Transfer function analysis of dynamic cerebral autoregulation: A CARNet white paper 2022 update
Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can...
Saved in:
Published in | Journal of cerebral blood flow and metabolism Vol. 43; no. 1; pp. 3 - 25 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0271-678X 1559-7016 1559-7016 |
DOI | 10.1177/0271678X221119760 |
Cover
Abstract | Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies. |
---|---|
AbstractList | Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies. Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies. Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies.Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies. |
Author | Castro, Pedro Rickards, Caroline A Simpson, David M Lucas, Samuel JE Rodrigues, Gabriel D van Lieshout, Johannes J Mitsis, Georgios D Smirl, Jonathan D Robertson, Andrew D Nogueira, Ricardo C Panerai, Ronney B Burma, Joel S Brassard, Patrice Ogoh, Shigehiko Minhas, Jatinder S Liu, Jia Claassen, Jurgen AHR Payne, Stephen J |
Author_xml | – sequence: 1 givenname: Ronney B orcidid: 0000-0001-6983-8707 surname: Panerai fullname: Panerai, Ronney B organization: Department of Cardiovascular Sciences, University of Leicester and NIHR Biomedical Research Centre, Leicester, UK – sequence: 2 givenname: Patrice orcidid: 0000-0002-6254-5044 surname: Brassard fullname: Brassard, Patrice organization: Department of Kinesiology, Faculty of Medicine, and Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada – sequence: 3 givenname: Joel S orcidid: 0000-0001-9756-5793 surname: Burma fullname: Burma, Joel S organization: Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada – sequence: 4 givenname: Pedro orcidid: 0000-0003-1401-2398 surname: Castro fullname: Castro, Pedro organization: Department of Neurology, Centro Hospitalar Universitário de São João, Faculty of Medicine, University of Porto, Porto, Portugal – sequence: 5 givenname: Jurgen AHR orcidid: 0000-0002-1778-8151 surname: Claassen fullname: Claassen, Jurgen AHR organization: Department of Geriatric Medicine and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands – sequence: 6 givenname: Johannes J surname: van Lieshout fullname: van Lieshout, Johannes J organization: Department of Internal Medicine, Amsterdam, UMC, The Netherlands and Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Queen’s Medical Centre, UK – sequence: 7 givenname: Jia surname: Liu fullname: Liu, Jia organization: Institute of Advanced Computing and Digital Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town, Shenzhen, China – sequence: 8 givenname: Samuel JE surname: Lucas fullname: Lucas, Samuel JE organization: School of Sport, Exercise and Rehabilitation Sciences and Centre for Human Brain Health, University of Birmingham, Birmingham, UK – sequence: 9 givenname: Jatinder S surname: Minhas fullname: Minhas, Jatinder S organization: Department of Cardiovascular Sciences, University of Leicester and NIHR Biomedical Research Centre, Leicester, UK – sequence: 10 givenname: Georgios D orcidid: 0000-0001-9975-5128 surname: Mitsis fullname: Mitsis, Georgios D organization: Department of Bioengineering, McGill University, Montreal, Québec, QC, Canada – sequence: 11 givenname: Ricardo C orcidid: 0000-0003-3309-3760 surname: Nogueira fullname: Nogueira, Ricardo C organization: Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil – sequence: 12 givenname: Shigehiko orcidid: 0000-0001-5297-6468 surname: Ogoh fullname: Ogoh, Shigehiko organization: Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan – sequence: 13 givenname: Stephen J orcidid: 0000-0003-1156-2810 surname: Payne fullname: Payne, Stephen J organization: Institute of Applied Mechanics, National Taiwan University, Taipei – sequence: 14 givenname: Caroline A surname: Rickards fullname: Rickards, Caroline A organization: Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA – sequence: 15 givenname: Andrew D orcidid: 0000-0002-9095-9877 surname: Robertson fullname: Robertson, Andrew D organization: Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada – sequence: 16 givenname: Gabriel D surname: Rodrigues fullname: Rodrigues, Gabriel D organization: Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy – sequence: 17 givenname: Jonathan D orcidid: 0000-0003-1054-0038 surname: Smirl fullname: Smirl, Jonathan D organization: Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada – sequence: 18 givenname: David M orcidid: 0000-0001-9072-5088 surname: Simpson fullname: Simpson, David M organization: Institute of Sound and Vibration Research, University of Southampton, Southampton, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35962478$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhS1URKeFH8AGeckmxc_YYYE0GvGSKpBQkdhZHvtm6ipjB9spmn9PwrSIh9SVF_c75_jec4ZOYoqA0HNKLihV6hVhirZKf2OMUtqpljxCKypl1yhC2xO0WubNApyis1JuCCGaS_kEnXLZtUwovULmKttYesi4n6KrIUVsox0OJRSceuwP0e6Dww4ybLMdsJ1qyrCbBruwr_Eab9ZfPkHFP65DBTzacbZihDE8jd5WeIoe93Yo8OzuPUdf37292nxoLj-__7hZXzZOElEbcF4I5VSvhXdKUqa8BHDcS9XaVnDNBdvqDogi0koKzAvPYdtxIC2fN-fn6M3Rd5y2e_AOYp2_a8Yc9jYfTLLB_D2J4drs0q3ptJJcLAYv7wxy-j5BqWYfioNhsBHSVAxThFGlWatn9MWfWb9D7q86A-oIuJxKydAbF-qvg83RYTCUmKU_819_s5L-o7w3f0hzcdQUuwNzk6Y8F1geEPwEoD-pvA |
CitedBy_id | crossref_primary_10_1007_s12028_023_01840_z crossref_primary_10_1177_0271678X241229908 crossref_primary_10_1177_0271678X231168507 crossref_primary_10_1152_japplphysiol_00635_2023 crossref_primary_10_1113_EP091500 crossref_primary_10_1113_JP285679 crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107454 crossref_primary_10_1152_japplphysiol_00851_2023 crossref_primary_10_14814_phy2_15622 crossref_primary_10_1016_j_ultrasmedbio_2023_07_009 crossref_primary_10_1177_0271678X231203475 crossref_primary_10_3389_fphys_2024_1423195 crossref_primary_10_3389_fphys_2024_1350832 crossref_primary_10_1152_ajpheart_00625_2023 crossref_primary_10_3389_fnhum_2023_1115355 crossref_primary_10_1177_0271678X221142527 crossref_primary_10_3390_neurolint16060119 crossref_primary_10_1016_j_cmpb_2024_108298 crossref_primary_10_1113_EP092245 crossref_primary_10_3390_healthcare12100966 crossref_primary_10_1177_0271678X251318922 crossref_primary_10_3390_s24134404 crossref_primary_10_1177_0271678X241254676 crossref_primary_10_1016_j_wneu_2023_10_046 crossref_primary_10_1113_EP091900 crossref_primary_10_1152_japplphysiol_00217_2024 crossref_primary_10_4103_bc_bc_83_23 crossref_primary_10_1007_s10286_023_00986_2 crossref_primary_10_1097_MBP_0000000000000710 crossref_primary_10_1177_0271678X231224504 crossref_primary_10_1007_s12028_023_01841_y crossref_primary_10_1088_1361_6579_acdfb6 crossref_primary_10_1080_02640414_2024_2442257 crossref_primary_10_1177_11795735241302725 crossref_primary_10_1016_j_msard_2024_105882 crossref_primary_10_1177_0271678X241247633 crossref_primary_10_1177_0271678X231219568 crossref_primary_10_1016_j_inat_2023_101886 crossref_primary_10_1113_EP092178 crossref_primary_10_1002_alz_14574 crossref_primary_10_1113_EP090502 crossref_primary_10_1111_cns_14584 crossref_primary_10_1016_j_ultrasmedbio_2024_02_003 crossref_primary_10_1177_0271678X251313747 crossref_primary_10_3390_bioengineering12030247 crossref_primary_10_1113_EP091719 crossref_primary_10_1515_tnsci_2022_0278 crossref_primary_10_1007_s00421_023_05324_y crossref_primary_10_1038_s41390_024_03161_z crossref_primary_10_5492_wjccm_v13_i4_97149 crossref_primary_10_3389_fneur_2024_1465226 crossref_primary_10_1371_journal_pone_0305658 crossref_primary_10_1152_ajpheart_00498_2024 crossref_primary_10_1007_s11571_024_10136_7 crossref_primary_10_1016_j_preghy_2023_07_176 crossref_primary_10_1111_cns_70323 crossref_primary_10_1177_0271678X241235878 crossref_primary_10_1152_ajpregu_00112_2024 crossref_primary_10_1088_1741_2552_ada4de crossref_primary_10_1113_EP091327 crossref_primary_10_3389_fneur_2023_1287873 crossref_primary_10_14814_phy2_15676 crossref_primary_10_1089_neu_2023_0421 crossref_primary_10_1109_TBME_2024_3463873 crossref_primary_10_14814_phy2_15919 crossref_primary_10_3390_diseases12030053 crossref_primary_10_1088_1361_6579_ace3a2 crossref_primary_10_1177_0271678X231153728 crossref_primary_10_3389_fneur_2024_1392773 crossref_primary_10_1113_EP091807 |
Cites_doi | 10.1007/s00421-021-04681-w 10.1088/1361-6579/aaf160 10.1007/s00421-018-3964-2 10.1016/j.ultrasmedbio.2009.10.011 10.2174/1874120701206010042 10.1371/journal.pone.0070821 10.1097/SHK.0000000000001488 10.14814/phy2.14367 10.3389/fnins.2019.00193 10.1152/ajpheart.1998.274.1.H233 10.1007/s11517-010-0706-y 10.1371/journal.pone.0227651 10.1007/s11517-019-02064-0 10.1371/journal.pone.0104849 10.1038/jcbfm.2015.5 10.1152/japplphysiol.00402.2012 10.1016/j.jns.2006.07.011 10.1038/jcbfm.2012.191 10.1152/japplphysiol.00068.2013 10.1016/j.medengphy.2017.06.006 10.1111/j.1552-6569.2006.00064.x 10.1152/ajpregu.00361.2016 10.1088/0967-3334/37/7/1056 10.3390/brainsci10090641 10.1097/ALN.0b013e31824f94ed 10.1016/j.ajog.2021.03.017 10.1088/0967-3334/24/2/312 10.14814/phy2.14421 10.1088/0967-3334/37/5/661 10.1113/JP278710 10.14814/phy2.14185 10.1152/japplphysiol.00893.2013 10.1152/ajpheart.00790.2016 10.1016/j.medengphy.2013.12.012 10.1161/01.STR.0000081981.99908.F3 10.1088/1361-6579/aae9fd 10.1016/B978-0-12-819641-0.00157-2 10.1161/01.STR.26.10.1801 10.1016/j.medengphy.2017.06.007 10.14814/phy2.13486 10.3389/fneur.2021.653167 10.1152/japplphysiol.00667.2015 10.1177/1747493019873690 10.1016/j.medengphy.2014.02.002 10.1161/HYPERTENSIONAHA.118.10900 10.1159/000380819 10.1016/j.jstrokecerebrovasdis.2016.12.024 10.1007/s00421-006-0136-6 10.1152/ajpregu.00010.2018 10.1007/978-3-319-65798-1_59 10.1161/01.STR.26.5.834 10.1152/japplphysiol.00653.2021 10.1161/JAHA.117.006126 10.3389/fneur.2017.00113 10.1114/1.1335537 10.1088/1361-6579/aa6f9f 10.1088/1361-6579/aae469 10.1038/s41598-020-67404-9 10.1186/s12576-020-00732-7 10.1161/01.STR.20.1.45 10.1177/0271678X19871013 10.1016/j.clinph.2018.11.008 10.1088/1361-6579/aafab6 10.1016/j.medengphy.2014.02.001 10.1088/0967-3334/20/3/304 10.1002/brb3.46 10.1016/S0008-6363(98)00067-4 10.1088/0967-3334/24/1/303 10.3389/fphys.2019.00865 10.1097/AOG.0b013e3182a93fb5 10.1080/02688690400012343 10.1016/j.medengphy.2013.10.011 10.1007/s12028-014-9994-7 10.1152/ajpregu.00161.2012 10.1109/TAU.1967.1161901 10.1007/s12028-020-01185-x 10.1007/BF01826057 10.1152/ajpheart.2001.280.5.H2162 10.1016/j.neuroimage.2017.12.049 10.1177/0271678X19870770 10.1177/0271678X18794835 10.1046/j.1365-2281.2000.00286.x 10.1088/1361-6579/ab39d3 10.1016/j.medengphy.2010.12.007 10.1161/hc3301.094908 10.1113/jphysiol.2011.206953 10.1007/978-3-319-65798-1_52 10.14814/phy2.13984 10.3389/fnins.2019.00433 10.1088/1361-6579/abf1af 10.1088/1361-6579/ac27b8 10.1177/0271678X211045222 10.1152/japplphysiol.00316.2017 10.1016/j.autneu.2019.102581 10.14814/phy2.14458 10.1016/S1350-4533(03)00015-8 10.1152/japplphysiol.00271.2007 10.1016/S1350-4533(03)00028-6 10.3389/fphys.2014.00349 10.1177/0271678X221098448 10.1152/physrev.00022.2020 10.1016/j.medengphy.2013.09.012 10.1152/japplphysiol.00475.2009 10.1016/j.jstrokecerebrovasdis.2016.12.003 10.1007/s00424-020-02508-9 10.1152/ajpheart.00639.2006 10.1152/japplphysiol.00906.2006 10.1007/s11883-018-0739-5 10.1038/jcbfm.2008.13 10.1016/j.ultrasmedbio.2010.06.016 10.1088/0967-3334/37/9/1485 10.1152/japplphysiol.90822.2008 10.1113/EP087883 10.3389/fphys.2018.01642 10.1152/japplphysiol.00963.2020 10.1007/s00421-017-3674-1 10.1152/japplphysiol.00264.2015 10.1152/ajpheart.01348.2005 10.1161/01.STR.29.11.2341 10.1177/0271678X15626425 10.1117/1.NPh.1.1.015005 10.1088/1361-6579/aa76a9 10.1088/1361-6579/ac0c0b 10.1007/s10439-007-9412-9 10.1088/1361-6579/ab7ddf 10.1038/jcbfm.2010.225 10.1177/0271678X211004131 10.1161/STROKEAHA.115.011453 10.1152/ajpheart.00107.2022 10.1227/00006123-199009000-00004 10.1111/cns.12130 10.1038/jcbfm.2014.192 10.1152/ajpheart.00328.2012 10.1016/j.ultrasmedbio.2007.11.022 10.1152/ajpheart.2000.278.6.H1848 10.1161/HYPERTENSIONAHA.110.152066 10.1152/ajpheart.00890.2011 10.1161/01.STR.26.6.1014 10.1177/0271678X18806107 10.1161/STROKEAHA.109.574749 10.1002/cphy.c180021 10.1109/JBHI.2020.3015907 10.1177/0271678X15615874 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022 2022 International Society for Cerebral Blood Flow and Metabolism |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022 2022 International Society for Cerebral Blood Flow and Metabolism |
CorporateAuthor | on behalf of the Cerebrovascular Research Network (CARNet) Cerebrovascular Research Network (CARNet) |
CorporateAuthor_xml | – name: on behalf of the Cerebrovascular Research Network (CARNet) – name: Cerebrovascular Research Network (CARNet) |
DBID | AFRWT AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1177/0271678X221119760 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1559-7016 |
EndPage | 25 |
ExternalDocumentID | PMC9875346 35962478 10_1177_0271678X221119760 10.1177_0271678X221119760 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Department of Health |
GroupedDBID | --- -Q- -TM .55 .GJ 0R~ 29K 2WC 36B 39C 3O- 4.4 53G 54M 5GY 5RE 5VS 70F 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AABMB AACKU AACMV AADUE AAEWN AAGGD AAGMC AAJIQ AAJPV AAKGS AANSI AAPEO AAQGT AAQXH AAQXI AARDL AARIX AATAA AATBZ AAUAS AAVDI AAXOT AAYTG AAZBJ ABAWP ABAWZ ABCCA ABCJG ABDWY ABEIX ABFWQ ABHKI ABJNI ABJZC ABKRH ABLUO ABNCE ABPGX ABPNF ABQKF ABQNX ABQXT ABRHV ABUJY ABUWG ABVFX ABXGC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFO ACGFS ACGZU ACJER ACJTF ACLFY ACLHI ACNXM ACOFE ACOXC ACPRK ACROE ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADEBD ADEIA ADMPF ADNON ADRRZ ADTBJ ADUKL ADVBO ADZZY AECGH AENEX AEPTA AEQLS AESZF AEUHG AEWDL AEWHI AEXFG AEXNY AFEET AFFNX AFFZS AFKRA AFKRG AFMOU AFOSN AFQAA AFRWT AFUIA AFVCE AGHKR AGKLV AGNHF AGPXR AGWFA AHDMH AHMBA AIGRN AJABX AJEFB AJMMQ AJSCY AJUZI AJXAJ AJXGE ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS AMCVQ ANDLU AOIJS ARTOV AUTPY AYAKG B8M BAWUL BBNVY BBRGL BDDNI BENPR BHPHI BKIIM BKSCU BPACV BPHCQ BSEHC BVXVI BWJAD C45 CAG CBRKF CCPQU CDWPY CFDXU COF CORYS CQQTX CS3 CUTAK D-I DC- DC. DIK DOPDO DV7 E3Z EBS EE. EJD EMOBN F5P FHBDP FYUFA GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION GX1 H13 HCIFZ HMCUK HYE HZ~ J8X JSO K.F KQ8 LK8 M1P M7P O9- OK1 OVD P2P P6G PHGZM PHGZT PQQKQ PROAC PSQYO Q1R Q2X RNS RNTTT ROL RPM SASJQ SAUOL SCNPE SFC SHG SPQ SPV TEORI TR2 UKHRP W2D X7M YFH YOC ZGI ZONMY ZPPRI ZRKOI ZSSAH ZXP AAEJI AAPII AAYXX AJGYC AJHME AJVBE CITATION PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c504t-ecd447c7f84dc75127d5eec3d576a6438342b89e0705a51e2d4d3eb93e0639763 |
IEDL.DBID | AFRWT |
ISSN | 0271-678X 1559-7016 |
IngestDate | Thu Aug 21 18:38:41 EDT 2025 Sun Sep 28 09:18:47 EDT 2025 Mon Jul 07 01:53:12 EDT 2025 Sun Sep 21 06:16:45 EDT 2025 Thu Apr 24 22:52:24 EDT 2025 Tue Jun 17 22:31:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | reference values transfer function analysis Cerebral hemodynamics consensus guidelines |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-ecd447c7f84dc75127d5eec3d576a6438342b89e0705a51e2d4d3eb93e0639763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Cerebrovascular Research Network (CARNet) – www.car-net.org |
ORCID | 0000-0001-9756-5793 0000-0002-9095-9877 0000-0003-3309-3760 0000-0003-1156-2810 0000-0001-5297-6468 0000-0002-1778-8151 0000-0003-1054-0038 0000-0003-1401-2398 0000-0001-6983-8707 0000-0002-6254-5044 0000-0001-9975-5128 0000-0001-9072-5088 |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.1177/0271678X221119760?utm_source=summon&utm_medium=discovery-provider |
PMID | 35962478 |
PQID | 2702178268 |
PQPubID | 23479 |
PageCount | 23 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9875346 proquest_miscellaneous_2702178268 pubmed_primary_35962478 crossref_citationtrail_10_1177_0271678X221119760 crossref_primary_10_1177_0271678X221119760 sage_journals_10_1177_0271678X221119760 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: United States – name: Sage UK: London, England |
PublicationTitle | Journal of cerebral blood flow and metabolism |
PublicationTitleAlternate | J Cereb Blood Flow Metab |
PublicationYear | 2023 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Panerai, Kerins, Fan 2004; 18 Panerai, Intharakham, Haunton 2020; 41 Castro, Freitas, Santos 2017; 117 Washio, Watanabe, Ogoh 2020; 70 Aengevaeren, Claassen, Levine 2013; 114 Zhang, Zuckerman, Levine 2000; 278 Simpson, Panerai, Evans 2001; 29 Imholz, Wieling, Langewouters 1991; 1 Labrecque, Rahimaly, Imhoff 2019; 7 Madureira, Castro, Azevedo 2017; 26 van Beek, Claassen, Rikkert 2008; 28 Castro, Serrador, Rocha 2017; 8 Fraser, Brady, Rhee 2013; 115 Lewis, Smielewski, Rosenfeld 2014; 21 Xiong, Tian, Lin 2017; 26 Elting, Sanders, Panerai 2020; 15 Intharakham, Panerai, Katsogridakis 2019; 40 Panerai, Dawson, Eames 2001; 280 Czosnyka, Smielewski, Piechnik 2002; 81 Nogueira, Bor-Seng-Shu, Santos 2013; 8 Liu, Birch, Allen 2003; 25 Panerai, White, Markus 1998; 29 Klein, Bailey, Wollseiffen 2020; 8 Depreitere, Citerio, Smith 2021; 34 Sanders, Elting, Panerai 2019; 10 Labrecque, Rahimaly, Imhoff, Paquette, Le Blanc, Malenfant 2017; 5 van Beek, Rikkert, Pasman 2010; 36 Giller 1990; 27 Drapeau, Labrecque, Imhoff 2019; 7 Carey, Panerai, Potter 2003; 34 Mahdi, Rutter, Payne 2017; 47 Birch, Dirnhuber, Hartley-Davies 1995; 26 Aaslid, Lindegaard, Sorteberg 1989; 20 Panerai, Deverson, Mahony 1999; 20 Guo, Xing, Liu 2014; 9 Deegan, Serrador, Nakagawa 2011; 33 Perry, Cotter, Mejuto 2014; 5 Caldas, Panerai, Haunton 2017; 312 Kainerstorfer, Sassaroli, Tgavalekos 2015; 35 Liu, Czosnyka, Donnelly 2015; 35 Tzeng, Ainslie, Cooke 2012; 303 Haubrich, Pies, Dafotakis 2010; 36 Sheriff, Castro, Kozberg 2020; 10 Mahdi, Nikolic, Birch 2017; 38 Panerai, Barnes, Nath 2018; 315 Castro, Azevedo, Sorond 2018; 20 Diehl, Linden, LüCke 1995; 26 Gerlach, Manuel, Hoff 2019; 13 Minhas, Kennedy, Robinson 2019; 40 Subudhi, Panerai, Roach 2010; 41 Liu, Simpson, Panerai 2022 Elting, Tas, Aries 2020; 40 Caldas, Panerai, Bor-Seng-Shu 2019; 130 Brassard, Ferland-Dutil, Smirl 2017; 312 Junejo, Braz, Lucas 2020; 40 Bryant, Birch, Panerai 2021 Panerai, Eyre, Potter 2012; 303 Kwon, Kim, Kang 2006; 16 Reinhard, Muller, Guschlbauer 2003; 24 Nogueira, Lam, Llwyd 2020; 10 Hoiland, Fisher, Ainslie 2019; 9 Imholz, Wieling, van Montfrans 1998; 38 Labrecque, Burma, Roy 2022; 132 Salinet, Silva, Caldas 2019; 39 Angarita-Jaimes, Kouchakpour, Liu 2014; 36 Panerai, Robinson, Minhas 2019; 597 Gommer, Shijaku, Mess 2010; 48 Intharakham, Beishon, Panerai 2019; 39 Reehal, Cummings, Mullen 2021; 12 Panerai, Eames, Potter 2003; 24 Brothers, Zhang, Wingo 2009; 107 Minhas, Panerai, Robinson 2018; 39 Ma, Guo, Liu 2016; 47 Meel-van den Abeelen, Simpson, Wang 2014; 36 Mehagnoul-Schipper, Kraaij, Jansen 2000; 20 Whittaker, Driver, Venzi 2019; 13 Peng, Rowley, Ainslie 2008; 36 Burma, Miutz, Newel 2021; 42 Bergman, Cluver, Carlberg 2021; 225 Claassen, Thijssen, Panerai 2021; 101 Welch 1967; 15 Brunser, Silva, Cárcamo 2012; 2 Giller, Mueller 2003; 25 Kostoglou, Debert, Poulin 2014; 36 Marmarelis, Shin, Zhang 2012; 6 Beishon, Clough, Kadicheeni 2021; 473 Wright, Smirl, Bryk 2018; 126 Claassen, Meel-van den Abeelen, Simpson 2016; 36 Guo, Ma, Liu 2018; 9 Barnes, Ball, Haunton 2017; 123 Caldas, Passos, Ramos 2020; 54 Smirl, Hoffman, Tzeng 2015; 119 Skow, Brothers, Claassen 2022 Smirl, Hoffman, Tzeng 2016; 120 Malenfant, Brassard, Paquette 2017; 6 Llwyd, Haunton, Salinet 2019; 57 Barnes, Ball, Haunton 2018; 118 Liu, Guo, Simpson 2021; 25 Tiecks, Lam, Aaslid 1995; 26 Mahdi, Nikolic, Birch 2017; 47 Smirl, Wright, Ainslie 2018; 126 Meel-van den Abeelen, Van Beek, Slump 2014; 36 Panerai, Haunton, Llwyd 2021; 41 Burma, Copeland, Macaulay 2020; 8 Carey, Manktelow, Panerai 2001; 104 Katsogridakis, Bush, Fan 2013; 33 Reinhard, Wehrle-Wieland, Grabiak 2006; 250 Claassen, Levine, Zhang 2009; 106 Panerai, Jara, Saeed 2016; 36 Martina, Westerhof, van Goudoever 2012; 116 Labrecque, Drapeau, Rahimaly 2021; 130 Castro, Santos, Freitas 2014; 117 Chi, Wang, Chan 2018; 7803426 Bright, Croal, Blockley 2019; 187 Saeed, Horsfield, Panerai 2011; 31 Patel, Panerai, Haunton, Katsogridakis 2016; 37 Zhang, Zuckerman, Giller 1998; 274 Nader, Andrade, Espinosa 2015; 73 de Heus, de Jong, Sanders 2018; 72 Minhas, Panerai, Swienton 2020; 15 Nogueira, Aries, Minhas 2022; 42 Immink, Secher, Roos 2006; 96 Claassen, Zhang, Fu 2007; 102 Panerai, Haunton, Hanby 2016; 37 van Veen, Panerai, Haeri 2013; 122 Salinet, Moura, Romaneli 2021; 42 Panerai, Haunton, Minhas 2018; 39 Tzeng, Chan, Willie 2011; 589 Beishon, Minhas, Nogueira 2020; 24 Panerai, Eames, Potter 2006; 291 Kostoglou, Wright, Smirl 2016 Chen, Liu, Duan 2013; 19 Mol, Meskers, Sanders 2021; 121 Minhas, Robinson, Panerai 2017; 38 Herrington, Thrall, Mann 2019; 222 Burley, Lucas, Whittaker 2020; 105 Panerai, Salinet, Robinson 2012; 302 Katsogridakis, Simpson, Bush 2016; 37 Tzeng, Willie, Atkinson 2010; 56 Wijnhoud, Franckena, van der Lugt 2008; 34 Sammons, Samani, Smith 2007; 103 Selb, Boas, Chan 2014; 1 Ainslie, Barach, Murrell 2007; 292 Sanders, Claassen, Aries 2018; 39 Elting, Aries, van der Hoeven 2014; 36 bibr123-0271678X221119760 bibr110-0271678X221119760 bibr2-0271678X221119760 bibr149-0271678X221119760 bibr25-0271678X221119760 bibr93-0271678X221119760 bibr38-0271678X221119760 bibr136-0271678X221119760 bibr108-0271678X221119760 bibr12-0271678X221119760 bibr39-0271678X221119760 bibr79-0271678X221119760 bibr66-0271678X221119760 bibr3-0271678X221119760 bibr53-0271678X221119760 bibr80-0271678X221119760 bibr137-0271678X221119760 Bendat JS. (bibr24-0271678X221119760) 1986 bibr26-0271678X221119760 bibr111-0271678X221119760 bibr13-0271678X221119760 bibr40-0271678X221119760 bibr107-0271678X221119760 bibr135-0271678X221119760 bibr54-0271678X221119760 bibr64-0271678X221119760 bibr94-0271678X221119760 bibr4-0271678X221119760 bibr65-0271678X221119760 bibr125-0271678X221119760 bibr55-0271678X221119760 bibr150-0271678X221119760 Czosnyka M (bibr133-0271678X221119760) 2002; 81 bibr95-0271678X221119760 bibr28-0271678X221119760 bibr83-0271678X221119760 bibr48-0271678X221119760 bibr76-0271678X221119760 bibr139-0271678X221119760 Chi NF (bibr44-0271678X221119760) 2018; 7803426 bibr96-0271678X221119760 bibr5-0271678X221119760 bibr140-0271678X221119760 bibr120-0271678X221119760 bibr91-0271678X221119760 bibr100-0271678X221119760 bibr36-0271678X221119760 bibr127-0271678X221119760 bibr56-0271678X221119760 bibr147-0271678X221119760 bibr63-0271678X221119760 bibr134-0271678X221119760 bibr16-0271678X221119760 bibr43-0271678X221119760 bibr23-0271678X221119760 bibr114-0271678X221119760 bibr9-0271678X221119760 bibr31-0271678X221119760 bibr41-0271678X221119760 bibr142-0271678X221119760 bibr21-0271678X221119760 bibr11-0271678X221119760 bibr122-0271678X221119760 bibr51-0271678X221119760 bibr132-0271678X221119760 bibr61-0271678X221119760 bibr71-0271678X221119760 bibr81-0271678X221119760 bibr88-0271678X221119760 bibr78-0271678X221119760 bibr7-0271678X221119760 bibr112-0271678X221119760 bibr119-0271678X221119760 bibr102-0271678X221119760 bibr109-0271678X221119760 bibr58-0271678X221119760 bibr129-0271678X221119760 bibr68-0271678X221119760 bibr98-0271678X221119760 Beishon LC (bibr14-0271678X221119760) 2020; 24 Minhas JS (bibr32-0271678X221119760) 2018; 39 bibr60-0271678X221119760 bibr73-0271678X221119760 bibr99-0271678X221119760 bibr86-0271678X221119760 bibr143-0271678X221119760 bibr18-0271678X221119760 bibr116-0271678X221119760 bibr103-0271678X221119760 bibr130-0271678X221119760 bibr131-0271678X221119760 bibr59-0271678X221119760 bibr144-0271678X221119760 bibr46-0271678X221119760 bibr19-0271678X221119760 bibr33-0271678X221119760 bibr104-0271678X221119760 bibr20-0271678X221119760 bibr117-0271678X221119760 bibr34-0271678X221119760 bibr74-0271678X221119760 bibr145-0271678X221119760 bibr84-0271678X221119760 bibr115-0271678X221119760 bibr75-0271678X221119760 bibr85-0271678X221119760 bibr105-0271678X221119760 bibr45-0271678X221119760 bibr15-0271678X221119760 bibr113-0271678X221119760 bibr126-0271678X221119760 bibr35-0271678X221119760 bibr89-0271678X221119760 bibr146-0271678X221119760 bibr106-0271678X221119760 Kostoglou K (bibr124-0271678X221119760) 2016 bibr22-0271678X221119760 bibr118-0271678X221119760 bibr49-0271678X221119760 bibr10-0271678X221119760 bibr69-0271678X221119760 bibr90-0271678X221119760 bibr101-0271678X221119760 bibr30-0271678X221119760 bibr29-0271678X221119760 bibr70-0271678X221119760 bibr121-0271678X221119760 bibr6-0271678X221119760 bibr50-0271678X221119760 bibr141-0271678X221119760 bibr92-0271678X221119760 bibr37-0271678X221119760 bibr87-0271678X221119760 bibr27-0271678X221119760 bibr97-0271678X221119760 bibr47-0271678X221119760 bibr77-0271678X221119760 bibr67-0271678X221119760 bibr138-0271678X221119760 bibr57-0271678X221119760 bibr148-0271678X221119760 bibr52-0271678X221119760 bibr128-0271678X221119760 bibr17-0271678X221119760 bibr1-0271678X221119760 bibr42-0271678X221119760 bibr8-0271678X221119760 bibr62-0271678X221119760 bibr72-0271678X221119760 bibr82-0271678X221119760 |
References_xml | – volume: 107 start-page: 1722 year: 2009 end-page: 1729 article-title: Effects of heat stress on dynamic autoregulation during large fluctuations in arterial blood pressure publication-title: J Appl Physiol – volume: 10 start-page: 10554 year: 2020 article-title: Cerebral autoregulation and response to intravenous thrombolysis for acute ischemic stroke publication-title: Sci Rep – volume: 303 start-page: R395 year: 2012 end-page: R407 article-title: Multivariate modeling of cognitive-motor stimulation on neurovascular coupling: transcranial doppler used to characterize myogenic and metabolic influences publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 8 start-page: 1 year: 2017 end-page: 5 article-title: Efficacy of cerebral autoregulation in early ischemic stroke predicts smaller infarcts and better outcomes publication-title: Front Neurol – volume: 15 start-page: 627 year: 2020 end-page: 637 article-title: Feasibility of improving cerebral autoregulation in acute intracerebral hemorrhage (BREATHE-ICH) study: Results from an experimental interventional study publication-title: Int J Stroke – volume: 597 start-page: 5821 year: 2019 end-page: 5833 article-title: The upper frequency limit of dynamic cerebral autoregulation publication-title: J Physiol – volume: 222 start-page: 102581 year: 2019 article-title: The effect of steady-state CO on regional brain blood flow responses to increases in blood pressure via the cold pressor test publication-title: Auton Neurosci – volume: 38 start-page: N101 year: 2017 end-page: N106 article-title: PaCO measurement in cerebral haemodynamics: face mask or nasal cannulae? publication-title: Physiol Meas – volume: 7803426 start-page: 1 year: 2018 end-page: 6 article-title: Comparing different recording lenghts of dynamic cerebral autoregulation: 5 versus 10 minutes publication-title: BioMed Res Int – volume: 130 start-page: 101 year: 2019 end-page: 108 article-title: Dynamic cerebral autoregulation: a marker of post-operative delirium? publication-title: Clin Neurophysiol – volume: 105 start-page: 893 year: 2020 end-page: 903 article-title: The CO stimulus duration and steady-state time point used for data extraction alters the CO reactivity outcome measure publication-title: Exp Physiol – volume: 6 start-page: 42 year: 2012 end-page: 55 article-title: Linear and nonlinear modeling of cerebral flow autoregulation using principal dynamic modes publication-title: Open Biomed Eng J – volume: 8 start-page: e14367 year: 2020 article-title: Dynamic cerebral autoregulation across the cardiac cycle during 8 hr of recovery from acute exercise publication-title: Physiol Rep – volume: 10 year: 2019 article-title: Dynamic cerebral autoregulation reproducibility is affected by physiological variability publication-title: Front Physiol – volume: 10 start-page: 641 year: 2020 article-title: Dynamic cerebral autoregulation post endovascular thrombectomy in acute ischemic stroke publication-title: Brain Sci – volume: 47 start-page: 151 year: 2017 end-page: 158 article-title: Increased blood pressure variability upon standing improves reproducibility of cerebral autoregulation indices publication-title: Med Eng Phys – volume: 312 start-page: H701 year: 2017 end-page: H704 article-title: Evidence for hysteresis in the cerebral pressure-flow relationship in healthy men publication-title: Am J Physiol Heart Circ Physiol – volume: 48 start-page: 1243 year: 2010 end-page: 1250 article-title: Dynamic cerebral autoregulation: different signal processing methods without influence on results and reproducibility publication-title: Med Biol Eng Comput – volume: 5 start-page: 1 year: 2017 end-page: 12 article-title: Diminished dynamic cerebral autoregulatory capacity with forced oscillations in mean arterial pressure with elevated cardiorespiratory fitness publication-title: Physiol Rep – volume: 101 start-page: 1487 year: 2021 end-page: 1559 article-title: Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation publication-title: Physiol Rev – volume: 36 start-page: 585 year: 2014 end-page: 591 article-title: Reproducibility and variability of dynamic cerebral autoregulation during passive cycling leg raising publication-title: Med Eng Phys – volume: 42 year: 2021 article-title: CAAos platform: an integrated platform for analysis of cerebral hemodynamics data publication-title: Physiol Meas – volume: 70 start-page: 1 year: 2020 article-title: Dynamic cerebral autoregulation in anterior and posterior cerebral circulation during cold pressor test publication-title: J Physiol Sci – volume: 6 start-page: e006126 year: 2017 article-title: Compromised cerebrovascular regulation and cerebral oxygenation in pulmonary arterial hypertension publication-title: J Am Heart Assoc – volume: 118 start-page: 2377 year: 2018 end-page: 2384 article-title: How many squat-stand manoeuvres to assess dynamic cerebral autoregulation? publication-title: Eur J Appl Physiol – volume: 36 start-page: 620 year: 2014 end-page: 627 article-title: Between-centre variability in transfer function analysis, a widely used method for linear quantification of the dynamic pressure-flow relation: the CARNet study publication-title: Med Eng Phys – volume: 37 start-page: 1485 year: 2016 end-page: 1498 article-title: The Leicester cerebral haemodynamics database: normative values and the influence of age and sex publication-title: Physiol Meas – volume: 274 start-page: H233 year: 1998 end-page: H241 article-title: Transfer function analysis of dynamic cerebral autoregulation in humans publication-title: Am J Physiol Heart Circ Physiol – volume: 104 start-page: 898 year: 2001 end-page: 902 article-title: Cerebral autoregulatory responses to head-up tilt in normal subjects and patients with recurrent vasovagal syncope publication-title: Circulation – volume: 250 start-page: 103 year: 2006 end-page: 109 article-title: Oscillatory cerebral hemodynamics – the macro- vs. microvascular level publication-title: J Neurol Sci – volume: 12 year: 2021 article-title: Differentiating dynamic cerebral autoregulation across vascular territories publication-title: Front Neurol – start-page: 696 year: 2016 end-page: 699 article-title: Dynamic cerebral autoregulation in young athletes following concussion. publication-title: IEEE Eng Med Biol Soc – volume: 13 year: 2019 article-title: Cerebral autoregulation evidenced by synchronized low frequency oscillations in blood pressure and resting-state fMRI publication-title: Front Neurosci – volume: 132 start-page: 154 year: 2022 end-page: 166 article-title: Reproducibility and diurnal variation of the directional sensitivity of the cerebral pressure-flow relationship in men and women publication-title: J Appl Physiol – volume: 26 start-page: 500 year: 2017 end-page: 508 article-title: Demographic and systemic hemodynamic influences in mechanisms of cerebrovascular regulation in healthy adults publication-title: J Stroke Cerebrovasc Dis – volume: 9 start-page: e104849 year: 2014 article-title: Compromised dynamic cerebral autoregulation with a right-to-left shunt: a potential mechanism of migraine and criptogenic stroke publication-title: PLOS One – volume: 122 start-page: 1064 year: 2013 end-page: 1069 article-title: Cerebral autoregulation in normal pregnancy and preeclampsia publication-title: Obstet Gynecol – volume: 8 start-page: 314421 year: 2020 article-title: The effect of age on cerebral blood flow responses during repeated and sustained stand to sit transitions publication-title: Physiol Rep – volume: 27 start-page: 362 year: 1990 end-page: 368 article-title: The frequency-dependent behavior of cerebral autoregulation publication-title: Neurosurgery – volume: 19 start-page: 638 year: 2013 end-page: 640 article-title: Impaired dynamic cerebral autoregulation in moyamoya disease publication-title: CNS Neurosci Ther – volume: 34 start-page: 923 year: 2008 end-page: 929 article-title: Inadequate acoustical temporal bone window in patients with a transient ischemic attack or minor stroke: role of skull thickness and bone density publication-title: Ultrasound Med Biol – volume: 73 start-page: 230 year: 2015 end-page: 232 article-title: Technical difficulties due to poor acoustic insonation during transcranial doppler recordings in Amerindians and individuals of European origin. A comparative study publication-title: Eur Neurol – volume: 13 year: 2019 article-title: Novel approach to elucidate human baroreflex regulation at the brainstem level: pharmacological testing during fMRI publication-title: Front Neurosci – volume: 278 start-page: H1848 year: 2000 end-page: H1855 article-title: Spontaneous fluctuations in cerebral blood flow: insights from extended- duration recordings in humans publication-title: Am J Physiol Heart Circ Physiol – volume: 42 start-page: 430 year: 2022 end-page: 453 article-title: Review of studies on dynamic cerebral autoregulation in the acute phase of stroke and the relationship with clinical outcome publication-title: J Cereb Blood Flow Metab – volume: 7 start-page: e14185 year: 2019 article-title: Six weeks of high-intensity interval training to exhaustion attenuates dynamic cerebral autoregulation without influencing resting cerebral blood velocity in young fit men publication-title: Physiol Rep – volume: 292 start-page: H976 year: 2007 end-page: H983 article-title: Alterations in cerebral autoregulation and cerebral blood flow velocity during acute hypoxia: rest and exercise publication-title: Am J Physiol Heart Circ Physiol – volume: 39 start-page: 125006 year: 2018 article-title: Inter-subject analysis of transfer function coherence in studies of dynamic cerebral autoregulation publication-title: Physiol Meas – volume: 41 start-page: 2456 year: 2021 end-page: 2469 article-title: Cerebral critical closing pressure and resistance-area product: the influence of dynamic cerebral autoregulation, age and sex publication-title: J Cereb Blood Flow Metab – volume: 20 start-page: 45 year: 1989 end-page: 52 article-title: Cerebral autoregulation dynamics in humans publication-title: Stroke – volume: 36 start-page: 192 year: 2010 end-page: 201 article-title: Dynamic cerebral autoregulation in the old using a repeated sit-stand maneuver publication-title: Ultrasound Med Biol – volume: 39 start-page: 2277 year: 2019 end-page: 2285 article-title: Impaired cerebral autoregulation and neurovascular coupling in Middle cerebral artery stroke: Influence of severity? publication-title: J Cereb Blood Flow Metab – volume: 303 start-page: H658 year: 2012 end-page: H671 article-title: Assessment of cerebral autoregulation: the quandary of quantification publication-title: Am J Physiol Heart Circ Physiol – volume: 114 start-page: 195 year: 2013 end-page: 202 article-title: Cardiac baroreflex function and dynamic cerebral autoregulation in elderly masters athletes publication-title: J Appl Physiol (1985) – volume: 37 start-page: 1056 year: 2016 end-page: 1073 article-title: Revisiting the frequency domain: the multiple and partial coherence of cerebral blood flow velocity publication-title: Physiol Meas – volume: 280 start-page: H2162 year: 2001 end-page: H2174 article-title: Cerebral blood flow velocity response to induced and spontaneous sudden changes in arterial blood pressure publication-title: Am J Physiol Heart Circ Physiol – volume: 36 start-page: 308 year: 2008 end-page: 320 article-title: Multivariate system identification for cerebral autoregulation publication-title: Ann Biomed Eng – volume: 24 start-page: 367 year: 2003 end-page: 381 article-title: Variability of time-domain indices of dynamic cerebral autoregulation publication-title: Physiol Meas – volume: 26 start-page: 1801 year: 1995 end-page: 1804 article-title: Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation publication-title: Stroke – volume: 36 start-page: 563 year: 2014 end-page: 575 article-title: Transfer function analysis for the assessment of cerebral autoregulation using spontaneous oscillations in blood pressure and cerebral blood flow publication-title: Med Eng Phys – volume: 5 start-page: 1 year: 2014 end-page: 7 article-title: Cerebral hemodynamics during graded Valsalva maneuvers publication-title: Front Physiol – volume: 40 start-page: 015003 year: 2019 article-title: Different strategies to initiate and maintain hyperventilation: their effect on continuous estimates of dynamic cerebral autoregulation publication-title: Physiol Meas – volume: 302 start-page: H459 year: 2012 end-page: H466 article-title: Contribution of arterial blood pressure and PaCO to the cerebrovascular responses to motor stimulation publication-title: Am J Physiol Heart Circ Physiol – volume: 117 start-page: 1817 year: 2017 end-page: 1831 article-title: Indexes of cerebral autoregulation do not reflect impairment in syncope: insights from head-up tilt test of vasovagal an autonomic failure subjects publication-title: Eur J Appl Physiol – volume: 31 start-page: 1302 year: 2011 end-page: 1310 article-title: Measurement of cerebral blood flow responses to the thigh cuff maneuver: a comparison of TCD with a novel MRI method publication-title: J Cereb Blood Flow Metab – volume: 126 start-page: 303 year: 2018 end-page: 307 article-title: Systolic and diastolic regulation of the cerebral pressure-flow relationship differentially affected by acute sport-related concussion publication-title: Acta Neurochir Suppl – volume: 20 start-page: 466 year: 2000 end-page: 473 article-title: Achieving haemodynamic baseline values with finapres in elderly subjects during supine rest publication-title: Clin Physiol – volume: 81 start-page: 117 year: 2002 end-page: 119 article-title: Clinical significance of cerebral autoregulation publication-title: Acta Neurochir Suppl – volume: 40 start-page: 135 year: 2020 end-page: 149 article-title: Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial doppler are similar after correction for transit time and blood flow and blood volume oscillations publication-title: J Cereb Blood Flow Metab – volume: 21 start-page: 514 year: 2014 end-page: 525 article-title: A continuous correlation between intracranial pressure and cerebral blood flow velocity reflects cerebral autoregulation impairment during intracranial pressure Plateau waves publication-title: Neurocrit Care – volume: 41 start-page: 035006 year: 2020 article-title: Chasing the evidence: the influence of data segmentation on estimates of dynamic cerebral autoregulation publication-title: Physiol Meas – volume: 38 start-page: 605 year: 1998 end-page: 616 article-title: Fifteen years experience with finger arterial pressure monitoring: assessment of the technology publication-title: Cardiovasc Res – volume: 7 start-page: e13984 year: 2019 article-title: Dynamic cerebral autoregulation is attenuated in young fit women publication-title: Physiol Rep – volume: 115 start-page: 52 year: 2013 end-page: 56 article-title: The frequency response of cerebral autoregulation publication-title: J Appl Physiol – volume: 116 start-page: 1092 year: 2012 end-page: 1103 article-title: Noninvasive continuous arterial blood pressure monitoring with nexfin(R). publication-title: Anesthesiology – volume: 26 start-page: 1014 year: 1995 end-page: 1019 article-title: Comparison of static and dynamic cerebral autoregulation measurements publication-title: Stroke – volume: 47 start-page: 674 year: 2016 end-page: 681 article-title: Temporal course of dynamic cerebral autoregulation in patients with intracerebral hemorrhage publication-title: Stroke – volume: 38 start-page: 1396 year: 2017 end-page: 1404 article-title: At what data length do cerebral autoregulation measures stabilise? publication-title: Physiol Meas – volume: 130 start-page: 1724 year: 2021 end-page: 1735 article-title: Dynamic cerebral autoregulation and cerebrovascular carbon dioxide reactivity in middle and posterior cerebral arteries in young endurance-trained women publication-title: J Appl Physiol – volume: 36 start-page: 607 year: 2014 end-page: 612 article-title: Optimising the assessment of cerebral autoregulation from black box models publication-title: Med Eng Phys – start-page: 0271678X2210984 year: 2022 article-title: Point-Counterpoint: Transfer function analysis of dynamic cerebral autoregulation: to band or not to band? publication-title: J Cereb Blood Flow Metab – volume: 37 start-page: 661 year: 2016 end-page: 680 article-title: Statistical criteria for estimation of the cerebral autoregulation index (ARI) at rest publication-title: Physiol Meas – volume: 15 start-page: e0227651 year: 2020 article-title: Assessment of dynamic cerebral autoregulation in humans: is reproducibility dependent on blood pressure variability? publication-title: PLOS One – volume: 20 start-page: 265 year: 1999 end-page: 275 article-title: Effect of CO on dynamic cerebral autoregulation measurement publication-title: Physiol Meas – volume: 29 start-page: 2341 year: 1998 end-page: 2346 article-title: Grading of cerebral dynamic autoregulation from spontaneous fluctuations in arterial blood pressure publication-title: Stroke – volume: 36 start-page: 665 year: 2016 end-page: 680 article-title: Transfer function analysis of dynamic cerebral autoregulation: a white paper from the international autoregulation research network (CARNet) publication-title: J Cereb Blood Flow Metab – volume: 120 start-page: 552 year: 2016 end-page: 563 article-title: Relationship between blood pressure and cerebral blood flow during supine cycling: influence of aging publication-title: J Appl Physiol – volume: 15 start-page: 70 year: 1967 end-page: 73 article-title: The use of the fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms publication-title: IEEE Trans Audio Electroacoust – volume: 2 start-page: 231 year: 2012 end-page: 236 article-title: Transcranial doppler in a Hispanic-Mestizo population with neurological diseases: a study of sonographic window and its determinants publication-title: Brain Behav – volume: 106 start-page: 153 year: 2009 end-page: 160 article-title: Dynamic cerebral autoregulation during repeated squat-stand maneuvers publication-title: J Appl Physiol – volume: 39 start-page: 2105 year: 2019 end-page: 2116 article-title: Assessment of cerebral autoregulation in stroke: a systematic review and meta-analysis of studies at rest publication-title: J Cereb Blood Flow Metab – volume: 9 start-page: 1101 year: 2019 end-page: 1154 article-title: Regulation of the cerebral circulation by arterial carbon dioxide publication-title: Compr Physiol – volume: 18 start-page: 471 year: 2004 end-page: 479 article-title: Association between dynamic cerebral autoregulation and mortality in severe head injury publication-title: Br J Neurosurg – volume: 40 start-page: 1647 year: 2020 end-page: 1657 article-title: Neurovascular coupling and cerebral autoregulation in atrial fibrillation publication-title: J Cereb Blood Flow Metab – volume: 28 start-page: 1071 year: 2008 end-page: 1085 article-title: Cerebral autoregulation: an overview of current concepts and methodology with special focus on the elderly publication-title: J Cereb Blood Flow Metab – volume: 103 start-page: 369 year: 2007 end-page: 375 article-title: Influence of noninvasive peripheral arterial blood pressure measurements on assessment of dynamic cerebral autoregulation publication-title: J Appl Physiol – volume: 36 start-page: 592 year: 2014 end-page: 600 article-title: Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia publication-title: Med Eng Phys – volume: 40 start-page: 085002 year: 2019 article-title: Can we use short recordings for assessment of dynamic cerebral autoregulation? A sensitivity analysis study in acute ischaemic stroke and healthy subjects publication-title: Physiol Meas – volume: 291 start-page: H251 year: 2006 end-page: H259 article-title: Multiple coherence of cerebral blood flow velocity in humans publication-title: Am J Physiol Heart Circ Physiol – volume: 26 start-page: 834 year: 1995 end-page: 837 article-title: Assessment of autoregulation by means of periodic changes in blood pressure publication-title: Stroke – volume: 1 start-page: 015005 year: 2014 article-title: Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia publication-title: Neurophoton – volume: 96 start-page: 609 year: 2006 end-page: 614 article-title: The postural reduction in middle cerebral artery blood velocity is not explained by PaCO publication-title: Eur J Appl Physiol – volume: 42 year: 2021 article-title: What recording duration is required to provide physiologically valid and reliable dynamic autoregulation transfer function analysis estimates? publication-title: Physiol Meas – volume: 33 start-page: 519 year: 2013 end-page: 523 article-title: Detection of impaired cerebral autoregulation improves by increasing arterial blood pressure variability publication-title: J Cereb Blood Flow Metab – volume: 57 start-page: 2731 year: 2019 end-page: 2739 article-title: Can we assess dynamic cerebral autoregulation in stroke patients with high rates of cardiac ectopicity? publication-title: Med Biol Eng Comput – volume: 35 start-page: 248 year: 2015 end-page: 256 article-title: Comparison of frequency and time domain methods of assessment of cerebral autoregulation in traumatic brain injury publication-title: J Cereb Blood Flow Metab – volume: 20 start-page: 1 year: 2018 end-page: 12 article-title: Cerebral autoregulation in stroke publication-title: Curr Atherosc Rep – volume: 117 start-page: 205 year: 2014 end-page: 213 article-title: Autonomic dysfunction affects dynamic cerebral autoregulation during valsalva maneuver: comparison between healthy and autonomic dysfunction subjects publication-title: J Appl Physiol (1985) – volume: 121 start-page: 2165 year: 2021 end-page: 2176 article-title: Cerebral autoregulation assessed by near-infrared spectroscopy: validation using transcranial doppler in patients with controlled hypertension, cognitive impairment and controls publication-title: Eur J Appl Physiol – volume: 39 start-page: 1 year: 2018 end-page: 11 article-title: Modelling the cerebral haemodynamic response in the physiological range of PaCO publication-title: Physiol Meas – volume: 24 start-page: 27 year: 2003 end-page: 43 article-title: Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation – a comparison between spontaneous and respiratory-induced oscillations publication-title: Physiol Meas – volume: 36 start-page: 1581 year: 2010 end-page: 1587 article-title: Transcranial doppler monitoring in Parkinson's disease: cerebrovascular compensation of orthostatric hypotension publication-title: Ultrasound Med Biol – volume: 225 year: 2021 article-title: Cerebral perfusion pressure and autoregulation in eclampsia – a case control study publication-title: Am J Obstet Gynecol – volume: 26 start-page: 1081 year: 2017 end-page: 1087 article-title: Is dynamic cerebral autoregulation bilaterally impaired after unilateral acute ischemic stroke? publication-title: J Stroke Cerebrovasc Dis – volume: 35 start-page: 959 year: 2015 end-page: 966 article-title: Cerebral autoregulation in the microvasculature measured with near-infrared spectroscopy publication-title: J Cereb Blood Flow Metab – volume: 187 start-page: 128 year: 2019 end-page: 144 article-title: Multiparametric measurement of cerebral physiology using calibrated fMRI publication-title: Neuroimage – volume: 33 start-page: 553 year: 2011 end-page: 562 article-title: The effect of blood pressure calibrations and transcranial doppler signal loss on transfer function estimates of cerebral autoregulation publication-title: Med Eng Phys – volume: 8 start-page: e14458 year: 2020 article-title: Comparison of diurnal variation, anatomical location, and biological sex within spontaneous and driven dynamic cerebral autoregulation measures publication-title: Physiol Rep – volume: 39 start-page: 125002 year: 2018 article-title: Reproducibility of dynamic cerebral autoregulation parameters: a multi-centre, multi-method study publication-title: Physiol Meas – volume: 312 start-page: R108 year: 2017 end-page: R113 article-title: Cerebral blood flow autoregulation in ischemic heart failure publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 54 start-page: 183 year: 2020 end-page: 189 article-title: Dynamic autoregulation is impaired in circulatory shock publication-title: Shock – volume: 16 start-page: 347 year: 2006 end-page: 352 article-title: The thickness and texture of temporal bone in brain CT predict acoustic window failure of transcranial doppler publication-title: J Neuroimag – volume: 56 start-page: 268 year: 2010 end-page: 273 article-title: Cerebrovascular regulation during transient hypotension and hypertension in humans publication-title: Hypertension – volume: 9 start-page: 1642 year: 2018 article-title: Dynamic cerebral autoregulation remains stable during the daytime (8 a.m. to 8 p.m.) in healthy adults publication-title: Front Physiol – volume: 473 start-page: 735 year: 2021 end-page: 751 article-title: Vascular and haemodynamic issues of brain ageing publication-title: Pflugers Arch – volume: 123 start-page: 558 year: 2017 end-page: 566 article-title: Randon squat-stand maneuvers: a novel approach for assessment of dynamic cerebral autoregulation? publication-title: J Appl Physiol – volume: 8 start-page: e70821 year: 2013 article-title: Dynamic cerebral autoregulation changes during Sub-maximal handgrip maneuver publication-title: PLoS ONE – volume: 34 start-page: 1871 year: 2003 end-page: 1875 article-title: Effect of aging on dynamic cerebral autoregulation during head-up tilt publication-title: Stroke – volume: 1 start-page: 43 year: 1991 end-page: 53 article-title: Continuous finger arterial pressure: utility in the cardiovascular laboratory publication-title: Clin Auton Res – volume: 25 start-page: 647 year: 2003 end-page: 653 article-title: Dynamic cerebral autoregulation assessment using an ARX model: comparative study using step response and phase shift analysis publication-title: Med Eng Phys – volume: 119 start-page: 487 year: 2015 end-page: 501 article-title: Methodological comparison of active- and passive-driven oscillations in blood pressure: implications for the assessment of cerebral pressure-flow relationships publication-title: J Appl Physiol – volume: 25 start-page: 633 year: 2003 end-page: 646 article-title: Linearity and non-linearity in cerebral hemodynamics publication-title: Med Eng Phys – volume: 24 start-page: 1747493020907003 year: 2020 article-title: INFOMATAS multi-center systematic review and meta-analysis individual patient data of dynamic cerebral autoregulation in ischemic stroke publication-title: Int J Stroke – volume: 36 start-page: 2194 year: 2016 end-page: 2202 article-title: Dynamic cerebral autoregulation following acute ischaemic stroke: Comparison of transcranial doppler and magnetic resonance imaging techniques publication-title: J Cereb Blood Flow Metab – volume: 29 start-page: 18 year: 2001 end-page: 25 article-title: A parametric approach to measuring cerebral blood flow autoregulation from spontaneous variations in blood pressure publication-title: Ann Biomed Eng – volume: 102 start-page: 870 year: 2007 end-page: 877 article-title: Transcranial doppler estimation of cerebral blood flow and cerebrovascular conductance during modified rebreathing publication-title: J Appl Physiol – volume: 315 start-page: R730 year: 2018 end-page: R740 article-title: Directional sensitivity of dynamic cerebral autoregulation in squat-stand maneuvers publication-title: Am J Physiol Regul Integ Comp Physiol – year: 2021 article-title: Estimating confidence intervals for cerebral autoregulation: a parametric bootstrap approach publication-title: Physiol Meas – year: 2022 article-title: On the use and misuse of cerebral hemodynamics terminology using transcranial Doppler ultrasound: a call for standardization publication-title: Am J Physiol Heart Circ Physiol – volume: 41 start-page: 641 year: 2010 end-page: 646 article-title: Effects of hypobaric hypoxia on cerebral autoregulation publication-title: Stroke – volume: 25 start-page: 909 year: 2021 end-page: 921 article-title: A data-driven approach to transfer function analysis for superior discriminative power: optimized assessment of dynamic cerebral autoregulation publication-title: IEEE J Biomed Health Inform – volume: 47 start-page: 218 year: 2017 end-page: 221 article-title: Effects of non-physiological blood pressure artefacts on cerebral autoregulation publication-title: Med Eng Phys – volume: 589 start-page: 3263 year: 2011 end-page: 3274 article-title: Determinants of human cerebral pressure-flow velocity relationships: new insights from vascular modelling and Ca(2)(+) channel blockade publication-title: J Physiol – volume: 34 start-page: 731 year: 2021 end-page: 738 article-title: Cerebrovascular autoregulation monitoring in the management of adult severe traumatic brain injury: a delphi consensus of clinicians publication-title: Neurocrit Care – volume: 72 year: 2018 article-title: Dynamic regulation of cerebral blood flow in patients with Alzheimer disease publication-title: Hypertension – volume: 39 start-page: 105009 year: 2018 article-title: Sex differences in cerebral haemodynamics across the physiological range of PaCO publication-title: Physiol Meas – volume: 126 start-page: 263 year: 2018 end-page: 268 article-title: Differential systolic and diastolic regulation of the cerebral pressure-flow relationship during squat-stand manoevres publication-title: Acta Neurochir – ident: bibr116-0271678X221119760 doi: 10.1007/s00421-021-04681-w – ident: bibr56-0271678X221119760 doi: 10.1088/1361-6579/aaf160 – ident: bibr48-0271678X221119760 doi: 10.1007/s00421-018-3964-2 – ident: bibr86-0271678X221119760 doi: 10.1016/j.ultrasmedbio.2009.10.011 – ident: bibr128-0271678X221119760 doi: 10.2174/1874120701206010042 – ident: bibr98-0271678X221119760 doi: 10.1371/journal.pone.0070821 – ident: bibr113-0271678X221119760 doi: 10.1097/SHK.0000000000001488 – ident: bibr23-0271678X221119760 doi: 10.14814/phy2.14367 – ident: bibr141-0271678X221119760 doi: 10.3389/fnins.2019.00193 – ident: bibr10-0271678X221119760 doi: 10.1152/ajpheart.1998.274.1.H233 – ident: bibr12-0271678X221119760 doi: 10.1007/s11517-010-0706-y – ident: bibr16-0271678X221119760 doi: 10.1371/journal.pone.0227651 – ident: bibr52-0271678X221119760 doi: 10.1007/s11517-019-02064-0 – ident: bibr74-0271678X221119760 doi: 10.1371/journal.pone.0104849 – ident: bibr138-0271678X221119760 doi: 10.1038/jcbfm.2015.5 – ident: bibr84-0271678X221119760 doi: 10.1152/japplphysiol.00402.2012 – ident: bibr4-0271678X221119760 doi: 10.1016/j.jns.2006.07.011 – ident: bibr92-0271678X221119760 doi: 10.1038/jcbfm.2012.191 – ident: bibr11-0271678X221119760 doi: 10.1152/japplphysiol.00068.2013 – ident: bibr123-0271678X221119760 doi: 10.1016/j.medengphy.2017.06.006 – ident: bibr130-0271678X221119760 doi: 10.1111/j.1552-6569.2006.00064.x – ident: bibr109-0271678X221119760 doi: 10.1152/ajpregu.00361.2016 – ident: bibr64-0271678X221119760 doi: 10.1088/0967-3334/37/7/1056 – ident: bibr62-0271678X221119760 doi: 10.3390/brainsci10090641 – ident: bibr61-0271678X221119760 doi: 10.1097/ALN.0b013e31824f94ed – ident: bibr73-0271678X221119760 doi: 10.1016/j.ajog.2021.03.017 – ident: bibr70-0271678X221119760 doi: 10.1088/0967-3334/24/2/312 – ident: bibr85-0271678X221119760 doi: 10.14814/phy2.14421 – ident: bibr57-0271678X221119760 doi: 10.1088/0967-3334/37/5/661 – ident: bibr63-0271678X221119760 doi: 10.1113/JP278710 – ident: bibr79-0271678X221119760 doi: 10.14814/phy2.14185 – ident: bibr99-0271678X221119760 doi: 10.1152/japplphysiol.00893.2013 – ident: bibr103-0271678X221119760 doi: 10.1152/ajpheart.00790.2016 – ident: bibr71-0271678X221119760 doi: 10.1016/j.medengphy.2013.12.012 – ident: bibr93-0271678X221119760 doi: 10.1161/01.STR.0000081981.99908.F3 – ident: bibr18-0271678X221119760 doi: 10.1088/1361-6579/aae9fd – ident: bibr136-0271678X221119760 doi: 10.1016/B978-0-12-819641-0.00157-2 – ident: bibr89-0271678X221119760 doi: 10.1161/01.STR.26.10.1801 – ident: bibr53-0271678X221119760 doi: 10.1016/j.medengphy.2017.06.007 – ident: bibr82-0271678X221119760 doi: 10.14814/phy2.13486 – ident: bibr59-0271678X221119760 doi: 10.3389/fneur.2021.653167 – ident: bibr146-0271678X221119760 doi: 10.1152/japplphysiol.00667.2015 – ident: bibr41-0271678X221119760 doi: 10.1177/1747493019873690 – ident: bibr13-0271678X221119760 doi: 10.1016/j.medengphy.2014.02.002 – start-page: 696 year: 2016 ident: bibr124-0271678X221119760 publication-title: IEEE Eng Med Biol Soc – ident: bibr117-0271678X221119760 doi: 10.1161/HYPERTENSIONAHA.118.10900 – ident: bibr131-0271678X221119760 doi: 10.1159/000380819 – ident: bibr72-0271678X221119760 doi: 10.1016/j.jstrokecerebrovasdis.2016.12.024 – ident: bibr39-0271678X221119760 doi: 10.1007/s00421-006-0136-6 – ident: bibr104-0271678X221119760 doi: 10.1152/ajpregu.00010.2018 – ident: bibr101-0271678X221119760 doi: 10.1007/978-3-319-65798-1_59 – ident: bibr77-0271678X221119760 doi: 10.1161/01.STR.26.5.834 – ident: bibr22-0271678X221119760 doi: 10.1152/japplphysiol.00653.2021 – ident: bibr83-0271678X221119760 doi: 10.1161/JAHA.117.006126 – ident: bibr147-0271678X221119760 doi: 10.3389/fneur.2017.00113 – ident: bibr121-0271678X221119760 doi: 10.1114/1.1335537 – ident: bibr36-0271678X221119760 doi: 10.1088/1361-6579/aa6f9f – ident: bibr33-0271678X221119760 doi: 10.1088/1361-6579/aae469 – ident: bibr115-0271678X221119760 doi: 10.1038/s41598-020-67404-9 – volume: 39 start-page: 1 year: 2018 ident: bibr32-0271678X221119760 publication-title: Physiol Meas – ident: bibr97-0271678X221119760 doi: 10.1186/s12576-020-00732-7 – ident: bibr1-0271678X221119760 doi: 10.1161/01.STR.20.1.45 – ident: bibr17-0271678X221119760 doi: 10.1177/0271678X19871013 – ident: bibr112-0271678X221119760 doi: 10.1016/j.clinph.2018.11.008 – ident: bibr38-0271678X221119760 doi: 10.1088/1361-6579/aafab6 – ident: bibr9-0271678X221119760 doi: 10.1016/j.medengphy.2014.02.001 – ident: bibr34-0271678X221119760 doi: 10.1088/0967-3334/20/3/304 – ident: bibr129-0271678X221119760 doi: 10.1002/brb3.46 – ident: bibr30-0271678X221119760 doi: 10.1016/S0008-6363(98)00067-4 – ident: bibr90-0271678X221119760 doi: 10.1088/0967-3334/24/1/303 – ident: bibr19-0271678X221119760 doi: 10.3389/fphys.2019.00865 – ident: bibr111-0271678X221119760 doi: 10.1097/AOG.0b013e3182a93fb5 – ident: bibr108-0271678X221119760 doi: 10.1080/02688690400012343 – ident: bibr125-0271678X221119760 doi: 10.1016/j.medengphy.2013.10.011 – ident: bibr40-0271678X221119760 doi: 10.1007/s12028-014-9994-7 – ident: bibr126-0271678X221119760 doi: 10.1152/ajpregu.00161.2012 – ident: bibr54-0271678X221119760 doi: 10.1109/TAU.1967.1161901 – ident: bibr107-0271678X221119760 doi: 10.1007/s12028-020-01185-x – ident: bibr60-0271678X221119760 doi: 10.1007/BF01826057 – ident: bibr96-0271678X221119760 doi: 10.1152/ajpheart.2001.280.5.H2162 – ident: bibr134-0271678X221119760 doi: 10.1016/j.neuroimage.2017.12.049 – ident: bibr119-0271678X221119760 doi: 10.1177/0271678X19870770 – volume: 7803426 start-page: 1 year: 2018 ident: bibr44-0271678X221119760 publication-title: BioMed Res Int – ident: bibr106-0271678X221119760 doi: 10.1177/0271678X18794835 – ident: bibr25-0271678X221119760 doi: 10.1046/j.1365-2281.2000.00286.x – volume-title: Random data analysis and measurement procedures year: 1986 ident: bibr24-0271678X221119760 – ident: bibr46-0271678X221119760 doi: 10.1088/1361-6579/ab39d3 – ident: bibr50-0271678X221119760 doi: 10.1016/j.medengphy.2010.12.007 – ident: bibr110-0271678X221119760 doi: 10.1161/hc3301.094908 – ident: bibr88-0271678X221119760 doi: 10.1113/jphysiol.2011.206953 – ident: bibr102-0271678X221119760 doi: 10.1007/978-3-319-65798-1_52 – ident: bibr80-0271678X221119760 doi: 10.14814/phy2.13984 – ident: bibr5-0271678X221119760 doi: 10.3389/fnins.2019.00433 – ident: bibr49-0271678X221119760 doi: 10.1088/1361-6579/abf1af – ident: bibr55-0271678X221119760 doi: 10.1088/1361-6579/ac27b8 – ident: bibr26-0271678X221119760 doi: 10.1177/0271678X211045222 – ident: bibr69-0271678X221119760 doi: 10.1152/japplphysiol.00316.2017 – ident: bibr95-0271678X221119760 doi: 10.1016/j.autneu.2019.102581 – ident: bibr21-0271678X221119760 doi: 10.14814/phy2.14458 – ident: bibr120-0271678X221119760 doi: 10.1016/S1350-4533(03)00015-8 – volume: 81 start-page: 117 year: 2002 ident: bibr133-0271678X221119760 publication-title: Acta Neurochir Suppl – ident: bibr29-0271678X221119760 doi: 10.1152/japplphysiol.00271.2007 – ident: bibr122-0271678X221119760 doi: 10.1016/S1350-4533(03)00028-6 – ident: bibr100-0271678X221119760 doi: 10.3389/fphys.2014.00349 – ident: bibr67-0271678X221119760 doi: 10.1177/0271678X221098448 – ident: bibr3-0271678X221119760 doi: 10.1152/physrev.00022.2020 – ident: bibr91-0271678X221119760 doi: 10.1016/j.medengphy.2013.09.012 – ident: bibr87-0271678X221119760 doi: 10.1152/japplphysiol.00475.2009 – ident: bibr142-0271678X221119760 doi: 10.1016/j.jstrokecerebrovasdis.2016.12.003 – ident: bibr144-0271678X221119760 doi: 10.1007/s00424-020-02508-9 – volume: 24 start-page: 174749302090700 year: 2020 ident: bibr14-0271678X221119760 publication-title: Int J Stroke – ident: bibr20-0271678X221119760 doi: 10.1152/ajpheart.00639.2006 – ident: bibr35-0271678X221119760 doi: 10.1152/japplphysiol.00906.2006 – ident: bibr15-0271678X221119760 doi: 10.1007/s11883-018-0739-5 – ident: bibr27-0271678X221119760 doi: 10.1038/jcbfm.2008.13 – ident: bibr118-0271678X221119760 doi: 10.1016/j.ultrasmedbio.2010.06.016 – ident: bibr143-0271678X221119760 doi: 10.1088/0967-3334/37/9/1485 – ident: bibr78-0271678X221119760 doi: 10.1152/japplphysiol.90822.2008 – ident: bibr37-0271678X221119760 doi: 10.1113/EP087883 – ident: bibr150-0271678X221119760 doi: 10.3389/fphys.2018.01642 – ident: bibr81-0271678X221119760 doi: 10.1152/japplphysiol.00963.2020 – ident: bibr94-0271678X221119760 doi: 10.1007/s00421-017-3674-1 – ident: bibr51-0271678X221119760 doi: 10.1152/japplphysiol.00264.2015 – ident: bibr58-0271678X221119760 doi: 10.1152/ajpheart.01348.2005 – ident: bibr68-0271678X221119760 doi: 10.1161/01.STR.29.11.2341 – ident: bibr7-0271678X221119760 doi: 10.1177/0271678X15626425 – ident: bibr137-0271678X221119760 doi: 10.1117/1.NPh.1.1.015005 – ident: bibr43-0271678X221119760 doi: 10.1088/1361-6579/aa76a9 – ident: bibr149-0271678X221119760 – ident: bibr148-0271678X221119760 doi: 10.1088/1361-6579/ac0c0b – ident: bibr65-0271678X221119760 doi: 10.1007/s10439-007-9412-9 – ident: bibr47-0271678X221119760 doi: 10.1088/1361-6579/ab7ddf – ident: bibr139-0271678X221119760 doi: 10.1038/jcbfm.2010.225 – ident: bibr145-0271678X221119760 doi: 10.1177/0271678X211004131 – ident: bibr76-0271678X221119760 doi: 10.1161/STROKEAHA.115.011453 – ident: bibr28-0271678X221119760 doi: 10.1152/ajpheart.00107.2022 – ident: bibr8-0271678X221119760 doi: 10.1227/00006123-199009000-00004 – ident: bibr114-0271678X221119760 doi: 10.1111/cns.12130 – ident: bibr42-0271678X221119760 doi: 10.1038/jcbfm.2014.192 – ident: bibr66-0271678X221119760 doi: 10.1152/ajpheart.00328.2012 – ident: bibr132-0271678X221119760 doi: 10.1016/j.ultrasmedbio.2007.11.022 – ident: bibr6-0271678X221119760 doi: 10.1152/ajpheart.2000.278.6.H1848 – ident: bibr105-0271678X221119760 doi: 10.1161/HYPERTENSIONAHA.110.152066 – ident: bibr127-0271678X221119760 doi: 10.1152/ajpheart.00890.2011 – ident: bibr2-0271678X221119760 doi: 10.1161/01.STR.26.6.1014 – ident: bibr135-0271678X221119760 doi: 10.1177/0271678X18806107 – ident: bibr75-0271678X221119760 doi: 10.1161/STROKEAHA.109.574749 – ident: bibr31-0271678X221119760 doi: 10.1002/cphy.c180021 – ident: bibr45-0271678X221119760 doi: 10.1109/JBHI.2020.3015907 – ident: bibr140-0271678X221119760 doi: 10.1177/0271678X15615874 |
SSID | ssj0008355 |
Score | 2.6336727 |
SecondaryResourceType | review_article |
Snippet | Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of... Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of... |
SourceID | pubmedcentral proquest pubmed crossref sage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3 |
SubjectTerms | Brain - blood supply Reproducibility of Results Review |
Title | Transfer function analysis of dynamic cerebral autoregulation: A CARNet white paper 2022 update |
URI | https://journals.sagepub.com/doi/full/10.1177/0271678X221119760 https://www.ncbi.nlm.nih.gov/pubmed/35962478 https://www.proquest.com/docview/2702178268 https://pubmed.ncbi.nlm.nih.gov/PMC9875346 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SzaG9lDbpY_sIKpQWCmrWethWLsEs3YZCcwgJ3ZuRJZkWst5lY1Py7zvjx9JtmtCrJUtGM5755qEZgHeFKEIojebBioIrLxw3Rkseh9Q4IQwiXvJDfjuLTy_V17me78ByuAvTn-D1J0qrwi9qhTX93eSNPuqDjEdoS0UoZecCzZcIFerkpKkXeefuHrpq0BOKTzcLCm07Soi84cP1tl3YE4k2YgR72ez8-8VGeCMgabMecQNOO_SB0H9uuq3KbuHT22mWf-SKtepr9hge9biTZR2jPIGdUO3DQVahzb24Ye9Zmwnautj34cF06AJ3AHmrzMqwZqQBiYrM9nVM2LJkvmtoz1xYUwT6ilmqidD1t8e5xyxj0-z8LNTsF8Ur2MqucCmBKp01K3I2PIXL2eeL6SnvmzJwpyeq5sF5pRKXlKnyLkG4kHgdgpMeDRcbU-FTJYrUBBQl2uooCK-8DIWRoY0hxvIZjKplFV4AK5RFtOYj5xCUmcikpUuks5GT2hdamjFMhvPNXV-xnBpnXOXRUKT8b5KM4ePmlVVXruO-yW8HouV4qhQpsVVYNtc5XdKLEDvF6Ried0TcLCepX5FKcCTZIu9mAhXs3h6pfv5oC3cbMg5VPIYPxAj5wOt3f-HL_575Ch4i7WTnHHoNo3rdhDcIl-risGfxQ9j9Mo9-A58VDjE |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-h7mG8INj4KANmJAQSUlDj2EnMW1StKrD1YepE3yLHvmhII626VhP_PXf5EmVs4jlny_I5vt99-HcA7wpZIJZGB2hlESgvXWCMjoIYU-OkNIR4OQ55NounF-rrQi_aqkp-C9Pu4PUnLquiFdWXdf93M1OSJISfpAtJnktItpTc9T2lR3E6gL1scv593t_DhC3qAkYaEPCINqf5z0l2rdItqHm7YvKPsq_aEk0ew6MWQoqs0fkTeIDVARxmFbnPP3-J96Iu6qyj5QewP-4auh1CXtulEteCjRkrRNiWkkQsS-Gb3vTC4ZqTyVfCMr1B06qeZD-LTIyz8xluxA2nHsTKrmgqSdZZbFccN3gKF5OT-XgatP0VAqdHahOg80olLilT5V1Clj_xGtFFnnwQGzOHqZJFapBuBW11iNIrH2FhIqzTgXH0DAbVssIXIAplCXj50DnCVyY0aemSyNnQRdoXOjJDGHX7m7uWfJx7YFzlYcc3_rdKhvCxH7JqmDfuE37bKS2nXeWkh61wub3O-b1dSDAoTofwvFFiP13ErYdUQl-SHfX2Asy9vful-nFZc3Ab9vNUPIQPfBDy7tjevcKX_y15DPvT-dlpfvpl9u0IHnJ_-ybm8woGm_UWXxMK2hRv2uP-G-q6-pg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9QwEB9kD9Qvonfqrc8IoiDU2-bRNn4rq8v5WuS4w_1W0mSKwtkte7uI_70zfSyup-LnTkLIpJnfPPIbgKelLBErayJ0sox0kD6y1qgowcx6KS0hXo5Dfpwnx2f63cIs-oAbv4Xpd_DiJZdV0Yray5r_7iZUR32O8YhcqZgu2YUk7yUme0ou-x65NdlkBHv57OTz6fYuJnzRFjHSgIhH9HnNP06ya5kuwc3LVZO_lH611mh2E270MFLknd5vwRWs9-Egr8mF_vZDPBNtYWcbMd-Ha9OhqdsBFK1tqnAl2KCxUoTraUnEshKh608vPK44oXwuHFMcdO3qSfaVyMU0P5njWnzn9INoXENTSbLQYtNw7OA2nM3enE6Po77HQuTNRK8j9EHr1KdVpoNPyfqnwSB6FcgPcQnzmGpZZhbpZjDOxCiDDgpLq7BNCSbqDozqZY2HIErtCHyF2HvCWDa2WeVT5V3slQmlUXYMk2F_C98TkHMfjPMiHjjHf1fJGF5shzQd-8a_hJ8MSitoVznx4Wpcbi4KfnMXExRKsjHc7ZS4nU5x-yGd0pd0R71bAebf3v1Sf_3S8nBb9vV0MobnfBCK4ej-fYX3_lvyMVz99HpWfHg7f38frnOL-y7s8wBG69UGHxIQWpeP-tP-E7iQ-6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transfer+function+analysis+of+dynamic+cerebral+autoregulation%3A+A+CARNet+white+paper+2022+update&rft.jtitle=Journal+of+cerebral+blood+flow+and+metabolism&rft.au=Panerai%2C+Ronney+B&rft.au=Brassard%2C+Patrice&rft.au=Burma%2C+Joel+S&rft.au=Castro%2C+Pedro&rft.date=2023-01-01&rft.issn=0271-678X&rft.eissn=1559-7016&rft.volume=43&rft.issue=1&rft.spage=3&rft.epage=25&rft_id=info:doi/10.1177%2F0271678X221119760&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_0271678X221119760 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-678X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-678X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-678X&client=summon |