Efficient probabilistic finite element analysis of a lumbar motion segment
Finite element models of the lumbar spine are useful in assessing biomechanics and performance of implants. Models are often developed using the anatomy of an individual subject. Average mechanical property values for the annulus and other soft tissue structures are typically utilized from the liter...
Saved in:
| Published in | Journal of biomechanics Vol. 61; pp. 65 - 74 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
16.08.2017
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9290 1873-2380 1873-2380 |
| DOI | 10.1016/j.jbiomech.2017.07.002 |
Cover
| Abstract | Finite element models of the lumbar spine are useful in assessing biomechanics and performance of implants. Models are often developed using the anatomy of an individual subject. Average mechanical property values for the annulus and other soft tissue structures are typically utilized from the literature, as data for the same subject are not available. However, these properties can have significant variability. While probabilistic methods enable the impact of soft tissue property variability on spine mechanics to be assessed, they often require lengthy computation times. Accordingly, the objective of this study was to develop efficient methods to perform Monte Carlo simulations of a finite element model of the L4 L5 functional spinal unit considering variability in the properties of the soft tissue structures. Distributions for the soft tissue properties included the stiffness of spinal ligaments and parameters of a Holzapfel-Gasser-Ogden constitutive material model of the disc. Variance reduction sampling methods, including the Sobol and Descriptive sampling techniques, were assessed for efficiency and accuracy in comparison to traditional random Monte Carlo sampling. Comparisons were based on output torque-rotation curves at the 10th and 90th percentile for flexion, extension, axial rotation, and lateral bending. The Descriptive sampling technique best matched the random sampling technique, at the extremes of rotation, with a 3.6% mean difference. This was achieved with a 10× reduction in the number of iterations and computation time. Improvements in efficiency and maintained accuracy enable intersubject variability to be considered in a variety of biomechanical evaluations, including design-phase screening of orthopedic implants. |
|---|---|
| AbstractList | Finite element models of the lumbar spine are useful in assessing biomechanics and performance of implants. Models are often developed using the anatomy of an individual subject. Average mechanical property values for the annulus and other soft tissue structures are typically utilized from the literature, as data for the same subject are not available. However, these properties can have significant variability. While probabilistic methods enable the impact of soft tissue property variability on spine mechanics to be assessed, they often require lengthy computation times. Accordingly, the objective of this study was to develop efficient methods to perform Monte Carlo simulations of a finite element model of the L4 L5 functional spinal unit considering variability in the properties of the soft tissue structures. Distributions for the soft tissue properties included the stiffness of spinal ligaments and parameters of a Holzapfel-Gasser-Ogden constitutive material model of the disc. Variance reduction sampling methods, including the Sobol and Descriptive sampling techniques, were assessed for efficiency and accuracy in comparison to traditional random Monte Carlo sampling. Comparisons were based on output torque-rotation curves at the 10th and 90th percentile for flexion, extension, axial rotation, and lateral bending. The Descriptive sampling technique best matched the random sampling technique, at the extremes of rotation, with a 3.6% mean difference. This was achieved with a 10× reduction in the number of iterations and computation time. Improvements in efficiency and maintained accuracy enable intersubject variability to be considered in a variety of biomechanical evaluations, including design-phase screening of orthopedic implants.Finite element models of the lumbar spine are useful in assessing biomechanics and performance of implants. Models are often developed using the anatomy of an individual subject. Average mechanical property values for the annulus and other soft tissue structures are typically utilized from the literature, as data for the same subject are not available. However, these properties can have significant variability. While probabilistic methods enable the impact of soft tissue property variability on spine mechanics to be assessed, they often require lengthy computation times. Accordingly, the objective of this study was to develop efficient methods to perform Monte Carlo simulations of a finite element model of the L4 L5 functional spinal unit considering variability in the properties of the soft tissue structures. Distributions for the soft tissue properties included the stiffness of spinal ligaments and parameters of a Holzapfel-Gasser-Ogden constitutive material model of the disc. Variance reduction sampling methods, including the Sobol and Descriptive sampling techniques, were assessed for efficiency and accuracy in comparison to traditional random Monte Carlo sampling. Comparisons were based on output torque-rotation curves at the 10th and 90th percentile for flexion, extension, axial rotation, and lateral bending. The Descriptive sampling technique best matched the random sampling technique, at the extremes of rotation, with a 3.6% mean difference. This was achieved with a 10× reduction in the number of iterations and computation time. Improvements in efficiency and maintained accuracy enable intersubject variability to be considered in a variety of biomechanical evaluations, including design-phase screening of orthopedic implants. Finite element models of the lumbar spine are useful in assessing biomechanics and performance of implants. Models are often developed using the anatomy of an individual subject. Average mechanical property values for the annulus and other soft tissue structures are typically utilized from the literature, as data for the same subject are not available. However, these properties can have significant variability. While probabilistic methods enable the impact of soft tissue property variability on spine mechanics to be assessed, they often require lengthy computation times. Accordingly, the objective of this study was to develop efficient methods to perform Monte Carlo simulations of a finite element model of the L4 L5 functional spinal unit considering variability in the properties of the soft tissue structures. Distributions for the soft tissue properties included the stiffness of spinal ligaments and parameters of a Holzapfel-Gasser-Ogden constitutive material model of the disc. Variance reduction sampling methods, including the Sobol and Descriptive sampling techniques, were assessed for efficiency and accuracy in comparison to traditional random Monte Carlo sampling. Comparisons were based on output torque-rotation curves at the 10th and 90th percentile for flexion, extension, axial rotation, and lateral bending. The Descriptive sampling technique best matched the random sampling technique, at the extremes of rotation, with a 3.6% mean difference. This was achieved with a 10× reduction in the number of iterations and computation time. Improvements in efficiency and maintained accuracy enable intersubject variability to be considered in a variety of biomechanical evaluations, including design-phase screening of orthopedic implants. Finite element models of the lumbar spine are useful in assessing biomechanics and performance of implants. Models are often developed using the anatomy of an individual subject. Average mechanical property values for the annulus and other soft tissue structures are typically utilized from the literature, as data for the same subject are not available. However, these properties can have significant variability. While probabilistic methods enable the impact of soft tissue property variability on spine mechanics to be assessed, they often require lengthy computation times. Accordingly, the objective of this study was to develop efficient methods to perform Monte Carlo simulations of a finite element model of the L4 L5 functional spinal unit considering variability in the properties of the soft tissue structures. Distributions for the soft tissue properties included the stiffness of spinal ligaments and parameters of a Holzapfel-Gasser-Ogden constitutive material model of the disc. Variance reduction sampling methods, including the Sobol and Descriptive sampling techniques, were assessed for efficiency and accuracy in comparison to traditional random Monte Carlo sampling. Comparisons were based on output torque-rotation curves at the 10th and 90th percentile for flexion, extension, axial rotation, and lateral bending. The Descriptive sampling technique best matched the random sampling technique, at the extremes of rotation, with a 3.6% mean difference. This was achieved with a 10x reduction in the number of iterations and computation time. Improvements in efficiency and maintained accuracy enable intersubject variability to be considered in a variety of biomechanical evaluations, including design-phase screening of orthopedic implants. |
| Author | Coombs, Dana J. Laz, Peter J. Rullkoetter, Paul J. |
| Author_xml | – sequence: 1 givenname: Dana J. surname: Coombs fullname: Coombs, Dana J. email: dcoombs3@its.jnj.com organization: DePuy Synthes, 1301 Goshen Parkway, West Chester, PA 19380, USA – sequence: 2 givenname: Paul J. surname: Rullkoetter fullname: Rullkoetter, Paul J. email: paul.rullkoetter@du.edu organization: Center for Orthopaedic Biomechanics, University of Denver, 2390 South York Street, Denver, CO 80208, USA – sequence: 3 givenname: Peter J. surname: Laz fullname: Laz, Peter J. email: peter.laz@du.edu organization: Center for Orthopaedic Biomechanics, University of Denver, 2390 South York Street, Denver, CO 80208, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28733037$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1q3DAUhUVJaSZpXyEYuunG0yvJI9tQSktI-kOgm2QtJPmqlStbqSQX5u0jM0kXs0nhgkD6zuHqnDNyMocZCbmgsKVAxftxO2oXJjS_tgxou4UywF6QDe1aXjPewQnZlBta96yHU3KW0ggAbdP2r8gpKxAH3m7I9ytrnXE45-o-Bq208y5lZyrrZpexQo_T-qhm5ffJpSrYSlV-mbSK1RSyC3OV8OfKvCYvrfIJ3zye5-Tu-ur28mt98-PLt8vPN7XZQZNrbBsLlPWi6weDtlMaLRt2YmBG2w51by02Q6uxb6jiQvCWD5b3mnPDGFrBz8m7g29Z-M-CKcvJJYPeqxnDkiTtGdtB1zRQ0LdH6BiWWL6yUmLXABOCFerikVr0hIO8j25ScS-fUiqAOAAmhpQi2n8IBbnWIUf5VIdc65BQBlbnD0dC47JaQ8tROf-8_NNBjiXOvw6jTGtVBgcX0WQ5BPe8xccjC-NLs0b537j_H4MHuL6_4g |
| CitedBy_id | crossref_primary_10_1007_s12541_023_00866_9 crossref_primary_10_1016_j_wneu_2020_03_190 crossref_primary_10_1016_j_medengphy_2022_103911 crossref_primary_10_1016_j_medengphy_2023_104035 crossref_primary_10_1080_10255842_2020_1793331 crossref_primary_10_3389_fbioe_2023_1287197 crossref_primary_10_1080_15376494_2021_1988191 crossref_primary_10_1007_s10409_017_0744_x crossref_primary_10_1080_10255842_2020_1839059 crossref_primary_10_1016_j_clinbiomech_2022_105816 crossref_primary_10_1088_1757_899X_788_1_012004 crossref_primary_10_3171_2018_10_SPINE181102 crossref_primary_10_1007_s10237_022_01617_x crossref_primary_10_3389_fbioe_2021_669321 |
| Cites_doi | 10.1023/A:1010835316564 10.1097/00007632-200103150-00004 10.1007/s10237-004-0053-8 10.2106/00004623-199403000-00012 10.1097/00007632-199602150-00009 10.1057/jors.1990.180 10.1016/S1350-4533(03)00128-0 10.1115/1.4034322 10.1097/01.bsd.0000147658.60961.51 10.1016/j.jbiomech.2005.04.007 10.1097/01.brs.0000157413.72276.c4 10.1016/j.clinbiomech.2007.12.010 10.1097/00007632-198603000-00010 10.1016/j.jbiomech.2006.09.027 10.1115/SBC2011-53846 10.1243/09544119JEIM476 10.1007/s11517-006-0066-9 10.1016/j.jbiomech.2005.07.026 10.1016/0021-9290(92)90290-H 10.1109/TMI.2003.814783 10.1097/00007632-198911000-00020 10.1016/S1529-9430(02)00142-0 10.1007/s00466-004-0563-3 10.1097/01.brs.0000195897.17277.67 10.1097/01.brs.0000250177.84168.ba 10.1097/01.brs.0000255201.74795.20 10.1016/j.medengphy.2010.09.010 10.1097/01.brs.0000232714.72699.8e 10.1002/jor.1100150605 10.1115/1.3212104 10.1016/0021-9290(92)90074-B 10.1016/j.jmbbm.2012.07.009 10.1007/s00586-010-1386-x 10.1016/j.medengphy.2008.11.012 10.1016/j.orthres.2003.12.012 10.1115/IMECE2000-2598 10.1016/j.medengphy.2006.09.010 10.1097/01.brs.0000259059.90430.c2 10.1097/00007632-199611150-00006 10.1016/0021-9290(85)90202-7 10.1080/10255842.2010.493517 10.1097/01.BRS.0000061987.71624.17 10.1007/s00586-008-0836-1 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited 2017 |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited 2017 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1016/j.jbiomech.2017.07.002 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ProQuest Health & Medical Complete ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Anatomy & Physiology |
| EISSN | 1873-2380 |
| EndPage | 74 |
| ExternalDocumentID | 28733037 10_1016_j_jbiomech_2017_07_002 S0021929017303615 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUFD ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- ~HD 3V. AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AI. AIGII APXCP ASPBG AVWKF AZFZN CITATION EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT PUEGO R2- RPZ SAE SEW VH1 WUQ XOL XPP ZGI ALIPV CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c504t-e74f0129689dcef8abef2d56d2cbf8eb9ffe4d7be941a366373df39b33c22ef63 |
| IEDL.DBID | BENPR |
| ISSN | 0021-9290 1873-2380 |
| IngestDate | Thu Oct 02 10:48:07 EDT 2025 Tue Oct 07 06:19:27 EDT 2025 Thu Apr 03 07:00:05 EDT 2025 Wed Oct 01 01:19:18 EDT 2025 Thu Apr 24 22:51:21 EDT 2025 Fri Feb 23 02:28:49 EST 2024 Tue Oct 14 19:30:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Spinal ligament Descriptive sampling Probabilistic Sobol sampling Calibration Functional spinal unit Gasser Holzapfel Mooney Rivlin Monte Carlo Disc Annulus fibrosis Nucleus pulposis Finite element analysis Lumbar Ogden |
| Language | English |
| License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c504t-e74f0129689dcef8abef2d56d2cbf8eb9ffe4d7be941a366373df39b33c22ef63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 28733037 |
| PQID | 1965402662 |
| PQPubID | 1226346 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1922508440 proquest_journals_1965402662 pubmed_primary_28733037 crossref_primary_10_1016_j_jbiomech_2017_07_002 crossref_citationtrail_10_1016_j_jbiomech_2017_07_002 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2017_07_002 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2017_07_002 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-16 |
| PublicationDateYYYYMMDD | 2017-08-16 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Kidlington |
| PublicationTitle | Journal of biomechanics |
| PublicationTitleAlternate | J Biomech |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Rohlmann, Boustani, Bergmann, Zander (b0225) 2010; 19 Rao, M., Patrella, A., Baldwin, M., Laz, P., Rullkoetter, P., 2009. Efficient probabilistic finite element modeling for evaluation of spinal mechanics. In: Proceeding of the 55th Annual Meeting of the Orthopedic Research Society, Las Vegas, NV. Coombs, Bushelow, Laz, Rao, Rullkoetter (b0055) 2013 Guan, Yoganandan, Zhang, Pintar, Cusick, Wolfla, Maiman (b0115) 2006; 44 Rohlmann, Mann, Zander, Bergmann (b0220) 2009; 18 Chazal, Tanguy, Bourges, Gaurel, Escande, Guilot, Vanneuville (b0045) 1985; 18 Ahmad, Akramin (b0010) 2010 Ezquerro, Simon, Prado, Perez (b0085) 2004; 26 Ayturk, Puttlitz (b0015) 2011; 14 Isight Component Guide (release 5.7), Simulia, Dassault Systemes, pp 561–562. Lee, Teo (b0160) 2005; 18 Guan, Yoganandan, Moore, Pintar, Zhanga, Maimana, Laud (b0110) 2006; 40 Campbell, Imsdahl, Ching (b0040) 2012 Panjabi, Oxland, Yamamoto, Crisco (b0185) 1994; 76 Fujita, Duncan, Lotz (b0095) 1997; 15 Saliby (b0235) 1990; 41 Burhenne, Jacob, Henze (b0035) 2011 Iida, Abumi Kotani, Kaneda (b0145) 2002; 2 Rao, M., 2012. Explicit finite element modeling of the human lumbar spine. PhD. Thesis, Electronic Theses and Dissertations. Paper 906. University of Denver. Neumann, Keller, Ekstrom, Perry, Hansson, Spengler (b0170) 1992; 25 Wong, Gehrchen, Darvann, Kaer (b0265) 2003; 22 . Goel, Grauer, Patel, Biyani, Sairyo, Vishnubhatla, Matyas, Cowgill, Shaw, Long, Dick, Panjabi, Serhan (b0105) 2005; 30 Bono, Khandha, Vadapalli, Holekamp, Goel, Garfin (b0025) 2007; 32 Holzapfel, Schulze-Bauer, Feigl, Regitnig (b0140) 2005; 3 Yamamoto, I., Panjabi, M., Crisco, T., Oxland, T., 1989. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. In: Proceeding of the 12th Annual Meeting of the International Congress of Biomechanics, Los Angeles, CA. Guerin, Elliott (b0120) 2006; 39 Schmidt, Kettler, Heuer, Simon, Claes, Wilke (b0240) 2007; 32 Panjabi, Greenstein, Duranceau, Nolte (b0180) 1991; 4 Dooris, Goel, Grosland, Gilbertson, Wilder (b0070) 2001; 26 Hollenbeck, J.F.M., Cain, C., Fattor, J., Fitzpatrick, C.K., Rullkoetter, P.J., Laz, P.J., 2014. Statistical modeling to characterize disc degeneration in the lumbar spine. In: 7th World Congress of Biomechanics, Boston, MA. Haldar, Mahadevan (b0125) 2000 Xiao, Wang, Gong, Zhu (b0270) 2012 Coombs, Rullkoetter, Laz (b0060) 2016; 1 Kurtz, Edidin (b0155) 2006 Thacker, B., Nicolella, D., Kumaresan, S., Yoganandan, N., Pintar, F., 2001. Probabilistic finite element analysis of the human lower cervical spine. American Society of Mechanical Engineers, Bioengineering Division (Publication) BED01/2000, vol. 48, pp. 237–238. Abaqus Users Guide (release 6.12), 2012, Simulia, Dassault Systemes, “Hyperelastic behavior of rubberlike materials,” Chapter 22.5.1. Polikeit, Nolte, Ferguson (b0195) 2003; 28 Bowden, Guerin, Villarraga, Patwardhan, Ochoa (b0030) 2008; 23 Lu, Hutton, Gharpuray (b0165) 1996; 21 de Visser, Adam, Crozier, Pearcy (b0065) 2007; 29 O’Connell, Guerin, Elliott (b0175) 2009; 131 Tsuang, Chiang, Hung, Wei, Huang, Cheng (b0250) 2009; 31 Rohlmann, Zander, Schmidt, Wilke, Bergmann (b0230) 2006; 39 Pintar, Yoganandan, Myers, Elhagediab, Sances (b0190) 1992; 25 Chiang, Zhong, Chen, Cheng, Shih (b0050) 2006; 31 Robertson, Willardson, Parajuli, Cannon, Anton (b0210) 2013; 17 Rohlmann, Zander, Bergmann (b0215) 2005; 30 Eberlein, Holzapfel, Frohlich (b0080) 2004; 34 Vadapalli, Sairyo, Goel, Robon, Biyani, Khandha, Ebraheim (b0255) 2006; 31 Zhong, Chen, Hung (b0280) 2009; 223 Ezquerro, Vacas, Postigo, Prado, Simon (b0090) 2011; 33 Ebara, Iatridis, Setton, Foster, Mow, Weidenbaum (b0075) 1996; 21 Holzapfel, Gasser, Ogden (b0135) 2000; 61 Wagner, Lotz (b0260) 2004; 22 Gilad, Nissan (b0100) 1986; 11 Barnes, K., Armstrong, J., Agarwala, A., Petrella, A., 2011. Probabilistic study of a lumbar motion segment: sensitivity to material and anatomic variability. In Proceedings of the ASME 2011 Summer Bioengineering Conference, Parts A and B, Farmington, Pennsylvania. Paper No. SBC2011-53846, pp. 863–864. Guan (10.1016/j.jbiomech.2017.07.002_b0115) 2006; 44 Chazal (10.1016/j.jbiomech.2017.07.002_b0045) 1985; 18 Neumann (10.1016/j.jbiomech.2017.07.002_b0170) 1992; 25 Haldar (10.1016/j.jbiomech.2017.07.002_b0125) 2000 Rohlmann (10.1016/j.jbiomech.2017.07.002_b0225) 2010; 19 Ezquerro (10.1016/j.jbiomech.2017.07.002_b0090) 2011; 33 Ayturk (10.1016/j.jbiomech.2017.07.002_b0015) 2011; 14 Fujita (10.1016/j.jbiomech.2017.07.002_b0095) 1997; 15 Bono (10.1016/j.jbiomech.2017.07.002_b0025) 2007; 32 Coombs (10.1016/j.jbiomech.2017.07.002_b0060) 2016; 1 Lee (10.1016/j.jbiomech.2017.07.002_b0160) 2005; 18 Panjabi (10.1016/j.jbiomech.2017.07.002_b0185) 1994; 76 Bowden (10.1016/j.jbiomech.2017.07.002_b0030) 2008; 23 10.1016/j.jbiomech.2017.07.002_b0150 Pintar (10.1016/j.jbiomech.2017.07.002_b0190) 1992; 25 Dooris (10.1016/j.jbiomech.2017.07.002_b0070) 2001; 26 10.1016/j.jbiomech.2017.07.002_b0275 Tsuang (10.1016/j.jbiomech.2017.07.002_b0250) 2009; 31 Vadapalli (10.1016/j.jbiomech.2017.07.002_b0255) 2006; 31 Burhenne (10.1016/j.jbiomech.2017.07.002_b0035) 2011 Chiang (10.1016/j.jbiomech.2017.07.002_b0050) 2006; 31 Polikeit (10.1016/j.jbiomech.2017.07.002_b0195) 2003; 28 Robertson (10.1016/j.jbiomech.2017.07.002_b0210) 2013; 17 Eberlein (10.1016/j.jbiomech.2017.07.002_b0080) 2004; 34 Ezquerro (10.1016/j.jbiomech.2017.07.002_b0085) 2004; 26 10.1016/j.jbiomech.2017.07.002_b0020 O’Connell (10.1016/j.jbiomech.2017.07.002_b0175) 2009; 131 Campbell (10.1016/j.jbiomech.2017.07.002_b0040) 2012 Xiao (10.1016/j.jbiomech.2017.07.002_b0270) 2012 Guerin (10.1016/j.jbiomech.2017.07.002_b0120) 2006; 39 Holzapfel (10.1016/j.jbiomech.2017.07.002_b0135) 2000; 61 Saliby (10.1016/j.jbiomech.2017.07.002_b0235) 1990; 41 Holzapfel (10.1016/j.jbiomech.2017.07.002_b0140) 2005; 3 Schmidt (10.1016/j.jbiomech.2017.07.002_b0240) 2007; 32 Rohlmann (10.1016/j.jbiomech.2017.07.002_b0220) 2009; 18 Kurtz (10.1016/j.jbiomech.2017.07.002_b0155) 2006 de Visser (10.1016/j.jbiomech.2017.07.002_b0065) 2007; 29 Guan (10.1016/j.jbiomech.2017.07.002_b0110) 2006; 40 10.1016/j.jbiomech.2017.07.002_b0130 Zhong (10.1016/j.jbiomech.2017.07.002_b0280) 2009; 223 Coombs (10.1016/j.jbiomech.2017.07.002_b0055) 2013 Lu (10.1016/j.jbiomech.2017.07.002_b0165) 1996; 21 Rohlmann (10.1016/j.jbiomech.2017.07.002_b0230) 2006; 39 Wong (10.1016/j.jbiomech.2017.07.002_b0265) 2003; 22 Goel (10.1016/j.jbiomech.2017.07.002_b0105) 2005; 30 Ebara (10.1016/j.jbiomech.2017.07.002_b0075) 1996; 21 Iida (10.1016/j.jbiomech.2017.07.002_b0145) 2002; 2 Rohlmann (10.1016/j.jbiomech.2017.07.002_b0215) 2005; 30 Panjabi (10.1016/j.jbiomech.2017.07.002_b0180) 1991; 4 Gilad (10.1016/j.jbiomech.2017.07.002_b0100) 1986; 11 10.1016/j.jbiomech.2017.07.002_b0200 10.1016/j.jbiomech.2017.07.002_b0005 Wagner (10.1016/j.jbiomech.2017.07.002_b0260) 2004; 22 10.1016/j.jbiomech.2017.07.002_b0245 Ahmad (10.1016/j.jbiomech.2017.07.002_b0010) 2010 10.1016/j.jbiomech.2017.07.002_b0205 |
| References_xml | – volume: 18 start-page: 163 year: 2005 end-page: 170 ident: b0160 article-title: Material sensitivity study on lumbar motion segment (L2–L3) under sagittal plane loadings using probabilistic method publication-title: J. Spinal Disorders Techniques – volume: 28 start-page: 991 year: 2003 end-page: 996 ident: b0195 article-title: The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis publication-title: Spine – reference: Isight Component Guide (release 5.7), Simulia, Dassault Systemes, pp 561–562. – volume: 17 start-page: 34 year: 2013 end-page: 43 ident: b0210 article-title: The lumbar supraspinous ligament demonstrates increased material stiffness and strength on its ventral aspect publication-title: J. Mech. Behav. Biomed. Mater. – volume: 25 start-page: 1185 year: 1992 end-page: 1194 ident: b0170 article-title: Mechanical properties of the human lumbar anterior longitudinal ligament publication-title: J. Biomech. – volume: 25 start-page: 1351 year: 1992 end-page: 1356 ident: b0190 article-title: Biomechanical properties of human lumbar spine ligaments publication-title: J. Biomech. – volume: 15 start-page: 814 year: 1997 end-page: 819 ident: b0095 article-title: Radial tensile properties of the lumbar annulus fibrosis are site and degeneration dependent publication-title: J. Orthop. Res. – volume: 29 start-page: 877 year: 2007 end-page: 885 ident: b0065 article-title: The role of quadratus lumborum asymmetry in the occurrence of lesions in the lumbar vertebrae of cricket fast bowlers publication-title: Med. Eng. Phys. – volume: 26 start-page: E122 year: 2001 end-page: E129 ident: b0070 article-title: Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc publication-title: Spine – volume: 40 start-page: 1975 year: 2006 end-page: 1980 ident: b0110 article-title: Moment–rotation responses of the human lumbosacral spinal column publication-title: J. Biomech. – volume: 4 start-page: 54 year: 1991 end-page: 62 ident: b0180 article-title: Three-dimensional quantitative morphology of lumbar spinal ligaments publication-title: J. Spinal Disorders – reference: Rao, M., Patrella, A., Baldwin, M., Laz, P., Rullkoetter, P., 2009. Efficient probabilistic finite element modeling for evaluation of spinal mechanics. In: Proceeding of the 55th Annual Meeting of the Orthopedic Research Society, Las Vegas, NV. – volume: 23 start-page: 536 year: 2008 end-page: 544 ident: b0030 article-title: Quality of motion considerations in numerical analysis of motion restoring implants of the spine publication-title: Clin. Biomech. – reference: Rao, M., 2012. Explicit finite element modeling of the human lumbar spine. PhD. Thesis, Electronic Theses and Dissertations. Paper 906. University of Denver. < – reference: Yamamoto, I., Panjabi, M., Crisco, T., Oxland, T., 1989. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. In: Proceeding of the 12th Annual Meeting of the International Congress of Biomechanics, Los Angeles, CA. – volume: 32 start-page: 748 year: 2007 end-page: 755 ident: b0240 article-title: Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading publication-title: Spine – volume: 22 start-page: 901 year: 2004 end-page: 909 ident: b0260 article-title: Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus publication-title: J. Orthop. Res. – volume: 44 start-page: 633 year: 2006 end-page: 641 ident: b0115 article-title: Validation of a clinical finite element model of the human lumbosacral spine publication-title: Med. Bio. Eng. Comp. – volume: 2 start-page: 95 year: 2002 end-page: 100 ident: b0145 article-title: Effects of aging and spinal degeneration on mechanical properties of lumbar supraspinous and interspinous ligaments publication-title: Spine J. – volume: 3 start-page: 125 year: 2005 end-page: 140 ident: b0140 article-title: Single lamellar mechanics of the human lumbar anulus fibrosus publication-title: Biomechan. Model. Mechanobiol. – volume: 18 start-page: 89 year: 2009 end-page: 97 ident: b0220 article-title: Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study publication-title: Euro. Spine J. – volume: 26 start-page: 11 year: 2004 end-page: 22 ident: b0085 article-title: Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax–pelvis orientation publication-title: Med. Eng. Phys. – volume: 32 start-page: 417 year: 2007 end-page: 422 ident: b0025 article-title: Residual sagittal motion after lumbar fusion: a finite element analysis with implications on radiographic flexion-extension criteria publication-title: Spine – year: 2012 ident: b0270 article-title: Biomechanical evaluation of three surgical scenarios of posterior lumbar interbody fusion by finite element analysis publication-title: Biomed. Eng. – volume: 21 start-page: 452 year: 1996 end-page: 461 ident: b0075 article-title: Tensile properties of nondegenerate human lumbar anulus fibrosis publication-title: Spine – volume: 41 start-page: 1133 year: 1990 end-page: 1142 ident: b0235 article-title: Descriptive sampling: a better approach to Monte Carlo simulation publication-title: J. Operational Res. Soc. – volume: 1 start-page: 031007 year: 2016 ident: b0060 article-title: Quantifying variability in lumbar L4 L5 soft tissue properties for use in FE analysis publication-title: ASME J. Verifi. Valid. Uncertainty Quantifi. J. Verif. Valid. Uncert. – volume: 76 start-page: 413 year: 1994 end-page: 424 ident: b0185 article-title: Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves publication-title: J. Bone Joint Surg. – volume: 31 start-page: E992 year: 2006 end-page: E998 ident: b0255 article-title: Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion – a finite element study publication-title: Spine – volume: 39 start-page: 2484 year: 2006 end-page: 2490 ident: b0230 article-title: Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method publication-title: J. Biomech. – volume: 21 start-page: 2570 year: 1996 end-page: 2579 ident: b0165 article-title: Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model publication-title: Spine – volume: 31 start-page: E682 year: 2006 end-page: E689 ident: b0050 article-title: Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis publication-title: Spine – year: 2011 ident: b0035 article-title: Sampling based on Sobol sequences for Monte Carlo techniques applied to building simulations publication-title: Proceedings of the 12th Conference of International Building Performance Simulation Association, Sydney – volume: 33 start-page: 89 year: 2011 end-page: 95 ident: b0090 article-title: Calibration of the finite element model of a lumbar functional spinal unit using an optimization technique based on differential evolution publication-title: Med. Eng. Phys. – volume: 14 start-page: 695 year: 2011 end-page: 705 ident: b0015 article-title: Parametric convergence sensitivity and validation of a finite element model publication-title: Comp. Meth. Biomech. Biomed. Eng. – reference: Barnes, K., Armstrong, J., Agarwala, A., Petrella, A., 2011. Probabilistic study of a lumbar motion segment: sensitivity to material and anatomic variability. In Proceedings of the ASME 2011 Summer Bioengineering Conference, Parts A and B, Farmington, Pennsylvania. Paper No. SBC2011-53846, pp. 863–864. – volume: 11 start-page: 154 year: 1986 end-page: 157 ident: b0100 article-title: A study of vertebra and disc geometric relations of the human cervical and lumbar spine publication-title: Spine – volume: 39 start-page: 1410 year: 2006 end-page: 1418 ident: b0120 article-title: Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load publication-title: J. Biomech. – volume: 22 start-page: 742 year: 2003 end-page: 746 ident: b0265 article-title: Nonlinear finite-element analysis and biomechanical evaluation of the lumbar spine publication-title: IEEE Trans. Med. Imag. – volume: 34 start-page: 147 year: 2004 end-page: 163 ident: b0080 article-title: Multi-segment FEA of the human lumbar spine including the heterogeneity of the annulus fibrosus publication-title: Comp. Mech. – year: 2013 ident: b0055 article-title: Stepwise validated finite element model of the human lumbar spine publication-title: Proceedings of the ASME 2013 Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation Washington, DC, USA – volume: 19 start-page: 1585 year: 2010 end-page: 1595 ident: b0225 article-title: A probabilistic finite element analysis of the stresses in the augmented vertebral body after vertebroplasty publication-title: Euro. Spine J. – volume: 30 start-page: 2755 year: 2005 end-page: 2764 ident: b0105 article-title: Effects of Charite artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol publication-title: Spine – year: 2012 ident: b0040 article-title: Evaluation of a synthetic L2-L5 spine model for biomechanical testing publication-title: Proceeding of Canadian Biomechanics Society, Vancouver, BC, Canada – volume: 131 start-page: 111007-1 year: 2009 end-page: 111007-7 ident: b0175 article-title: Theoretical and uniaxial experimental evaluations of human annulus fibrosis degeneration publication-title: J. Biomech. Eng. – start-page: 258 year: 2000 ident: b0125 article-title: Probability, Reliability and Statistical Methods in Engineering Design – volume: 30 start-page: 738 year: 2005 end-page: 743 ident: b0215 article-title: Effect of total disc replacement with ProDisc on intersegmental rotation of the lumber spine publication-title: Spine – year: 2006 ident: b0155 article-title: Spine Technology Handbook – reference: >. – volume: 223 start-page: 143 year: 2009 end-page: 157 ident: b0280 article-title: Load and displacement controlled finite element analyses on fusion and non-fusion spinal implants publication-title: Proc. Inst. Mech. Eng. H – J. Eng. Med. – volume: 18 start-page: 167 year: 1985 end-page: 176 ident: b0045 article-title: Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction publication-title: J. Biomech. – volume: 31 start-page: 565 year: 2009 end-page: 570 ident: b0250 article-title: Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation – a finite element study publication-title: Med. Eng. Phys. – year: 2010 ident: b0010 article-title: Probabilistic stress analysis of the human lumbar spine extended finite element method publication-title: Proceedings of the 14th Asia Pacific Regional Meeting of International Foundation for Production Research, Melaka – reference: Hollenbeck, J.F.M., Cain, C., Fattor, J., Fitzpatrick, C.K., Rullkoetter, P.J., Laz, P.J., 2014. Statistical modeling to characterize disc degeneration in the lumbar spine. In: 7th World Congress of Biomechanics, Boston, MA. – volume: 61 start-page: 1 year: 2000 end-page: 48 ident: b0135 article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models publication-title: J. Elasticity – reference: Abaqus Users Guide (release 6.12), 2012, Simulia, Dassault Systemes, “Hyperelastic behavior of rubberlike materials,” Chapter 22.5.1. – reference: Thacker, B., Nicolella, D., Kumaresan, S., Yoganandan, N., Pintar, F., 2001. Probabilistic finite element analysis of the human lower cervical spine. American Society of Mechanical Engineers, Bioengineering Division (Publication) BED01/2000, vol. 48, pp. 237–238. – year: 2012 ident: 10.1016/j.jbiomech.2017.07.002_b0040 article-title: Evaluation of a synthetic L2-L5 spine model for biomechanical testing – volume: 61 start-page: 1 year: 2000 ident: 10.1016/j.jbiomech.2017.07.002_b0135 article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models publication-title: J. Elasticity doi: 10.1023/A:1010835316564 – ident: 10.1016/j.jbiomech.2017.07.002_b0130 – volume: 26 start-page: E122 year: 2001 ident: 10.1016/j.jbiomech.2017.07.002_b0070 article-title: Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc publication-title: Spine doi: 10.1097/00007632-200103150-00004 – volume: 3 start-page: 125 year: 2005 ident: 10.1016/j.jbiomech.2017.07.002_b0140 article-title: Single lamellar mechanics of the human lumbar anulus fibrosus publication-title: Biomechan. Model. Mechanobiol. doi: 10.1007/s10237-004-0053-8 – volume: 76 start-page: 413 year: 1994 ident: 10.1016/j.jbiomech.2017.07.002_b0185 article-title: Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves publication-title: J. Bone Joint Surg. doi: 10.2106/00004623-199403000-00012 – volume: 4 start-page: 54 year: 1991 ident: 10.1016/j.jbiomech.2017.07.002_b0180 article-title: Three-dimensional quantitative morphology of lumbar spinal ligaments publication-title: J. Spinal Disorders – year: 2011 ident: 10.1016/j.jbiomech.2017.07.002_b0035 article-title: Sampling based on Sobol sequences for Monte Carlo techniques applied to building simulations – ident: 10.1016/j.jbiomech.2017.07.002_b0205 – volume: 21 start-page: 452 year: 1996 ident: 10.1016/j.jbiomech.2017.07.002_b0075 article-title: Tensile properties of nondegenerate human lumbar anulus fibrosis publication-title: Spine doi: 10.1097/00007632-199602150-00009 – volume: 41 start-page: 1133 year: 1990 ident: 10.1016/j.jbiomech.2017.07.002_b0235 article-title: Descriptive sampling: a better approach to Monte Carlo simulation publication-title: J. Operational Res. Soc. doi: 10.1057/jors.1990.180 – volume: 26 start-page: 11 year: 2004 ident: 10.1016/j.jbiomech.2017.07.002_b0085 article-title: Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax–pelvis orientation publication-title: Med. Eng. Phys. doi: 10.1016/S1350-4533(03)00128-0 – volume: 1 start-page: 031007 year: 2016 ident: 10.1016/j.jbiomech.2017.07.002_b0060 article-title: Quantifying variability in lumbar L4 L5 soft tissue properties for use in FE analysis publication-title: ASME J. Verifi. Valid. Uncertainty Quantifi. J. Verif. Valid. Uncert. doi: 10.1115/1.4034322 – volume: 18 start-page: 163 year: 2005 ident: 10.1016/j.jbiomech.2017.07.002_b0160 article-title: Material sensitivity study on lumbar motion segment (L2–L3) under sagittal plane loadings using probabilistic method publication-title: J. Spinal Disorders Techniques doi: 10.1097/01.bsd.0000147658.60961.51 – volume: 39 start-page: 1410 year: 2006 ident: 10.1016/j.jbiomech.2017.07.002_b0120 article-title: Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.04.007 – volume: 30 start-page: 738 year: 2005 ident: 10.1016/j.jbiomech.2017.07.002_b0215 article-title: Effect of total disc replacement with ProDisc on intersegmental rotation of the lumber spine publication-title: Spine doi: 10.1097/01.brs.0000157413.72276.c4 – volume: 23 start-page: 536 year: 2008 ident: 10.1016/j.jbiomech.2017.07.002_b0030 article-title: Quality of motion considerations in numerical analysis of motion restoring implants of the spine publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2007.12.010 – ident: 10.1016/j.jbiomech.2017.07.002_b0005 – volume: 11 start-page: 154 year: 1986 ident: 10.1016/j.jbiomech.2017.07.002_b0100 article-title: A study of vertebra and disc geometric relations of the human cervical and lumbar spine publication-title: Spine doi: 10.1097/00007632-198603000-00010 – volume: 40 start-page: 1975 year: 2006 ident: 10.1016/j.jbiomech.2017.07.002_b0110 article-title: Moment–rotation responses of the human lumbosacral spinal column publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.09.027 – ident: 10.1016/j.jbiomech.2017.07.002_b0020 doi: 10.1115/SBC2011-53846 – volume: 223 start-page: 143 year: 2009 ident: 10.1016/j.jbiomech.2017.07.002_b0280 article-title: Load and displacement controlled finite element analyses on fusion and non-fusion spinal implants publication-title: Proc. Inst. Mech. Eng. H – J. Eng. Med. doi: 10.1243/09544119JEIM476 – volume: 44 start-page: 633 year: 2006 ident: 10.1016/j.jbiomech.2017.07.002_b0115 article-title: Validation of a clinical finite element model of the human lumbosacral spine publication-title: Med. Bio. Eng. Comp. doi: 10.1007/s11517-006-0066-9 – volume: 39 start-page: 2484 year: 2006 ident: 10.1016/j.jbiomech.2017.07.002_b0230 article-title: Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.07.026 – volume: 25 start-page: 1351 year: 1992 ident: 10.1016/j.jbiomech.2017.07.002_b0190 article-title: Biomechanical properties of human lumbar spine ligaments publication-title: J. Biomech. doi: 10.1016/0021-9290(92)90290-H – volume: 22 start-page: 742 year: 2003 ident: 10.1016/j.jbiomech.2017.07.002_b0265 article-title: Nonlinear finite-element analysis and biomechanical evaluation of the lumbar spine publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2003.814783 – ident: 10.1016/j.jbiomech.2017.07.002_b0275 doi: 10.1097/00007632-198911000-00020 – year: 2012 ident: 10.1016/j.jbiomech.2017.07.002_b0270 article-title: Biomechanical evaluation of three surgical scenarios of posterior lumbar interbody fusion by finite element analysis publication-title: Biomed. Eng. – volume: 2 start-page: 95 year: 2002 ident: 10.1016/j.jbiomech.2017.07.002_b0145 article-title: Effects of aging and spinal degeneration on mechanical properties of lumbar supraspinous and interspinous ligaments publication-title: Spine J. doi: 10.1016/S1529-9430(02)00142-0 – volume: 34 start-page: 147 year: 2004 ident: 10.1016/j.jbiomech.2017.07.002_b0080 article-title: Multi-segment FEA of the human lumbar spine including the heterogeneity of the annulus fibrosus publication-title: Comp. Mech. doi: 10.1007/s00466-004-0563-3 – volume: 30 start-page: 2755 year: 2005 ident: 10.1016/j.jbiomech.2017.07.002_b0105 article-title: Effects of Charite artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol publication-title: Spine doi: 10.1097/01.brs.0000195897.17277.67 – volume: 31 start-page: E992 year: 2006 ident: 10.1016/j.jbiomech.2017.07.002_b0255 article-title: Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion – a finite element study publication-title: Spine doi: 10.1097/01.brs.0000250177.84168.ba – start-page: 258 year: 2000 ident: 10.1016/j.jbiomech.2017.07.002_b0125 – volume: 32 start-page: 417 year: 2007 ident: 10.1016/j.jbiomech.2017.07.002_b0025 article-title: Residual sagittal motion after lumbar fusion: a finite element analysis with implications on radiographic flexion-extension criteria publication-title: Spine doi: 10.1097/01.brs.0000255201.74795.20 – year: 2006 ident: 10.1016/j.jbiomech.2017.07.002_b0155 – volume: 33 start-page: 89 year: 2011 ident: 10.1016/j.jbiomech.2017.07.002_b0090 article-title: Calibration of the finite element model of a lumbar functional spinal unit using an optimization technique based on differential evolution publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.09.010 – year: 2013 ident: 10.1016/j.jbiomech.2017.07.002_b0055 article-title: Stepwise validated finite element model of the human lumbar spine – year: 2010 ident: 10.1016/j.jbiomech.2017.07.002_b0010 article-title: Probabilistic stress analysis of the human lumbar spine extended finite element method – volume: 31 start-page: E682 year: 2006 ident: 10.1016/j.jbiomech.2017.07.002_b0050 article-title: Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis publication-title: Spine doi: 10.1097/01.brs.0000232714.72699.8e – volume: 15 start-page: 814 year: 1997 ident: 10.1016/j.jbiomech.2017.07.002_b0095 article-title: Radial tensile properties of the lumbar annulus fibrosis are site and degeneration dependent publication-title: J. Orthop. Res. doi: 10.1002/jor.1100150605 – volume: 131 start-page: 111007-1 year: 2009 ident: 10.1016/j.jbiomech.2017.07.002_b0175 article-title: Theoretical and uniaxial experimental evaluations of human annulus fibrosis degeneration publication-title: J. Biomech. Eng. doi: 10.1115/1.3212104 – volume: 25 start-page: 1185 year: 1992 ident: 10.1016/j.jbiomech.2017.07.002_b0170 article-title: Mechanical properties of the human lumbar anterior longitudinal ligament publication-title: J. Biomech. doi: 10.1016/0021-9290(92)90074-B – volume: 17 start-page: 34 year: 2013 ident: 10.1016/j.jbiomech.2017.07.002_b0210 article-title: The lumbar supraspinous ligament demonstrates increased material stiffness and strength on its ventral aspect publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2012.07.009 – volume: 19 start-page: 1585 year: 2010 ident: 10.1016/j.jbiomech.2017.07.002_b0225 article-title: A probabilistic finite element analysis of the stresses in the augmented vertebral body after vertebroplasty publication-title: Euro. Spine J. doi: 10.1007/s00586-010-1386-x – volume: 31 start-page: 565 year: 2009 ident: 10.1016/j.jbiomech.2017.07.002_b0250 article-title: Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation – a finite element study publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2008.11.012 – volume: 22 start-page: 901 year: 2004 ident: 10.1016/j.jbiomech.2017.07.002_b0260 article-title: Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus publication-title: J. Orthop. Res. doi: 10.1016/j.orthres.2003.12.012 – ident: 10.1016/j.jbiomech.2017.07.002_b0245 doi: 10.1115/IMECE2000-2598 – ident: 10.1016/j.jbiomech.2017.07.002_b0150 – volume: 29 start-page: 877 year: 2007 ident: 10.1016/j.jbiomech.2017.07.002_b0065 article-title: The role of quadratus lumborum asymmetry in the occurrence of lesions in the lumbar vertebrae of cricket fast bowlers publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2006.09.010 – ident: 10.1016/j.jbiomech.2017.07.002_b0200 – volume: 32 start-page: 748 year: 2007 ident: 10.1016/j.jbiomech.2017.07.002_b0240 article-title: Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading publication-title: Spine doi: 10.1097/01.brs.0000259059.90430.c2 – volume: 21 start-page: 2570 year: 1996 ident: 10.1016/j.jbiomech.2017.07.002_b0165 article-title: Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model publication-title: Spine doi: 10.1097/00007632-199611150-00006 – volume: 18 start-page: 167 year: 1985 ident: 10.1016/j.jbiomech.2017.07.002_b0045 article-title: Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction publication-title: J. Biomech. doi: 10.1016/0021-9290(85)90202-7 – volume: 14 start-page: 695 year: 2011 ident: 10.1016/j.jbiomech.2017.07.002_b0015 article-title: Parametric convergence sensitivity and validation of a finite element model publication-title: Comp. Meth. Biomech. Biomed. Eng. doi: 10.1080/10255842.2010.493517 – volume: 28 start-page: 991 year: 2003 ident: 10.1016/j.jbiomech.2017.07.002_b0195 article-title: The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis publication-title: Spine doi: 10.1097/01.BRS.0000061987.71624.17 – volume: 18 start-page: 89 year: 2009 ident: 10.1016/j.jbiomech.2017.07.002_b0220 article-title: Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study publication-title: Euro. Spine J. doi: 10.1007/s00586-008-0836-1 |
| SSID | ssj0007479 |
| Score | 2.322967 |
| Snippet | Finite element models of the lumbar spine are useful in assessing biomechanics and performance of implants. Models are often developed using the anatomy of an... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 65 |
| SubjectTerms | Accuracy Annulus fibrosis Biomechanical Phenomena Biomechanics Calibration Computer simulation Descriptive sampling Disc Finite Element Analysis Finite element method Functional spinal unit Gasser Holzapfel Humans Implants Intervertebral Disc - anatomy & histology Intervertebral Disc - physiology Intervertebral discs Ligaments Ligaments - anatomy & histology Ligaments - physiology Lumbar Lumbar Vertebrae - anatomy & histology Lumbar Vertebrae - physiology Mathematical models Mechanical Phenomena Methods Monte Carlo Monte Carlo simulation Mooney Rivlin Nucleus pulposis Ogden Probabilistic Probabilistic methods Probability Properties (attributes) Prostheses and Implants Random sampling Range of Motion, Articular Reduction Rotation Sampling Sampling methods Shear strain Sobol sampling Spinal ligament Spine Spine (lumbar) Stiffness Torque Transplants & implants Vertebrae |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VPSA4INjyWCjISIhbukns2MmxqlpVlcqJSr1ZsT1Gu4Js1W4PvfDbmXGcpUigInFM4pEcjz2e5zcAHzHoxgXmgOxcodDowpGqX_Rt47XpfBMC1w6ff9anF-rssrncgaOpFobTKrPsH2V6ktb5zSKv5uJqueQaXzptHAY0LIZToblShrsYHPz4leZB6nJO86gKHn2vSnh1sEo17ikoUZkE4pndK3-4oP6mgKaL6OQZPM0apDgcJ_kcdnCYwd7hQNbz9zvxSaSczuQsn8GTe3CDM3h0ngPpe3B2nKAj6MYR3FImwewyYrOIS1ZCBY5Z5aLPmCViHUUvSJC5_lqMnX_EDX7lMS_g4uT4y9FpkdsqFL4p1aZAoyK7n3TbBY-x7R3GOjQ61N7FFl0XI6pgHHaq6iVpJEaGSJyU0tc1Ri1fwu6wHvA1CFeSgSt149mujBgdGW-oomY_hQy-mkMzraX1GXOcW198s1Ny2cpOPLDMA1tyOLyew2JLdzWibjxIYSZW2ammlKSgpYvhQcpuS_nbzvsn2v1pV9h89m8sYzSSVa41ff6w_UynlkMx_YDrWx5DcrRslSrn8GrcTdsfJRtW0o42b_5jYm_hMT-x87vS-7C7ub7Fd6Q9bdz7dDx-AoytGE0 priority: 102 providerName: Elsevier |
| Title | Efficient probabilistic finite element analysis of a lumbar motion segment |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929017303615 https://dx.doi.org/10.1016/j.jbiomech.2017.07.002 https://www.ncbi.nlm.nih.gov/pubmed/28733037 https://www.proquest.com/docview/1965402662 https://www.proquest.com/docview/1922508440 |
| Volume | 61 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AKRWK dateStart: 19680101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1873-2380 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1873-2380 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61iYToAZUUSqBEi4S4ubW99q59QChFqUJRI4SolJvlfSGi4vSRHrjw25lZr00PQLn4Yo9le9az37y-AXhtjciVIQ3wUkWZlSJSCPWjusi1kKXOjaHe4bOFmJ9np8t8uQWLrheGyio7m-gNtVlripEfEfMd-jpCpO8uryKaGkXZ1W6ERh1GK5i3nmJsG4YpMWMNYHg8W3z63NtmBM-h6COJEBjEd3qGV4cr3_HuUxSJ9JSeIdjyh-3qb3DUb0snu_Ao4Ek2bRfAY9iyzQj2pg360t9_sDfMV3j60PkIdu6QD47gwVlIq-_B6cwTSeD-w2jAjCfdJf5m5r4RJGW2rTFndWAwYWvHaoZmTdXXrJ0DxG7sV7rmCZyfzL68n0dhyEKk8zjbRFZmjoJRoiiNtq6olXWpyYVJtXKFVaVzNjNS2TJLao74RHLjUK-c6zS1TvCnMGjWjX0GTMXo7nKRa_IynXUKXTmbOUFRC250Moa8-5aVDgzkNAjjoupKzVZVp4OKdFDFlBxPx3DUy122HBz3SshOVVXXYYo2scJt4l7JspcMGKTFFv8le9CtiipYgpvq97odw6v-NP7DlJipG7u-pWvQqsZFlsVj2G9XU_-i6NFyhBny-b9v_gIe0pNQtDsRBzDYXN_alwiXNmoC24c_EzzKpZzAcPrh43wxCf_FLzgZF9w |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVuJxQLDlsVDASMAtNIkdJzlUqMBW28euEGql3kwc24gVZEt3K9Q_x29jxnFCD0C59JxMlGTsmW_GM98AvLBGZtqQBnipI2FzGWmE-lFVZLXMyzozhnqHJ1M5PhJ7x9nxCvzsemGorLKzid5Qm3lNOfJNYr7DWEfK9M3J94imRtHpajdCowqjFcyWpxgLjR379vwHhnCLrd33qO-XabozOnw3jsKUgajOYrGMbC4cZWNkUZrauqLS1qUmkyattSusLp2zwuTaliKpODronBuHH8Z5nabWSY7PvQZrgosSg7-1t6Pph4-9L0CwHopMkgiBSHyhR3n2euY77P2RSJJ7CtGQ3PmDe_wb_PVucOcO3A74lW23C-4urNhmAOvbDcbu387ZK-YrSn2qfgC3LpAdDuD6JBzjr8PeyBNXoL9jNNDGk_wSXzRzXwgCM9vWtLMqMKawuWMVQzOqq1PWzh1iC_uZ7rkHR1fyu-_DajNv7ENgOsbwmsuspqjWWacxdLTCScqScFMnQ8i6f6nqwHhOgze-qq60baY6HSjSgYrpMD4dwmYvd9JyflwqkXeqUl1HK9pghW7pUsmylwyYp8Uy_yW70a0KFSzPQv3eJ0N43l9Gm0EHQVVj52d0D1rxuBAiHsKDdjX1H4oRNEdYkz_698OfwY3x4eRAHexO9x_DTXoryrQncgNWl6dn9glCtaV-GvYDg09XvQV_AQyFU50 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVwQLCFsqWAkYBb2CRO7OSAUEW76oNWHKi0NxO_ECvItt2tUP8av44Zx1l6AMql52Si2GPPe74BeOmsKLUlDvBaJ4WTItFo6idNVRoha1NaS73DR8di76Q4mJSTFfjZ98JQWWUvE4OgtjNDMfIRId-hryNEPvKxLOLjzvjd6VlCE6Qo09qP0-iOyKG7_IHu2_zt_g7y-lWej3c_vd9L4oSBxJRpsUicLDxFYkRVW-N81Wjnc1sKmxvtK6dr711hpXZ1kTUclbPk1uOiODd57rzg-N1bcFtyXlM5oZwsnT3CpY_lJVmCJkh6pTt5-mYaeutDMiSTATw0hnX-oBj_ZvgGBTi-D_ei5cq2u6P2AFZcO4D17Ra99u-X7DULtaQhSD-Au1dgDgewdhQT-OtwsBsgK1DTMRplE-B9CSma-a9k_DLXVbOzJmKlsJlnDUMBqptz1k0cYnP3hd55CCc3stmPYLWdte4xMJ2iY81Facif9c5rdBpd4QXFR7g12RDKfi-ViVjnNHLjm-qL2qaq54EiHqiU0vD5EEZLutMO7eNaCtmzSvW9rCh9FSqkaynrJWW0djor5r9ot_pToaLMmavfN2QIL5aPUVpQCqhp3eyC3kH5nVZFkQ5hoztNy4Wi78zRoJGb__74c1jDi6c-7B8fPoE79FMUYs_EFqwuzi_cU7TRFvpZuAwMPt_07fsFymZRNw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+probabilistic+finite+element+analysis+of+a+lumbar+motion+segment&rft.jtitle=Journal+of+biomechanics&rft.au=Coombs%2C+Dana+J&rft.au=Rullkoetter%2C+Paul+J&rft.au=Laz%2C+Peter+J&rft.date=2017-08-16&rft.pub=Elsevier+Limited&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=61&rft.spage=65&rft_id=info:doi/10.1016%2Fj.jbiomech.2017.07.002&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |