Image Semantic Recognition Algorithm of Colorimetric Sensor Array Based on Deep Convolutional Neural Network

The inspection of some substances usually includes two levels. One is the detection of the physical properties of the substance, which can be carried out through a series of physical detection methods and corresponding physical experiments. In the process of chemical detection, the color change afte...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Multimedia Vol. 2022; pp. 1 - 11
Main Authors Chen, Xihua, Yang, Xing
Format Journal Article
LanguageEnglish
Published New York Hindawi 30.09.2022
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN1687-5680
1687-5699
1687-5699
DOI10.1155/2022/4325117

Cover

Abstract The inspection of some substances usually includes two levels. One is the detection of the physical properties of the substance, which can be carried out through a series of physical detection methods and corresponding physical experiments. In the process of chemical detection, the color change after a chemical reaction is an extremely identifying optical property feature. In today’s increasingly mature Internet technology and related computer technology, the combination of this important identification chemical reaction and the former makes the chemical detection method visualized. The biggest difficulty in the application of this technology is to divide the color units produced by the chemical reaction in the contrast color sensor, which directly affects the identification process of the chemical reaction in the subsequent process. In order to better solve this problem, this paper will use a deep convolutional neural network to process the segmentation process of color units. And it is realized by image semantic processing of colorimetric sensor array and deep convolutional neural network processing of imaging. And through the experimental experiments based on convolutional neural network image segmentation processing, the results show that the efficiency of extracting features corresponding to different layers in the convolutional neural network is that the extraction efficiency of feature 1 and feature 2 is higher in the processing of 4 layers. They achieve 79.11%, 76.13%, 77.61%, 91.11% 92.31%, 91.05%, 91.03%, and 91.03%, respectively, and the extraction rate for feature 3 at layer 4 reaches 96.19%. It can be known from the above results that the segmented part of the image generated by the colorimetric sensor array processed by the deep convolutional neural network will be more conducive to the final color unit identification.
AbstractList The inspection of some substances usually includes two levels. One is the detection of the physical properties of the substance, which can be carried out through a series of physical detection methods and corresponding physical experiments. In the process of chemical detection, the color change after a chemical reaction is an extremely identifying optical property feature. In today’s increasingly mature Internet technology and related computer technology, the combination of this important identification chemical reaction and the former makes the chemical detection method visualized. The biggest difficulty in the application of this technology is to divide the color units produced by the chemical reaction in the contrast color sensor, which directly affects the identification process of the chemical reaction in the subsequent process. In order to better solve this problem, this paper will use a deep convolutional neural network to process the segmentation process of color units. And it is realized by image semantic processing of colorimetric sensor array and deep convolutional neural network processing of imaging. And through the experimental experiments based on convolutional neural network image segmentation processing, the results show that the efficiency of extracting features corresponding to different layers in the convolutional neural network is that the extraction efficiency of feature 1 and feature 2 is higher in the processing of 4 layers. They achieve 79.11%, 76.13%, 77.61%, 91.11% 92.31%, 91.05%, 91.03%, and 91.03%, respectively, and the extraction rate for feature 3 at layer 4 reaches 96.19%. It can be known from the above results that the segmented part of the image generated by the colorimetric sensor array processed by the deep convolutional neural network will be more conducive to the final color unit identification.
Audience Academic
Author Yang, Xing
Chen, Xihua
Author_xml – sequence: 1
  givenname: Xihua
  orcidid: 0000-0002-5855-2225
  surname: Chen
  fullname: Chen, Xihua
  organization: School of EngineeringGuangzhou College of Technology and BusinessGuangzhou510850 GuangdongChina
– sequence: 2
  givenname: Xing
  surname: Yang
  fullname: Yang, Xing
  organization: College of Economics and ManagementSchool of Fujian Agriculture and Forestry UniversityFuzhou350002 FujianChina
BookMark eNqFkU1v1DAQhiNUJErpjR8QiROCtP6I4-S4bCmsVIHUhbM1cezUxYkX22HZf19vUxUt4kM-jGf0zOuZ18-zo9GNKsteYnSGMWPnBBFyXlLCMOZPsmNc1bxgVdMcPd5r9Cw7DcG0iCFO6pKy48yuBuhVvlYDjNHI_FpJ148mGjfmC9s7b-LNkDudL51NyaCiT9RajcH5fOE97PJ3EFSXJ_5CqU3ixh_OTnsBsPknNfn7ELfOf3uRPdVggzp9iCfZ18v3X5Yfi6vPH1bLxVUhGSpjIRGTuOwAdS2pqoYTTaTkPGVAW0qQplRyCryseVtzVTYlp0q3sqxbWXMk6Um2mnU7B7dik8YGvxMOjLgvON8L8Glbq0RyQVWasqpCJOnRBiMtK91w2rZca5K0illrGjew24K1j4IYib3zYu-8eHA-8a9mfuPd90mFKG7d5JMXQRBOSMMZqukvqoc0hBm1ix7kYIIUC05w1WCGWaLO_kCl06nByPT92qT6QcPrg4bERPUz9jCFIFbr60OWzKz0LgSvtJAmwv7f0iPG_m27t781_ceMNzN-Y8YOtubf9B1q1NdU
CitedBy_id crossref_primary_10_1007_s10544_024_00710_5
Cites_doi 10.1021/acs.analchem.9b03172
10.3233/JIFS-179583
10.1039/C9RA05983K
10.1039/C9AY01439J
10.4236/ojmi.2017.74018
10.1016/j.jksus.2019.10.015
10.46670/JSST.2020.29.5.360
10.3934/mbe.2019222
10.5369/JSST.2020.29.2.93
10.1039/D1AY00408E
10.3233/XST-160606
10.7150/thno.17927
10.1515/hc-2020-0003
10.1016/j.tetlet.2017.01.098
10.1039/C9NJ04688G
10.1109/JSEN.2019.2917225
10.1109/LSP.2017.2768660
10.1002/tee.23513
10.1016/j.neucom.2019.04.058
10.1021/acsomega.9b04199
10.1021/acsanm.0c00641
ContentType Journal Article
Copyright Copyright © 2022 Xihua Chen and Xing Yang.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Xihua Chen and Xing Yang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2022 Xihua Chen and Xing Yang.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Xihua Chen and Xing Yang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
ISR
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOA
DOI 10.1155/2022/4325117
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One Community College
Middle East & Africa Database
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1687-5699
Editor Govindan, Nagarajan
Editor_xml – sequence: 1
  givenname: Nagarajan
  surname: Govindan
  fullname: Govindan, Nagarajan
EndPage 11
ExternalDocumentID oai_doaj_org_article_843e6f3566024873910fc6f973bb7ff2
10.1155/2022/4325117
A721691515
10_1155_2022_4325117
GroupedDBID .4S
.DC
188
2WC
3V.
4.4
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABUWG
ACM
ADBBV
AFKRA
AFPKN
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
CWDGH
DWQXO
EBS
EDO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ISR
ITC
K6V
K7-
KQ8
M0N
OK1
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHW
RHX
TR2
TUS
0R~
24P
AAMMB
AAYXX
ACCMX
ADMLS
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
H13
PHGZM
PHGZT
PQGLB
PUEGO
M~E
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
2UF
ADTOC
C1A
EJD
IL9
UGNYK
UNPAY
UZ4
ID FETCH-LOGICAL-c504t-c05c14da0db266972f2cc77db2a3b320f33c73a7487b87e49473efbc48bc870c3
IEDL.DBID RHX
ISSN 1687-5680
1687-5699
IngestDate Fri Oct 03 12:53:20 EDT 2025
Tue Aug 19 19:35:08 EDT 2025
Fri Jul 25 20:59:35 EDT 2025
Wed Oct 16 18:06:33 EDT 2024
Tue Oct 15 04:50:01 EDT 2024
Sat Oct 12 03:45:41 EDT 2024
Wed Oct 01 02:14:57 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Sun Jun 02 18:49:06 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-c05c14da0db266972f2cc77db2a3b320f33c73a7487b87e49473efbc48bc870c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5855-2225
OpenAccessLink https://dx.doi.org/10.1155/2022/4325117
PQID 2722975083
PQPubID 237347
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_843e6f3566024873910fc6f973bb7ff2
unpaywall_primary_10_1155_2022_4325117
proquest_journals_2722975083
gale_infotracmisc_A721691515
gale_infotracacademiconefile_A721691515
gale_incontextgauss_ISR_A721691515
crossref_citationtrail_10_1155_2022_4325117
crossref_primary_10_1155_2022_4325117
hindawi_primary_10_1155_2022_4325117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-30
PublicationDateYYYYMMDD 2022-09-30
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-30
  day: 30
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in Multimedia
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 11
22
12
13
14
15
16
P. C. U. Murillo (20) 2017; 12
17
18
19
1
2
3
4
5
6
7
8
9
10
21
References_xml – ident: 17
  doi: 10.1021/acs.analchem.9b03172
– ident: 13
  doi: 10.3233/JIFS-179583
– ident: 16
  doi: 10.1039/C9RA05983K
– ident: 18
  doi: 10.1039/C9AY01439J
– ident: 21
  doi: 10.4236/ojmi.2017.74018
– ident: 14
  doi: 10.1016/j.jksus.2019.10.015
– ident: 12
  doi: 10.46670/JSST.2020.29.5.360
– ident: 9
  doi: 10.3934/mbe.2019222
– ident: 11
  doi: 10.5369/JSST.2020.29.2.93
– ident: 4
  doi: 10.1039/D1AY00408E
– ident: 22
  doi: 10.3233/XST-160606
– ident: 3
  doi: 10.7150/thno.17927
– ident: 1
  doi: 10.1515/hc-2020-0003
– ident: 2
  doi: 10.1016/j.tetlet.2017.01.098
– ident: 19
  doi: 10.1039/C9NJ04688G
– ident: 7
  doi: 10.1109/JSEN.2019.2917225
– ident: 10
  doi: 10.1109/LSP.2017.2768660
– ident: 8
  doi: 10.1002/tee.23513
– volume: 12
  start-page: 5323
  issue: 20
  year: 2017
  ident: 20
  article-title: Implementation of a data augmentation algorithm validated by means of the accuracy of a convolutional neural network
  publication-title: Journal of Engineering and Applied Sciences
– ident: 6
  doi: 10.1016/j.neucom.2019.04.058
– ident: 15
  doi: 10.1021/acsomega.9b04199
– ident: 5
  doi: 10.1021/acsanm.0c00641
SSID ssib050728435
ssj0060728
Score 2.2401888
Snippet The inspection of some substances usually includes two levels. One is the detection of the physical properties of the substance, which can be carried out...
SourceID doaj
unpaywall
proquest
gale
crossref
hindawi
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Arrays
Artificial neural networks
Chemical reactions
Color
Colorimetry
Corporate image
Feature extraction
Image processing
Image segmentation
Inspection
Neural networks
Object recognition
Optical properties
Physical properties
Semantics
Sensor arrays
Sensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlENpLm76o020RJW0PxcSxpJV93KQNSaE9JA3kJvRMFrz2so-E_PvM2PISH9pcejK2P2RpNJoZmdE3hOyVyInlcp0KJ1jKc2dTY3hIPTegDRjAtlx6v36PTy74z0tx-aDUF-aEdfTAneD2C878ODCIOpB9SzJwb8GOQymZMTKE1vpmRdlvpjobPM5kXvRp7kLgDj_f5wzDaTlwQC1P_8Yab1_jPvh2Oog2n67rub671VX1wPEc75DnMWKkk66nL8kTX78iL_pqDDQuztekOp2BbaDnfgbCmlp61qcGNTWdVFfNYrq6ntEm0KMGs-5mWErLArxeNgtofaHv6CG4NEcB_937OeDqm6iY8H1k8Wgvbdr4G3Jx_OPP0UkaaymkVmR8ldpM2APudOYMuORS5iG3Vkq408ywPAuMWcm0BBGbQnpecsl8MJYXxsKStuwt2aqb2r8jFP8auWAKJzznvCyMdPrAcV1g0XpjXEK-9QJWNhKNY72LSrUbDiEUToeK05GQzxv0vCPY-AvuEOdqg0Fa7PYBKIuKyqIeU5aEfMKZVkh8UWNmzZVeL5fq9PxMTZDFqMTwLiFfIyg00G-r40EFGD1yZQ2QowESVqYdvN6LCvXIyEa9tqloQJYqlzmeeYYAOSFfNhr4z3Z2_4eE3pNn2GaXETMiW6vF2n-AsGtlPrYr7B4VryN1
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZGJwQv3BGFgiI04AFFy2I7Th4QasemDYkKdUzam-VrN6lNSi9M-_eckzqBPDCeqjSfnDo-5_ize_wdQvYK1MSyqYq55TRmqTWx1szHjmmwBiSwtZbet3F2cs6-XvCLHTJuzsJgWmUTE-tAbSuDe-T7qUjxECgwhs-LnzFWjcJ_V5sSGiqUVrCfaomxO2Q3RWWsHtkdHY2_TxoLA_ID4Zi2BDnDa1ySZeBqPMuTJjWec9wVSPcZRQouOpNWre3fRvC7l7h2vr7qMNR7m3Khbq7VbPbXZHX8iDwILDMabs3iMdlx5RPysKngEAWHfkpmp3OIJ9GZm8MLvjLRpEknqspoOJtC_9eX86jy0WGFmXpzLL9lAF6uqiW0vlQ30QimQRsB_otzC8CVv4Ixw_NR-aP-qFPNn5Hz46MfhydxqL8QG56wdWwSbg6YVYnVMI0XIvWpMULAlaKapomn1AiqBKx5dC4cK5igzmvDcm0gDBj6nPTKqnQvSIQ7Tdbr3HLHGCtyLaw6sEzlWOhea9snH5sXLE0QJ8caGTNZL1I4lzgcMgxHn7xr0YutKMc_cCMcqxaDUtr1F9VyKoNnSrAHl3kKtBbl3QQF_uRN5gtBtRbep33yFkdaolhGidk4U7VZreTp2UQOUfmoQErYJx8CyFfwu40Khxug96iv1UEOOkjwZtO5vRcM6j89GzTWJkPQWck_LtIn71sLvLWdl7e384rcR_Q2P2ZAeuvlxr0GErbWb4Jn_QYluSfU
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE4IXxm2i0KEIDXhA6drYjpPHbjBtSExoo9IQD5avXUWbVL0wjV-_c1KnIkhcxFOb9pNjO8fH34mOv0PIXo6aWDZRMbecxiyxJtaa-dgxDdaABLbS0vt4mh4P2YcLfhGyKvEsjEWJ-FLZRfcSY9KrceWtw7wu9tUUo_Vkn1GkxqI7s_422Uo58PAW2Rqefhp8wQgrhZXD06psWvie53XWO-eNJhr7USXbv3HOd0IXGuTz7qqYqesrNZn8tA8dbZOv9QjW6Sffuqul7pofv4g7_t8QH5D7gZ5Gg7U9PSS3XPGIbNelH6LgCR6TyckUHFF07qbwZMYmOqvzkMoiGkxG5Xy8vJxGpY8OS0zxm2LdLgPwYlHOofW5uo4OYP-0EeDfOTcDXPE9rAK4P0qGVB9VjvoTMjx6__nwOA6FG2LDe2wZmx43fWZVz2rY_3OR-MQYIeBKUU2TnqfUCKoEBEs6E47lTFDntWGZNuA_DN0hraIs3FMS4Ssq63VmuWOM5ZkWVvUtU1kfwmitbZu8rR-fNEHVHItrTGQV3XAucTJlmMw2ebVBz9ZqHr_BHaAlbDCowV39UM5HMixpmTHqUk-BD6MunKBAvLxJfS6o1sL7pE1eoh1JVNkoMI1npFaLhTw5P5MDlEzKkUu2yZsA8iX026hwKgJGj8JcDWSngQQ3YBp_7wVz-svIOrUty9rkZCISPGANbLxNXm_s-4_tPPtX4HNyDy_XKTYd0lrOV24XeNxSvwgL9gaKuj6O
  priority: 102
  providerName: Unpaywall
Title Image Semantic Recognition Algorithm of Colorimetric Sensor Array Based on Deep Convolutional Neural Network
URI https://dx.doi.org/10.1155/2022/4325117
https://www.proquest.com/docview/2722975083
https://downloads.hindawi.com/journals/am/2022/4325117.pdf
https://doaj.org/article/843e6f3566024873910fc6f973bb7ff2
UnpaywallVersion publishedVersion
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5699
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060728
  issn: 1687-5699
  databaseCode: KQ8
  dateStart: 20070207
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5699
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060728
  issn: 1687-5699
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-5699
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060728
  issn: 1687-5699
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1687-5699
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060728
  issn: 1687-5699
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1687-5699
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050728435
  issn: 1687-5680
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-5699
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060728
  issn: 1687-5699
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-5699
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060728
  issn: 1687-5699
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-5699
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060728
  issn: 1687-5699
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5699
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060728
  issn: 1687-5699
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF7RIgSX8haBEFmowAFZTb1rr31M0qQpUqMqJSKcVvtsIyV2lEerXvjtzDjriIB4XGxtPFrHnpmdb-zxN4QcZsiJZSIZxiamIYuMDpViLrRMgTUggC259M4HSX_EPo_jsSdJWv7-Ch-iHabn0RGjiIX5HtlLE6zcGvbHldkAooE1lm5Rb4JjzLMS8J84SZtVvfsvc-1EopKwf7ssP7jGhPh2sgM7H67zuby7ldPpTxGo94QceOgYtDa6fkru2fwZeVy1ZQi8lz4n07MZLBLBpZ3BXZvoYFjVCBV50JpeFYvJ6noWFC7oFFh-N8OeWhrE82WxgNkX8i5oQ2wzAcifWDsHufzGWyicH-k8yl1ZP_6CjHrdL51-6JsqhDpuslWom7E-ZkY2jYLYnPHIRVpzDiNJFY2ajlLNqeSQyKiUW5YxTq1TmqVKg29r-pLs50VuX5EAHx8Zp1ITW8ZYlipu5LFhMsXu9UqZGvlU3WChPeM4Nr6YijLziGOB6hBeHTXyfis93zBt_EGujbrayiA_dvkD2Izw7ibAHmziKGBV5GzjFECR04nLOFWKOxfVyDvUtEAGjBxLbK7kerkUZ5dD0UI6owxxXo189EKugP-tpf9iAa4eSbN2JOs7kuCieufwoTeof1xZvbI24VeSpYh4hB8_A1KukQ9bC_zrPK__73RvyCMcbopf6mR_tVjbt4CwVqoBXtY7bZD77e7gYgj7zteT036jfF4B2_Pv3UbpgXBkNLhoffsBx8Ee3g
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwENaUdJhyoTyHQAAP05YD4zaRZMs-cEgTSkIfhz6G3oT1cNohsUMeZMqP4q_wl9h15ECYoZx64JRxvJZj-dvVJ2X1LSEbMWpiGZr4gQmYz6nRvlI89S1XgAYksIWW3uFR2DnjH86D8xXyvdwLg2mVZUwsArXJNa6R71BBcRMoMAaXQblvr2YwPxu_7bbhZW5SuvfutNXxXQkBXwd1PvF1PdANbpK6UTASxYKmVGsh4ChhitF6ypgWLBFA21UkLI-5YDZVmkdKA5I1g3a3hl98rFKF_-a6kh23yCqcbdAKWW19bL_vlAgGcgXhni0IeIjHOOULwZWDMKqXqfdBgKsOdIczpPhiaVAsagcsRojbFzg3n10uMeC1aTZMrmZJv__bYLi3Tn6U3TjPgfm8PZ2obf3tD4XJ_6ef75G7jpd7zbkj3ScrNntA1suaF54LgQ9JvzuACOyd2AFA8lJ7x2UCVp55zX4PWp5cDLw89Vo55jYOsGCZBvNsnI-g9VFy5e0CcTAe2LetHYJd9tW5P9wftVKKjyI5_xE5u5FueEwqWZ7ZJ8TDtTmTqsgElnMeR0qYpGF4EjUajCplquRNCRmpnZw7VhXpy2JaFwQSASYdwKpkc2E9nMuY_MVuF9G3sEHx8eKLfNSTLpZJQLgNUwYTARTEEwwYZ6rDNBZMKZGmtEpeIXYlyotkmL_US6bjseyeHMsmakXFSKKr5LUzSnP43Tpx20Hg6VGRbMmytmQJ8U8vnd5wLvKPJ6uVeJcuTI_lL7BXydbCp65t5-n17bwka53TwwN50D3af0bu4JXz7KIaqUxGU_scKOxEvXBxwyOfbtqrfgLA3aKb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVjwulKcIBLBQCwfkJtlde-0DQmlCaChUqKWiN-N9pRWJHfIgCj-Nv8KfYcZZB4JEOfXAKXIy2WSdb779ZjM7Q8hWjDWxNE39QAfM51QrX0pufcMloAEFbFFL791BuHfM35wEJ2vke3kWBtMqS04siFrnCvfIa1RQPAQKiqFmXVrE-3bn5fCLjx2k8J_Wsp3GAiL7Zj6D8G38otuG33qb0s6rD60933UY8FVQ5xNf1QPV4DqtawkLVSyopUoJAVcpk4zWLWNKsFSAqpeRMDzmghkrFY-kAqArBuNeIhtRKEIghY3Wx_brvRLNILSA-tlSjId4jeFfCG4dhFG9TMMPAtyBoDXOUO6LlQWy6COwXC0un2KcPjtbUcNXp9kwnc_Sfv-3hbGzSX6Ut3SRD_N5ZzqRO-rbH9Um_897foNcd3rday4c7CZZM9ktsln2wvAcNd4m_e4AmNk7MgOA6pnyDsvErDzzmv0ezGRyOvBy67VyzHkcYCMzBebZOB_B6KN07u2CoNAe2LeNGYJd9tXRAnw-1lApHoqk_Tvk-ELmfJesZ3lm7hEP9-y0lZEODOc8jqTQaUPzNGo0GJVSV8jzEj6JcmXesdtIPynCvSBIEGyJA1uFbC-th4vyJn-x20UkLm2wKHnxRD7qJY7jEkC7CS2DAAEL5QkGStSq0MaCSSmspRXyBHGcYNmRDMHUS6fjcdI9OkyaWEMqRnFdIc-ckc3he6vUHROB2WOlshXL6ool8KJaeXnLucs_ZlYtsZ84-h4nv4BfIU-X_nXuOPfPH-cxuQKuk7ztHuw_INfwjYukoypZn4ym5iEo24l85CjEI58u2oN-AoWDq2M
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE4IXxm2i0KEIDXhA6drYjpPHbjBtSExoo9IQD5avXUWbVL0wjV-_c1KnIkhcxFOb9pNjO8fH34mOv0PIXo6aWDZRMbecxiyxJtaa-dgxDdaABLbS0vt4mh4P2YcLfhGyKvEsjEWJ-FLZRfcSY9KrceWtw7wu9tUUo_Vkn1GkxqI7s_422Uo58PAW2Rqefhp8wQgrhZXD06psWvie53XWO-eNJhr7USXbv3HOd0IXGuTz7qqYqesrNZn8tA8dbZOv9QjW6Sffuqul7pofv4g7_t8QH5D7gZ5Gg7U9PSS3XPGIbNelH6LgCR6TyckUHFF07qbwZMYmOqvzkMoiGkxG5Xy8vJxGpY8OS0zxm2LdLgPwYlHOofW5uo4OYP-0EeDfOTcDXPE9rAK4P0qGVB9VjvoTMjx6__nwOA6FG2LDe2wZmx43fWZVz2rY_3OR-MQYIeBKUU2TnqfUCKoEBEs6E47lTFDntWGZNuA_DN0hraIs3FMS4Ssq63VmuWOM5ZkWVvUtU1kfwmitbZu8rR-fNEHVHItrTGQV3XAucTJlmMw2ebVBz9ZqHr_BHaAlbDCowV39UM5HMixpmTHqUk-BD6MunKBAvLxJfS6o1sL7pE1eoh1JVNkoMI1npFaLhTw5P5MDlEzKkUu2yZsA8iX026hwKgJGj8JcDWSngQQ3YBp_7wVz-svIOrUty9rkZCISPGANbLxNXm_s-4_tPPtX4HNyDy_XKTYd0lrOV24XeNxSvwgL9gaKuj6O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Semantic+Recognition+Algorithm+of+Colorimetric+Sensor+Array+Based+on+Deep+Convolutional+Neural+Network&rft.jtitle=Advances+in+multimedia&rft.au=Chen%2C+Xihua&rft.au=Yang%2C+Xing&rft.date=2022-09-30&rft.issn=1687-5680&rft.eissn=1687-5699&rft.volume=2022&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1155%2F2022%2F4325117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_4325117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5680&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5680&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5680&client=summon