Rheological Percolation of Cellulose Nanocrystals in Biodegradable Poly(butylene succinate) Nanocomposites: A Novel Approach for Tailoring the Mechanical and Hydrolytic Properties
Although biodegradable plastics are gradually emerging as an effective solution to alleviate the burgeoning plastic pollution, their performance is currently trivial for commercialization. A proposed two-pronged strategy to overcome this limitation includes (1) preparation of the nanocomposites from...
Saved in:
Published in | Macromolecular research Vol. 29; no. 10; pp. 720 - 726 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Polymer Society of Korea
01.10.2021
Springer Nature B.V 한국고분자학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1598-5032 2092-7673 |
DOI | 10.1007/s13233-021-9080-x |
Cover
Abstract | Although biodegradable plastics are gradually emerging as an effective solution to alleviate the burgeoning plastic pollution, their performance is currently trivial for commercialization. A proposed two-pronged strategy to overcome this limitation includes (1) preparation of the nanocomposites from biorenewable nano-fillers to preserve their biodegradability and (2) tailoring their properties to meet the diverse demands in various applications. Herein, we report the preparation of biodegradable nanocomposites composed of poly(butylene succinate) (PBS) and cellulose nanocrystals (CNCs) (loading of 0.2–3.0 wt%) and propose a rheological strategy to tailor their performances. Depending on the shear frequencies, the rheological evaluation revealed two percolation thresholds at approximately 0.8 and 1.5 wt%. At high shear frequencies, the disappearance of the first threshold (0.8 wt%) and the sole persistence of the second one (1.5 wt%) indicated the collapse of the immature network of partially interconnected CNCs. The tensile and hydrolytic properties of the nanocomposites were found to undergo drastic changes at the thresholds. The tensile strength increased by 17% (from 33.3 to 39.2 MPa) up to 0.8 wt% CNC loading. However, the reinforcing efficiency of CNC decreases sharply with further incorporation, reaching nearly zero at 1.5 wt%. On the other hand, hydrolytic degradation of the nanocomposites was rapidly accelerated above 1.5 wt% CNC loading. Therefore, a thorough understanding of the rheological properties of nanocomposites is essential for the design and development of materials with tailored properties. |
---|---|
AbstractList | Although biodegradable plastics are gradually emerging as an effective solution to alleviate the burgeoning plastic pollution, their performance is currently trivial for commercialization. A proposed two-pronged strategy to overcome this limitation includes (1) preparation of the nanocomposites from biorenewable nano-fillers to preserve their biodegradability and (2) tailoring their properties to meet the diverse demands in various applications. Herein, we report the preparation of biodegradable nanocomposites composed of poly(butylene succinate) (PBS) and cellulose nanocrystals (CNCs) (loading of 0.2–3.0 wt%) and propose a rheological strategy to tailor their performances. Depending on the shear frequencies, the rheological evaluation revealed two percolation thresholds at approximately 0.8 and 1.5 wt%. At high shear frequencies, the disappearance of the first threshold (0.8 wt%) and the sole persistence of the second one (1.5 wt%) indicated the collapse of the immature network of partially interconnected CNCs. The tensile and hydrolytic properties of the nanocomposites were found to undergo drastic changes at the thresholds. The tensile strength increased by 17% (from 33.3 to 39.2 MPa) up to 0.8 wt% CNC loading. However, the reinforcing efficiency of CNC decreases sharply with further incorporation, reaching nearly zero at 1.5 wt%. On the other hand, hydrolytic degradation of the nanocomposites was rapidly accelerated above 1.5 wt% CNC loading. Therefore, a thorough understanding of the rheological properties of nanocomposites is essential for the design and development of materials with tailored properties. Although biodegradable plastics are gradually emerging as an effective solution to alleviate the burgeoning plastic pollution, their performance is currently trivial for commercialization. A proposed two-pronged strategy to overcome this limitation includes (1) preparation of the nanocomposites from biorenewable nanofillers to preserve their biodegradability and (2) tailoring their properties to meet the diverse demands in various applications. Herein, we report the preparation of biodegradable nanocomposites composed of poly(butylene succinate) (PBS) and cellulose nanocrystals (CNCs) (loading of 0.2-3.0 wt%) and propose a rheological strategy to tailor their performances. Depending on the shear frequencies, the rheological evaluation revealed two percolation thresholds at approximately 0.8 and 1.5 wt%. At high shear frequencies, the disappearance of the first threshold (0.8 wt%) and the sole persistence of the second one (1.5 wt%) indicated the collapse of the immature network of partially interconnected CNCs. The tensile and hydrolytic properties of the nanocomposites were found to undergo drastic changes at the thresholds. The tensile strength increased by 17% (from 33.3 to 39.2 MPa) up to 0.8 wt% CNC loading. However, the reinforcing efficiency of CNC decreases sharply with further incorporation, reaching nearly zero at 1.5 wt%. On the other hand, hydrolytic degradation of the nanocomposites was rapidly accelerated above 1.5 wt% CNC loading. Therefore, a thorough understanding of the rheological properties of nanocomposites is essential for the design and development of materials with tailored properties. KCI Citation Count: 3 Although biodegradable plastics are gradually emerging as an effective solution to alleviate the burgeoning plastic pollution, their performance is currently trivial for commercialization. A proposed two-pronged strategy to overcome this limitation includes (1) preparation of the nanocomposites from biorenewable nano-fillers to preserve their biodegradability and (2) tailoring their properties to meet the diverse demands in various applications. Herein, we report the preparation of biodegradable nanocomposites composed of poly(butylene succinate) (PBS) and cellulose nanocrystals (CNCs) (loading of 0.2-3.0 wt%) and propose a rheological strategy to tailor their performances. Depending on the shear frequencies, the rheological evaluation revealed two percolation thresholds at approximately 0.8 and 1.5 wt%. At high shear frequencies, the disappearance of the first threshold (0.8 wt%) and the sole persistence of the second one (1.5 wt%) indicated the collapse of the immature network of partially interconnected CNCs. The tensile and hydrolytic properties of the nanocomposites were found to undergo drastic changes at the thresholds. The tensile strength increased by 17% (from 33.3 to 39.2 MPa) up to 0.8 wt% CNC loading. However, the reinforcing efficiency of CNC decreases sharply with further incorporation, reaching nearly zero at 1.5 wt%. On the other hand, hydrolytic degradation of the nanocomposites was rapidly accelerated above 1.5 wt% CNC loading. Therefore, a thorough understanding of the rheological properties of nanocomposites is essential for the design and development of materials with tailored properties.Although biodegradable plastics are gradually emerging as an effective solution to alleviate the burgeoning plastic pollution, their performance is currently trivial for commercialization. A proposed two-pronged strategy to overcome this limitation includes (1) preparation of the nanocomposites from biorenewable nano-fillers to preserve their biodegradability and (2) tailoring their properties to meet the diverse demands in various applications. Herein, we report the preparation of biodegradable nanocomposites composed of poly(butylene succinate) (PBS) and cellulose nanocrystals (CNCs) (loading of 0.2-3.0 wt%) and propose a rheological strategy to tailor their performances. Depending on the shear frequencies, the rheological evaluation revealed two percolation thresholds at approximately 0.8 and 1.5 wt%. At high shear frequencies, the disappearance of the first threshold (0.8 wt%) and the sole persistence of the second one (1.5 wt%) indicated the collapse of the immature network of partially interconnected CNCs. The tensile and hydrolytic properties of the nanocomposites were found to undergo drastic changes at the thresholds. The tensile strength increased by 17% (from 33.3 to 39.2 MPa) up to 0.8 wt% CNC loading. However, the reinforcing efficiency of CNC decreases sharply with further incorporation, reaching nearly zero at 1.5 wt%. On the other hand, hydrolytic degradation of the nanocomposites was rapidly accelerated above 1.5 wt% CNC loading. Therefore, a thorough understanding of the rheological properties of nanocomposites is essential for the design and development of materials with tailored properties. |
Author | Choi, Yun Hyeong Yang, Ho Sung Koo, Jun Mo Hwang, Sung Yeon Eom, Youngho Kim, Hyeri Kim, Hyo Jeong Jeong, Ji Hun |
Author_xml | – sequence: 1 givenname: Hyo Jeong surname: Kim fullname: Kim, Hyo Jeong organization: Department of Polymer Engineering, Pukyong National University – sequence: 2 givenname: Yun Hyeong surname: Choi fullname: Choi, Yun Hyeong organization: Department of Polymer Engineering, Pukyong National University – sequence: 3 givenname: Ji Hun surname: Jeong fullname: Jeong, Ji Hun organization: Department of Polymer Engineering, Pukyong National University – sequence: 4 givenname: Hyeri surname: Kim fullname: Kim, Hyeri organization: Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT) – sequence: 5 givenname: Ho Sung surname: Yang fullname: Yang, Ho Sung organization: Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT) – sequence: 6 givenname: Sung Yeon surname: Hwang fullname: Hwang, Sung Yeon organization: Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Advanced Materials and Chemical Engineering, University of Science and Technology (UST) – sequence: 7 givenname: Jun Mo surname: Koo fullname: Koo, Jun Mo email: jmkoo@krict.re.kr organization: Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT) – sequence: 8 givenname: Youngho surname: Eom fullname: Eom, Youngho email: eomyh@pknu.ac.kr organization: Department of Polymer Engineering, Pukyong National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34754287$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002766957$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9klFv0zAUhSM0xLrBD-AFWeJlewjYcRI7PCCVCtikMaqpPFuOc9N6c-1gO9P6u_iDuO0YMAme7oO_c3R87znKDqyzkGUvCX5DMGZvA6EFpTkuSN5gjvO7J9mkwE2Rs5rRg2xCqobnFabFYXYUwjXGNaGEPMsOacmqsuBskv24WoEzbqmVNGgOXjkjo3YWuR7NwJjRuADoUlqn_CZEaQLSFn3QroOll51sDaC5M5uTdowbAxZQGJXSVkY43cvcenBBRwjv0BRdulswaDoM3km1Qr3zaCG1cV7bJYorQF9AraTdpZG2Q2ebzif3qBWaezeAjxrC8-xpn4LAi_t5nH379HExO8svvn4-n00vclXhMuaq79qW8ZaVFVDe9EUNEjNMVaVkW5dlQzEruCQlZdCQtu4BSlZi6NJOW6gUPc5O977W9-JGaeGk3s2lEzdeTK8W56LhyaOsE_t-zw5ju4ZOgY1eGjF4vZZ-s1P-_WL1KvncCl7VvGZNMji5N_Du-wghirUOKl1AWnBjEEXV1JiQipCEvn6EXrvR27SKLUU5b0pOE_Xqz0QPUX7dPgFkDyjvQvDQPyAEi22_xL5fIvVLbPsl7pKGPdIoHXeFSZ_S5r_KYq8Mw_bY4H-H_rfoJ8dW6No |
CitedBy_id | crossref_primary_10_1021_acsapm_2c01073 crossref_primary_10_1177_08927057241254101 crossref_primary_10_1007_s10570_024_05955_0 crossref_primary_10_1007_s13233_022_0039_3 crossref_primary_10_1016_j_jece_2025_115461 crossref_primary_10_1007_s13233_023_00125_w crossref_primary_10_1007_s13233_024_00249_7 crossref_primary_10_1007_s13367_023_00049_y crossref_primary_10_1007_s13233_023_00197_8 crossref_primary_10_1007_s13367_024_00089_y crossref_primary_10_1002_app_55627 crossref_primary_10_1016_j_compscitech_2024_110806 |
Cites_doi | 10.3390/polym12051095 10.1021/bm301674e 10.1016/j.rser.2020.109883 10.1021/acsomega.7b02062 10.1039/C9NR08091K 10.1039/C9GC02253H 10.1021/acs.macromol.7b01691 10.3390/polym12102317 10.1021/acs.chemrev.9b00553 10.1007/s10570-020-03294-4 10.1016/j.carbpol.2018.10.035 10.1007/s13233-010-0815-3 10.1016/j.compositesa.2017.03.028 10.1039/C8RA01868E 10.7317/pk.2017.41.2.163 10.1021/acs.macromol.9b00800 10.1016/j.wasman.2007.09.011 10.1016/j.scitotenv.2020.138882 10.1016/j.carbpol.2018.05.087 10.1039/D0GC04072J 10.1007/s13233-018-6007-2 10.1016/j.compositesb.2018.02.024 10.1002/app.49286 10.1016/j.compscitech.2017.04.005 10.1007/s13233-015-3095-0 10.1016/j.jhazmat.2020.123100 10.1007/s13233-021-9001-z 10.3389/fmats.2020.00007 10.1016/j.rser.2015.04.063 10.1016/j.ijbiomac.2021.01.102 10.1016/j.chemosphere.2010.03.057 10.7317/pk.2018.42.2.267 10.1007/s13233-015-3071-8 10.1007/s00289-019-02944-3 10.1016/j.ijbiomac.2019.06.114 10.1039/C8NJ01161C |
ContentType | Journal Article |
Copyright | The Polymer Society of Korea and Springer 2021 The Polymer Society of Korea and Springer 2021. Copyright Springer Nature B.V. 2021 |
Copyright_xml | – notice: The Polymer Society of Korea and Springer 2021 – notice: The Polymer Society of Korea and Springer 2021. – notice: Copyright Springer Nature B.V. 2021 |
DBID | AAYXX CITATION NPM 7X8 5PM ACYCR |
DOI | 10.1007/s13233-021-9080-x |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Korean Citation Index |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2092-7673 |
EndPage | 726 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9872846 PMC8568679 34754287 10_1007_s13233_021_9080_x |
Genre | Journal Article |
GroupedDBID | 06D 0R~ 0VY 1N0 203 2JY 2KG 2VQ 3-Y 30V 4.4 406 408 40D 53G 5GY 67Z 8N- 8UJ 96X 9ZL AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG ATHPR AVWKF AXYYD AYJHY AZFZN BGNMA CAG COF CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 GW5 H13 HF~ HMJXF HRMNR HZ~ I0C IAO IHR IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MZR NPVJJ NQJWS NU0 O9- O9J P9N PT4 R9I RIG RLLFE ROL RSV S1Z S27 S3B SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ZZE ~A9 AAYXX CITATION NPM 85H 7X8 5PM ACYCR |
ID | FETCH-LOGICAL-c504t-cfdbb78b745e389f26ea0703c5cab644930728a1437e91b6fee4740ed233be5c3 |
IEDL.DBID | U2A |
ISSN | 1598-5032 |
IngestDate | Sun Mar 09 07:51:58 EDT 2025 Thu Aug 21 18:16:38 EDT 2025 Thu Sep 04 20:14:07 EDT 2025 Wed Sep 17 23:58:45 EDT 2025 Mon Jul 21 06:05:35 EDT 2025 Thu Apr 24 22:57:17 EDT 2025 Tue Jul 01 05:09:54 EDT 2025 Mon Jul 21 06:08:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | PBS-CNC nanocomposite rheological percolation threshold poly(butylene succinate) cellulose nanocrystals |
Language | English |
License | The Polymer Society of Korea and Springer 2021. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-cfdbb78b745e389f26ea0703c5cab644930728a1437e91b6fee4740ed233be5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8568679 |
PMID | 34754287 |
PQID | 2593889483 |
PQPubID | 2044280 |
PageCount | 7 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9872846 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8568679 proquest_miscellaneous_2596011511 proquest_journals_2593889483 pubmed_primary_34754287 crossref_primary_10_1007_s13233_021_9080_x crossref_citationtrail_10_1007_s13233_021_9080_x springer_journals_10_1007_s13233_021_9080_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Korea (South) – name: Heidelberg |
PublicationTitle | Macromolecular research |
PublicationTitleAbbrev | Macromol. Res |
PublicationTitleAlternate | Macromol Res |
PublicationYear | 2021 |
Publisher | The Polymer Society of Korea Springer Nature B.V 한국고분자학회 |
Publisher_xml | – name: The Polymer Society of Korea – name: Springer Nature B.V – name: 한국고분자학회 |
References | A R de Matos Costa (9080_CR26) 2020; 12 I Chakraborty (9080_CR3) 2020; 728 S Wu (9080_CR34) 2015; 23 S Singha (9080_CR10) 2020; 12 G Kwon (9080_CR20) 2020; 398 V Bertolino (9080_CR9) 2018; 42 S M Son (9080_CR24) 2021; 29 T Kim (9080_CR25) 2018; 8 S Wong (9080_CR1) 2015; 50 H Shirali (9080_CR29) 2015; 23 M Barczewski (9080_CR32) 2018; 42 E Delamarche (9080_CR30) 2020; 7 R Siddique (9080_CR2) 2008; 28 T Saito (9080_CR22) 2013; 14 B Ates (9080_CR17) 2020; 120 C R Estrellan (9080_CR15) 2010; 80 S-A Park (9080_CR16) 2019; 21 L T Hao (9080_CR21) 2020; 12 X Yin (9080_CR31) 2017; 41 L Song (9080_CR18) 2017; 50 H Kim (9080_CR7) 2021; 173 L Wang (9080_CR19) 2017; 98 J Li (9080_CR27) 2019; 205 J Xie (9080_CR11) 2018; 3 H Kim (9080_CR6) 2021; 23 Y Zare (9080_CR12) 2018; 144 C Li (9080_CR28) 2020; 27 P Porkodi (9080_CR36) 2020; 77 Y Zheng (9080_CR13) 2020; 137 M Zahran (9080_CR14) 2019; 136 H Wu (9080_CR23) 2018; 197 J J Klemeš (9080_CR4) 2020; 127 N Bosq (9080_CR5) 2018; 26 D W Chae (9080_CR33) 2010; 18 G Zhang (9080_CR35) 2017; 145 S Lee (9080_CR8) 2019; 52 |
References_xml | – volume: 12 start-page: 1095 year: 2020 ident: 9080_CR10 publication-title: Polymers doi: 10.3390/polym12051095 – volume: 14 start-page: 248 year: 2013 ident: 9080_CR22 publication-title: Biomacromolecules doi: 10.1021/bm301674e – volume: 127 start-page: 109883 year: 2020 ident: 9080_CR4 publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2020.109883 – volume: 3 start-page: 1187 year: 2018 ident: 9080_CR11 publication-title: ACS omega doi: 10.1021/acsomega.7b02062 – volume: 12 start-page: 2393 year: 2020 ident: 9080_CR21 publication-title: Nanoscale doi: 10.1039/C9NR08091K – volume: 21 start-page: 5212 year: 2019 ident: 9080_CR16 publication-title: Green Chem. doi: 10.1039/C9GC02253H – volume: 50 start-page: 7475 year: 2017 ident: 9080_CR18 publication-title: Macromolecules doi: 10.1021/acs.macromol.7b01691 – volume: 12 start-page: 2317 year: 2020 ident: 9080_CR26 publication-title: Polymers doi: 10.3390/polym12102317 – volume: 120 start-page: 9304 year: 2020 ident: 9080_CR17 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00553 – volume: 27 start-page: 7489 year: 2020 ident: 9080_CR28 publication-title: Cellulose doi: 10.1007/s10570-020-03294-4 – volume: 205 start-page: 211 year: 2019 ident: 9080_CR27 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.10.035 – volume: 18 start-page: 772 year: 2010 ident: 9080_CR33 publication-title: Macromol. Res. doi: 10.1007/s13233-010-0815-3 – volume: 98 start-page: 166 year: 2017 ident: 9080_CR19 publication-title: Compos. Part A: Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2017.03.028 – volume: 8 start-page: 15389 year: 2018 ident: 9080_CR25 publication-title: RSC Adv. doi: 10.1039/C8RA01868E – volume: 41 start-page: 163 year: 2017 ident: 9080_CR31 publication-title: Polym Korea doi: 10.7317/pk.2017.41.2.163 – volume: 52 start-page: 7904 year: 2019 ident: 9080_CR8 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b00800 – volume: 28 start-page: 1835 year: 2008 ident: 9080_CR2 publication-title: Waste Manage. doi: 10.1016/j.wasman.2007.09.011 – volume: 728 start-page: 138882 year: 2020 ident: 9080_CR3 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138882 – volume: 197 start-page: 204 year: 2018 ident: 9080_CR23 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.05.087 – volume: 23 start-page: 2293 year: 2021 ident: 9080_CR6 publication-title: Green Chem. doi: 10.1039/D0GC04072J – volume: 26 start-page: 13 year: 2018 ident: 9080_CR5 publication-title: Macromol. Res. doi: 10.1007/s13233-018-6007-2 – volume: 144 start-page: 1 year: 2018 ident: 9080_CR12 publication-title: Compos. Part B: Eng. doi: 10.1016/j.compositesb.2018.02.024 – volume: 137 start-page: 49286 year: 2020 ident: 9080_CR13 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.49286 – volume: 145 start-page: 157 year: 2017 ident: 9080_CR35 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.04.005 – volume: 23 start-page: 755 year: 2015 ident: 9080_CR29 publication-title: Macromol. Res. doi: 10.1007/s13233-015-3095-0 – volume: 398 start-page: 123100 year: 2020 ident: 9080_CR20 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123100 – volume: 29 start-page: 33 year: 2021 ident: 9080_CR24 publication-title: Macromol. Res. doi: 10.1007/s13233-021-9001-z – volume: 7 start-page: 7 year: 2020 ident: 9080_CR30 publication-title: Front. Mater. Sci. doi: 10.3389/fmats.2020.00007 – volume: 50 start-page: 1167 year: 2015 ident: 9080_CR1 publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.04.063 – volume: 173 start-page: 128 year: 2021 ident: 9080_CR7 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.01.102 – volume: 80 start-page: 193 year: 2010 ident: 9080_CR15 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.03.057 – volume: 42 start-page: 267 year: 2018 ident: 9080_CR32 publication-title: Polym. Korea doi: 10.7317/pk.2018.42.2.267 – volume: 23 start-page: 537 year: 2015 ident: 9080_CR34 publication-title: Macromol. Res. doi: 10.1007/s13233-015-3071-8 – volume: 77 start-page: 3937 year: 2020 ident: 9080_CR36 publication-title: Polym. Bull. doi: 10.1007/s00289-019-02944-3 – volume: 136 start-page: 586 year: 2019 ident: 9080_CR14 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.06.114 – volume: 42 start-page: 8384 year: 2018 ident: 9080_CR9 publication-title: New J. Chem. doi: 10.1039/C8NJ01161C |
SSID | ssj0061311 |
Score | 2.3330817 |
Snippet | Although biodegradable plastics are gradually emerging as an effective solution to alleviate the burgeoning plastic pollution, their performance is currently... |
SourceID | nrf pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 720 |
SubjectTerms | Biodegradability Bioplastics Cellulose Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Commercialization Complex Fluids and Microfluidics Nanochemistry Nanocomposites Nanocrystals Nanotechnology Percolation Physical Chemistry Polymer Sciences Rheological properties Rheology Soft and Granular Matter Tensile strength Thresholds 고분자공학 |
Title | Rheological Percolation of Cellulose Nanocrystals in Biodegradable Poly(butylene succinate) Nanocomposites: A Novel Approach for Tailoring the Mechanical and Hydrolytic Properties |
URI | https://link.springer.com/article/10.1007/s13233-021-9080-x https://www.ncbi.nlm.nih.gov/pubmed/34754287 https://www.proquest.com/docview/2593889483 https://www.proquest.com/docview/2596011511 https://pubmed.ncbi.nlm.nih.gov/PMC8568679 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002766957 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Macromolecular Research, 2021, 29(10), , pp.720-726 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgewAeEAwYgTEZxAM_FKl1nMThrVQbBbSpQqs0nizbubBoUYKSFtG_i3-QuzRpKQwknvIQOzrrO58_586fGXueIedwjqQQBW5RiKP7JnPKT6W1YZAFYeToP-TJaTSZyQ_n4Xl3jrvpq937lGQbqTeH3QIRUM6RSgrUwEfiuBuSnBQ68UyM-vAbkX5MK5KaKD8cBKJPZV71ia3F6HpZZ1fxzD_LJX_LmbZL0fEddrvjkHy0Av0uuwblHrsx7q9u22O3flEZvMd-fLqAPsTxKdQIfQsHrzI-hqJYFFUDHMNs5eolksWi4XnJ3-ZVSkISKZ2t4tOqWL6wi_kSFyngzcK5vESW-nLVDWMK1X5B84aP-Gn1DdC4TqucIynmZyZfFfpxpJv8BOi0cWuNKVM-WaY1fh3HwqeUGahJ4vU-mx0fnY0nfndXg-_CgZz7LkutjZWNZQjIgTIRgaFo4kJnLHKuBGOJUAbZWQzJ0EYZgIzlAFIExELoggdsp6xKeMi4dUMjnIUstkZmTthhIqWRAuIY6aEwHhv0oGnXCZnTfRqF3kgwE84acdaEs_7usVfrLl9XKh7_avwMPUFfulyT9jY9v1T6sta4w3ivE4XjkJHHDnpH0d2sbzRuJQOlEqkCjz1dv0bsKQljSqgWbZuIaPhw6LH9lV-tTQok3UesYo_FWx63bkD2bL8p84tWE1yFEUkneux175sbs_460kf_1foxuylo6rSVjAdsZ14v4Akysrk9ZLujd58_Hh22M_EnfP0z7A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwELVgOSwcECxfWRYwiAOwitQ6TuJwKxWrLmyrCrXS3izbcdhoo2SVNIj-Lv4gM_loKSxInHKIHY31xuPnzPiZkNcJcA5jUAqRwRYFObqrEiPcmGvte4nnBwb_Q05nwWTJP53759057qqvdu9Tkk2k3h5285iHOUcsKRADF4jjLcwy4o5ryUZ9-A1QP6YRSY2E6w881qcyr_vEzmJ0My-T63jmn-WSv-VMm6Xo5B6523FIOmpBv09u2PyA7I_7q9sOyJ1fVAYfkB9fLmwf4ujclgB9AwctEjq2WVZnRWUphNnClGsgi1lF05x-SIsYhSRiPFtF50W2fqPr1RoWKUur2pg0B5b6tu0GMQVrv2z1no7orPhmwbhOq5wCKaYLlbaFfhToJp1aPG3cWKPymE7WcQlfh7HQOWYGSpR4fUiWJx8X44nb3dXgGn_AV65JYq1DoUPuW-BACQuswmhifKM0cK4IYgkTCthZaKOhDhJrecgHNgZAtPWN94js5UVunxCqzVAxo20SasUTw_Qw4lxxZsMQ6CFTDhn0oEnTCZnjfRqZ3EowI84ScJaIs_zukHebLletise_Gr8CT5CXJpWovY3Pr4W8LCXsME5lJGAcPHDIUe8ospv1lYStpCdExIXnkJeb14A9JmFUbou6aRMgDR8OHfK49auNSR7H-4hF6JBwx-M2DdCe3Td5etFoggs_QOlEhxz3vrk1668jPfyv1i_I_mQxPZNnp7PPT8lthtOoqWo8InursrbPgJ2t9PNmNv4ER_E1Ow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkXgcECyvwAIGceChaFvHSRxupVB1ga0qtCvtzbIdm402SlZJi-jv4g8yk0dLYUHilIMfGmvG48-Z8TeEvHCAOYxBKkQGVxTE6L5yRvgp1zoMXBBGBv9DHs6i6TH_eBKedHVO6z7bvQ9Jtm8akKWpWOyfp25_8_AtYAHGHzG9QAx8AJFXOBzVmNN1zEa9K46QS6YhTE2EHw4C1oc1L5pi62C6XFTuIsz5Z-rkb_HT5lia3CI3OzxJR60B3CaXbLFLro37Mm675MYvjIN3yI8vp7Z3d3RuKzCDRjW0dHRs83yZl7Wl4HJLU60AOOY1zQr6LitTJJVI8Z0VnZf56qVeLlZwYFlaL43JCkCsr9ph4F8wD8zWb-mIzspvFoTreMspAGR6pLI26Y8C9KSHFl8eN9KoIqXTVVrB7LAWOscoQYV0r3fJ8eTD0Xjqd3UbfBMO-MI3LtU6FjrmoQU85FhkFXoWExqlAX8l4FeYUIDUYpsMdeSs5TEf2BQUom1ogntkpygL-4BQbYaKGW1drBV3hulhwrnizMYxQEWmPDLolSZNR2qOtTVyuaFjRj1L0LNEPcvvHnm9HnLeMnr8q_NzsAR5ZjKJPNz4_VrKs0rCbeNAJgLWwSOP7PWGIjsPUEu4VgZCJFwEHnm2bgbdY0BGFbZcNn0ihOTDoUfut3a1FingWJtYxB6Jtyxu3QHl2W4pstOGH1yEEdIoeuRNb5sbsf660of_1fspuTp_P5GfD2afHpHrDHdRk-C4R3YW1dI-BqC20E-azfgTXd85gA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rheological+Percolation+of+Cellulose+Nanocrystals+in+Biodegradable+Poly%28butylene+succinate%29+Nanocomposites%3A+A+Novel+Approach+for+Tailoring+the+Mechanical+and+Hydrolytic+Properties&rft.jtitle=Macromolecular+research&rft.date=2021-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1598-5032&rft.eissn=2092-7673&rft.volume=29&rft.issue=10&rft.spage=720&rft.epage=726&rft_id=info:doi/10.1007%2Fs13233-021-9080-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5032&client=summon |