship in men and women
  publication-title: J Appl Physiol
– volume: 26
  start-page: 500
  year: 2017
  end-page: 508
  article-title: Demographic and systemic hemodynamic influences in mechanisms of cerebrovascular regulation in healthy adults
  publication-title: J Stroke Cerebrovasc Dis
– volume: 9
  start-page: e104849
  year: 2014
  article-title: Compromised dynamic cerebral autoregulation with a right-to-left shunt: a potential mechanism of migraine and criptogenic stroke
  publication-title: PLOS One
– volume: 122
  start-page: 1064
  year: 2013
  end-page: 1069
  article-title: Cerebral autoregulation in normal pregnancy and preeclampsia
  publication-title: Obstet Gynecol
– volume: 8
  start-page: 314421
  year: 2020
  article-title: The effect of age on cerebral blood flow responses during repeated and sustained stand to sit transitions
  publication-title: Physiol Rep
– volume: 27
  start-page: 362
  year: 1990
  end-page: 368
  article-title: The frequency-dependent behavior of cerebral autoregulation
  publication-title: Neurosurgery
– volume: 19
  start-page: 638
  year: 2013
  end-page: 640
  article-title: Impaired dynamic cerebral autoregulation in moyamoya disease
  publication-title: CNS Neurosci Ther
– volume: 34
  start-page: 923
  year: 2008
  end-page: 929
  article-title: Inadequate acoustical temporal bone window in patients with a transient ischemic attack or minor stroke: role of skull thickness and bone density
  publication-title: Ultrasound Med Biol
– volume: 73
  start-page: 230
  year: 2015
  end-page: 232
  article-title: Technical difficulties due to poor acoustic insonation during transcranial doppler recordings in Amerindians and individuals of European origin. A comparative study
  publication-title: Eur Neurol
– volume: 13
  year: 2019
  article-title: Novel approach to elucidate human baroreflex regulation at the brainstem level: pharmacological testing during fMRI
  publication-title: Front Neurosci
– volume: 278
  start-page: H1848
  year: 2000
  end-page: H1855
  article-title: Spontaneous fluctuations in cerebral blood flow: insights from extended- duration recordings in humans
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 42
  start-page: 430
  year: 2022
  end-page: 453
  article-title: Review of studies on dynamic cerebral autoregulation in the acute phase of stroke and the relationship with clinical outcome
  publication-title: J Cereb Blood Flow Metab
– volume: 7
  start-page: e14185
  year: 2019
  article-title: Six weeks of high-intensity interval training to exhaustion attenuates dynamic cerebral autoregulation without influencing resting cerebral blood velocity in young fit men
  publication-title: Physiol Rep
– volume: 292
  start-page: H976
  year: 2007
  end-page: H983
  article-title: Alterations in cerebral autoregulation and cerebral blood flow velocity during acute hypoxia: rest and exercise
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 39
  start-page: 125006
  year: 2018
  article-title: Inter-subject analysis of transfer function coherence in studies of dynamic cerebral autoregulation
  publication-title: Physiol Meas
– volume: 41
  start-page: 2456
  year: 2021
  end-page: 2469
  article-title: Cerebral critical closing pressure and resistance-area product: the influence of dynamic cerebral autoregulation, age and sex
  publication-title: J Cereb Blood Flow Metab
– volume: 20
  start-page: 45
  year: 1989
  end-page: 52
  article-title: Cerebral autoregulation dynamics in humans
  publication-title: Stroke
– volume: 36
  start-page: 192
  year: 2010
  end-page: 201
  article-title: Dynamic cerebral autoregulation in the old using a repeated sit-stand maneuver
  publication-title: Ultrasound Med Biol
– volume: 39
  start-page: 2277
  year: 2019
  end-page: 2285
  article-title: Impaired cerebral autoregulation and neurovascular coupling in Middle cerebral artery stroke: Influence of severity?
  publication-title: J Cereb Blood Flow Metab
– volume: 303
  start-page: H658
  year: 2012
  end-page: H671
  article-title: Assessment of cerebral autoregulation: the quandary of quantification
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 114
  start-page: 195
  year: 2013
  end-page: 202
  article-title: Cardiac baroreflex function and dynamic cerebral autoregulation in elderly masters athletes
  publication-title: J Appl Physiol (1985)
– volume: 37
  start-page: 1056
  year: 2016
  end-page: 1073
  article-title: Revisiting the frequency domain: the multiple and partial coherence of cerebral blood flow velocity
  publication-title: Physiol Meas
– volume: 280
  start-page: H2162
  year: 2001
  end-page: H2174
  article-title: Cerebral blood flow velocity response to induced and spontaneous sudden changes in arterial blood pressure
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 36
  start-page: 308
  year: 2008
  end-page: 320
  article-title: Multivariate system identification for cerebral autoregulation
  publication-title: Ann Biomed Eng
– volume: 24
  start-page: 367
  year: 2003
  end-page: 381
  article-title: Variability of time-domain indices of dynamic cerebral autoregulation
  publication-title: Physiol Meas
– volume: 26
  start-page: 1801
  year: 1995
  end-page: 1804
  article-title: Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation
  publication-title: Stroke
– volume: 36
  start-page: 563
  year: 2014
  end-page: 575
  article-title: Transfer function analysis for the assessment of cerebral autoregulation using spontaneous oscillations in blood pressure and cerebral blood flow
  publication-title: Med Eng Phys
– volume: 5
  start-page: 1
  year: 2014
  end-page: 7
  article-title: Cerebral hemodynamics during graded Valsalva maneuvers
  publication-title: Front Physiol
– volume: 40
  start-page: 015003
  year: 2019
  article-title: Different strategies to initiate and maintain hyperventilation: their effect on continuous estimates of dynamic cerebral autoregulation
  publication-title: Physiol Meas
– volume: 302
  start-page: H459
  year: 2012
  end-page: H466
  article-title: Contribution of arterial blood pressure and PaCO to the cerebrovascular responses to motor stimulation
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 117
  start-page: 1817
  year: 2017
  end-page: 1831
  article-title: Indexes of cerebral autoregulation do not reflect impairment in syncope: insights from head-up tilt test of vasovagal an autonomic failure subjects
  publication-title: Eur J Appl Physiol
– volume: 31
  start-page: 1302
  year: 2011
  end-page: 1310
  article-title: Measurement of cerebral blood flow responses to the thigh cuff maneuver: a comparison of TCD with a novel MRI method
  publication-title: J Cereb Blood Flow Metab
– volume: 126
  start-page: 303
  year: 2018
  end-page: 307
  article-title: Systolic and diastolic regulation of the cerebral pressure-flow relationship differentially affected by acute sport-related concussion
  publication-title: Acta Neurochir Suppl
– volume: 20
  start-page: 466
  year: 2000
  end-page: 473
  article-title: Achieving haemodynamic baseline values with finapres in elderly subjects during supine rest
  publication-title: Clin Physiol
– volume: 81
  start-page: 117
  year: 2002
  end-page: 119
  article-title: Clinical significance of cerebral autoregulation
  publication-title: Acta Neurochir Suppl
– volume: 40
  start-page: 135
  year: 2020
  end-page: 149
  article-title: Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial doppler are similar after correction for transit time and blood flow and blood volume oscillations
  publication-title: J Cereb Blood Flow Metab
– volume: 21
  start-page: 514
  year: 2014
  end-page: 525
  article-title: A continuous correlation between intracranial pressure and cerebral blood flow velocity reflects cerebral autoregulation impairment during intracranial pressure Plateau waves
  publication-title: Neurocrit Care
– volume: 41
  start-page: 035006
  year: 2020
  article-title: Chasing the evidence: the influence of data segmentation on estimates of dynamic cerebral autoregulation
  publication-title: Physiol Meas
– volume: 38
  start-page: 605
  year: 1998
  end-page: 616
  article-title: Fifteen years experience with finger arterial pressure monitoring: assessment of the technology
  publication-title: Cardiovasc Res
– volume: 7
  start-page: e13984
  year: 2019
  article-title: Dynamic cerebral autoregulation is attenuated in young fit women
  publication-title: Physiol Rep
– volume: 115
  start-page: 52
  year: 2013
  end-page: 56
  article-title: The frequency response of cerebral autoregulation
  publication-title: J Appl Physiol
– volume: 116
  start-page: 1092
  year: 2012
  end-page: 1103
  article-title: Noninvasive continuous arterial blood pressure monitoring with nexfin(R).
  publication-title: Anesthesiology
– volume: 26
  start-page: 1014
  year: 1995
  end-page: 1019
  article-title: Comparison of static and dynamic cerebral autoregulation measurements
  publication-title: Stroke
– volume: 47
  start-page: 674
  year: 2016
  end-page: 681
  article-title: Temporal course of dynamic cerebral autoregulation in patients with intracerebral hemorrhage
  publication-title: Stroke
– volume: 38
  start-page: 1396
  year: 2017
  end-page: 1404
  article-title: At what data length do cerebral autoregulation measures stabilise?
  publication-title: Physiol Meas
– volume: 130
  start-page: 1724
  year: 2021
  end-page: 1735
  article-title: Dynamic cerebral autoregulation and cerebrovascular carbon dioxide reactivity in middle and posterior cerebral arteries in young endurance-trained women
  publication-title: J Appl Physiol
– volume: 36
  start-page: 607
  year: 2014
  end-page: 612
  article-title: Optimising the assessment of cerebral autoregulation from black box models
  publication-title: Med Eng Phys
– start-page: 0271678X2210984
  year: 2022
  article-title: Point-Counterpoint: Transfer function analysis of dynamic cerebral autoregulation: to band or not to band?
  publication-title: J Cereb Blood Flow Metab
– volume: 37
  start-page: 661
  year: 2016
  end-page: 680
  article-title: Statistical criteria for estimation of the cerebral autoregulation index (ARI) at rest
  publication-title: Physiol Meas
– volume: 15
  start-page: e0227651
  year: 2020
  article-title: Assessment of dynamic cerebral autoregulation in humans: is reproducibility dependent on blood pressure variability?
  publication-title: PLOS One
– volume: 20
  start-page: 265
  year: 1999
  end-page: 275
  article-title: Effect of CO on dynamic cerebral autoregulation measurement
  publication-title: Physiol Meas
– volume: 29
  start-page: 2341
  year: 1998
  end-page: 2346
  article-title: Grading of cerebral dynamic autoregulation from spontaneous fluctuations in arterial blood pressure
  publication-title: Stroke
– volume: 36
  start-page: 665
  year: 2016
  end-page: 680
  article-title: Transfer function analysis of dynamic cerebral autoregulation: a white paper from the international autoregulation research network (CARNet)
  publication-title: J Cereb Blood Flow Metab
– volume: 120
  start-page: 552
  year: 2016
  end-page: 563
  article-title: Relationship between blood pressure and cerebral blood flow during supine cycling: influence of aging
  publication-title: J Appl Physiol
– volume: 15
  start-page: 70
  year: 1967
  end-page: 73
  article-title: The use of the fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms
  publication-title: IEEE Trans Audio Electroacoust
– volume: 2
  start-page: 231
  year: 2012
  end-page: 236
  article-title: Transcranial doppler in a Hispanic-Mestizo population with neurological diseases: a study of sonographic window and its determinants
  publication-title: Brain Behav
– volume: 106
  start-page: 153
  year: 2009
  end-page: 160
  article-title: Dynamic cerebral autoregulation during repeated squat-stand maneuvers
  publication-title: J Appl Physiol
– volume: 39
  start-page: 2105
  year: 2019
  end-page: 2116
  article-title: Assessment of cerebral autoregulation in stroke: a systematic review and meta-analysis of studies at rest
  publication-title: J Cereb Blood Flow Metab
– volume: 9
  start-page: 1101
  year: 2019
  end-page: 1154
  article-title: Regulation of the cerebral circulation by arterial carbon dioxide
  publication-title: Compr Physiol
– volume: 18
  start-page: 471
  year: 2004
  end-page: 479
  article-title: Association between dynamic cerebral autoregulation and mortality in severe head injury
  publication-title: Br J Neurosurg
– volume: 40
  start-page: 1647
  year: 2020
  end-page: 1657
  article-title: Neurovascular coupling and cerebral autoregulation in atrial fibrillation
  publication-title: J Cereb Blood Flow Metab
– volume: 28
  start-page: 1071
  year: 2008
  end-page: 1085
  article-title: Cerebral autoregulation: an overview of current concepts and methodology with special focus on the elderly
  publication-title: J Cereb Blood Flow Metab
– volume: 103
  start-page: 369
  year: 2007
  end-page: 375
  article-title: Influence of noninvasive peripheral arterial blood pressure measurements on assessment of dynamic cerebral autoregulation
  publication-title: J Appl Physiol
– volume: 36
  start-page: 592
  year: 2014
  end-page: 600
  article-title: Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia
  publication-title: Med Eng Phys
– volume: 40
  start-page: 085002
  year: 2019
  article-title: Can we use short recordings for assessment of dynamic cerebral autoregulation? A sensitivity analysis study in acute ischaemic stroke and healthy subjects
  publication-title: Physiol Meas
– volume: 291
  start-page: H251
  year: 2006
  end-page: H259
  article-title: Multiple coherence of cerebral blood flow velocity in humans
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 26
  start-page: 834
  year: 1995
  end-page: 837
  article-title: Assessment of autoregulation by means of periodic changes in blood pressure
  publication-title: Stroke
– volume: 1
  start-page: 015005
  year: 2014
  article-title: Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia
  publication-title: Neurophoton
– volume: 96
  start-page: 609
  year: 2006
  end-page: 614
  article-title: The postural reduction in middle cerebral artery blood velocity is not explained by PaCO
  publication-title: Eur J Appl Physiol
– volume: 42
  year: 2021
  article-title: What recording duration is required to provide physiologically valid and reliable dynamic autoregulation transfer function analysis estimates?
  publication-title: Physiol Meas
– volume: 33
  start-page: 519
  year: 2013
  end-page: 523
  article-title: Detection of impaired cerebral autoregulation improves by increasing arterial blood pressure variability
  publication-title: J Cereb Blood Flow Metab
– volume: 57
  start-page: 2731
  year: 2019
  end-page: 2739
  article-title: Can we assess dynamic cerebral autoregulation in stroke patients with high rates of cardiac ectopicity?
  publication-title: Med Biol Eng Comput
– volume: 35
  start-page: 248
  year: 2015
  end-page: 256
  article-title: Comparison of frequency and time domain methods of assessment of cerebral autoregulation in traumatic brain injury
  publication-title: J Cereb Blood Flow Metab
– volume: 20
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Cerebral autoregulation in stroke
  publication-title: Curr Atherosc Rep
– volume: 117
  start-page: 205
  year: 2014
  end-page: 213
  article-title: Autonomic dysfunction affects dynamic cerebral autoregulation during valsalva maneuver: comparison between healthy and autonomic dysfunction subjects
  publication-title: J Appl Physiol (1985)
– volume: 121
  start-page: 2165
  year: 2021
  end-page: 2176
  article-title: Cerebral autoregulation assessed by near-infrared spectroscopy: validation using transcranial doppler in patients with controlled hypertension, cognitive impairment and controls
  publication-title: Eur J Appl Physiol
– volume: 39
  start-page: 1
  year: 2018
  end-page: 11
  article-title: Modelling the cerebral haemodynamic response in the physiological range of PaCO
  publication-title: Physiol Meas
– volume: 24
  start-page: 27
  year: 2003
  end-page: 43
  article-title: Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation – a comparison between spontaneous and respiratory-induced oscillations
  publication-title: Physiol Meas
– volume: 36
  start-page: 1581
  year: 2010
  end-page: 1587
  article-title: Transcranial doppler monitoring in Parkinson's disease: cerebrovascular compensation of orthostatric hypotension
  publication-title: Ultrasound Med Biol
– volume: 225
  year: 2021
  article-title: Cerebral perfusion pressure and autoregulation in eclampsia – a case control study
  publication-title: Am J Obstet Gynecol
– volume: 26
  start-page: 1081
  year: 2017
  end-page: 1087
  article-title: Is dynamic cerebral autoregulation bilaterally impaired after unilateral acute ischemic stroke?
  publication-title: J Stroke Cerebrovasc Dis
– volume: 35
  start-page: 959
  year: 2015
  end-page: 966
  article-title: Cerebral autoregulation in the microvasculature measured with near-infrared spectroscopy
  publication-title: J Cereb Blood Flow Metab
– volume: 187
  start-page: 128
  year: 2019
  end-page: 144
  article-title: Multiparametric measurement of cerebral physiology using calibrated fMRI
  publication-title: Neuroimage
– volume: 33
  start-page: 553
  year: 2011
  end-page: 562
  article-title: The effect of blood pressure calibrations and transcranial doppler signal loss on transfer function estimates of cerebral autoregulation
  publication-title: Med Eng Phys
– volume: 8
  start-page: e14458
  year: 2020
  article-title: Comparison of diurnal variation, anatomical location, and biological sex within spontaneous and driven dynamic cerebral autoregulation measures
  publication-title: Physiol Rep
– volume: 39
  start-page: 125002
  year: 2018
  article-title: Reproducibility of dynamic cerebral autoregulation parameters: a multi-centre, multi-method study
  publication-title: Physiol Meas
– volume: 312
  start-page: R108
  year: 2017
  end-page: R113
  article-title: Cerebral blood flow autoregulation in ischemic heart failure
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 54
  start-page: 183
  year: 2020
  end-page: 189
  article-title: Dynamic autoregulation is impaired in circulatory shock
  publication-title: Shock
– volume: 16
  start-page: 347
  year: 2006
  end-page: 352
  article-title: The thickness and texture of temporal bone in brain CT predict acoustic window failure of transcranial doppler
  publication-title: J Neuroimag
– volume: 56
  start-page: 268
  year: 2010
  end-page: 273
  article-title: Cerebrovascular regulation during transient hypotension and hypertension in humans
  publication-title: Hypertension
– volume: 9
  start-page: 1642
  year: 2018
  article-title: Dynamic cerebral autoregulation remains stable during the daytime (8 a.m. to 8 p.m.) in healthy adults
  publication-title: Front Physiol
– volume: 473
  start-page: 735
  year: 2021
  end-page: 751
  article-title: Vascular and haemodynamic issues of brain ageing
  publication-title: Pflugers Arch
– volume: 123
  start-page: 558
  year: 2017
  end-page: 566
  article-title: Randon squat-stand maneuvers: a novel approach for assessment of dynamic cerebral autoregulation?
  publication-title: J Appl Physiol
– volume: 8
  start-page: e70821
  year: 2013
  article-title: Dynamic cerebral autoregulation changes during Sub-maximal handgrip maneuver
  publication-title: PLoS ONE
– volume: 34
  start-page: 1871
  year: 2003
  end-page: 1875
  article-title: Effect of aging on dynamic cerebral autoregulation during head-up tilt
  publication-title: Stroke
– volume: 1
  start-page: 43
  year: 1991
  end-page: 53
  article-title: Continuous finger arterial pressure: utility in the cardiovascular laboratory
  publication-title: Clin Auton Res
– volume: 25
  start-page: 647
  year: 2003
  end-page: 653
  article-title: Dynamic cerebral autoregulation assessment using an ARX model: comparative study using step response and phase shift analysis
  publication-title: Med Eng Phys
– volume: 119
  start-page: 487
  year: 2015
  end-page: 501
  article-title: Methodological comparison of active- and passive-driven oscillations in blood pressure: implications for the assessment of cerebral pressure-flow relationships
  publication-title: J Appl Physiol
– volume: 25
  start-page: 633
  year: 2003
  end-page: 646
  article-title: Linearity and non-linearity in cerebral hemodynamics
  publication-title: Med Eng Phys
– volume: 24
  start-page: 1747493020907003
  year: 2020
  article-title: INFOMATAS multi-center systematic review and meta-analysis individual patient data of dynamic cerebral autoregulation in ischemic stroke
  publication-title: Int J Stroke
– volume: 36
  start-page: 2194
  year: 2016
  end-page: 2202
  article-title: Dynamic cerebral autoregulation following acute ischaemic stroke: Comparison of transcranial doppler and magnetic resonance imaging techniques
  publication-title: J Cereb Blood Flow Metab
– volume: 29
  start-page: 18
  year: 2001
  end-page: 25
  article-title: A parametric approach to measuring cerebral blood flow autoregulation from spontaneous variations in blood pressure
  publication-title: Ann Biomed Eng
– volume: 102
  start-page: 870
  year: 2007
  end-page: 877
  article-title: Transcranial doppler estimation of cerebral blood flow and cerebrovascular conductance during modified rebreathing
  publication-title: J Appl Physiol
– volume: 315
  start-page: R730
  year: 2018
  end-page: R740
  article-title: Directional sensitivity of dynamic cerebral autoregulation in squat-stand maneuvers
  publication-title: Am J Physiol Regul Integ Comp Physiol
– year: 2021
  article-title: Estimating confidence intervals for cerebral autoregulation: a parametric bootstrap approach
  publication-title: Physiol Meas
– year: 2022
  article-title: On the use and misuse of cerebral hemodynamics terminology using transcranial Doppler ultrasound: a call for standardization
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 41
  start-page: 641
  year: 2010
  end-page: 646
  article-title: Effects of hypobaric hypoxia on cerebral autoregulation
  publication-title: Stroke
– volume: 25
  start-page: 909
  year: 2021
  end-page: 921
  article-title: A data-driven approach to transfer function analysis for superior discriminative power: optimized assessment of dynamic cerebral autoregulation
  publication-title: IEEE J Biomed Health Inform
– volume: 47
  start-page: 218
  year: 2017
  end-page: 221
  article-title: Effects of non-physiological blood pressure artefacts on cerebral autoregulation
  publication-title: Med Eng Phys
– volume: 589
  start-page: 3263
  year: 2011
  end-page: 3274
  article-title: Determinants of human cerebral pressure-flow velocity relationships: new insights from vascular modelling and Ca(2)(+) channel blockade
  publication-title: J Physiol
– volume: 34
  start-page: 731
  year: 2021
  end-page: 738
  article-title: Cerebrovascular autoregulation monitoring in the management of adult severe traumatic brain injury: a delphi consensus of clinicians
  publication-title: Neurocrit Care
– volume: 72
  year: 2018
  article-title: Dynamic regulation of cerebral blood flow in patients with Alzheimer disease
  publication-title: Hypertension
– volume: 39
  start-page: 105009
  year: 2018
  article-title: Sex differences in cerebral haemodynamics across the physiological range of PaCO
  publication-title: Physiol Meas
– volume: 126
  start-page: 263
  year: 2018
  end-page: 268
  article-title: Differential systolic and diastolic regulation of the cerebral pressure-flow relationship during squat-stand manoevres
  publication-title: Acta Neurochir
– ident: bibr116-0271678X221119760
  doi: 10.1007/s00421-021-04681-w
– ident: bibr56-0271678X221119760
  doi: 10.1088/1361-6579/aaf160
– ident: bibr48-0271678X221119760
  doi: 10.1007/s00421-018-3964-2
– ident: bibr86-0271678X221119760
  doi: 10.1016/j.ultrasmedbio.2009.10.011
– ident: bibr128-0271678X221119760
  doi: 10.2174/1874120701206010042
– ident: bibr98-0271678X221119760
  doi: 10.1371/journal.pone.0070821
– ident: bibr113-0271678X221119760
  doi: 10.1097/SHK.0000000000001488
– ident: bibr23-0271678X221119760
  doi: 10.14814/phy2.14367
– ident: bibr141-0271678X221119760
  doi: 10.3389/fnins.2019.00193
– ident: bibr10-0271678X221119760
  doi: 10.1152/ajpheart.1998.274.1.H233
– ident: bibr12-0271678X221119760
  doi: 10.1007/s11517-010-0706-y
– ident: bibr16-0271678X221119760
  doi: 10.1371/journal.pone.0227651
– ident: bibr52-0271678X221119760
  doi: 10.1007/s11517-019-02064-0
– ident: bibr74-0271678X221119760
  doi: 10.1371/journal.pone.0104849
– ident: bibr138-0271678X221119760
  doi: 10.1038/jcbfm.2015.5
– ident: bibr84-0271678X221119760
  doi: 10.1152/japplphysiol.00402.2012
– ident: bibr4-0271678X221119760
  doi: 10.1016/j.jns.2006.07.011
– ident: bibr92-0271678X221119760
  doi: 10.1038/jcbfm.2012.191
– ident: bibr11-0271678X221119760
  doi: 10.1152/japplphysiol.00068.2013
– ident: bibr123-0271678X221119760
  doi: 10.1016/j.medengphy.2017.06.006
– ident: bibr130-0271678X221119760
  doi: 10.1111/j.1552-6569.2006.00064.x
– ident: bibr109-0271678X221119760
  doi: 10.1152/ajpregu.00361.2016
– ident: bibr64-0271678X221119760
  doi: 10.1088/0967-3334/37/7/1056
– ident: bibr62-0271678X221119760
  doi: 10.3390/brainsci10090641
– ident: bibr61-0271678X221119760
  doi: 10.1097/ALN.0b013e31824f94ed
– ident: bibr73-0271678X221119760
  doi: 10.1016/j.ajog.2021.03.017
– ident: bibr70-0271678X221119760
  doi: 10.1088/0967-3334/24/2/312
– ident: bibr85-0271678X221119760
  doi: 10.14814/phy2.14421
– ident: bibr57-0271678X221119760
  doi: 10.1088/0967-3334/37/5/661
– ident: bibr63-0271678X221119760
  doi: 10.1113/JP278710
– ident: bibr79-0271678X221119760
  doi: 10.14814/phy2.14185
– ident: bibr99-0271678X221119760
  doi: 10.1152/japplphysiol.00893.2013
– ident: bibr103-0271678X221119760
  doi: 10.1152/ajpheart.00790.2016
– ident: bibr71-0271678X221119760
  doi: 10.1016/j.medengphy.2013.12.012
– ident: bibr93-0271678X221119760
  doi: 10.1161/01.STR.0000081981.99908.F3
– ident: bibr18-0271678X221119760
  doi: 10.1088/1361-6579/aae9fd
– ident: bibr136-0271678X221119760
  doi: 10.1016/B978-0-12-819641-0.00157-2
– ident: bibr89-0271678X221119760
  doi: 10.1161/01.STR.26.10.1801
– ident: bibr53-0271678X221119760
  doi: 10.1016/j.medengphy.2017.06.007
– ident: bibr82-0271678X221119760
  doi: 10.14814/phy2.13486
– ident: bibr59-0271678X221119760
  doi: 10.3389/fneur.2021.653167
– ident: bibr146-0271678X221119760
  doi: 10.1152/japplphysiol.00667.2015
– ident: bibr41-0271678X221119760
  doi: 10.1177/1747493019873690
– ident: bibr13-0271678X221119760
  doi: 10.1016/j.medengphy.2014.02.002
– start-page: 696
  year: 2016
  ident: bibr124-0271678X221119760
  publication-title: IEEE Eng Med Biol Soc
– ident: bibr117-0271678X221119760
  doi: 10.1161/HYPERTENSIONAHA.118.10900
– ident: bibr131-0271678X221119760
  doi: 10.1159/000380819
– ident: bibr72-0271678X221119760
  doi: 10.1016/j.jstrokecerebrovasdis.2016.12.024
– ident: bibr39-0271678X221119760
  doi: 10.1007/s00421-006-0136-6
– ident: bibr104-0271678X221119760
  doi: 10.1152/ajpregu.00010.2018
– ident: bibr101-0271678X221119760
  doi: 10.1007/978-3-319-65798-1_59
– ident: bibr77-0271678X221119760
  doi: 10.1161/01.STR.26.5.834
– ident: bibr22-0271678X221119760
  doi: 10.1152/japplphysiol.00653.2021
– ident: bibr83-0271678X221119760
  doi: 10.1161/JAHA.117.006126
– ident: bibr147-0271678X221119760
  doi: 10.3389/fneur.2017.00113
– ident: bibr121-0271678X221119760
  doi: 10.1114/1.1335537
– ident: bibr36-0271678X221119760
  doi: 10.1088/1361-6579/aa6f9f
– ident: bibr33-0271678X221119760
  doi: 10.1088/1361-6579/aae469
– ident: bibr115-0271678X221119760
  doi: 10.1038/s41598-020-67404-9
– volume: 39
  start-page: 1
  year: 2018
  ident: bibr32-0271678X221119760
  publication-title: Physiol Meas
– ident: bibr97-0271678X221119760
  doi: 10.1186/s12576-020-00732-7
– ident: bibr1-0271678X221119760
  doi: 10.1161/01.STR.20.1.45
– ident: bibr17-0271678X221119760
  doi: 10.1177/0271678X19871013
– ident: bibr112-0271678X221119760
  doi: 10.1016/j.clinph.2018.11.008
– ident: bibr38-0271678X221119760
  doi: 10.1088/1361-6579/aafab6
– ident: bibr9-0271678X221119760
  doi: 10.1016/j.medengphy.2014.02.001
– ident: bibr34-0271678X221119760
  doi: 10.1088/0967-3334/20/3/304
– ident: bibr129-0271678X221119760
  doi: 10.1002/brb3.46
– ident: bibr30-0271678X221119760
  doi: 10.1016/S0008-6363(98)00067-4
– ident: bibr90-0271678X221119760
  doi: 10.1088/0967-3334/24/1/303
– ident: bibr19-0271678X221119760
  doi: 10.3389/fphys.2019.00865
– ident: bibr111-0271678X221119760
  doi: 10.1097/AOG.0b013e3182a93fb5
– ident: bibr108-0271678X221119760
  doi: 10.1080/02688690400012343
– ident: bibr125-0271678X221119760
  doi: 10.1016/j.medengphy.2013.10.011
– ident: bibr40-0271678X221119760
  doi: 10.1007/s12028-014-9994-7
– ident: bibr126-0271678X221119760
  doi: 10.1152/ajpregu.00161.2012
– ident: bibr54-0271678X221119760
  doi: 10.1109/TAU.1967.1161901
– ident: bibr107-0271678X221119760
  doi: 10.1007/s12028-020-01185-x
– ident: bibr60-0271678X221119760
  doi: 10.1007/BF01826057
– ident: bibr96-0271678X221119760
  doi: 10.1152/ajpheart.2001.280.5.H2162
– ident: bibr134-0271678X221119760
  doi: 10.1016/j.neuroimage.2017.12.049
– ident: bibr119-0271678X221119760
  doi: 10.1177/0271678X19870770
– volume: 7803426
  start-page: 1
  year: 2018
  ident: bibr44-0271678X221119760
  publication-title: BioMed Res Int
– ident: bibr106-0271678X221119760
  doi: 10.1177/0271678X18794835
– ident: bibr25-0271678X221119760
  doi: 10.1046/j.1365-2281.2000.00286.x
– volume-title: Random data analysis and measurement procedures
  year: 1986
  ident: bibr24-0271678X221119760
– ident: bibr46-0271678X221119760
  doi: 10.1088/1361-6579/ab39d3
– ident: bibr50-0271678X221119760
  doi: 10.1016/j.medengphy.2010.12.007
– ident: bibr110-0271678X221119760
  doi: 10.1161/hc3301.094908
– ident: bibr88-0271678X221119760
  doi: 10.1113/jphysiol.2011.206953
– ident: bibr102-0271678X221119760
  doi: 10.1007/978-3-319-65798-1_52
– ident: bibr80-0271678X221119760
  doi: 10.14814/phy2.13984
– ident: bibr5-0271678X221119760
  doi: 10.3389/fnins.2019.00433
– ident: bibr49-0271678X221119760
  doi: 10.1088/1361-6579/abf1af
– ident: bibr55-0271678X221119760
  doi: 10.1088/1361-6579/ac27b8
– ident: bibr26-0271678X221119760
  doi: 10.1177/0271678X211045222
– ident: bibr69-0271678X221119760
  doi: 10.1152/japplphysiol.00316.2017
– ident: bibr95-0271678X221119760
  doi: 10.1016/j.autneu.2019.102581
– ident: bibr21-0271678X221119760
  doi: 10.14814/phy2.14458
– ident: bibr120-0271678X221119760
  doi: 10.1016/S1350-4533(03)00015-8
– volume: 81
  start-page: 117
  year: 2002
  ident: bibr133-0271678X221119760
  publication-title: Acta Neurochir Suppl
– ident: bibr29-0271678X221119760
  doi: 10.1152/japplphysiol.00271.2007
– ident: bibr122-0271678X221119760
  doi: 10.1016/S1350-4533(03)00028-6
– ident: bibr100-0271678X221119760
  doi: 10.3389/fphys.2014.00349
– ident: bibr67-0271678X221119760
  doi: 10.1177/0271678X221098448
– ident: bibr3-0271678X221119760
  doi: 10.1152/physrev.00022.2020
– ident: bibr91-0271678X221119760
  doi: 10.1016/j.medengphy.2013.09.012
– ident: bibr87-0271678X221119760
  doi: 10.1152/japplphysiol.00475.2009
– ident: bibr142-0271678X221119760
  doi: 10.1016/j.jstrokecerebrovasdis.2016.12.003
– ident: bibr144-0271678X221119760
  doi: 10.1007/s00424-020-02508-9
– volume: 24
  start-page: 174749302090700
  year: 2020
  ident: bibr14-0271678X221119760
  publication-title: Int J Stroke
– ident: bibr20-0271678X221119760
  doi: 10.1152/ajpheart.00639.2006
– ident: bibr35-0271678X221119760
  doi: 10.1152/japplphysiol.00906.2006
– ident: bibr15-0271678X221119760
  doi: 10.1007/s11883-018-0739-5
– ident: bibr27-0271678X221119760
  doi: 10.1038/jcbfm.2008.13
– ident: bibr118-0271678X221119760
  doi: 10.1016/j.ultrasmedbio.2010.06.016
– ident: bibr143-0271678X221119760
  doi: 10.1088/0967-3334/37/9/1485
– ident: bibr78-0271678X221119760
  doi: 10.1152/japplphysiol.90822.2008
– ident: bibr37-0271678X221119760
  doi: 10.1113/EP087883
– ident: bibr150-0271678X221119760
  doi: 10.3389/fphys.2018.01642
– ident: bibr81-0271678X221119760
  doi: 10.1152/japplphysiol.00963.2020
– ident: bibr94-0271678X221119760
  doi: 10.1007/s00421-017-3674-1
– ident: bibr51-0271678X221119760
  doi: 10.1152/japplphysiol.00264.2015
– ident: bibr58-0271678X221119760
  doi: 10.1152/ajpheart.01348.2005
– ident: bibr68-0271678X221119760
  doi: 10.1161/01.STR.29.11.2341
– ident: bibr7-0271678X221119760
  doi: 10.1177/0271678X15626425
– ident: bibr137-0271678X221119760
  doi: 10.1117/1.NPh.1.1.015005
– ident: bibr43-0271678X221119760
  doi: 10.1088/1361-6579/aa76a9
– ident: bibr149-0271678X221119760
– ident: bibr148-0271678X221119760
  doi: 10.1088/1361-6579/ac0c0b
– ident: bibr65-0271678X221119760
  doi: 10.1007/s10439-007-9412-9
– ident: bibr47-0271678X221119760
  doi: 10.1088/1361-6579/ab7ddf
– ident: bibr139-0271678X221119760
  doi: 10.1038/jcbfm.2010.225
– ident: bibr145-0271678X221119760
  doi: 10.1177/0271678X211004131
– ident: bibr76-0271678X221119760
  doi: 10.1161/STROKEAHA.115.011453
– ident: bibr28-0271678X221119760
  doi: 10.1152/ajpheart.00107.2022
– ident: bibr8-0271678X221119760
  doi: 10.1227/00006123-199009000-00004
– ident: bibr114-0271678X221119760
  doi: 10.1111/cns.12130
– ident: bibr42-0271678X221119760
  doi: 10.1038/jcbfm.2014.192
– ident: bibr66-0271678X221119760
  doi: 10.1152/ajpheart.00328.2012
– ident: bibr132-0271678X221119760
  doi: 10.1016/j.ultrasmedbio.2007.11.022
– ident: bibr6-0271678X221119760
  doi: 10.1152/ajpheart.2000.278.6.H1848
– ident: bibr105-0271678X221119760
  doi: 10.1161/HYPERTENSIONAHA.110.152066
– ident: bibr127-0271678X221119760
  doi: 10.1152/ajpheart.00890.2011
– ident: bibr2-0271678X221119760
  doi: 10.1161/01.STR.26.6.1014
– ident: bibr135-0271678X221119760
  doi: 10.1177/0271678X18806107
– ident: bibr75-0271678X221119760
  doi: 10.1161/STROKEAHA.109.574749
– ident: bibr31-0271678X221119760
  doi: 10.1002/cphy.c180021
– ident: bibr45-0271678X221119760
  doi: 10.1109/JBHI.2020.3015907
– ident: bibr140-0271678X221119760
  doi: 10.1177/0271678X15615874
SSID ssj0008355
Score 2.6336727
SecondaryResourceType review_article
Snippet Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of...
Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of...
SourceID pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3
SubjectTerms Brain - blood supply
Reproducibility of Results
Review
Title Transfer function analysis of dynamic cerebral autoregulation: A CARNet white paper 2022 update
URI https://journals.sagepub.com/doi/full/10.1177/0271678X221119760
https://www.ncbi.nlm.nih.gov/pubmed/35962478
https://www.proquest.com/docview/2702178268
https://pubmed.ncbi.nlm.nih.gov/PMC9875346
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SzaG9lDbpY_sIKpQWCmrWethWLsEs3YZCcwgJ3ZuRJZkWst5lY1Py7zvjx9JtmtCrJUtGM5755qEZgHeFKEIojebBioIrLxw3Rkseh9Q4IQwiXvJDfjuLTy_V17me78ByuAvTn-D1J0qrwi9qhTX93eSNPuqDjEdoS0UoZecCzZcIFerkpKkXeefuHrpq0BOKTzcLCm07Soi84cP1tl3YE4k2YgR72ez8-8VGeCMgabMecQNOO_SB0H9uuq3KbuHT22mWf-SKtepr9hge9biTZR2jPIGdUO3DQVahzb24Ye9Zmwnautj34cF06AJ3AHmrzMqwZqQBiYrM9nVM2LJkvmtoz1xYUwT6ilmqidD1t8e5xyxj0-z8LNTsF8Ur2MqucCmBKp01K3I2PIXL2eeL6SnvmzJwpyeq5sF5pRKXlKnyLkG4kHgdgpMeDRcbU-FTJYrUBBQl2uooCK-8DIWRoY0hxvIZjKplFV4AK5RFtOYj5xCUmcikpUuks5GT2hdamjFMhvPNXV-xnBpnXOXRUKT8b5KM4ePmlVVXruO-yW8HouV4qhQpsVVYNtc5XdKLEDvF6Ried0TcLCepX5FKcCTZIu9mAhXs3h6pfv5oC3cbMg5VPIYPxAj5wOt3f-HL_575Ch4i7WTnHHoNo3rdhDcIl-risGfxQ9j9Mo9-A58VDjE
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-h7mG8INj4KANmJAQSUlDj2EnMW1StKrD1YepE3yLHvmhII626VhP_PXf5EmVs4jlny_I5vt99-HcA7wpZIJZGB2hlESgvXWCMjoIYU-OkNIR4OQ55NounF-rrQi_aqkp-C9Pu4PUnLquiFdWXdf93M1OSJISfpAtJnktItpTc9T2lR3E6gL1scv593t_DhC3qAkYaEPCINqf5z0l2rdItqHm7YvKPsq_aEk0ew6MWQoqs0fkTeIDVARxmFbnPP3-J96Iu6qyj5QewP-4auh1CXtulEteCjRkrRNiWkkQsS-Gb3vTC4ZqTyVfCMr1B06qeZD-LTIyz8xluxA2nHsTKrmgqSdZZbFccN3gKF5OT-XgatP0VAqdHahOg80olLilT5V1Clj_xGtFFnnwQGzOHqZJFapBuBW11iNIrH2FhIqzTgXH0DAbVssIXIAplCXj50DnCVyY0aemSyNnQRdoXOjJDGHX7m7uWfJx7YFzlYcc3_rdKhvCxH7JqmDfuE37bKS2nXeWkh61wub3O-b1dSDAoTofwvFFiP13ErYdUQl-SHfX2Asy9vful-nFZc3Ab9vNUPIQPfBDy7tjevcKX_y15DPvT-dlpfvpl9u0IHnJ_-ybm8woGm_UWXxMK2hRv2uP-G-q6-pg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9QwEB9kD9Qvonfqrc8IoiDU2-bRNn4rq8v5WuS4w_1W0mSKwtkte7uI_70zfSyup-LnTkLIpJnfPPIbgKelLBErayJ0sox0kD6y1qgowcx6KS0hXo5Dfpwnx2f63cIs-oAbv4Xpd_DiJZdV0Yray5r_7iZUR32O8YhcqZgu2YUk7yUme0ou-x65NdlkBHv57OTz6fYuJnzRFjHSgIhH9HnNP06ya5kuwc3LVZO_lH611mh2E270MFLknd5vwRWs9-Egr8mF_vZDPBNtYWcbMd-Ha9OhqdsBFK1tqnAl2KCxUoTraUnEshKh608vPK44oXwuHFMcdO3qSfaVyMU0P5njWnzn9INoXENTSbLQYtNw7OA2nM3enE6Po77HQuTNRK8j9EHr1KdVpoNPyfqnwSB6FcgPcQnzmGpZZhbpZjDOxCiDDgpLq7BNCSbqDozqZY2HIErtCHyF2HvCWDa2WeVT5V3slQmlUXYMk2F_C98TkHMfjPMiHjjHf1fJGF5shzQd-8a_hJ8MSitoVznx4Wpcbi4KfnMXExRKsjHc7ZS4nU5x-yGd0pd0R71bAebf3v1Sf_3S8nBb9vV0MobnfBCK4ej-fYX3_lvyMVz99HpWfHg7f38frnOL-y7s8wBG69UGHxIQWpeP-tP-E7iQ-6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transfer+function+analysis+of+dynamic+cerebral+autoregulation%3A+A+CARNet+white+paper+2022+update&rft.jtitle=Journal+of+cerebral+blood+flow+and+metabolism&rft.au=Panerai%2C+Ronney+B&rft.au=Brassard%2C+Patrice&rft.au=Burma%2C+Joel+S&rft.au=Castro%2C+Pedro&rft.date=2023-01-01&rft.issn=0271-678X&rft.eissn=1559-7016&rft.volume=43&rft.issue=1&rft.spage=3&rft.epage=25&rft_id=info:doi/10.1177%2F0271678X221119760&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_0271678X221119760
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-678X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-678X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-678X&client=summon