Image Semantic Recognition Algorithm of Colorimetric Sensor Array Based on Deep Convolutional Neural Network
The inspection of some substances usually includes two levels. One is the detection of the physical properties of the substance, which can be carried out through a series of physical detection methods and corresponding physical experiments. In the process of chemical detection, the color change afte...
Saved in:
| Published in | Advances in Multimedia Vol. 2022; pp. 1 - 11 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Hindawi
30.09.2022
John Wiley & Sons, Inc Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5680 1687-5699 1687-5699 |
| DOI | 10.1155/2022/4325117 |
Cover
| Abstract | The inspection of some substances usually includes two levels. One is the detection of the physical properties of the substance, which can be carried out through a series of physical detection methods and corresponding physical experiments. In the process of chemical detection, the color change after a chemical reaction is an extremely identifying optical property feature. In today’s increasingly mature Internet technology and related computer technology, the combination of this important identification chemical reaction and the former makes the chemical detection method visualized. The biggest difficulty in the application of this technology is to divide the color units produced by the chemical reaction in the contrast color sensor, which directly affects the identification process of the chemical reaction in the subsequent process. In order to better solve this problem, this paper will use a deep convolutional neural network to process the segmentation process of color units. And it is realized by image semantic processing of colorimetric sensor array and deep convolutional neural network processing of imaging. And through the experimental experiments based on convolutional neural network image segmentation processing, the results show that the efficiency of extracting features corresponding to different layers in the convolutional neural network is that the extraction efficiency of feature 1 and feature 2 is higher in the processing of 4 layers. They achieve 79.11%, 76.13%, 77.61%, 91.11% 92.31%, 91.05%, 91.03%, and 91.03%, respectively, and the extraction rate for feature 3 at layer 4 reaches 96.19%. It can be known from the above results that the segmented part of the image generated by the colorimetric sensor array processed by the deep convolutional neural network will be more conducive to the final color unit identification. |
|---|---|
| AbstractList | The inspection of some substances usually includes two levels. One is the detection of the physical properties of the substance, which can be carried out through a series of physical detection methods and corresponding physical experiments. In the process of chemical detection, the color change after a chemical reaction is an extremely identifying optical property feature. In today’s increasingly mature Internet technology and related computer technology, the combination of this important identification chemical reaction and the former makes the chemical detection method visualized. The biggest difficulty in the application of this technology is to divide the color units produced by the chemical reaction in the contrast color sensor, which directly affects the identification process of the chemical reaction in the subsequent process. In order to better solve this problem, this paper will use a deep convolutional neural network to process the segmentation process of color units. And it is realized by image semantic processing of colorimetric sensor array and deep convolutional neural network processing of imaging. And through the experimental experiments based on convolutional neural network image segmentation processing, the results show that the efficiency of extracting features corresponding to different layers in the convolutional neural network is that the extraction efficiency of feature 1 and feature 2 is higher in the processing of 4 layers. They achieve 79.11%, 76.13%, 77.61%, 91.11% 92.31%, 91.05%, 91.03%, and 91.03%, respectively, and the extraction rate for feature 3 at layer 4 reaches 96.19%. It can be known from the above results that the segmented part of the image generated by the colorimetric sensor array processed by the deep convolutional neural network will be more conducive to the final color unit identification. |
| Audience | Academic |
| Author | Yang, Xing Chen, Xihua |
| Author_xml | – sequence: 1 givenname: Xihua orcidid: 0000-0002-5855-2225 surname: Chen fullname: Chen, Xihua organization: School of EngineeringGuangzhou College of Technology and BusinessGuangzhou510850 GuangdongChina – sequence: 2 givenname: Xing surname: Yang fullname: Yang, Xing organization: College of Economics and ManagementSchool of Fujian Agriculture and Forestry UniversityFuzhou350002 FujianChina |
| BookMark | eNqFkU1v1DAQhiNUJErpjR8QiROCtP6I4-S4bCmsVIHUhbM1cezUxYkX22HZf19vUxUt4kM-jGf0zOuZ18-zo9GNKsteYnSGMWPnBBFyXlLCMOZPsmNc1bxgVdMcPd5r9Cw7DcG0iCFO6pKy48yuBuhVvlYDjNHI_FpJ148mGjfmC9s7b-LNkDudL51NyaCiT9RajcH5fOE97PJ3EFSXJ_5CqU3ixh_OTnsBsPknNfn7ELfOf3uRPdVggzp9iCfZ18v3X5Yfi6vPH1bLxVUhGSpjIRGTuOwAdS2pqoYTTaTkPGVAW0qQplRyCryseVtzVTYlp0q3sqxbWXMk6Um2mnU7B7dik8YGvxMOjLgvON8L8Glbq0RyQVWasqpCJOnRBiMtK91w2rZca5K0illrGjew24K1j4IYib3zYu-8eHA-8a9mfuPd90mFKG7d5JMXQRBOSMMZqukvqoc0hBm1ix7kYIIUC05w1WCGWaLO_kCl06nByPT92qT6QcPrg4bERPUz9jCFIFbr60OWzKz0LgSvtJAmwv7f0iPG_m27t781_ceMNzN-Y8YOtubf9B1q1NdU |
| CitedBy_id | crossref_primary_10_1007_s10544_024_00710_5 |
| Cites_doi | 10.1021/acs.analchem.9b03172 10.3233/JIFS-179583 10.1039/C9RA05983K 10.1039/C9AY01439J 10.4236/ojmi.2017.74018 10.1016/j.jksus.2019.10.015 10.46670/JSST.2020.29.5.360 10.3934/mbe.2019222 10.5369/JSST.2020.29.2.93 10.1039/D1AY00408E 10.3233/XST-160606 10.7150/thno.17927 10.1515/hc-2020-0003 10.1016/j.tetlet.2017.01.098 10.1039/C9NJ04688G 10.1109/JSEN.2019.2917225 10.1109/LSP.2017.2768660 10.1002/tee.23513 10.1016/j.neucom.2019.04.058 10.1021/acsomega.9b04199 10.1021/acsanm.0c00641 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Xihua Chen and Xing Yang. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 Xihua Chen and Xing Yang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2022 Xihua Chen and Xing Yang. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 Xihua Chen and Xing Yang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | RHU RHW RHX AAYXX CITATION ISR 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA |
| DOI | 10.1155/2022/4325117 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Gale In Context: Science ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection (LUT) ProQuest One Community College Middle East & Africa Database ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1687-5699 |
| Editor | Govindan, Nagarajan |
| Editor_xml | – sequence: 1 givenname: Nagarajan surname: Govindan fullname: Govindan, Nagarajan |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_843e6f3566024873910fc6f973bb7ff2 10.1155/2022/4325117 A721691515 10_1155_2022_4325117 |
| GroupedDBID | .4S .DC 188 2WC 3V. 4.4 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY AAKPC ABUWG ACM ADBBV AFKRA AFPKN AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CS3 CWDGH DWQXO EBS EDO GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ISR ITC K6V K7- KQ8 M0N OK1 P62 PIMPY PQQKQ PROAC Q2X RHU RHW RHX TR2 TUS 0R~ 24P AAMMB AAYXX ACCMX ADMLS AEFGJ AGXDD AIDQK AIDYY CITATION H13 PHGZM PHGZT PQGLB PUEGO M~E 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 2UF ADTOC C1A EJD IL9 UGNYK UNPAY UZ4 |
| ID | FETCH-LOGICAL-c504t-c05c14da0db266972f2cc77db2a3b320f33c73a7487b87e49473efbc48bc870c3 |
| IEDL.DBID | RHX |
| ISSN | 1687-5680 1687-5699 |
| IngestDate | Fri Oct 03 12:53:20 EDT 2025 Tue Aug 19 19:35:08 EDT 2025 Fri Jul 25 20:59:35 EDT 2025 Wed Oct 16 18:06:33 EDT 2024 Tue Oct 15 04:50:01 EDT 2024 Sat Oct 12 03:45:41 EDT 2024 Wed Oct 01 02:14:57 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Sun Jun 02 18:49:06 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c504t-c05c14da0db266972f2cc77db2a3b320f33c73a7487b87e49473efbc48bc870c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5855-2225 |
| OpenAccessLink | https://dx.doi.org/10.1155/2022/4325117 |
| PQID | 2722975083 |
| PQPubID | 237347 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_843e6f3566024873910fc6f973bb7ff2 unpaywall_primary_10_1155_2022_4325117 proquest_journals_2722975083 gale_infotracmisc_A721691515 gale_infotracacademiconefile_A721691515 gale_incontextgauss_ISR_A721691515 crossref_citationtrail_10_1155_2022_4325117 crossref_primary_10_1155_2022_4325117 hindawi_primary_10_1155_2022_4325117 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-30 |
| PublicationDateYYYYMMDD | 2022-09-30 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Advances in Multimedia |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
| References | 11 22 12 13 14 15 16 P. C. U. Murillo (20) 2017; 12 17 18 19 1 2 3 4 5 6 7 8 9 10 21 |
| References_xml | – ident: 17 doi: 10.1021/acs.analchem.9b03172 – ident: 13 doi: 10.3233/JIFS-179583 – ident: 16 doi: 10.1039/C9RA05983K – ident: 18 doi: 10.1039/C9AY01439J – ident: 21 doi: 10.4236/ojmi.2017.74018 – ident: 14 doi: 10.1016/j.jksus.2019.10.015 – ident: 12 doi: 10.46670/JSST.2020.29.5.360 – ident: 9 doi: 10.3934/mbe.2019222 – ident: 11 doi: 10.5369/JSST.2020.29.2.93 – ident: 4 doi: 10.1039/D1AY00408E – ident: 22 doi: 10.3233/XST-160606 – ident: 3 doi: 10.7150/thno.17927 – ident: 1 doi: 10.1515/hc-2020-0003 – ident: 2 doi: 10.1016/j.tetlet.2017.01.098 – ident: 19 doi: 10.1039/C9NJ04688G – ident: 7 doi: 10.1109/JSEN.2019.2917225 – ident: 10 doi: 10.1109/LSP.2017.2768660 – ident: 8 doi: 10.1002/tee.23513 – volume: 12 start-page: 5323 issue: 20 year: 2017 ident: 20 article-title: Implementation of a data augmentation algorithm validated by means of the accuracy of a convolutional neural network publication-title: Journal of Engineering and Applied Sciences – ident: 6 doi: 10.1016/j.neucom.2019.04.058 – ident: 15 doi: 10.1021/acsomega.9b04199 – ident: 5 doi: 10.1021/acsanm.0c00641 |
| SSID | ssib050728435 ssj0060728 |
| Score | 2.2401888 |
| Snippet | The inspection of some substances usually includes two levels. One is the detection of the physical properties of the substance, which can be carried out... |
| SourceID | doaj unpaywall proquest gale crossref hindawi |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Arrays Artificial neural networks Chemical reactions Color Colorimetry Corporate image Feature extraction Image processing Image segmentation Inspection Neural networks Object recognition Optical properties Physical properties Semantics Sensor arrays Sensors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlENpLm76o020RJW0PxcSxpJV93KQNSaE9JA3kJvRMFrz2so-E_PvM2PISH9pcejK2P2RpNJoZmdE3hOyVyInlcp0KJ1jKc2dTY3hIPTegDRjAtlx6v36PTy74z0tx-aDUF-aEdfTAneD2C878ODCIOpB9SzJwb8GOQymZMTKE1vpmRdlvpjobPM5kXvRp7kLgDj_f5wzDaTlwQC1P_8Yab1_jPvh2Oog2n67rub671VX1wPEc75DnMWKkk66nL8kTX78iL_pqDDQuztekOp2BbaDnfgbCmlp61qcGNTWdVFfNYrq6ntEm0KMGs-5mWErLArxeNgtofaHv6CG4NEcB_937OeDqm6iY8H1k8Wgvbdr4G3Jx_OPP0UkaaymkVmR8ldpM2APudOYMuORS5iG3Vkq408ywPAuMWcm0BBGbQnpecsl8MJYXxsKStuwt2aqb2r8jFP8auWAKJzznvCyMdPrAcV1g0XpjXEK-9QJWNhKNY72LSrUbDiEUToeK05GQzxv0vCPY-AvuEOdqg0Fa7PYBKIuKyqIeU5aEfMKZVkh8UWNmzZVeL5fq9PxMTZDFqMTwLiFfIyg00G-r40EFGD1yZQ2QowESVqYdvN6LCvXIyEa9tqloQJYqlzmeeYYAOSFfNhr4z3Z2_4eE3pNn2GaXETMiW6vF2n-AsGtlPrYr7B4VryN1 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZGJwQv3BGFgiI04AFFy2I7Th4QasemDYkKdUzam-VrN6lNSi9M-_eckzqBPDCeqjSfnDo-5_ize_wdQvYK1MSyqYq55TRmqTWx1szHjmmwBiSwtZbet3F2cs6-XvCLHTJuzsJgWmUTE-tAbSuDe-T7qUjxECgwhs-LnzFWjcJ_V5sSGiqUVrCfaomxO2Q3RWWsHtkdHY2_TxoLA_ID4Zi2BDnDa1ySZeBqPMuTJjWec9wVSPcZRQouOpNWre3fRvC7l7h2vr7qMNR7m3Khbq7VbPbXZHX8iDwILDMabs3iMdlx5RPysKngEAWHfkpmp3OIJ9GZm8MLvjLRpEknqspoOJtC_9eX86jy0WGFmXpzLL9lAF6uqiW0vlQ30QimQRsB_otzC8CVv4Ixw_NR-aP-qFPNn5Hz46MfhydxqL8QG56wdWwSbg6YVYnVMI0XIvWpMULAlaKapomn1AiqBKx5dC4cK5igzmvDcm0gDBj6nPTKqnQvSIQ7Tdbr3HLHGCtyLaw6sEzlWOhea9snH5sXLE0QJ8caGTNZL1I4lzgcMgxHn7xr0YutKMc_cCMcqxaDUtr1F9VyKoNnSrAHl3kKtBbl3QQF_uRN5gtBtRbep33yFkdaolhGidk4U7VZreTp2UQOUfmoQErYJx8CyFfwu40Khxug96iv1UEOOkjwZtO5vRcM6j89GzTWJkPQWck_LtIn71sLvLWdl7e384rcR_Q2P2ZAeuvlxr0GErbWb4Jn_QYluSfU priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE4IXxm2i0KEIDXhA6drYjpPHbjBtSExoo9IQD5avXUWbVL0wjV-_c1KnIkhcxFOb9pNjO8fH34mOv0PIXo6aWDZRMbecxiyxJtaa-dgxDdaABLbS0vt4mh4P2YcLfhGyKvEsjEWJ-FLZRfcSY9KrceWtw7wu9tUUo_Vkn1GkxqI7s_422Uo58PAW2Rqefhp8wQgrhZXD06psWvie53XWO-eNJhr7USXbv3HOd0IXGuTz7qqYqesrNZn8tA8dbZOv9QjW6Sffuqul7pofv4g7_t8QH5D7gZ5Gg7U9PSS3XPGIbNelH6LgCR6TyckUHFF07qbwZMYmOqvzkMoiGkxG5Xy8vJxGpY8OS0zxm2LdLgPwYlHOofW5uo4OYP-0EeDfOTcDXPE9rAK4P0qGVB9VjvoTMjx6__nwOA6FG2LDe2wZmx43fWZVz2rY_3OR-MQYIeBKUU2TnqfUCKoEBEs6E47lTFDntWGZNuA_DN0hraIs3FMS4Ssq63VmuWOM5ZkWVvUtU1kfwmitbZu8rR-fNEHVHItrTGQV3XAucTJlmMw2ebVBz9ZqHr_BHaAlbDCowV39UM5HMixpmTHqUk-BD6MunKBAvLxJfS6o1sL7pE1eoh1JVNkoMI1npFaLhTw5P5MDlEzKkUu2yZsA8iX026hwKgJGj8JcDWSngQQ3YBp_7wVz-svIOrUty9rkZCISPGANbLxNXm_s-4_tPPtX4HNyDy_XKTYd0lrOV24XeNxSvwgL9gaKuj6O priority: 102 providerName: Unpaywall |
| Title | Image Semantic Recognition Algorithm of Colorimetric Sensor Array Based on Deep Convolutional Neural Network |
| URI | https://dx.doi.org/10.1155/2022/4325117 https://www.proquest.com/docview/2722975083 https://downloads.hindawi.com/journals/am/2022/4325117.pdf https://doaj.org/article/843e6f3566024873910fc6f973bb7ff2 |
| UnpaywallVersion | publishedVersion |
| Volume | 2022 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5699 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060728 issn: 1687-5699 databaseCode: KQ8 dateStart: 20070207 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5699 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060728 issn: 1687-5699 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1687-5699 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060728 issn: 1687-5699 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1687-5699 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060728 issn: 1687-5699 databaseCode: ADMLS dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1687-5699 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib050728435 issn: 1687-5680 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1687-5699 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060728 issn: 1687-5699 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-5699 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060728 issn: 1687-5699 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-5699 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060728 issn: 1687-5699 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-5699 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060728 issn: 1687-5699 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF7RIgSX8haBEFmowAFZTb1rr31M0qQpUqMqJSKcVvtsIyV2lEerXvjtzDjriIB4XGxtPFrHnpmdb-zxN4QcZsiJZSIZxiamIYuMDpViLrRMgTUggC259M4HSX_EPo_jsSdJWv7-Ch-iHabn0RGjiIX5HtlLE6zcGvbHldkAooE1lm5Rb4JjzLMS8J84SZtVvfsvc-1EopKwf7ssP7jGhPh2sgM7H67zuby7ldPpTxGo94QceOgYtDa6fkru2fwZeVy1ZQi8lz4n07MZLBLBpZ3BXZvoYFjVCBV50JpeFYvJ6noWFC7oFFh-N8OeWhrE82WxgNkX8i5oQ2wzAcifWDsHufzGWyicH-k8yl1ZP_6CjHrdL51-6JsqhDpuslWom7E-ZkY2jYLYnPHIRVpzDiNJFY2ajlLNqeSQyKiUW5YxTq1TmqVKg29r-pLs50VuX5EAHx8Zp1ITW8ZYlipu5LFhMsXu9UqZGvlU3WChPeM4Nr6YijLziGOB6hBeHTXyfis93zBt_EGujbrayiA_dvkD2Izw7ibAHmziKGBV5GzjFECR04nLOFWKOxfVyDvUtEAGjBxLbK7kerkUZ5dD0UI6owxxXo189EKugP-tpf9iAa4eSbN2JOs7kuCieufwoTeof1xZvbI24VeSpYh4hB8_A1KukQ9bC_zrPK__73RvyCMcbopf6mR_tVjbt4CwVqoBXtY7bZD77e7gYgj7zteT036jfF4B2_Pv3UbpgXBkNLhoffsBx8Ee3g |
| linkProvider | Hindawi Publishing |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwENaUdJhyoTyHQAAP05YD4zaRZMs-cEgTSkIfhz6G3oT1cNohsUMeZMqP4q_wl9h15ECYoZx64JRxvJZj-dvVJ2X1LSEbMWpiGZr4gQmYz6nRvlI89S1XgAYksIWW3uFR2DnjH86D8xXyvdwLg2mVZUwsArXJNa6R71BBcRMoMAaXQblvr2YwPxu_7bbhZW5SuvfutNXxXQkBXwd1PvF1PdANbpK6UTASxYKmVGsh4ChhitF6ypgWLBFA21UkLI-5YDZVmkdKA5I1g3a3hl98rFKF_-a6kh23yCqcbdAKWW19bL_vlAgGcgXhni0IeIjHOOULwZWDMKqXqfdBgKsOdIczpPhiaVAsagcsRojbFzg3n10uMeC1aTZMrmZJv__bYLi3Tn6U3TjPgfm8PZ2obf3tD4XJ_6ef75G7jpd7zbkj3ScrNntA1suaF54LgQ9JvzuACOyd2AFA8lJ7x2UCVp55zX4PWp5cDLw89Vo55jYOsGCZBvNsnI-g9VFy5e0CcTAe2LetHYJd9tW5P9wftVKKjyI5_xE5u5FueEwqWZ7ZJ8TDtTmTqsgElnMeR0qYpGF4EjUajCplquRNCRmpnZw7VhXpy2JaFwQSASYdwKpkc2E9nMuY_MVuF9G3sEHx8eKLfNSTLpZJQLgNUwYTARTEEwwYZ6rDNBZMKZGmtEpeIXYlyotkmL_US6bjseyeHMsmakXFSKKr5LUzSnP43Tpx20Hg6VGRbMmytmQJ8U8vnd5wLvKPJ6uVeJcuTI_lL7BXydbCp65t5-n17bwka53TwwN50D3af0bu4JXz7KIaqUxGU_scKOxEvXBxwyOfbtqrfgLA3aKb |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVjwulKcIBLBQCwfkJtlde-0DQmlCaChUqKWiN-N9pRWJHfIgCj-Nv8KfYcZZB4JEOfXAKXIy2WSdb779ZjM7Q8hWjDWxNE39QAfM51QrX0pufcMloAEFbFFL791BuHfM35wEJ2vke3kWBtMqS04siFrnCvfIa1RQPAQKiqFmXVrE-3bn5fCLjx2k8J_Wsp3GAiL7Zj6D8G38otuG33qb0s6rD60933UY8FVQ5xNf1QPV4DqtawkLVSyopUoJAVcpk4zWLWNKsFSAqpeRMDzmghkrFY-kAqArBuNeIhtRKEIghY3Wx_brvRLNILSA-tlSjId4jeFfCG4dhFG9TMMPAtyBoDXOUO6LlQWy6COwXC0un2KcPjtbUcNXp9kwnc_Sfv-3hbGzSX6Ut3SRD_N5ZzqRO-rbH9Um_897foNcd3rday4c7CZZM9ktsln2wvAcNd4m_e4AmNk7MgOA6pnyDsvErDzzmv0ezGRyOvBy67VyzHkcYCMzBebZOB_B6KN07u2CoNAe2LeNGYJd9tXRAnw-1lApHoqk_Tvk-ELmfJesZ3lm7hEP9-y0lZEODOc8jqTQaUPzNGo0GJVSV8jzEj6JcmXesdtIPynCvSBIEGyJA1uFbC-th4vyJn-x20UkLm2wKHnxRD7qJY7jEkC7CS2DAAEL5QkGStSq0MaCSSmspRXyBHGcYNmRDMHUS6fjcdI9OkyaWEMqRnFdIc-ckc3he6vUHROB2WOlshXL6ool8KJaeXnLucs_ZlYtsZ84-h4nv4BfIU-X_nXuOPfPH-cxuQKuk7ztHuw_INfwjYukoypZn4ym5iEo24l85CjEI58u2oN-AoWDq2M |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE4IXxm2i0KEIDXhA6drYjpPHbjBtSExoo9IQD5avXUWbVL0wjV-_c1KnIkhcxFOb9pNjO8fH34mOv0PIXo6aWDZRMbecxiyxJtaa-dgxDdaABLbS0vt4mh4P2YcLfhGyKvEsjEWJ-FLZRfcSY9KrceWtw7wu9tUUo_Vkn1GkxqI7s_422Uo58PAW2Rqefhp8wQgrhZXD06psWvie53XWO-eNJhr7USXbv3HOd0IXGuTz7qqYqesrNZn8tA8dbZOv9QjW6Sffuqul7pofv4g7_t8QH5D7gZ5Gg7U9PSS3XPGIbNelH6LgCR6TyckUHFF07qbwZMYmOqvzkMoiGkxG5Xy8vJxGpY8OS0zxm2LdLgPwYlHOofW5uo4OYP-0EeDfOTcDXPE9rAK4P0qGVB9VjvoTMjx6__nwOA6FG2LDe2wZmx43fWZVz2rY_3OR-MQYIeBKUU2TnqfUCKoEBEs6E47lTFDntWGZNuA_DN0hraIs3FMS4Ssq63VmuWOM5ZkWVvUtU1kfwmitbZu8rR-fNEHVHItrTGQV3XAucTJlmMw2ebVBz9ZqHr_BHaAlbDCowV39UM5HMixpmTHqUk-BD6MunKBAvLxJfS6o1sL7pE1eoh1JVNkoMI1npFaLhTw5P5MDlEzKkUu2yZsA8iX026hwKgJGj8JcDWSngQQ3YBp_7wVz-svIOrUty9rkZCISPGANbLxNXm_s-4_tPPtX4HNyDy_XKTYd0lrOV24XeNxSvwgL9gaKuj6O |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Semantic+Recognition+Algorithm+of+Colorimetric+Sensor+Array+Based+on+Deep+Convolutional+Neural+Network&rft.jtitle=Advances+in+multimedia&rft.au=Chen%2C+Xihua&rft.au=Yang%2C+Xing&rft.date=2022-09-30&rft.issn=1687-5680&rft.eissn=1687-5699&rft.volume=2022&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1155%2F2022%2F4325117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_4325117 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5680&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5680&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5680&client=summon |