Efficient probabilistic finite element analysis of a lumbar motion segment

Finite element models of the lumbar spine are useful in assessing biomechanics and performance of implants. Models are often developed using the anatomy of an individual subject. Average mechanical property values for the annulus and other soft tissue structures are typically utilized from the liter...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 61; pp. 65 - 74
Main Authors Coombs, Dana J., Rullkoetter, Paul J., Laz, Peter J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 16.08.2017
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2017.07.002

Cover

Abstract Finite element models of the lumbar spine are useful in assessing biomechanics and performance of implants. Models are often developed using the anatomy of an individual subject. Average mechanical property values for the annulus and other soft tissue structures are typically utilized from the literature, as data for the same subject are not available. However, these properties can have significant variability. While probabilistic methods enable the impact of soft tissue property variability on spine mechanics to be assessed, they often require lengthy computation times. Accordingly, the objective of this study was to develop efficient methods to perform Monte Carlo simulations of a finite element model of the L4 L5 functional spinal unit considering variability in the properties of the soft tissue structures. Distributions for the soft tissue properties included the stiffness of spinal ligaments and parameters of a Holzapfel-Gasser-Ogden constitutive material model of the disc. Variance reduction sampling methods, including the Sobol and Descriptive sampling techniques, were assessed for efficiency and accuracy in comparison to traditional random Monte Carlo sampling. Comparisons were based on output torque-rotation curves at the 10th and 90th percentile for flexion, extension, axial rotation, and lateral bending. The Descriptive sampling technique best matched the random sampling technique, at the extremes of rotation, with a 3.6% mean difference. This was achieved with a 10× reduction in the number of iterations and computation time. Improvements in efficiency and maintained accuracy enable intersubject variability to be considered in a variety of biomechanical evaluations, including design-phase screening of orthopedic implants.
AbstractList Finite element models of the lumbar spine are useful in assessing biomechanics and performance of implants. Models are often developed using the anatomy of an individual subject. Average mechanical property values for the annulus and other soft tissue structures are typically utilized from the literature, as data for the same subject are not available. However, these properties can have significant variability. While probabilistic methods enable the impact of soft tissue property variability on spine mechanics to be assessed, they often require lengthy computation times. Accordingly, the objective of this study was to develop efficient methods to perform Monte Carlo simulations of a finite element model of the L4 L5 functional spinal unit considering variability in the properties of the soft tissue structures. Distributions for the soft tissue properties included the stiffness of spinal ligaments and parameters of a Holzapfel-Gasser-Ogden constitutive material model of the disc. Variance reduction sampling methods, including the Sobol and Descriptive sampling techniques, were assessed for efficiency and accuracy in comparison to traditional random Monte Carlo sampling. Comparisons were based on output torque-rotation curves at the 10th and 90th percentile for flexion, extension, axial rotation, and lateral bending. The Descriptive sampling technique best matched the random sampling technique, at the extremes of rotation, with a 3.6% mean difference. This was achieved with a 10× reduction in the number of iterations and computation time. Improvements in efficiency and maintained accuracy enable intersubject variability to be considered in a variety of biomechanical evaluations, including design-phase screening of orthopedic implants.Finite element models of the lumbar spine are useful in assessing biomechanics and performance of implants. Models are often developed using the anatomy of an individual subject. Average mechanical property values for the annulus and other soft tissue structures are typically utilized from the literature, as data for the same subject are not available. However, these properties can have significant variability. While probabilistic methods enable the impact of soft tissue property variability on spine mechanics to be assessed, they often require lengthy computation times. Accordingly, the objective of this study was to develop efficient methods to perform Monte Carlo simulations of a finite element model of the L4 L5 functional spinal unit considering variability in the properties of the soft tissue structures. Distributions for the soft tissue properties included the stiffness of spinal ligaments and parameters of a Holzapfel-Gasser-Ogden constitutive material model of the disc. Variance reduction sampling methods, including the Sobol and Descriptive sampling techniques, were assessed for efficiency and accuracy in comparison to traditional random Monte Carlo sampling. Comparisons were based on output torque-rotation curves at the 10th and 90th percentile for flexion, extension, axial rotation, and lateral bending. The Descriptive sampling technique best matched the random sampling technique, at the extremes of rotation, with a 3.6% mean difference. This was achieved with a 10× reduction in the number of iterations and computation time. Improvements in efficiency and maintained accuracy enable intersubject variability to be considered in a variety of biomechanical evaluations, including design-phase screening of orthopedic implants.
Finite element models of the lumbar spine are useful in assessing biomechanics and performance of implants. Models are often developed using the anatomy of an individual subject. Average mechanical property values for the annulus and other soft tissue structures are typically utilized from the literature, as data for the same subject are not available. However, these properties can have significant variability. While probabilistic methods enable the impact of soft tissue property variability on spine mechanics to be assessed, they often require lengthy computation times. Accordingly, the objective of this study was to develop efficient methods to perform Monte Carlo simulations of a finite element model of the L4 L5 functional spinal unit considering variability in the properties of the soft tissue structures. Distributions for the soft tissue properties included the stiffness of spinal ligaments and parameters of a Holzapfel-Gasser-Ogden constitutive material model of the disc. Variance reduction sampling methods, including the Sobol and Descriptive sampling techniques, were assessed for efficiency and accuracy in comparison to traditional random Monte Carlo sampling. Comparisons were based on output torque-rotation curves at the 10th and 90th percentile for flexion, extension, axial rotation, and lateral bending. The Descriptive sampling technique best matched the random sampling technique, at the extremes of rotation, with a 3.6% mean difference. This was achieved with a 10× reduction in the number of iterations and computation time. Improvements in efficiency and maintained accuracy enable intersubject variability to be considered in a variety of biomechanical evaluations, including design-phase screening of orthopedic implants.
Finite element models of the lumbar spine are useful in assessing biomechanics and performance of implants. Models are often developed using the anatomy of an individual subject. Average mechanical property values for the annulus and other soft tissue structures are typically utilized from the literature, as data for the same subject are not available. However, these properties can have significant variability. While probabilistic methods enable the impact of soft tissue property variability on spine mechanics to be assessed, they often require lengthy computation times. Accordingly, the objective of this study was to develop efficient methods to perform Monte Carlo simulations of a finite element model of the L4 L5 functional spinal unit considering variability in the properties of the soft tissue structures. Distributions for the soft tissue properties included the stiffness of spinal ligaments and parameters of a Holzapfel-Gasser-Ogden constitutive material model of the disc. Variance reduction sampling methods, including the Sobol and Descriptive sampling techniques, were assessed for efficiency and accuracy in comparison to traditional random Monte Carlo sampling. Comparisons were based on output torque-rotation curves at the 10th and 90th percentile for flexion, extension, axial rotation, and lateral bending. The Descriptive sampling technique best matched the random sampling technique, at the extremes of rotation, with a 3.6% mean difference. This was achieved with a 10x reduction in the number of iterations and computation time. Improvements in efficiency and maintained accuracy enable intersubject variability to be considered in a variety of biomechanical evaluations, including design-phase screening of orthopedic implants.
Author Coombs, Dana J.
Laz, Peter J.
Rullkoetter, Paul J.
Author_xml – sequence: 1
  givenname: Dana J.
  surname: Coombs
  fullname: Coombs, Dana J.
  email: dcoombs3@its.jnj.com
  organization: DePuy Synthes, 1301 Goshen Parkway, West Chester, PA 19380, USA
– sequence: 2
  givenname: Paul J.
  surname: Rullkoetter
  fullname: Rullkoetter, Paul J.
  email: paul.rullkoetter@du.edu
  organization: Center for Orthopaedic Biomechanics, University of Denver, 2390 South York Street, Denver, CO 80208, USA
– sequence: 3
  givenname: Peter J.
  surname: Laz
  fullname: Laz, Peter J.
  email: peter.laz@du.edu
  organization: Center for Orthopaedic Biomechanics, University of Denver, 2390 South York Street, Denver, CO 80208, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28733037$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1q3DAUhUVJaSZpXyEYuunG0yvJI9tQSktI-kOgm2QtJPmqlStbqSQX5u0jM0kXs0nhgkD6zuHqnDNyMocZCbmgsKVAxftxO2oXJjS_tgxou4UywF6QDe1aXjPewQnZlBta96yHU3KW0ggAbdP2r8gpKxAH3m7I9ytrnXE45-o-Bq208y5lZyrrZpexQo_T-qhm5ffJpSrYSlV-mbSK1RSyC3OV8OfKvCYvrfIJ3zye5-Tu-ur28mt98-PLt8vPN7XZQZNrbBsLlPWi6weDtlMaLRt2YmBG2w51by02Q6uxb6jiQvCWD5b3mnPDGFrBz8m7g29Z-M-CKcvJJYPeqxnDkiTtGdtB1zRQ0LdH6BiWWL6yUmLXABOCFerikVr0hIO8j25ScS-fUiqAOAAmhpQi2n8IBbnWIUf5VIdc65BQBlbnD0dC47JaQ8tROf-8_NNBjiXOvw6jTGtVBgcX0WQ5BPe8xccjC-NLs0b537j_H4MHuL6_4g
CitedBy_id crossref_primary_10_1007_s12541_023_00866_9
crossref_primary_10_1016_j_wneu_2020_03_190
crossref_primary_10_1016_j_medengphy_2022_103911
crossref_primary_10_1016_j_medengphy_2023_104035
crossref_primary_10_1080_10255842_2020_1793331
crossref_primary_10_3389_fbioe_2023_1287197
crossref_primary_10_1080_15376494_2021_1988191
crossref_primary_10_1007_s10409_017_0744_x
crossref_primary_10_1080_10255842_2020_1839059
crossref_primary_10_1016_j_clinbiomech_2022_105816
crossref_primary_10_1088_1757_899X_788_1_012004
crossref_primary_10_3171_2018_10_SPINE181102
crossref_primary_10_1007_s10237_022_01617_x
crossref_primary_10_3389_fbioe_2021_669321
Cites_doi 10.1023/A:1010835316564
10.1097/00007632-200103150-00004
10.1007/s10237-004-0053-8
10.2106/00004623-199403000-00012
10.1097/00007632-199602150-00009
10.1057/jors.1990.180
10.1016/S1350-4533(03)00128-0
10.1115/1.4034322
10.1097/01.bsd.0000147658.60961.51
10.1016/j.jbiomech.2005.04.007
10.1097/01.brs.0000157413.72276.c4
10.1016/j.clinbiomech.2007.12.010
10.1097/00007632-198603000-00010
10.1016/j.jbiomech.2006.09.027
10.1115/SBC2011-53846
10.1243/09544119JEIM476
10.1007/s11517-006-0066-9
10.1016/j.jbiomech.2005.07.026
10.1016/0021-9290(92)90290-H
10.1109/TMI.2003.814783
10.1097/00007632-198911000-00020
10.1016/S1529-9430(02)00142-0
10.1007/s00466-004-0563-3
10.1097/01.brs.0000195897.17277.67
10.1097/01.brs.0000250177.84168.ba
10.1097/01.brs.0000255201.74795.20
10.1016/j.medengphy.2010.09.010
10.1097/01.brs.0000232714.72699.8e
10.1002/jor.1100150605
10.1115/1.3212104
10.1016/0021-9290(92)90074-B
10.1016/j.jmbbm.2012.07.009
10.1007/s00586-010-1386-x
10.1016/j.medengphy.2008.11.012
10.1016/j.orthres.2003.12.012
10.1115/IMECE2000-2598
10.1016/j.medengphy.2006.09.010
10.1097/01.brs.0000259059.90430.c2
10.1097/00007632-199611150-00006
10.1016/0021-9290(85)90202-7
10.1080/10255842.2010.493517
10.1097/01.BRS.0000061987.71624.17
10.1007/s00586-008-0836-1
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1016/j.jbiomech.2017.07.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ProQuest Health & Medical Complete
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Research Library Prep
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 74
ExternalDocumentID 28733037
10_1016_j_jbiomech_2017_07_002
S0021929017303615
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUFD
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
~HD
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
.GJ
29J
53G
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AI.
AIGII
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
PUEGO
R2-
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c504t-e74f0129689dcef8abef2d56d2cbf8eb9ffe4d7be941a366373df39b33c22ef63
IEDL.DBID BENPR
ISSN 0021-9290
1873-2380
IngestDate Thu Oct 02 10:48:07 EDT 2025
Tue Oct 07 06:19:27 EDT 2025
Thu Apr 03 07:00:05 EDT 2025
Wed Oct 01 01:19:18 EDT 2025
Thu Apr 24 22:51:21 EDT 2025
Fri Feb 23 02:28:49 EST 2024
Tue Oct 14 19:30:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Spinal ligament
Descriptive sampling
Probabilistic
Sobol sampling
Calibration
Functional spinal unit
Gasser
Holzapfel
Mooney Rivlin
Monte Carlo
Disc
Annulus fibrosis
Nucleus pulposis
Finite element analysis
Lumbar
Ogden
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-e74f0129689dcef8abef2d56d2cbf8eb9ffe4d7be941a366373df39b33c22ef63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28733037
PQID 1965402662
PQPubID 1226346
PageCount 10
ParticipantIDs proquest_miscellaneous_1922508440
proquest_journals_1965402662
pubmed_primary_28733037
crossref_primary_10_1016_j_jbiomech_2017_07_002
crossref_citationtrail_10_1016_j_jbiomech_2017_07_002
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2017_07_002
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2017_07_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-16
PublicationDateYYYYMMDD 2017-08-16
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Rohlmann, Boustani, Bergmann, Zander (b0225) 2010; 19
Rao, M., Patrella, A., Baldwin, M., Laz, P., Rullkoetter, P., 2009. Efficient probabilistic finite element modeling for evaluation of spinal mechanics. In: Proceeding of the 55th Annual Meeting of the Orthopedic Research Society, Las Vegas, NV.
Coombs, Bushelow, Laz, Rao, Rullkoetter (b0055) 2013
Guan, Yoganandan, Zhang, Pintar, Cusick, Wolfla, Maiman (b0115) 2006; 44
Rohlmann, Mann, Zander, Bergmann (b0220) 2009; 18
Chazal, Tanguy, Bourges, Gaurel, Escande, Guilot, Vanneuville (b0045) 1985; 18
Ahmad, Akramin (b0010) 2010
Ezquerro, Simon, Prado, Perez (b0085) 2004; 26
Ayturk, Puttlitz (b0015) 2011; 14
Isight Component Guide (release 5.7), Simulia, Dassault Systemes, pp 561–562.
Lee, Teo (b0160) 2005; 18
Guan, Yoganandan, Moore, Pintar, Zhanga, Maimana, Laud (b0110) 2006; 40
Campbell, Imsdahl, Ching (b0040) 2012
Panjabi, Oxland, Yamamoto, Crisco (b0185) 1994; 76
Fujita, Duncan, Lotz (b0095) 1997; 15
Saliby (b0235) 1990; 41
Burhenne, Jacob, Henze (b0035) 2011
Iida, Abumi Kotani, Kaneda (b0145) 2002; 2
Rao, M., 2012. Explicit finite element modeling of the human lumbar spine. PhD. Thesis, Electronic Theses and Dissertations. Paper 906. University of Denver.
Neumann, Keller, Ekstrom, Perry, Hansson, Spengler (b0170) 1992; 25
Wong, Gehrchen, Darvann, Kaer (b0265) 2003; 22
.
Goel, Grauer, Patel, Biyani, Sairyo, Vishnubhatla, Matyas, Cowgill, Shaw, Long, Dick, Panjabi, Serhan (b0105) 2005; 30
Bono, Khandha, Vadapalli, Holekamp, Goel, Garfin (b0025) 2007; 32
Holzapfel, Schulze-Bauer, Feigl, Regitnig (b0140) 2005; 3
Yamamoto, I., Panjabi, M., Crisco, T., Oxland, T., 1989. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. In: Proceeding of the 12th Annual Meeting of the International Congress of Biomechanics, Los Angeles, CA.
Guerin, Elliott (b0120) 2006; 39
Schmidt, Kettler, Heuer, Simon, Claes, Wilke (b0240) 2007; 32
Panjabi, Greenstein, Duranceau, Nolte (b0180) 1991; 4
Dooris, Goel, Grosland, Gilbertson, Wilder (b0070) 2001; 26
Hollenbeck, J.F.M., Cain, C., Fattor, J., Fitzpatrick, C.K., Rullkoetter, P.J., Laz, P.J., 2014. Statistical modeling to characterize disc degeneration in the lumbar spine. In: 7th World Congress of Biomechanics, Boston, MA.
Haldar, Mahadevan (b0125) 2000
Xiao, Wang, Gong, Zhu (b0270) 2012
Coombs, Rullkoetter, Laz (b0060) 2016; 1
Kurtz, Edidin (b0155) 2006
Thacker, B., Nicolella, D., Kumaresan, S., Yoganandan, N., Pintar, F., 2001. Probabilistic finite element analysis of the human lower cervical spine. American Society of Mechanical Engineers, Bioengineering Division (Publication) BED01/2000, vol. 48, pp. 237–238.
Abaqus Users Guide (release 6.12), 2012, Simulia, Dassault Systemes, “Hyperelastic behavior of rubberlike materials,” Chapter 22.5.1.
Polikeit, Nolte, Ferguson (b0195) 2003; 28
Bowden, Guerin, Villarraga, Patwardhan, Ochoa (b0030) 2008; 23
Lu, Hutton, Gharpuray (b0165) 1996; 21
de Visser, Adam, Crozier, Pearcy (b0065) 2007; 29
O’Connell, Guerin, Elliott (b0175) 2009; 131
Tsuang, Chiang, Hung, Wei, Huang, Cheng (b0250) 2009; 31
Rohlmann, Zander, Schmidt, Wilke, Bergmann (b0230) 2006; 39
Pintar, Yoganandan, Myers, Elhagediab, Sances (b0190) 1992; 25
Chiang, Zhong, Chen, Cheng, Shih (b0050) 2006; 31
Robertson, Willardson, Parajuli, Cannon, Anton (b0210) 2013; 17
Rohlmann, Zander, Bergmann (b0215) 2005; 30
Eberlein, Holzapfel, Frohlich (b0080) 2004; 34
Vadapalli, Sairyo, Goel, Robon, Biyani, Khandha, Ebraheim (b0255) 2006; 31
Zhong, Chen, Hung (b0280) 2009; 223
Ezquerro, Vacas, Postigo, Prado, Simon (b0090) 2011; 33
Ebara, Iatridis, Setton, Foster, Mow, Weidenbaum (b0075) 1996; 21
Holzapfel, Gasser, Ogden (b0135) 2000; 61
Wagner, Lotz (b0260) 2004; 22
Gilad, Nissan (b0100) 1986; 11
Barnes, K., Armstrong, J., Agarwala, A., Petrella, A., 2011. Probabilistic study of a lumbar motion segment: sensitivity to material and anatomic variability. In Proceedings of the ASME 2011 Summer Bioengineering Conference, Parts A and B, Farmington, Pennsylvania. Paper No. SBC2011-53846, pp. 863–864.
Guan (10.1016/j.jbiomech.2017.07.002_b0115) 2006; 44
Chazal (10.1016/j.jbiomech.2017.07.002_b0045) 1985; 18
Neumann (10.1016/j.jbiomech.2017.07.002_b0170) 1992; 25
Haldar (10.1016/j.jbiomech.2017.07.002_b0125) 2000
Rohlmann (10.1016/j.jbiomech.2017.07.002_b0225) 2010; 19
Ezquerro (10.1016/j.jbiomech.2017.07.002_b0090) 2011; 33
Ayturk (10.1016/j.jbiomech.2017.07.002_b0015) 2011; 14
Fujita (10.1016/j.jbiomech.2017.07.002_b0095) 1997; 15
Bono (10.1016/j.jbiomech.2017.07.002_b0025) 2007; 32
Coombs (10.1016/j.jbiomech.2017.07.002_b0060) 2016; 1
Lee (10.1016/j.jbiomech.2017.07.002_b0160) 2005; 18
Panjabi (10.1016/j.jbiomech.2017.07.002_b0185) 1994; 76
Bowden (10.1016/j.jbiomech.2017.07.002_b0030) 2008; 23
10.1016/j.jbiomech.2017.07.002_b0150
Pintar (10.1016/j.jbiomech.2017.07.002_b0190) 1992; 25
Dooris (10.1016/j.jbiomech.2017.07.002_b0070) 2001; 26
10.1016/j.jbiomech.2017.07.002_b0275
Tsuang (10.1016/j.jbiomech.2017.07.002_b0250) 2009; 31
Vadapalli (10.1016/j.jbiomech.2017.07.002_b0255) 2006; 31
Burhenne (10.1016/j.jbiomech.2017.07.002_b0035) 2011
Chiang (10.1016/j.jbiomech.2017.07.002_b0050) 2006; 31
Polikeit (10.1016/j.jbiomech.2017.07.002_b0195) 2003; 28
Robertson (10.1016/j.jbiomech.2017.07.002_b0210) 2013; 17
Eberlein (10.1016/j.jbiomech.2017.07.002_b0080) 2004; 34
Ezquerro (10.1016/j.jbiomech.2017.07.002_b0085) 2004; 26
10.1016/j.jbiomech.2017.07.002_b0020
O’Connell (10.1016/j.jbiomech.2017.07.002_b0175) 2009; 131
Campbell (10.1016/j.jbiomech.2017.07.002_b0040) 2012
Xiao (10.1016/j.jbiomech.2017.07.002_b0270) 2012
Guerin (10.1016/j.jbiomech.2017.07.002_b0120) 2006; 39
Holzapfel (10.1016/j.jbiomech.2017.07.002_b0135) 2000; 61
Saliby (10.1016/j.jbiomech.2017.07.002_b0235) 1990; 41
Holzapfel (10.1016/j.jbiomech.2017.07.002_b0140) 2005; 3
Schmidt (10.1016/j.jbiomech.2017.07.002_b0240) 2007; 32
Rohlmann (10.1016/j.jbiomech.2017.07.002_b0220) 2009; 18
Kurtz (10.1016/j.jbiomech.2017.07.002_b0155) 2006
de Visser (10.1016/j.jbiomech.2017.07.002_b0065) 2007; 29
Guan (10.1016/j.jbiomech.2017.07.002_b0110) 2006; 40
10.1016/j.jbiomech.2017.07.002_b0130
Zhong (10.1016/j.jbiomech.2017.07.002_b0280) 2009; 223
Coombs (10.1016/j.jbiomech.2017.07.002_b0055) 2013
Lu (10.1016/j.jbiomech.2017.07.002_b0165) 1996; 21
Rohlmann (10.1016/j.jbiomech.2017.07.002_b0230) 2006; 39
Wong (10.1016/j.jbiomech.2017.07.002_b0265) 2003; 22
Goel (10.1016/j.jbiomech.2017.07.002_b0105) 2005; 30
Ebara (10.1016/j.jbiomech.2017.07.002_b0075) 1996; 21
Iida (10.1016/j.jbiomech.2017.07.002_b0145) 2002; 2
Rohlmann (10.1016/j.jbiomech.2017.07.002_b0215) 2005; 30
Panjabi (10.1016/j.jbiomech.2017.07.002_b0180) 1991; 4
Gilad (10.1016/j.jbiomech.2017.07.002_b0100) 1986; 11
10.1016/j.jbiomech.2017.07.002_b0200
10.1016/j.jbiomech.2017.07.002_b0005
Wagner (10.1016/j.jbiomech.2017.07.002_b0260) 2004; 22
10.1016/j.jbiomech.2017.07.002_b0245
Ahmad (10.1016/j.jbiomech.2017.07.002_b0010) 2010
10.1016/j.jbiomech.2017.07.002_b0205
References_xml – volume: 18
  start-page: 163
  year: 2005
  end-page: 170
  ident: b0160
  article-title: Material sensitivity study on lumbar motion segment (L2–L3) under sagittal plane loadings using probabilistic method
  publication-title: J. Spinal Disorders Techniques
– volume: 28
  start-page: 991
  year: 2003
  end-page: 996
  ident: b0195
  article-title: The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis
  publication-title: Spine
– reference: Isight Component Guide (release 5.7), Simulia, Dassault Systemes, pp 561–562.
– volume: 17
  start-page: 34
  year: 2013
  end-page: 43
  ident: b0210
  article-title: The lumbar supraspinous ligament demonstrates increased material stiffness and strength on its ventral aspect
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 25
  start-page: 1185
  year: 1992
  end-page: 1194
  ident: b0170
  article-title: Mechanical properties of the human lumbar anterior longitudinal ligament
  publication-title: J. Biomech.
– volume: 25
  start-page: 1351
  year: 1992
  end-page: 1356
  ident: b0190
  article-title: Biomechanical properties of human lumbar spine ligaments
  publication-title: J. Biomech.
– volume: 15
  start-page: 814
  year: 1997
  end-page: 819
  ident: b0095
  article-title: Radial tensile properties of the lumbar annulus fibrosis are site and degeneration dependent
  publication-title: J. Orthop. Res.
– volume: 29
  start-page: 877
  year: 2007
  end-page: 885
  ident: b0065
  article-title: The role of quadratus lumborum asymmetry in the occurrence of lesions in the lumbar vertebrae of cricket fast bowlers
  publication-title: Med. Eng. Phys.
– volume: 26
  start-page: E122
  year: 2001
  end-page: E129
  ident: b0070
  article-title: Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc
  publication-title: Spine
– volume: 40
  start-page: 1975
  year: 2006
  end-page: 1980
  ident: b0110
  article-title: Moment–rotation responses of the human lumbosacral spinal column
  publication-title: J. Biomech.
– volume: 4
  start-page: 54
  year: 1991
  end-page: 62
  ident: b0180
  article-title: Three-dimensional quantitative morphology of lumbar spinal ligaments
  publication-title: J. Spinal Disorders
– reference: Rao, M., Patrella, A., Baldwin, M., Laz, P., Rullkoetter, P., 2009. Efficient probabilistic finite element modeling for evaluation of spinal mechanics. In: Proceeding of the 55th Annual Meeting of the Orthopedic Research Society, Las Vegas, NV.
– volume: 23
  start-page: 536
  year: 2008
  end-page: 544
  ident: b0030
  article-title: Quality of motion considerations in numerical analysis of motion restoring implants of the spine
  publication-title: Clin. Biomech.
– reference: Rao, M., 2012. Explicit finite element modeling of the human lumbar spine. PhD. Thesis, Electronic Theses and Dissertations. Paper 906. University of Denver. <
– reference: Yamamoto, I., Panjabi, M., Crisco, T., Oxland, T., 1989. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. In: Proceeding of the 12th Annual Meeting of the International Congress of Biomechanics, Los Angeles, CA.
– volume: 32
  start-page: 748
  year: 2007
  end-page: 755
  ident: b0240
  article-title: Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading
  publication-title: Spine
– volume: 22
  start-page: 901
  year: 2004
  end-page: 909
  ident: b0260
  article-title: Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus
  publication-title: J. Orthop. Res.
– volume: 44
  start-page: 633
  year: 2006
  end-page: 641
  ident: b0115
  article-title: Validation of a clinical finite element model of the human lumbosacral spine
  publication-title: Med. Bio. Eng. Comp.
– volume: 2
  start-page: 95
  year: 2002
  end-page: 100
  ident: b0145
  article-title: Effects of aging and spinal degeneration on mechanical properties of lumbar supraspinous and interspinous ligaments
  publication-title: Spine J.
– volume: 3
  start-page: 125
  year: 2005
  end-page: 140
  ident: b0140
  article-title: Single lamellar mechanics of the human lumbar anulus fibrosus
  publication-title: Biomechan. Model. Mechanobiol.
– volume: 18
  start-page: 89
  year: 2009
  end-page: 97
  ident: b0220
  article-title: Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study
  publication-title: Euro. Spine J.
– volume: 26
  start-page: 11
  year: 2004
  end-page: 22
  ident: b0085
  article-title: Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax–pelvis orientation
  publication-title: Med. Eng. Phys.
– volume: 32
  start-page: 417
  year: 2007
  end-page: 422
  ident: b0025
  article-title: Residual sagittal motion after lumbar fusion: a finite element analysis with implications on radiographic flexion-extension criteria
  publication-title: Spine
– year: 2012
  ident: b0270
  article-title: Biomechanical evaluation of three surgical scenarios of posterior lumbar interbody fusion by finite element analysis
  publication-title: Biomed. Eng.
– volume: 21
  start-page: 452
  year: 1996
  end-page: 461
  ident: b0075
  article-title: Tensile properties of nondegenerate human lumbar anulus fibrosis
  publication-title: Spine
– volume: 41
  start-page: 1133
  year: 1990
  end-page: 1142
  ident: b0235
  article-title: Descriptive sampling: a better approach to Monte Carlo simulation
  publication-title: J. Operational Res. Soc.
– volume: 1
  start-page: 031007
  year: 2016
  ident: b0060
  article-title: Quantifying variability in lumbar L4 L5 soft tissue properties for use in FE analysis
  publication-title: ASME J. Verifi. Valid. Uncertainty Quantifi. J. Verif. Valid. Uncert.
– volume: 76
  start-page: 413
  year: 1994
  end-page: 424
  ident: b0185
  article-title: Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves
  publication-title: J. Bone Joint Surg.
– volume: 31
  start-page: E992
  year: 2006
  end-page: E998
  ident: b0255
  article-title: Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion – a finite element study
  publication-title: Spine
– volume: 39
  start-page: 2484
  year: 2006
  end-page: 2490
  ident: b0230
  article-title: Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method
  publication-title: J. Biomech.
– volume: 21
  start-page: 2570
  year: 1996
  end-page: 2579
  ident: b0165
  article-title: Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model
  publication-title: Spine
– volume: 31
  start-page: E682
  year: 2006
  end-page: E689
  ident: b0050
  article-title: Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis
  publication-title: Spine
– year: 2011
  ident: b0035
  article-title: Sampling based on Sobol sequences for Monte Carlo techniques applied to building simulations
  publication-title: Proceedings of the 12th Conference of International Building Performance Simulation Association, Sydney
– volume: 33
  start-page: 89
  year: 2011
  end-page: 95
  ident: b0090
  article-title: Calibration of the finite element model of a lumbar functional spinal unit using an optimization technique based on differential evolution
  publication-title: Med. Eng. Phys.
– volume: 14
  start-page: 695
  year: 2011
  end-page: 705
  ident: b0015
  article-title: Parametric convergence sensitivity and validation of a finite element model
  publication-title: Comp. Meth. Biomech. Biomed. Eng.
– reference: Barnes, K., Armstrong, J., Agarwala, A., Petrella, A., 2011. Probabilistic study of a lumbar motion segment: sensitivity to material and anatomic variability. In Proceedings of the ASME 2011 Summer Bioengineering Conference, Parts A and B, Farmington, Pennsylvania. Paper No. SBC2011-53846, pp. 863–864.
– volume: 11
  start-page: 154
  year: 1986
  end-page: 157
  ident: b0100
  article-title: A study of vertebra and disc geometric relations of the human cervical and lumbar spine
  publication-title: Spine
– volume: 39
  start-page: 1410
  year: 2006
  end-page: 1418
  ident: b0120
  article-title: Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load
  publication-title: J. Biomech.
– volume: 22
  start-page: 742
  year: 2003
  end-page: 746
  ident: b0265
  article-title: Nonlinear finite-element analysis and biomechanical evaluation of the lumbar spine
  publication-title: IEEE Trans. Med. Imag.
– volume: 34
  start-page: 147
  year: 2004
  end-page: 163
  ident: b0080
  article-title: Multi-segment FEA of the human lumbar spine including the heterogeneity of the annulus fibrosus
  publication-title: Comp. Mech.
– year: 2013
  ident: b0055
  article-title: Stepwise validated finite element model of the human lumbar spine
  publication-title: Proceedings of the ASME 2013 Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation Washington, DC, USA
– volume: 19
  start-page: 1585
  year: 2010
  end-page: 1595
  ident: b0225
  article-title: A probabilistic finite element analysis of the stresses in the augmented vertebral body after vertebroplasty
  publication-title: Euro. Spine J.
– volume: 30
  start-page: 2755
  year: 2005
  end-page: 2764
  ident: b0105
  article-title: Effects of Charite artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol
  publication-title: Spine
– year: 2012
  ident: b0040
  article-title: Evaluation of a synthetic L2-L5 spine model for biomechanical testing
  publication-title: Proceeding of Canadian Biomechanics Society, Vancouver, BC, Canada
– volume: 131
  start-page: 111007-1
  year: 2009
  end-page: 111007-7
  ident: b0175
  article-title: Theoretical and uniaxial experimental evaluations of human annulus fibrosis degeneration
  publication-title: J. Biomech. Eng.
– start-page: 258
  year: 2000
  ident: b0125
  article-title: Probability, Reliability and Statistical Methods in Engineering Design
– volume: 30
  start-page: 738
  year: 2005
  end-page: 743
  ident: b0215
  article-title: Effect of total disc replacement with ProDisc on intersegmental rotation of the lumber spine
  publication-title: Spine
– year: 2006
  ident: b0155
  article-title: Spine Technology Handbook
– reference: >.
– volume: 223
  start-page: 143
  year: 2009
  end-page: 157
  ident: b0280
  article-title: Load and displacement controlled finite element analyses on fusion and non-fusion spinal implants
  publication-title: Proc. Inst. Mech. Eng. H – J. Eng. Med.
– volume: 18
  start-page: 167
  year: 1985
  end-page: 176
  ident: b0045
  article-title: Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction
  publication-title: J. Biomech.
– volume: 31
  start-page: 565
  year: 2009
  end-page: 570
  ident: b0250
  article-title: Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation – a finite element study
  publication-title: Med. Eng. Phys.
– year: 2010
  ident: b0010
  article-title: Probabilistic stress analysis of the human lumbar spine extended finite element method
  publication-title: Proceedings of the 14th Asia Pacific Regional Meeting of International Foundation for Production Research, Melaka
– reference: Hollenbeck, J.F.M., Cain, C., Fattor, J., Fitzpatrick, C.K., Rullkoetter, P.J., Laz, P.J., 2014. Statistical modeling to characterize disc degeneration in the lumbar spine. In: 7th World Congress of Biomechanics, Boston, MA.
– volume: 61
  start-page: 1
  year: 2000
  end-page: 48
  ident: b0135
  article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models
  publication-title: J. Elasticity
– reference: Abaqus Users Guide (release 6.12), 2012, Simulia, Dassault Systemes, “Hyperelastic behavior of rubberlike materials,” Chapter 22.5.1.
– reference: Thacker, B., Nicolella, D., Kumaresan, S., Yoganandan, N., Pintar, F., 2001. Probabilistic finite element analysis of the human lower cervical spine. American Society of Mechanical Engineers, Bioengineering Division (Publication) BED01/2000, vol. 48, pp. 237–238.
– year: 2012
  ident: 10.1016/j.jbiomech.2017.07.002_b0040
  article-title: Evaluation of a synthetic L2-L5 spine model for biomechanical testing
– volume: 61
  start-page: 1
  year: 2000
  ident: 10.1016/j.jbiomech.2017.07.002_b0135
  article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models
  publication-title: J. Elasticity
  doi: 10.1023/A:1010835316564
– ident: 10.1016/j.jbiomech.2017.07.002_b0130
– volume: 26
  start-page: E122
  year: 2001
  ident: 10.1016/j.jbiomech.2017.07.002_b0070
  article-title: Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc
  publication-title: Spine
  doi: 10.1097/00007632-200103150-00004
– volume: 3
  start-page: 125
  year: 2005
  ident: 10.1016/j.jbiomech.2017.07.002_b0140
  article-title: Single lamellar mechanics of the human lumbar anulus fibrosus
  publication-title: Biomechan. Model. Mechanobiol.
  doi: 10.1007/s10237-004-0053-8
– volume: 76
  start-page: 413
  year: 1994
  ident: 10.1016/j.jbiomech.2017.07.002_b0185
  article-title: Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves
  publication-title: J. Bone Joint Surg.
  doi: 10.2106/00004623-199403000-00012
– volume: 4
  start-page: 54
  year: 1991
  ident: 10.1016/j.jbiomech.2017.07.002_b0180
  article-title: Three-dimensional quantitative morphology of lumbar spinal ligaments
  publication-title: J. Spinal Disorders
– year: 2011
  ident: 10.1016/j.jbiomech.2017.07.002_b0035
  article-title: Sampling based on Sobol sequences for Monte Carlo techniques applied to building simulations
– ident: 10.1016/j.jbiomech.2017.07.002_b0205
– volume: 21
  start-page: 452
  year: 1996
  ident: 10.1016/j.jbiomech.2017.07.002_b0075
  article-title: Tensile properties of nondegenerate human lumbar anulus fibrosis
  publication-title: Spine
  doi: 10.1097/00007632-199602150-00009
– volume: 41
  start-page: 1133
  year: 1990
  ident: 10.1016/j.jbiomech.2017.07.002_b0235
  article-title: Descriptive sampling: a better approach to Monte Carlo simulation
  publication-title: J. Operational Res. Soc.
  doi: 10.1057/jors.1990.180
– volume: 26
  start-page: 11
  year: 2004
  ident: 10.1016/j.jbiomech.2017.07.002_b0085
  article-title: Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax–pelvis orientation
  publication-title: Med. Eng. Phys.
  doi: 10.1016/S1350-4533(03)00128-0
– volume: 1
  start-page: 031007
  year: 2016
  ident: 10.1016/j.jbiomech.2017.07.002_b0060
  article-title: Quantifying variability in lumbar L4 L5 soft tissue properties for use in FE analysis
  publication-title: ASME J. Verifi. Valid. Uncertainty Quantifi. J. Verif. Valid. Uncert.
  doi: 10.1115/1.4034322
– volume: 18
  start-page: 163
  year: 2005
  ident: 10.1016/j.jbiomech.2017.07.002_b0160
  article-title: Material sensitivity study on lumbar motion segment (L2–L3) under sagittal plane loadings using probabilistic method
  publication-title: J. Spinal Disorders Techniques
  doi: 10.1097/01.bsd.0000147658.60961.51
– volume: 39
  start-page: 1410
  year: 2006
  ident: 10.1016/j.jbiomech.2017.07.002_b0120
  article-title: Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.04.007
– volume: 30
  start-page: 738
  year: 2005
  ident: 10.1016/j.jbiomech.2017.07.002_b0215
  article-title: Effect of total disc replacement with ProDisc on intersegmental rotation of the lumber spine
  publication-title: Spine
  doi: 10.1097/01.brs.0000157413.72276.c4
– volume: 23
  start-page: 536
  year: 2008
  ident: 10.1016/j.jbiomech.2017.07.002_b0030
  article-title: Quality of motion considerations in numerical analysis of motion restoring implants of the spine
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2007.12.010
– ident: 10.1016/j.jbiomech.2017.07.002_b0005
– volume: 11
  start-page: 154
  year: 1986
  ident: 10.1016/j.jbiomech.2017.07.002_b0100
  article-title: A study of vertebra and disc geometric relations of the human cervical and lumbar spine
  publication-title: Spine
  doi: 10.1097/00007632-198603000-00010
– volume: 40
  start-page: 1975
  year: 2006
  ident: 10.1016/j.jbiomech.2017.07.002_b0110
  article-title: Moment–rotation responses of the human lumbosacral spinal column
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.09.027
– ident: 10.1016/j.jbiomech.2017.07.002_b0020
  doi: 10.1115/SBC2011-53846
– volume: 223
  start-page: 143
  year: 2009
  ident: 10.1016/j.jbiomech.2017.07.002_b0280
  article-title: Load and displacement controlled finite element analyses on fusion and non-fusion spinal implants
  publication-title: Proc. Inst. Mech. Eng. H – J. Eng. Med.
  doi: 10.1243/09544119JEIM476
– volume: 44
  start-page: 633
  year: 2006
  ident: 10.1016/j.jbiomech.2017.07.002_b0115
  article-title: Validation of a clinical finite element model of the human lumbosacral spine
  publication-title: Med. Bio. Eng. Comp.
  doi: 10.1007/s11517-006-0066-9
– volume: 39
  start-page: 2484
  year: 2006
  ident: 10.1016/j.jbiomech.2017.07.002_b0230
  article-title: Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.07.026
– volume: 25
  start-page: 1351
  year: 1992
  ident: 10.1016/j.jbiomech.2017.07.002_b0190
  article-title: Biomechanical properties of human lumbar spine ligaments
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(92)90290-H
– volume: 22
  start-page: 742
  year: 2003
  ident: 10.1016/j.jbiomech.2017.07.002_b0265
  article-title: Nonlinear finite-element analysis and biomechanical evaluation of the lumbar spine
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2003.814783
– ident: 10.1016/j.jbiomech.2017.07.002_b0275
  doi: 10.1097/00007632-198911000-00020
– year: 2012
  ident: 10.1016/j.jbiomech.2017.07.002_b0270
  article-title: Biomechanical evaluation of three surgical scenarios of posterior lumbar interbody fusion by finite element analysis
  publication-title: Biomed. Eng.
– volume: 2
  start-page: 95
  year: 2002
  ident: 10.1016/j.jbiomech.2017.07.002_b0145
  article-title: Effects of aging and spinal degeneration on mechanical properties of lumbar supraspinous and interspinous ligaments
  publication-title: Spine J.
  doi: 10.1016/S1529-9430(02)00142-0
– volume: 34
  start-page: 147
  year: 2004
  ident: 10.1016/j.jbiomech.2017.07.002_b0080
  article-title: Multi-segment FEA of the human lumbar spine including the heterogeneity of the annulus fibrosus
  publication-title: Comp. Mech.
  doi: 10.1007/s00466-004-0563-3
– volume: 30
  start-page: 2755
  year: 2005
  ident: 10.1016/j.jbiomech.2017.07.002_b0105
  article-title: Effects of Charite artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol
  publication-title: Spine
  doi: 10.1097/01.brs.0000195897.17277.67
– volume: 31
  start-page: E992
  year: 2006
  ident: 10.1016/j.jbiomech.2017.07.002_b0255
  article-title: Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion – a finite element study
  publication-title: Spine
  doi: 10.1097/01.brs.0000250177.84168.ba
– start-page: 258
  year: 2000
  ident: 10.1016/j.jbiomech.2017.07.002_b0125
– volume: 32
  start-page: 417
  year: 2007
  ident: 10.1016/j.jbiomech.2017.07.002_b0025
  article-title: Residual sagittal motion after lumbar fusion: a finite element analysis with implications on radiographic flexion-extension criteria
  publication-title: Spine
  doi: 10.1097/01.brs.0000255201.74795.20
– year: 2006
  ident: 10.1016/j.jbiomech.2017.07.002_b0155
– volume: 33
  start-page: 89
  year: 2011
  ident: 10.1016/j.jbiomech.2017.07.002_b0090
  article-title: Calibration of the finite element model of a lumbar functional spinal unit using an optimization technique based on differential evolution
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.09.010
– year: 2013
  ident: 10.1016/j.jbiomech.2017.07.002_b0055
  article-title: Stepwise validated finite element model of the human lumbar spine
– year: 2010
  ident: 10.1016/j.jbiomech.2017.07.002_b0010
  article-title: Probabilistic stress analysis of the human lumbar spine extended finite element method
– volume: 31
  start-page: E682
  year: 2006
  ident: 10.1016/j.jbiomech.2017.07.002_b0050
  article-title: Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis
  publication-title: Spine
  doi: 10.1097/01.brs.0000232714.72699.8e
– volume: 15
  start-page: 814
  year: 1997
  ident: 10.1016/j.jbiomech.2017.07.002_b0095
  article-title: Radial tensile properties of the lumbar annulus fibrosis are site and degeneration dependent
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100150605
– volume: 131
  start-page: 111007-1
  year: 2009
  ident: 10.1016/j.jbiomech.2017.07.002_b0175
  article-title: Theoretical and uniaxial experimental evaluations of human annulus fibrosis degeneration
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3212104
– volume: 25
  start-page: 1185
  year: 1992
  ident: 10.1016/j.jbiomech.2017.07.002_b0170
  article-title: Mechanical properties of the human lumbar anterior longitudinal ligament
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(92)90074-B
– volume: 17
  start-page: 34
  year: 2013
  ident: 10.1016/j.jbiomech.2017.07.002_b0210
  article-title: The lumbar supraspinous ligament demonstrates increased material stiffness and strength on its ventral aspect
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2012.07.009
– volume: 19
  start-page: 1585
  year: 2010
  ident: 10.1016/j.jbiomech.2017.07.002_b0225
  article-title: A probabilistic finite element analysis of the stresses in the augmented vertebral body after vertebroplasty
  publication-title: Euro. Spine J.
  doi: 10.1007/s00586-010-1386-x
– volume: 31
  start-page: 565
  year: 2009
  ident: 10.1016/j.jbiomech.2017.07.002_b0250
  article-title: Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation – a finite element study
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2008.11.012
– volume: 22
  start-page: 901
  year: 2004
  ident: 10.1016/j.jbiomech.2017.07.002_b0260
  article-title: Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus
  publication-title: J. Orthop. Res.
  doi: 10.1016/j.orthres.2003.12.012
– ident: 10.1016/j.jbiomech.2017.07.002_b0245
  doi: 10.1115/IMECE2000-2598
– ident: 10.1016/j.jbiomech.2017.07.002_b0150
– volume: 29
  start-page: 877
  year: 2007
  ident: 10.1016/j.jbiomech.2017.07.002_b0065
  article-title: The role of quadratus lumborum asymmetry in the occurrence of lesions in the lumbar vertebrae of cricket fast bowlers
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2006.09.010
– ident: 10.1016/j.jbiomech.2017.07.002_b0200
– volume: 32
  start-page: 748
  year: 2007
  ident: 10.1016/j.jbiomech.2017.07.002_b0240
  article-title: Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading
  publication-title: Spine
  doi: 10.1097/01.brs.0000259059.90430.c2
– volume: 21
  start-page: 2570
  year: 1996
  ident: 10.1016/j.jbiomech.2017.07.002_b0165
  article-title: Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model
  publication-title: Spine
  doi: 10.1097/00007632-199611150-00006
– volume: 18
  start-page: 167
  year: 1985
  ident: 10.1016/j.jbiomech.2017.07.002_b0045
  article-title: Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(85)90202-7
– volume: 14
  start-page: 695
  year: 2011
  ident: 10.1016/j.jbiomech.2017.07.002_b0015
  article-title: Parametric convergence sensitivity and validation of a finite element model
  publication-title: Comp. Meth. Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2010.493517
– volume: 28
  start-page: 991
  year: 2003
  ident: 10.1016/j.jbiomech.2017.07.002_b0195
  article-title: The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis
  publication-title: Spine
  doi: 10.1097/01.BRS.0000061987.71624.17
– volume: 18
  start-page: 89
  year: 2009
  ident: 10.1016/j.jbiomech.2017.07.002_b0220
  article-title: Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study
  publication-title: Euro. Spine J.
  doi: 10.1007/s00586-008-0836-1
SSID ssj0007479
Score 2.322967
Snippet Finite element models of the lumbar spine are useful in assessing biomechanics and performance of implants. Models are often developed using the anatomy of an...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 65
SubjectTerms Accuracy
Annulus fibrosis
Biomechanical Phenomena
Biomechanics
Calibration
Computer simulation
Descriptive sampling
Disc
Finite Element Analysis
Finite element method
Functional spinal unit
Gasser
Holzapfel
Humans
Implants
Intervertebral Disc - anatomy & histology
Intervertebral Disc - physiology
Intervertebral discs
Ligaments
Ligaments - anatomy & histology
Ligaments - physiology
Lumbar
Lumbar Vertebrae - anatomy & histology
Lumbar Vertebrae - physiology
Mathematical models
Mechanical Phenomena
Methods
Monte Carlo
Monte Carlo simulation
Mooney Rivlin
Nucleus pulposis
Ogden
Probabilistic
Probabilistic methods
Probability
Properties (attributes)
Prostheses and Implants
Random sampling
Range of Motion, Articular
Reduction
Rotation
Sampling
Sampling methods
Shear strain
Sobol sampling
Spinal ligament
Spine
Spine (lumbar)
Stiffness
Torque
Transplants & implants
Vertebrae
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VPSA4INjyWCjISIhbukns2MmxqlpVlcqJSr1ZsT1Gu4Js1W4PvfDbmXGcpUigInFM4pEcjz2e5zcAHzHoxgXmgOxcodDowpGqX_Rt47XpfBMC1w6ff9anF-rssrncgaOpFobTKrPsH2V6ktb5zSKv5uJqueQaXzptHAY0LIZToblShrsYHPz4leZB6nJO86gKHn2vSnh1sEo17ikoUZkE4pndK3-4oP6mgKaL6OQZPM0apDgcJ_kcdnCYwd7hQNbz9zvxSaSczuQsn8GTe3CDM3h0ngPpe3B2nKAj6MYR3FImwewyYrOIS1ZCBY5Z5aLPmCViHUUvSJC5_lqMnX_EDX7lMS_g4uT4y9FpkdsqFL4p1aZAoyK7n3TbBY-x7R3GOjQ61N7FFl0XI6pgHHaq6iVpJEaGSJyU0tc1Ri1fwu6wHvA1CFeSgSt149mujBgdGW-oomY_hQy-mkMzraX1GXOcW198s1Ny2cpOPLDMA1tyOLyew2JLdzWibjxIYSZW2ammlKSgpYvhQcpuS_nbzvsn2v1pV9h89m8sYzSSVa41ff6w_UynlkMx_YDrWx5DcrRslSrn8GrcTdsfJRtW0o42b_5jYm_hMT-x87vS-7C7ub7Fd6Q9bdz7dDx-AoytGE0
  priority: 102
  providerName: Elsevier
Title Efficient probabilistic finite element analysis of a lumbar motion segment
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929017303615
https://dx.doi.org/10.1016/j.jbiomech.2017.07.002
https://www.ncbi.nlm.nih.gov/pubmed/28733037
https://www.proquest.com/docview/1965402662
https://www.proquest.com/docview/1922508440
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AKRWK
  dateStart: 19680101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1873-2380
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61iYToAZUUSqBEi4S4ubW99q59QChFqUJRI4SolJvlfSGi4vSRHrjw25lZr00PQLn4Yo9le9az37y-AXhtjciVIQ3wUkWZlSJSCPWjusi1kKXOjaHe4bOFmJ9np8t8uQWLrheGyio7m-gNtVlripEfEfMd-jpCpO8uryKaGkXZ1W6ERh1GK5i3nmJsG4YpMWMNYHg8W3z63NtmBM-h6COJEBjEd3qGV4cr3_HuUxSJ9JSeIdjyh-3qb3DUb0snu_Ao4Ek2bRfAY9iyzQj2pg360t9_sDfMV3j60PkIdu6QD47gwVlIq-_B6cwTSeD-w2jAjCfdJf5m5r4RJGW2rTFndWAwYWvHaoZmTdXXrJ0DxG7sV7rmCZyfzL68n0dhyEKk8zjbRFZmjoJRoiiNtq6olXWpyYVJtXKFVaVzNjNS2TJLao74RHLjUK-c6zS1TvCnMGjWjX0GTMXo7nKRa_IynXUKXTmbOUFRC250Moa8-5aVDgzkNAjjoupKzVZVp4OKdFDFlBxPx3DUy122HBz3SshOVVXXYYo2scJt4l7JspcMGKTFFv8le9CtiipYgpvq97odw6v-NP7DlJipG7u-pWvQqsZFlsVj2G9XU_-i6NFyhBny-b9v_gIe0pNQtDsRBzDYXN_alwiXNmoC24c_EzzKpZzAcPrh43wxCf_FLzgZF9w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVuJxQLDlsVDASMAtNIkdJzlUqMBW28euEGql3kwc24gVZEt3K9Q_x29jxnFCD0C59JxMlGTsmW_GM98AvLBGZtqQBnipI2FzGWmE-lFVZLXMyzozhnqHJ1M5PhJ7x9nxCvzsemGorLKzid5Qm3lNOfJNYr7DWEfK9M3J94imRtHpajdCowqjFcyWpxgLjR379vwHhnCLrd33qO-XabozOnw3jsKUgajOYrGMbC4cZWNkUZrauqLS1qUmkyattSusLp2zwuTaliKpODronBuHH8Z5nabWSY7PvQZrgosSg7-1t6Pph4-9L0CwHopMkgiBSHyhR3n2euY77P2RSJJ7CtGQ3PmDe_wb_PVucOcO3A74lW23C-4urNhmAOvbDcbu387ZK-YrSn2qfgC3LpAdDuD6JBzjr8PeyBNXoL9jNNDGk_wSXzRzXwgCM9vWtLMqMKawuWMVQzOqq1PWzh1iC_uZ7rkHR1fyu-_DajNv7ENgOsbwmsuspqjWWacxdLTCScqScFMnQ8i6f6nqwHhOgze-qq60baY6HSjSgYrpMD4dwmYvd9JyflwqkXeqUl1HK9pghW7pUsmylwyYp8Uy_yW70a0KFSzPQv3eJ0N43l9Gm0EHQVVj52d0D1rxuBAiHsKDdjX1H4oRNEdYkz_698OfwY3x4eRAHexO9x_DTXoryrQncgNWl6dn9glCtaV-GvYDg09XvQV_AQyFU50
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVwQLCFsqWAkYBb2CRO7OSAUEW76oNWHKi0NxO_ECvItt2tUP8av44Zx1l6AMql52Si2GPPe74BeOmsKLUlDvBaJ4WTItFo6idNVRoha1NaS73DR8di76Q4mJSTFfjZ98JQWWUvE4OgtjNDMfIRId-hryNEPvKxLOLjzvjd6VlCE6Qo09qP0-iOyKG7_IHu2_zt_g7y-lWej3c_vd9L4oSBxJRpsUicLDxFYkRVW-N81Wjnc1sKmxvtK6dr711hpXZ1kTUclbPk1uOiODd57rzg-N1bcFtyXlM5oZwsnT3CpY_lJVmCJkh6pTt5-mYaeutDMiSTATw0hnX-oBj_ZvgGBTi-D_ei5cq2u6P2AFZcO4D17Ra99u-X7DULtaQhSD-Au1dgDgewdhQT-OtwsBsgK1DTMRplE-B9CSma-a9k_DLXVbOzJmKlsJlnDUMBqptz1k0cYnP3hd55CCc3stmPYLWdte4xMJ2iY81Facif9c5rdBpd4QXFR7g12RDKfi-ViVjnNHLjm-qL2qaq54EiHqiU0vD5EEZLutMO7eNaCtmzSvW9rCh9FSqkaynrJWW0djor5r9ot_pToaLMmavfN2QIL5aPUVpQCqhp3eyC3kH5nVZFkQ5hoztNy4Wi78zRoJGb__74c1jDi6c-7B8fPoE79FMUYs_EFqwuzi_cU7TRFvpZuAwMPt_07fsFymZRNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+probabilistic+finite+element+analysis+of+a+lumbar+motion+segment&rft.jtitle=Journal+of+biomechanics&rft.au=Coombs%2C+Dana+J&rft.au=Rullkoetter%2C+Paul+J&rft.au=Laz%2C+Peter+J&rft.date=2017-08-16&rft.pub=Elsevier+Limited&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=61&rft.spage=65&rft_id=info:doi/10.1016%2Fj.jbiomech.2017.07.002&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon